1
|
Qi S, Kumar A, Chen S, Zhou S, Parihar M, Villalobos C, Gupta N, Chan SH, Rao MK, McHardy SF, Haider S, Gupta YK. Structure of METTL3-METTL14 with an m6A nucleotide reveals insights into m6A conversion and sensing. RESEARCH SQUARE 2024:rs.3.rs-3150186. [PMID: 37609305 PMCID: PMC10441475 DOI: 10.21203/rs.3.rs-3150186/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
The nuclear METTL3-METTL14 transfers a methyl group from SAM to convert the N 6 of adenosine (A) in RNA to m6A and in ssDNA to 6mA. m6A marks are prevalent in eukaryotic mRNAs and lncRNAs and modulate their stability and fate in a context-dependent manner. The cytoplasmic METTL3 can act as a m6A reader. However, the precise mechanism during m6A writing, reading, or sensing is unclear. Here, we present a ~2.5 Å structure of the methyltransferase core of human METTL3-METTL14 in complex with the reaction product mimic, N 6 -methyladenosine monophosphate (m6A), representing a state post-catalysis but before the release of m6A. m6A occupies an evolutionarily conserved RNA-binding pocket ~16 Å away from the SAM pocket that also frequently mutates in cancer. We propose a two-step model of swiveling of target A upon conversion to m6A and sensing its methylation status by this pocket, enabling it to actuate enzymes' switch from writer to an m6A-sensor. Cancer-associated mutations show impaired RNA binding dynamics, de-stacking, and defective m6A writing and sensing.
Collapse
Affiliation(s)
- Shan Qi
- Greehey Children’s Cancer Research Institute, University of Texas Health Science Center at San Antonio, 8403 Floyd Curl Drive, San Antonio, TX 78229, USA
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229, USA
| | - Abhay Kumar
- Greehey Children’s Cancer Research Institute, University of Texas Health Science Center at San Antonio, 8403 Floyd Curl Drive, San Antonio, TX 78229, USA
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229, USA
| | - Shuang Chen
- Department of Pharmaceutical and Biological Chemistry, School of Pharmacy, University College London, London, United Kingdom
| | - Shuo Zhou
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229, USA
| | - Manish Parihar
- Greehey Children’s Cancer Research Institute, University of Texas Health Science Center at San Antonio, 8403 Floyd Curl Drive, San Antonio, TX 78229, USA
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229, USA
| | - Carmen Villalobos
- Greehey Children’s Cancer Research Institute, University of Texas Health Science Center at San Antonio, 8403 Floyd Curl Drive, San Antonio, TX 78229, USA
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229, USA
| | - Navom Gupta
- Greehey Children’s Cancer Research Institute, University of Texas Health Science Center at San Antonio, 8403 Floyd Curl Drive, San Antonio, TX 78229, USA
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229, USA
| | - Siu-Hong Chan
- New England Biolabs, 240 County Road, Ipswich, MA, 01938, USA
| | - Manjeet K. Rao
- Greehey Children’s Cancer Research Institute, University of Texas Health Science Center at San Antonio, 8403 Floyd Curl Drive, San Antonio, TX 78229, USA
| | - Stanton F McHardy
- Center for Innovative Drug Discovery, Department of Chemistry, University of Texas at San Antonio, San Antonio, TX, USA
| | - Shozeb Haider
- Department of Pharmaceutical and Biological Chemistry, School of Pharmacy, University College London, London, United Kingdom
| | - Yogesh K. Gupta
- Greehey Children’s Cancer Research Institute, University of Texas Health Science Center at San Antonio, 8403 Floyd Curl Drive, San Antonio, TX 78229, USA
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229, USA
| |
Collapse
|
2
|
Jiang H, Liu G, Gao Y, Gan J, Chen D, Murchie AIH. Cofactor binding triggers rapid conformational remodelling of the active site of a methyltransferase ribozyme. J Biol Chem 2024; 300:107863. [PMID: 39374779 PMCID: PMC11566860 DOI: 10.1016/j.jbc.2024.107863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 09/18/2024] [Accepted: 09/29/2024] [Indexed: 10/09/2024] Open
Abstract
The methyltransferase ribozyme SMRZ-1 utilizes S-adenosyl-methionine (SAM) and Cu (II) ions to methylate RNA. A comparison of the SAM-bound and unbound RNA structures has shown a conformational change in the RNA. However, the contribution of specific interactions and the role of a pseudo-triplex motif in the catalytic center on the methylation reaction is not completely understood. In this study, we have used atomic substitutions and mutational analysis to investigate the reaction specificity and the key interactions required for catalysis. Substitution of the fluorescent nucleotide 2-aminopurine within the active ribozyme enabled the conformational dynamics of the RNA upon co-factor binding to be explored using fluorescence spectroscopy. We show that fast co-factor binding (t1/2 ∼ 0.7 s) drives a conformational change in the RNA to facilitate methyl group transfer. The importance of stacking interactions at the pseudo-triplex motif and chelation of the Cu (II) ion were shown to be essential for SAM binding.
Collapse
Affiliation(s)
- Hengyi Jiang
- Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, China and Institutes of Biomedical Sciences, Shanghai Medical College, Key Laboratory of Medical Epigenetics and Metabolism, Fudan University, Shanghai, China; Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Getong Liu
- Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, China and Institutes of Biomedical Sciences, Shanghai Medical College, Key Laboratory of Medical Epigenetics and Metabolism, Fudan University, Shanghai, China; Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Yanqing Gao
- Department of Physiology and Biophysics, Shanghai Public Health Clinical Center, State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, School of Life Sciences, Fudan University, Shanghai, China
| | - Jianhua Gan
- Department of Physiology and Biophysics, Shanghai Public Health Clinical Center, State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, School of Life Sciences, Fudan University, Shanghai, China
| | - Dongrong Chen
- Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, China and Institutes of Biomedical Sciences, Shanghai Medical College, Key Laboratory of Medical Epigenetics and Metabolism, Fudan University, Shanghai, China; Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, School of Basic Medical Sciences, Fudan University, Shanghai, China.
| | - Alastair I H Murchie
- Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, China and Institutes of Biomedical Sciences, Shanghai Medical College, Key Laboratory of Medical Epigenetics and Metabolism, Fudan University, Shanghai, China; Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, School of Basic Medical Sciences, Fudan University, Shanghai, China.
| |
Collapse
|
3
|
Sudol C, Kilz LM, Marchand V, Thullier Q, Guérineau V, Goyenvalle C, Faivre B, Toubdji S, Lombard M, Jean-Jean O, de Crécy-Lagard V, Helm M, Motorin Y, Brégeon D, Hamdane D. Functional redundancy in tRNA dihydrouridylation. Nucleic Acids Res 2024; 52:5880-5894. [PMID: 38682613 PMCID: PMC11162810 DOI: 10.1093/nar/gkae325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 03/26/2024] [Accepted: 04/24/2024] [Indexed: 05/01/2024] Open
Abstract
Dihydrouridine (D) is a common modified base found predominantly in transfer RNA (tRNA). Despite its prevalence, the mechanisms underlying dihydrouridine biosynthesis, particularly in prokaryotes, have remained elusive. Here, we conducted a comprehensive investigation into D biosynthesis in Bacillus subtilis through a combination of genetic, biochemical, and epitranscriptomic approaches. Our findings reveal that B. subtilis relies on two FMN-dependent Dus-like flavoprotein homologs, namely DusB1 and DusB2, to introduce all D residues into its tRNAs. Notably, DusB1 exhibits multisite enzyme activity, enabling D formation at positions 17, 20, 20a and 47, while DusB2 specifically catalyzes D biosynthesis at positions 20 and 20a, showcasing a functional redundancy among modification enzymes. Extensive tRNA-wide D-mapping demonstrates that this functional redundancy impacts the majority of tRNAs, with DusB2 displaying a higher dihydrouridylation efficiency compared to DusB1. Interestingly, we found that BsDusB2 can function like a BsDusB1 when overexpressed in vivo and under increasing enzyme concentration in vitro. Furthermore, we establish the importance of the D modification for B. subtilis growth at suboptimal temperatures. Our study expands the understanding of D modifications in prokaryotes, highlighting the significance of functional redundancy in this process and its impact on bacterial growth and adaptation.
Collapse
Affiliation(s)
- Claudia Sudol
- Sorbonne Université, CNRS, Institut de Biologie Paris Seine, Biology of Aging and Adaptation, Paris 75252, France
- Collège De France, Sorbonne Université, CNRS, Laboratoire de Chimie des Processus Biologiques, 11 place Marcelin Berthelot, 75231 Paris Cedex 05, France
| | - Lea-Marie Kilz
- Institut für pharmazeutische und biomedizinische Wissenschaften (IPBW), Johannes Gutenberg-Universität, Mainz 55128, Germany
| | - Virginie Marchand
- Université de Lorraine, CNRS, INSERM, UMS2008/US40 IBSLor, EpiRNA-Seq Core Facility, Nancy F-54000, France
- Université de Lorraine, CNRS, UMR7365 IMoPA, Nancy F-54000, France
| | - Quentin Thullier
- Université de Lorraine, CNRS, INSERM, UMS2008/US40 IBSLor, EpiRNA-Seq Core Facility, Nancy F-54000, France
- Université de Lorraine, CNRS, UMR7365 IMoPA, Nancy F-54000, France
| | - Vincent Guérineau
- Université Paris-Saclay, CNRS, Institut de Chimie des Substances Naturelles, UPR 2301, 91198, Gif-sur-Yvette, France
| | - Catherine Goyenvalle
- Sorbonne Université, CNRS, Institut de Biologie Paris Seine, Biology of Aging and Adaptation, Paris 75252, France
| | - Bruno Faivre
- Collège De France, Sorbonne Université, CNRS, Laboratoire de Chimie des Processus Biologiques, 11 place Marcelin Berthelot, 75231 Paris Cedex 05, France
| | - Sabrine Toubdji
- Sorbonne Université, CNRS, Institut de Biologie Paris Seine, Biology of Aging and Adaptation, Paris 75252, France
- Collège De France, Sorbonne Université, CNRS, Laboratoire de Chimie des Processus Biologiques, 11 place Marcelin Berthelot, 75231 Paris Cedex 05, France
| | - Murielle Lombard
- Collège De France, Sorbonne Université, CNRS, Laboratoire de Chimie des Processus Biologiques, 11 place Marcelin Berthelot, 75231 Paris Cedex 05, France
| | - Olivier Jean-Jean
- Sorbonne Université, CNRS, Institut de Biologie Paris Seine, Biology of Aging and Adaptation, Paris 75252, France
| | - Valérie de Crécy-Lagard
- Department of Microbiology and Cell Science, University of Florida, Gainesville, FL 32611, USA
- University of Florida, Genetics Institute, Gainesville, FL 32610, USA
| | - Mark Helm
- Institut für pharmazeutische und biomedizinische Wissenschaften (IPBW), Johannes Gutenberg-Universität, Mainz 55128, Germany
| | - Yuri Motorin
- Université de Lorraine, CNRS, INSERM, UMS2008/US40 IBSLor, EpiRNA-Seq Core Facility, Nancy F-54000, France
- Université de Lorraine, CNRS, UMR7365 IMoPA, Nancy F-54000, France
| | - Damien Brégeon
- Sorbonne Université, CNRS, Institut de Biologie Paris Seine, Biology of Aging and Adaptation, Paris 75252, France
| | - Djemel Hamdane
- Collège De France, Sorbonne Université, CNRS, Laboratoire de Chimie des Processus Biologiques, 11 place Marcelin Berthelot, 75231 Paris Cedex 05, France
| |
Collapse
|
4
|
Wang W, Yang Y, Guo H, Li MH, Chen XQ, Wei XY, Chen Y, Elsheikha HM, Zhang XX. Unravelling Strain-Specific Modifications of Toxoplasma gondii tRNA and sncRNA Using LC-MS/MS. Microbiol Spectr 2023; 11:e0356422. [PMID: 37036375 PMCID: PMC10269570 DOI: 10.1128/spectrum.03564-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 03/21/2023] [Indexed: 04/11/2023] Open
Abstract
Many RNA modifications have been detected in rRNA, tRNA and small noncoding RNA (sncRNA) as well as in low-abundance RNA species such mRNA. Although RNA modifications play roles in many cellular and biological processes in various domains of life, knowledge about the diversity and role of RNA modifications in Toxoplasma gondii is limited. In this study, RNA modifications in three T. gondii strains (RH type I, PRU type II, and VEG type III) with distinct virulence abilities were determined by liquid chromatography-tandem mass spectrometry. We compared the levels of modifications of four nucleotides in tRNA and sncRNA, characterized RNA modification patterns of different T. gondii strains, and determined the diversity of RNA modifications. We detected and quantified 22 modified nucleosides in both tRNA and sncRNA. Significant differences in the diversity of the modified nucleosides were found between the three T. gondii strains. RNA modifications were correlated with the expression of many T. gondii virulence proteins. Some of the identified modifications (e.g., 2'-O-methylinosine, pseudouridine) play a role in mediating the host-parasite interaction. These results provide novel insight into the global modifications in tRNA and sncRNA, and the diversity of RNA modifications between T. gondii strains with different virulence backgrounds. IMPORTANCE Although RNA modifications play roles in many cellular and developmental processes in various domains of life, knowledge about the patterns and functions of RNA modifications in T. gondii is limited. Here, a quantitative liquid chromatography-tandem mass spectrometry (LC-MS/MS) approach was used to study global RNA modifications in T. gondii strains of distinct virulence backgrounds. We quantified 22 modified nucleosides in both tRNA and sncRNA. Significant T. gondii strain-specific differences in RNA modifications were detected. More tRNA modifications correlated with T. gondii virulence proteins than sncRNA modifications. RNA modifications were significantly correlated with virulence proteins. Our data provide the first comprehensive profiling of the modifications tRNA and sncRNA in T. gondii, expanding the diversity of RNA modifications in this parasite and suggesting new regulators for modulating its virulence.
Collapse
Affiliation(s)
- Wei Wang
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, People’s Republic of China
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agriculture University, Daqing, People’s Republic of China
| | - Yi Yang
- College of Animal Sciences, Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, Institute of Preventive Veterinary Medicine, Zhejiang University, Hangzhou, People’s Republic of China
| | - Huanping Guo
- Medical Center of Hematology, The Second Affiliated Hospital of Army Medical University, Chongqing, People’s Republic of China
| | - Ming-Han Li
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, People’s Republic of China
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, People’s Republic of China
| | - Xiao-Qing Chen
- Jiangxi Provincial Key Laboratory for Animal Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, People’s Republic of China
| | - Xin-Yu Wei
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, People’s Republic of China
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agriculture University, Daqing, People’s Republic of China
| | - Yu Chen
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, People’s Republic of China
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agriculture University, Daqing, People’s Republic of China
| | - Hany M. Elsheikha
- Faculty of Medicine and Health Sciences, School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington Campus, Loughborough, United Kingdom
| | - Xiao-Xuan Zhang
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, People’s Republic of China
| |
Collapse
|
5
|
Guo H, Xia L, Wang W, Xu W, Shen X, Wu X, He T, Jiang X, Xu Y, Zhao P, Tan D, Zhang X, Zhang Y. Hypoxia induces alterations in tRNA modifications involved in translational control. BMC Biol 2023; 21:39. [PMID: 36803965 PMCID: PMC9942361 DOI: 10.1186/s12915-023-01537-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 02/03/2023] [Indexed: 02/22/2023] Open
Abstract
BACKGROUND Adaptation to high-altitude hypobaric hypoxia has been shown to require a set of physiological traits enabled by an associated set of genetic modifications, as well as transcriptome regulation. These lead to both lifetime adaptation of individuals to hypoxia at high altitudes and generational evolution of populations as seen for instance in those of Tibet. Additionally, RNA modifications, which are sensitive to environmental exposure, have been shown to play pivotal biological roles in maintaining the physiological functions of organs. However, the dynamic RNA modification landscape and related molecular mechanisms in mouse tissues under hypobaric hypoxia exposure remain to be fully understood. Here, we explore the tissue-specific distribution pattern of multiple RNA modifications across mouse tissues. RESULTS By applying an LC-MS/MS-dependent RNA modification detection platform, we identified the distribution of multiple RNA modifications in total RNA, tRNA-enriched fragments, and 17-50-nt sncRNAs across mouse tissues; these patterns were associated with the expression levels of RNA modification modifiers in different tissues. Moreover, the tissue-specific abundance of RNA modifications was sensitively altered across different RNA groups in a simulated high-altitude (over 5500 m) hypobaric hypoxia mouse model with the activation of the hypoxia response in mouse peripheral blood and multiple tissues. RNase digestion experiments revealed that the alteration of RNA modification abundance under hypoxia exposure impacted the molecular stability of tissue total tRNA-enriched fragments and isolated individual tRNAs, such as tRNAAla, tRNAval, tRNAGlu, and tRNALeu. In vitro transfection experiments showed that the transfection of testis total tRNA-enriched fragments from the hypoxia group into GC-2spd cells attenuated the cell proliferation rate and led to a reduction in overall nascent protein synthesis in cells. CONCLUSIONS Our results reveal that the abundance of RNA modifications for different classes of RNAs under physiological conditions is tissue-specific and responds to hypobaric hypoxia exposure in a tissue-specific manner. Mechanistically, the dysregulation of tRNA modifications under hypobaric hypoxia attenuated the cell proliferation rate, facilitated the sensitivity of tRNA to RNases, and led to a reduction in overall nascent protein synthesis, suggesting an active role of tRNA epitranscriptome alteration in the adaptive response to environmental hypoxia exposure.
Collapse
Affiliation(s)
- Huanping Guo
- grid.410570.70000 0004 1760 6682Medical Center of Hematology, Xinqiao Hospital, State Key Laboratory of Trauma, Burn and Combined Injury, Army Medical University, Chongqing, 400037 China
| | - Lin Xia
- grid.410570.70000 0004 1760 6682Medical Center of Hematology, Xinqiao Hospital, State Key Laboratory of Trauma, Burn and Combined Injury, Army Medical University, Chongqing, 400037 China
| | - Wei Wang
- grid.410570.70000 0004 1760 6682Medical Center of Hematology, Xinqiao Hospital, State Key Laboratory of Trauma, Burn and Combined Injury, Army Medical University, Chongqing, 400037 China
| | - Wei Xu
- grid.410570.70000 0004 1760 6682Medical Center of Hematology, Xinqiao Hospital, State Key Laboratory of Trauma, Burn and Combined Injury, Army Medical University, Chongqing, 400037 China
| | - Xipeng Shen
- grid.410570.70000 0004 1760 6682Medical Center of Hematology, Xinqiao Hospital, State Key Laboratory of Trauma, Burn and Combined Injury, Army Medical University, Chongqing, 400037 China ,grid.203458.80000 0000 8653 0555Chongqing Medical University, Chongqing, 400016 China
| | - Xiao Wu
- grid.410570.70000 0004 1760 6682Medical Center of Hematology, Xinqiao Hospital, State Key Laboratory of Trauma, Burn and Combined Injury, Army Medical University, Chongqing, 400037 China
| | - Tong He
- grid.410570.70000 0004 1760 6682Medical Center of Hematology, Xinqiao Hospital, State Key Laboratory of Trauma, Burn and Combined Injury, Army Medical University, Chongqing, 400037 China ,grid.203458.80000 0000 8653 0555Chongqing Medical University, Chongqing, 400016 China
| | - Xuelin Jiang
- grid.410570.70000 0004 1760 6682Medical Center of Hematology, Xinqiao Hospital, State Key Laboratory of Trauma, Burn and Combined Injury, Army Medical University, Chongqing, 400037 China
| | - Yinying Xu
- grid.410570.70000 0004 1760 6682Medical Center of Hematology, Xinqiao Hospital, State Key Laboratory of Trauma, Burn and Combined Injury, Army Medical University, Chongqing, 400037 China
| | - Pan Zhao
- grid.410570.70000 0004 1760 6682Medical Center of Hematology, Xinqiao Hospital, State Key Laboratory of Trauma, Burn and Combined Injury, Army Medical University, Chongqing, 400037 China
| | - Dongmei Tan
- grid.203458.80000 0000 8653 0555Chongqing Medical University, Chongqing, 400016 China
| | - Xi Zhang
- Medical Center of Hematology, Xinqiao Hospital, State Key Laboratory of Trauma, Burn and Combined Injury, Army Medical University, Chongqing, 400037, China. .,Jinfeng Laboratory, Chongqing, 401329, China.
| | - Yunfang Zhang
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China.
| |
Collapse
|
6
|
Feng Q, Wang D, Xue T, Lin C, Gao Y, Sun L, Jin Y, Liu D. The role of RNA modification in hepatocellular carcinoma. Front Pharmacol 2022; 13:984453. [PMID: 36120301 PMCID: PMC9479111 DOI: 10.3389/fphar.2022.984453] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Accepted: 08/11/2022] [Indexed: 12/25/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is a highly mortal type of primary liver cancer. Abnormal epigenetic modifications are present in HCC, and RNA modification is dynamic and reversible and is a key post-transcriptional regulator. With the in-depth study of post-transcriptional modifications, RNA modifications are aberrantly expressed in human cancers. Moreover, the regulators of RNA modifications can be used as potential targets for cancer therapy. In RNA modifications, N6-methyladenosine (m6A), N7-methylguanosine (m7G), and 5-methylcytosine (m5C) and their regulators have important regulatory roles in HCC progression and represent potential novel biomarkers for the confirmation of diagnosis and treatment of HCC. This review focuses on RNA modifications in HCC and the roles and mechanisms of m6A, m7G, m5C, N1-methyladenosine (m1A), N3-methylcytosine (m3C), and pseudouridine (ψ) on its development and maintenance. The potential therapeutic strategies of RNA modifications are elaborated for HCC.
Collapse
Affiliation(s)
- Qiang Feng
- Laboratory Animal Center, College of Animal Science, Jilin University, Changchun, China
| | - Dongxu Wang
- Laboratory Animal Center, College of Animal Science, Jilin University, Changchun, China
| | - Tianyi Xue
- Laboratory Animal Center, College of Animal Science, Jilin University, Changchun, China
| | - Chao Lin
- School of Grain Science and Technology, Jilin Business and Technology College, Changchun, China
| | - Yongjian Gao
- Department of Gastrointestinal Colorectal and Anal Surgery, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Liqun Sun
- Department of Pediatrics, First Hospital of Jilin University, Changchun, China
| | - Ye Jin
- School of Pharmacy, Changchun University of Chinese Medicine, Changchun, China
| | - Dianfeng Liu
- Laboratory Animal Center, College of Animal Science, Jilin University, Changchun, China
- *Correspondence: Dianfeng Liu,
| |
Collapse
|
7
|
Brégeon D, Pecqueur L, Toubdji S, Sudol C, Lombard M, Fontecave M, de Crécy-Lagard V, Motorin Y, Helm M, Hamdane D. Dihydrouridine in the Transcriptome: New Life for This Ancient RNA Chemical Modification. ACS Chem Biol 2022; 17:1638-1657. [PMID: 35737906 DOI: 10.1021/acschembio.2c00307] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Until recently, post-transcriptional modifications of RNA were largely restricted to noncoding RNA species. However, this belief seems to have quickly dissipated with the growing number of new modifications found in mRNA that were originally thought to be primarily tRNA-specific, such as dihydrouridine. Recently, transcriptomic profiling, metabolic labeling, and proteomics have identified unexpected dihydrouridylation of mRNAs, greatly expanding the catalog of novel mRNA modifications. These data also implicated dihydrouridylation in meiotic chromosome segregation, protein translation rates, and cell proliferation. Dihydrouridylation of tRNAs and mRNAs are introduced by flavin-dependent dihydrouridine synthases. In this review, we will briefly outline the current knowledge on the distribution of dihydrouridines in the transcriptome, their chemical labeling, and highlight structural and mechanistic aspects regarding the dihydrouridine synthases enzyme family. A special emphasis on important research directions to be addressed will also be discussed. This new entry of dihydrouridine into mRNA modifications has definitely added a new layer of information that controls protein synthesis.
Collapse
Affiliation(s)
- Damien Brégeon
- IBPS, Biology of Aging and Adaptation, Sorbonne Université, Paris 75252, France
| | - Ludovic Pecqueur
- Laboratoire de Chimie des Processus Biologiques, CNRS-UMR 8229, Collège De France, Université Pierre et Marie Curie, 11 place Marcelin Berthelot, 75231 Paris, Cedex 05, France
| | - Sabrine Toubdji
- IBPS, Biology of Aging and Adaptation, Sorbonne Université, Paris 75252, France
- Laboratoire de Chimie des Processus Biologiques, CNRS-UMR 8229, Collège De France, Université Pierre et Marie Curie, 11 place Marcelin Berthelot, 75231 Paris, Cedex 05, France
| | - Claudia Sudol
- IBPS, Biology of Aging and Adaptation, Sorbonne Université, Paris 75252, France
- Laboratoire de Chimie des Processus Biologiques, CNRS-UMR 8229, Collège De France, Université Pierre et Marie Curie, 11 place Marcelin Berthelot, 75231 Paris, Cedex 05, France
| | - Murielle Lombard
- Laboratoire de Chimie des Processus Biologiques, CNRS-UMR 8229, Collège De France, Université Pierre et Marie Curie, 11 place Marcelin Berthelot, 75231 Paris, Cedex 05, France
| | - Marc Fontecave
- Laboratoire de Chimie des Processus Biologiques, CNRS-UMR 8229, Collège De France, Université Pierre et Marie Curie, 11 place Marcelin Berthelot, 75231 Paris, Cedex 05, France
| | - Valérie de Crécy-Lagard
- Department of Microbiology and Cell Science, University of Florida, Gainesville, Florida 32611, United States
- Genetics Institute, University of Florida, Gainesville, Florida 32610, United States
| | - Yuri Motorin
- Université de Lorraine, CNRS, INSERM, UMS2008/US40 IBSLor, EpiRNA-Seq Core Facility, Nancy F-54000, France
- Université de Lorraine, CNRS, UMR7365 IMoPA, Nancy F-54000, France
| | - Mark Helm
- Institut für pharmazeutische und biomedizinische Wissenschaften (IPBW), Johannes Gutenberg-Universität, Mainz 55128, Germany
| | - Djemel Hamdane
- Laboratoire de Chimie des Processus Biologiques, CNRS-UMR 8229, Collège De France, Université Pierre et Marie Curie, 11 place Marcelin Berthelot, 75231 Paris, Cedex 05, France
| |
Collapse
|
8
|
Bhujbalrao R, Gavvala K, Singh RK, Singh J, Boudier C, Chakrabarti S, Patwari GN, Mély Y, Anand R. Identification of Allosteric Hotspots regulating the ribosomal RNA-binding by Antibiotic Resistance-Conferring Erm Methyltransferases. J Biol Chem 2022; 298:102208. [PMID: 35772496 PMCID: PMC9386465 DOI: 10.1016/j.jbc.2022.102208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 06/23/2022] [Accepted: 06/24/2022] [Indexed: 11/12/2022] Open
Abstract
Antibiotic resistance via epigenetic methylation of ribosomal RNA is one of the most prevalent strategies adopted by multidrug resistant pathogens. The erythromycin-resistance methyltransferase (Erm) methylates rRNA at the conserved A2058 position and imparts resistance to macrolides such as erythromycin. However, the precise mechanism adopted by Erm methyltransferases for locating the target base within a complicated rRNA scaffold remains unclear. Here, we show that a conserved RNA architecture, including specific bulge sites, present more than 15 Å from the reaction center, is key to methylation at the pathogenic site. Using a set of RNA sequences site-specifically labeled by fluorescent nucleotide surrogates, we show that base flipping is a prerequisite for effective methylation and that distal bases assist in the recognition and flipping at the reaction center. The Erm–RNA complex model revealed that intrinsically flipped-out bases in the RNA serve as a putative anchor point for the Erm. Molecular dynamic simulation studies demonstrated the RNA undergoes a substantial change in conformation to facilitate an effective protein–rRNA handshake. This study highlights the importance of unique architectural features exploited by RNA to impart fidelity to RNA methyltransferases via enabling allosteric crosstalk. Moreover, the distal trigger sites identified here serve as attractive hotspots for the development of combination drug therapy aimed at reversing resistance.
Collapse
Affiliation(s)
- Ruchika Bhujbalrao
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Krishna Gavvala
- Laboratoire de Bioimagerie et Pathologies, UMR 7021 CNRS, Université de Strasbourg, Faculté de Pharmacie, 74 Route du Rhin, 67401 Illkirch, France
| | - Reman Kumar Singh
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Juhi Singh
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Christian Boudier
- Laboratoire de Bioimagerie et Pathologies, UMR 7021 CNRS, Université de Strasbourg, Faculté de Pharmacie, 74 Route du Rhin, 67401 Illkirch, France
| | - Sutapa Chakrabarti
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Takustr. 6, D-14195 Berlin, Germany
| | - G Naresh Patwari
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India.
| | - Yves Mély
- Laboratoire de Bioimagerie et Pathologies, UMR 7021 CNRS, Université de Strasbourg, Faculté de Pharmacie, 74 Route du Rhin, 67401 Illkirch, France.
| | - Ruchi Anand
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India; Wellcome Trust DBT Indian Alliance Senior Fellow.
| |
Collapse
|
9
|
Motorin Y, Helm M. RNA nucleotide methylation: 2021 update. WILEY INTERDISCIPLINARY REVIEWS. RNA 2022; 13:e1691. [PMID: 34913259 DOI: 10.1002/wrna.1691] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 07/22/2021] [Accepted: 07/22/2021] [Indexed: 12/14/2022]
Abstract
Among RNA modifications, transfer of methylgroups from the typical cofactor S-adenosyl-l-methionine by methyltransferases (MTases) to RNA is by far the most common reaction. Since our last review about a decade ago, the field has witnessed the re-emergence of mRNA methylation as an important mechanism in gene regulation. Attention has then spread to many other RNA species; all being included into the newly coined concept of the "epitranscriptome." The focus moved from prokaryotes and single cell eukaryotes as model organisms to higher eukaryotes, in particular to mammals. The perception of the field has dramatically changed over the past decade. A previous lack of phenotypes in knockouts in single cell organisms has been replaced by the apparition of MTases in numerous disease models and clinical investigations. Major driving forces of the field include methylation mapping techniques, as well as the characterization of the various MTases, termed "writers." The latter term has spilled over from DNA modification in the neighboring epigenetics field, along with the designations "readers," applied to mediators of biological effects upon specific binding to a methylated RNA. Furthermore "eraser" enzymes effect the newly discovered oxidative removal of methylgroups. A sense of reversibility and dynamics has replaced the older perception of RNA modification as a concrete-cast, irreversible part of RNA maturation. A related concept concerns incompletely methylated residues, which, through permutation of each site, lead to inhomogeneous populations of numerous modivariants. This review recapitulates the major developments of the past decade outlined above, and attempts a prediction of upcoming trends. This article is categorized under: RNA Processing > RNA Editing and Modification.
Collapse
Affiliation(s)
- Yuri Motorin
- Université de Lorraine, CNRS, INSERM, UMS2008/US40 IBSLor, EpiRNA-Seq Core Facility, Nancy, France.,Université de Lorraine, CNRS, UMR7365 IMoPA, Nancy, France
| | - Mark Helm
- Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg-Universität, Mainz, Germany
| |
Collapse
|
10
|
Faivre B, Lombard M, Fakroun S, Vo CDT, Goyenvalle C, Guérineau V, Pecqueur L, Fontecave M, De Crécy-Lagard V, Brégeon D, Hamdane D. Dihydrouridine synthesis in tRNAs is under reductive evolution in Mollicutes. RNA Biol 2021; 18:2278-2289. [PMID: 33685366 DOI: 10.1080/15476286.2021.1899653] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
Abstract
Dihydrouridine (D) is a tRNA-modified base conserved throughout all kingdoms of life and assuming an important structural role. The conserved dihydrouridine synthases (Dus) carries out D-synthesis. DusA, DusB and DusC are bacterial members, and their substrate specificity has been determined in Escherichia coli. DusA synthesizes D20/D20a while DusB and DusC are responsible for the synthesis of D17 and D16, respectively. Here, we characterize the function of the unique dus gene encoding a DusB detected in Mollicutes, which are bacteria that evolved from a common Firmicute ancestor via massive genome reduction. Using in vitro activity tests as well as in vivo E. coli complementation assays with the enzyme from Mycoplasma capricolum (DusBMCap), a model organism for the study of these parasitic bacteria, we show that, as expected for a DusB homolog, DusBMCap modifies U17 to D17 but also synthetizes D20/D20a combining therefore both E. coli DusA and DusB activities. Hence, this is the first case of a Dus enzyme able to modify up to three different sites as well as the first example of a tRNA-modifying enzyme that can modify bases present on the two opposite sides of an RNA-loop structure. Comparative analysis of the distribution of DusB homologs in Firmicutes revealed the existence of three DusB subgroups namely DusB1, DusB2 and DusB3. The first two subgroups were likely present in the Firmicute ancestor, and Mollicutes have retained DusB1 and lost DusB2. Altogether, our results suggest that the multisite specificity of the M. capricolum DusB enzyme could be an ancestral property.
Collapse
Affiliation(s)
- Bruno Faivre
- Laboratoire De Chimie Des Processus Biologiques, CNRS-UMR 8229, Collège De France, Sorbonne Université, UPMC Université. Paris 06, Paris, France
| | - Murielle Lombard
- Laboratoire De Chimie Des Processus Biologiques, CNRS-UMR 8229, Collège De France, Sorbonne Université, UPMC Université. Paris 06, Paris, France
| | - Soufyan Fakroun
- Sorbonne Université, IBPS, Biology of Aging and Adaptation, Paris, France
| | - Chau-Duy-Tam Vo
- Laboratoire De Chimie Des Processus Biologiques, CNRS-UMR 8229, Collège De France, Sorbonne Université, UPMC Université. Paris 06, Paris, France
| | | | - Vincent Guérineau
- Institue De Chimie De Substances Naturelles, Centre De Recherche De Gif CNRS, Gif-sur-Yvette, France
| | - Ludovic Pecqueur
- Laboratoire De Chimie Des Processus Biologiques, CNRS-UMR 8229, Collège De France, Sorbonne Université, UPMC Université. Paris 06, Paris, France
| | - Marc Fontecave
- Laboratoire De Chimie Des Processus Biologiques, CNRS-UMR 8229, Collège De France, Sorbonne Université, UPMC Université. Paris 06, Paris, France
| | - Valérie De Crécy-Lagard
- Department of Microbiology and Cell Science, University of Florida, Gainesville, FL, USA; University of Florida Genetics Institute, Gainesville, FL, USA
| | - Damien Brégeon
- Sorbonne Université, IBPS, Biology of Aging and Adaptation, Paris, France
| | - Djemel Hamdane
- Laboratoire De Chimie Des Processus Biologiques, CNRS-UMR 8229, Collège De France, Sorbonne Université, UPMC Université. Paris 06, Paris, France
| |
Collapse
|
11
|
Post-Transcriptional Modifications of Conserved Nucleotides in the T-Loop of tRNA: A Tale of Functional Convergent Evolution. Genes (Basel) 2021; 12:genes12020140. [PMID: 33499018 PMCID: PMC7912444 DOI: 10.3390/genes12020140] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 01/18/2021] [Accepted: 01/20/2021] [Indexed: 12/30/2022] Open
Abstract
The high conservation of nucleotides of the T-loop, including their chemical identity, are hallmarks of tRNAs from organisms belonging to the three Domains of Life. These structural characteristics allow the T-loop to adopt a peculiar intraloop conformation able to interact specifically with other conserved residues of the D-loop, which ultimately folds the mature tRNA in a unique functional canonical L-shaped architecture. Paradoxically, despite the high conservation of modified nucleotides in the T-loop, enzymes catalyzing their formation depend mostly on the considered organism, attesting for an independent but convergent evolution of the post-transcriptional modification processes. The driving force behind this is the preservation of a native conformation of the tRNA elbow that underlies the various interactions of tRNA molecules with different cellular components.
Collapse
|
12
|
Mariam J, Krishnamoorthy G, Anand R. Use of 6‐Methylisoxanthopterin, a Fluorescent Guanine Analog, to Probe Fob1‐Mediated Dynamics at the Stalling Fork Barrier DNA Sequences. Chem Asian J 2019; 14:4760-4766. [DOI: 10.1002/asia.201901061] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2019] [Revised: 09/19/2019] [Indexed: 12/19/2022]
Affiliation(s)
- Jessy Mariam
- Department of ChemistryIndian Institute of Technology Bombay Powai Mumbai 400076 Maharashtra India
| | | | - Ruchi Anand
- Department of ChemistryIndian Institute of Technology Bombay Powai Mumbai 400076 Maharashtra India
| |
Collapse
|
13
|
Distinct Modified Nucleosides in tRNA Trp from the Hyperthermophilic Archaeon Thermococcus kodakarensis and Requirement of tRNA m 2G10/m 2 2G10 Methyltransferase (Archaeal Trm11) for Survival at High Temperatures. J Bacteriol 2019; 201:JB.00448-19. [PMID: 31405913 DOI: 10.1128/jb.00448-19] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Accepted: 08/09/2019] [Indexed: 12/19/2022] Open
Abstract
tRNA m2G10/m2 2G10 methyltransferase (archaeal Trm11) methylates the 2-amino group in guanosine at position 10 in tRNA and forms N 2,N 2-dimethylguanosine (m2 2G10) via N 2-methylguanosine (m2G10). We determined the complete sequence of tRNATrp, one of the substrate tRNAs for archaeal Trm11 from Thermococcus kodakarensis, a hyperthermophilic archaeon. Liquid chromatography/mass spectrometry following enzymatic digestion of tRNATrp identified 15 types of modified nucleoside at 21 positions. Several modifications were found at novel positions in tRNA, including 2'-O-methylcytidine at position 6, 2-thiocytidine at position 17, 2'-O-methyluridine at position 20, 5,2'-O-dimethylcytidine at position 32, and 2'-O-methylguanosine at position 42. Furthermore, methylwyosine was found at position 37 in this tRNATrp, although 1-methylguanosine is generally found at this location in tRNATrp from other archaea. We constructed trm11 (Δtrm11) and some gene disruptant strains and compared their tRNATrp with that of the wild-type strain, which confirmed the absence of m2 2G10 and other corresponding modifications, respectively. The lack of 2-methylguanosine (m2G) at position 67 in the trm11 trm14 double disruptant strain suggested that this methylation is mediated by Trm14, which was previously identified as an m2G6 methyltransferase. The Δtrm11 strain grew poorly at 95°C, indicating that archaeal Trm11 is required for T. kodakarensis survival at high temperatures. The m2 2G10 modification might have effects on stabilization of tRNA and/or correct folding of tRNA at the high temperatures. Collectively, these results provide new clues to the function of modifications and the substrate specificities of modification enzymes in archaeal tRNA, enabling us to propose a strategy for tRNA stabilization of this archaeon at high temperatures.IMPORTANCE Thermococcus kodakarensis is a hyperthermophilic archaeon that can grow at 60 to 100°C. The sequence of tRNATrp from this archaeon was determined by liquid chromatography/mass spectrometry. Fifteen types of modified nucleoside were observed at 21 positions, including 5 modifications at novel positions; in addition, methylwyosine at position 37 was newly observed in an archaeal tRNATrp The construction of trm11 (Δtrm11) and other gene disruptant strains confirmed the enzymes responsible for modifications in this tRNA. The lack of 2-methylguanosine (m2G) at position 67 in the trm11 trm14 double disruptant strain suggested that this position is methylated by Trm14, which was previously identified as an m2G6 methyltransferase. The Δtrm11 strain grew poorly at 95°C, indicating that archaeal Trm11 is required for T. kodakarensis survival at high temperatures.
Collapse
|
14
|
Orita I, Futatsuishi R, Adachi K, Ohira T, Kaneko A, Minowa K, Suzuki M, Tamura T, Nakamura S, Imanaka T, Suzuki T, Fukui T. Random mutagenesis of a hyperthermophilic archaeon identified tRNA modifications associated with cellular hyperthermotolerance. Nucleic Acids Res 2019; 47:1964-1976. [PMID: 30605516 PMCID: PMC6393311 DOI: 10.1093/nar/gky1313] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2018] [Revised: 12/05/2018] [Accepted: 12/22/2018] [Indexed: 12/20/2022] Open
Abstract
Random mutagenesis for the hyperthermophilic archaeon Thermococcus kodakarensis was established by the insertion of an artificial transposon designed to allow easy identification of the transposon-inserted locus. The phenotypic screening was applied for the isolation of thermosensitive mutants of T. kodakarensis, which resulted in the isolation of 16 mutants showing defective growth at the supraoptimal temperature 93°C. The high occurrence of the mutants suggested that the high thermotolerance of hyperthermophiles was achieved by a combination of diverse gene functions. The transposon insertion sites in two-thirds of the mutants were identified in a group of genes responsible for tRNA modifications including 7-formamidino-7-deaza-guanosine (archaeosine), N1-methyladenosine/N1-methylinosine, N4-acetylcytidine, and N2-dimethylguanosine/N2,N2-dimethylguanosine. LC–MS/MS analyses of tRNA nucleosides and fragments exhibited disappearance of the corresponding modifications in the mutants. The melting temperature of total tRNA fraction isolated from the mutants lacking archaeosine or N1-methyladenosine/N1-methylinosine decreased significantly, suggesting that the thermosensitive phenotype of these mutants was attributed to low stability of the hypomodified tRNAs. Genes for metabolism, transporters, and hypothetical proteins were also identified in the thermosensitive mutants. The present results demonstrated the usefulness of random mutagenesis for the studies on the hyperthermophile, as well as crucial roles of tRNA modifications in cellular thermotolerance.
Collapse
Affiliation(s)
- Izumi Orita
- School of Life Science and Technology, Tokyo Institute of Technology, Midori-ku, Yokohama 226-8501, Japan
| | - Ryohei Futatsuishi
- School of Life Science and Technology, Tokyo Institute of Technology, Midori-ku, Yokohama 226-8501, Japan
| | - Kyoko Adachi
- School of Life Science and Technology, Tokyo Institute of Technology, Midori-ku, Yokohama 226-8501, Japan
| | - Takayuki Ohira
- Department of Chemistry and Biotechnology, Graduate School of Engineering, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Akira Kaneko
- School of Life Science and Technology, Tokyo Institute of Technology, Midori-ku, Yokohama 226-8501, Japan
| | - Keiichi Minowa
- Department of Chemistry and Biotechnology, Graduate School of Engineering, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Miho Suzuki
- School of Life Science and Technology, Tokyo Institute of Technology, Midori-ku, Yokohama 226-8501, Japan
| | - Takeshi Tamura
- School of Life Science and Technology, Tokyo Institute of Technology, Midori-ku, Yokohama 226-8501, Japan
| | - Satoshi Nakamura
- School of Life Science and Technology, Tokyo Institute of Technology, Midori-ku, Yokohama 226-8501, Japan
| | - Tadayuki Imanaka
- Research Organization of Science and Technology, Ritsumeikan University, 1-1-1 Noji-higashi, Kusatsu 525-8577, Japan
| | - Tsutomu Suzuki
- Department of Chemistry and Biotechnology, Graduate School of Engineering, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Toshiaki Fukui
- School of Life Science and Technology, Tokyo Institute of Technology, Midori-ku, Yokohama 226-8501, Japan
| |
Collapse
|
15
|
Hori H, Kawamura T, Awai T, Ochi A, Yamagami R, Tomikawa C, Hirata A. Transfer RNA Modification Enzymes from Thermophiles and Their Modified Nucleosides in tRNA. Microorganisms 2018; 6:E110. [PMID: 30347855 PMCID: PMC6313347 DOI: 10.3390/microorganisms6040110] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Revised: 10/17/2018] [Accepted: 10/17/2018] [Indexed: 12/11/2022] Open
Abstract
To date, numerous modified nucleosides in tRNA as well as tRNA modification enzymes have been identified not only in thermophiles but also in mesophiles. Because most modified nucleosides in tRNA from thermophiles are common to those in tRNA from mesophiles, they are considered to work essentially in steps of protein synthesis at high temperatures. At high temperatures, the structure of unmodified tRNA will be disrupted. Therefore, thermophiles must possess strategies to stabilize tRNA structures. To this end, several thermophile-specific modified nucleosides in tRNA have been identified. Other factors such as RNA-binding proteins and polyamines contribute to the stability of tRNA at high temperatures. Thermus thermophilus, which is an extreme-thermophilic eubacterium, can adapt its protein synthesis system in response to temperature changes via the network of modified nucleosides in tRNA and tRNA modification enzymes. Notably, tRNA modification enzymes from thermophiles are very stable. Therefore, they have been utilized for biochemical and structural studies. In the future, thermostable tRNA modification enzymes may be useful as biotechnology tools and may be utilized for medical science.
Collapse
Affiliation(s)
- Hiroyuki Hori
- Department of Materials Science and Biotechnology, Graduate School of Science and Engineering, Ehime University, Bunkyo 3, Matsuyama, Ehime 790-8577, Japan.
| | - Takuya Kawamura
- Department of Materials Science and Biotechnology, Graduate School of Science and Engineering, Ehime University, Bunkyo 3, Matsuyama, Ehime 790-8577, Japan.
| | - Takako Awai
- Department of Materials Science and Biotechnology, Graduate School of Science and Engineering, Ehime University, Bunkyo 3, Matsuyama, Ehime 790-8577, Japan.
| | - Anna Ochi
- Department of Materials Science and Biotechnology, Graduate School of Science and Engineering, Ehime University, Bunkyo 3, Matsuyama, Ehime 790-8577, Japan.
| | - Ryota Yamagami
- Department of Materials Science and Biotechnology, Graduate School of Science and Engineering, Ehime University, Bunkyo 3, Matsuyama, Ehime 790-8577, Japan.
| | - Chie Tomikawa
- Department of Materials Science and Biotechnology, Graduate School of Science and Engineering, Ehime University, Bunkyo 3, Matsuyama, Ehime 790-8577, Japan.
| | - Akira Hirata
- Department of Materials Science and Biotechnology, Graduate School of Science and Engineering, Ehime University, Bunkyo 3, Matsuyama, Ehime 790-8577, Japan.
| |
Collapse
|
16
|
|
17
|
Abstract
Cellular RNAs are chemically modified by many RNA modification enzymes; however, often the functions of modifications remain unclear, such as for pseudouridine formation in the tRNA TΨC arm by the bacterial tRNA pseudouridine synthase TruB. Here we test the hypothesis that RNA modification enzymes also act as RNA chaperones. Using TruB as a model, we demonstrate that TruB folds tRNA independent of its catalytic activity, thus increasing the fraction of tRNA that can be aminoacylated. By rapid kinetic stopped-flow analysis, we identified the molecular mechanism of TruB's RNA chaperone activity: TruB binds and unfolds both misfolded and folded tRNAs thereby providing misfolded tRNAs a second chance at folding. Previously, it has been shown that a catalytically inactive TruB variant has no phenotype when expressed in an Escherichia coli truB KO strain [Gutgsell N, et al. (2000) RNA 6(12):1870-1881]. However, here we uncover that E. coli strains expressing a TruB variant impaired in tRNA binding and in in vitro tRNA folding cannot compete with WT E. coli. Consequently, the tRNA chaperone activity of TruB is critical for bacterial fitness. In conclusion, we prove the tRNA chaperone activity of the pseudouridine synthase TruB, reveal its molecular mechanism, and demonstrate its importance for cellular fitness. We discuss the likelihood that other RNA modification enzymes are also RNA chaperones.
Collapse
|
18
|
Rana AK, Ankri S. Reviving the RNA World: An Insight into the Appearance of RNA Methyltransferases. Front Genet 2016; 7:99. [PMID: 27375676 PMCID: PMC4893491 DOI: 10.3389/fgene.2016.00099] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Accepted: 05/23/2016] [Indexed: 12/13/2022] Open
Abstract
RNA, the earliest genetic and catalytic molecule, has a relatively delicate and labile chemical structure, when compared to DNA. It is prone to be damaged by alkali, heat, nucleases, or stress conditions. One mechanism to protect RNA or DNA from damage is through site-specific methylation. Here, we propose that RNA methylation began prior to DNA methylation in the early forms of life evolving on Earth. In this article, the biochemical properties of some RNA methyltransferases (MTases), such as 2′-O-MTases (Rlml/RlmN), spOUT MTases and the NSun2 MTases are dissected for the insight they provide on the transition from an RNA world to our present RNA/DNA/protein world.
Collapse
Affiliation(s)
- Ajay K Rana
- Division of Biology, State Forensic Science Laboratory, Ministry of Home Affairs, Government of Jharkhand Ranchi, India
| | - Serge Ankri
- Department of Molecular Microbiology, The Ruth and Bruce Rappaport Faculty of Medicine, Technion Israel Institute of Technology Haifa, Israel
| |
Collapse
|
19
|
Crystal Structure of the Human tRNA m(1)A58 Methyltransferase-tRNA(3)(Lys) Complex: Refolding of Substrate tRNA Allows Access to the Methylation Target. J Mol Biol 2015; 427:3862-76. [PMID: 26470919 DOI: 10.1016/j.jmb.2015.10.005] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Revised: 09/29/2015] [Accepted: 10/07/2015] [Indexed: 11/22/2022]
Abstract
Human tRNA3(Lys) is the primer for reverse transcription of HIV; the 3' end is complementary to the primer-binding site on HIV RNA. The complementarity ends at the 18th base, A58, which in tRNA3(Lys) is modified to remove Watson-Crick pairing. Motivated to test the role of the modification in terminating the primer-binding sequence and thus limiting run-on transcription, we asked how the modification of RNA could be accomplished. tRNA m(1)A58 methyltransferase (m(1)A58 MTase) methylates N1 of A58, which is buried in the TΨC-loop of tRNA, from cofactor S-adenosyl-L-methionine. This conserved tRNA modification is essential for stability of initiator tRNA in Saccharomyces cerevisiae. Reported here, three structures of human tRNA m(1)A58 MTase in complex with human tRNA3(Lys) and the product S-adenosyl-L-homocysteine show a dimer of heterodimers in which each heterodimer comprises a catalytic chain, Trm61, and a homologous but noncatalytic chain, Trm6, repurposed as a tRNA-binding subunit that acts in trans; tRNAs bind across the dimer interface such that Trm6 from the opposing heterodimer brings A58 into the active site of Trm61. T-loop and D-loop are splayed apart showing how A58, normally buried in tRNA, becomes accessible for modification. This result has broad impact on our understanding of the mechanisms of modifying internal sites in folded tRNA. The structures serve as templates for design of inhibitors that could be used to test tRNA m(1)A58 MTase's impact on retroviral priming and transcription.
Collapse
|
20
|
Bou-Nader C, Pecqueur L, Bregeon D, Kamah A, Guérineau V, Golinelli-Pimpaneau B, Guimarães BG, Fontecave M, Hamdane D. An extended dsRBD is required for post-transcriptional modification in human tRNAs. Nucleic Acids Res 2015; 43:9446-56. [PMID: 26429968 PMCID: PMC4627097 DOI: 10.1093/nar/gkv989] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2015] [Accepted: 09/19/2015] [Indexed: 12/25/2022] Open
Abstract
In tRNA, dihydrouridine is a conserved modified base generated by the post-transcriptional reduction of uridine. Formation of dihydrouridine 20, located in the D-loop, is catalyzed by dihydrouridine synthase 2 (Dus2). Human Dus2 (HsDus2) expression is upregulated in lung cancers, offering a growth advantage throughout its ability to interact with components of the translation apparatus and inhibit apoptosis. Here, we report the crystal structure of the individual domains of HsDus2 and their functional characterization. HsDus2 is organized into three major modules. The N-terminal catalytic domain contains the flavin cofactor involved in the reduction of uridine. The second module is the conserved α-helical domain known as the tRNA binding domain in HsDus2 homologues. It is connected via a flexible linker to an unusual extended version of a dsRNA binding domain (dsRBD). Enzymatic assays and yeast complementation showed that the catalytic domain binds selectively NADPH but cannot reduce uridine in the absence of the dsRBD. While in Dus enzymes from bacteria, plants and fungi, tRNA binding is essentially achieved by the α-helical domain, we showed that in HsDus2 this function is carried out by the dsRBD. This is the first reported case of a tRNA-modifying enzyme carrying a dsRBD used to bind tRNAs.
Collapse
Affiliation(s)
- Charles Bou-Nader
- Laboratoire de Chimie des Processus Biologiques, CNRS-UMR 8229, Collège De France, France, 11 place Marcelin Berthelot, 75231 Paris Cedex 05, France
| | - Ludovic Pecqueur
- Laboratoire de Chimie des Processus Biologiques, CNRS-UMR 8229, Collège De France, France, 11 place Marcelin Berthelot, 75231 Paris Cedex 05, France
| | - Damien Bregeon
- Sorbonne Universités, UPMC Univ. Paris 06, IBPS, UMR8256, Biology of Aging and Adaptation, F-75005 Paris, France
| | - Amina Kamah
- Université de Lille-Nord de France, CNRS UMR 8576, Institut Fédératif de Recherches 147, Villeneuve d'Ascq, France
| | - Vincent Guérineau
- Institut de Chimie des Substances Naturelles, Centre de Recherche de Gif, CNRS, 1 avenue de la Terrasse, 91198 Gif-sur-Yvette, France
| | - Béatrice Golinelli-Pimpaneau
- Laboratoire de Chimie des Processus Biologiques, CNRS-UMR 8229, Collège De France, France, 11 place Marcelin Berthelot, 75231 Paris Cedex 05, France
| | - Beatriz G Guimarães
- Synchrotron SOLEIL, L'Orme des Merisiers, Saint-Aubin, 91190 Gif-sur-Yvette, France
| | - Marc Fontecave
- Laboratoire de Chimie des Processus Biologiques, CNRS-UMR 8229, Collège De France, France, 11 place Marcelin Berthelot, 75231 Paris Cedex 05, France
| | - Djemel Hamdane
- Laboratoire de Chimie des Processus Biologiques, CNRS-UMR 8229, Collège De France, France, 11 place Marcelin Berthelot, 75231 Paris Cedex 05, France
| |
Collapse
|
21
|
Hauenschild R, Tserovski L, Schmid K, Thüring K, Winz ML, Sharma S, Entian KD, Wacheul L, Lafontaine DLJ, Anderson J, Alfonzo J, Hildebrandt A, Jäschke A, Motorin Y, Helm M. The reverse transcription signature of N-1-methyladenosine in RNA-Seq is sequence dependent. Nucleic Acids Res 2015; 43:9950-64. [PMID: 26365242 PMCID: PMC4787781 DOI: 10.1093/nar/gkv895] [Citation(s) in RCA: 113] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Accepted: 08/27/2015] [Indexed: 12/26/2022] Open
Abstract
The combination of Reverse Transcription (RT) and high-throughput sequencing has emerged as a powerful combination to detect modified nucleotides in RNA via analysis of either abortive RT-products or of the incorporation of mismatched dNTPs into cDNA. Here we simultaneously analyze both parameters in detail with respect to the occurrence of N-1-methyladenosine (m1A) in the template RNA. This naturally occurring modification is associated with structural effects, but it is also known as a mediator of antibiotic resistance in ribosomal RNA. In structural probing experiments with dimethylsulfate, m1A is routinely detected by RT-arrest. A specifically developed RNA-Seq protocol was tailored to the simultaneous analysis of RT-arrest and misincorporation patterns. By application to a variety of native and synthetic RNA preparations, we found a characteristic signature of m1A, which, in addition to an arrest rate, features misincorporation as a significant component. Detailed analysis suggests that the signature depends on RNA structure and on the nature of the nucleotide 3′ of m1A in the template RNA, meaning it is sequence dependent. The RT-signature of m1A was used for inspection and confirmation of suspected modification sites and resulted in the identification of hitherto unknown m1A residues in trypanosomal tRNA.
Collapse
Affiliation(s)
- Ralf Hauenschild
- Institute of Pharmacy and Biochemistry, Johannes Gutenberg University Mainz, Staudingerweg 5, 55128 Mainz, Germany
| | - Lyudmil Tserovski
- Institute of Pharmacy and Biochemistry, Johannes Gutenberg University Mainz, Staudingerweg 5, 55128 Mainz, Germany
| | - Katharina Schmid
- Institute of Pharmacy and Biochemistry, Johannes Gutenberg University Mainz, Staudingerweg 5, 55128 Mainz, Germany
| | - Kathrin Thüring
- Institute of Pharmacy and Biochemistry, Johannes Gutenberg University Mainz, Staudingerweg 5, 55128 Mainz, Germany
| | - Marie-Luise Winz
- Institute of Pharmacy and Molecular Biotechnology (IPMB), Heidelberg University, Im Neuenheimer Feld 364, 69120 Heidelberg, Germany
| | - Sunny Sharma
- Institute of Molecular Biosciences: Goethe University Frankfurt, Max-von-Laue Street 9, 60438 Frankfurt/M, Germany
| | - Karl-Dieter Entian
- Institute of Molecular Biosciences: Goethe University Frankfurt, Max-von-Laue Street 9, 60438 Frankfurt/M, Germany
| | - Ludivine Wacheul
- RNA Molecular Biology, Université Libre de Bruxelles, Rue Profs Jeener & Brachet, 12, B-6041 Charleroi-Gosselies, Belgium
| | - Denis L J Lafontaine
- RNA Molecular Biology, Université Libre de Bruxelles, Rue Profs Jeener & Brachet, 12, B-6041 Charleroi-Gosselies, Belgium
| | - James Anderson
- Department of Biological Sciences, Marquette University, 53201-1881, Milwaukee, WI, USA
| | - Juan Alfonzo
- Department of Microbiology, The Ohio State University, 43210, Columbus, OH, USA
| | - Andreas Hildebrandt
- Institute for Computer Sciences, Johannes Gutenberg University Mainz, Staudingerweg 9, 55128 Mainz, Germany
| | - Andres Jäschke
- Institute of Pharmacy and Molecular Biotechnology (IPMB), Heidelberg University, Im Neuenheimer Feld 364, 69120 Heidelberg, Germany
| | - Yuri Motorin
- IMoPA UMR7365 CNRS-UL, BioPole de l'Université de Lorraine, 9 avenue de la Foret de Haye, 54505 Vandoeuvre-les-Nancy, France
| | - Mark Helm
- Institute of Pharmacy and Biochemistry, Johannes Gutenberg University Mainz, Staudingerweg 5, 55128 Mainz, Germany
| |
Collapse
|
22
|
Dégut C, Ponchon L, Folly-Klan M, Barraud P, Tisné C. The m1A(58) modification in eubacterial tRNA: An overview of tRNA recognition and mechanism of catalysis by TrmI. Biophys Chem 2015; 210:27-34. [PMID: 26189113 DOI: 10.1016/j.bpc.2015.06.012] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Revised: 06/16/2015] [Accepted: 06/27/2015] [Indexed: 01/23/2023]
Abstract
The enzymes of the TrmI family catalyze the formation of the m(1)A58 modification in tRNA. We previously solved the crystal structure of the Thermus thermophilus enzyme and conducted a biophysical study to characterize the interaction between TrmI and tRNA. TrmI enzymes are active as a tetramer and up to two tRNAs can bind to TrmI simultaneously. In this paper, we present the structures of two TrmI mutants (D170A and Y78A). These residues are conserved in the active site of TrmIs and their mutations result in a dramatic alteration of TrmI activity. Both structures of TrmI mutants revealed the flexibility of the N-terminal domain that is probably important to bind tRNA. The structure of TrmI Y78A catalytic domain is unmodified regarding the binding of the SAM co-factor and the conformation of residues potentially interacting with the substrate adenine. This structure reinforces the previously proposed role of Y78, i.e. stabilize the conformation of the A58 ribose needed to hold the adenosine in the active site. The structure of the D170A mutant shows a flexible active site with one loop occupying in part the place of the co-factor and the second loop moving at the entrance to the active site. This structure and recent data confirms the central role of D170 residue binding the amino moiety of SAM and the exocyclic amino group of adenine. Possible mechanisms for methyl transfer are then discussed.
Collapse
Affiliation(s)
- Clément Dégut
- Laboratoire de Cristallographie et RMN biologiques, CNRS, Université Paris Descartes, Paris Sorbonne Cité, 4 avenue de l'Observatoire, 75006, Paris
| | - Luc Ponchon
- Laboratoire de Cristallographie et RMN biologiques, CNRS, Université Paris Descartes, Paris Sorbonne Cité, 4 avenue de l'Observatoire, 75006, Paris
| | - Marcia Folly-Klan
- Laboratoire de Cristallographie et RMN biologiques, CNRS, Université Paris Descartes, Paris Sorbonne Cité, 4 avenue de l'Observatoire, 75006, Paris
| | - Pierre Barraud
- Laboratoire de Cristallographie et RMN biologiques, CNRS, Université Paris Descartes, Paris Sorbonne Cité, 4 avenue de l'Observatoire, 75006, Paris
| | - Carine Tisné
- Laboratoire de Cristallographie et RMN biologiques, CNRS, Université Paris Descartes, Paris Sorbonne Cité, 4 avenue de l'Observatoire, 75006, Paris.
| |
Collapse
|
23
|
Takuma H, Ushio N, Minoji M, Kazayama A, Shigi N, Hirata A, Tomikawa C, Ochi A, Hori H. Substrate tRNA recognition mechanism of eubacterial tRNA (m1A58) methyltransferase (TrmI). J Biol Chem 2015; 290:5912-25. [PMID: 25593312 DOI: 10.1074/jbc.m114.606038] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
TrmI generates N(1)-methyladenosine at position 58 (m(1)A58) in tRNA. The Thermus thermophilus tRNA(Phe) transcript was methylated efficiently by T. thermophilus TrmI, whereas the yeast tRNA(Phe) transcript was poorly methylated. Fourteen chimeric tRNA transcripts derived from these two tRNAs revealed that TrmI recognized the combination of aminoacyl stem, variable region, and T-loop. This was confirmed by 10 deletion tRNA variants: TrmI methylated transcripts containing the aminoacyl stem, variable region, and T-arm. The requirement for the T-stem itself was confirmed by disrupting the T-stem. Disrupting the interaction between T- and D-arms accelerated the methylation, suggesting that this disruption is included in part of the reaction. Experiments with 17 point mutant transcripts elucidated the positive sequence determinants C56, purine 57, A58, and U60. Replacing A58 with inosine and 2-aminopurine completely abrogated methylation, demonstrating that the 6-amino group in A58 is recognized by TrmI. T. thermophilus tRNAGGU(Thr)GGU(Thr) contains C60 instead of U60. The tRNAGGU(Thr) transcript was poorly methylated by TrmI, and replacing C60 with U increased the methylation, consistent with the point mutation experiments. A gel shift assay revealed that tRNAGGU(Thr) had a low affinity for TrmI than tRNA(Phe). Furthermore, analysis of tRNAGGU(Thr) purified from the trmI gene disruptant strain revealed that the other modifications in tRNA accelerated the formation of m(1)A58 by TrmI. Moreover, nucleoside analysis of tRNAGGU(Thr) from the wild-type strain indicated that less than 50% of tRNAGG(Thr) contained m(1)A58. Thus, the results from the in vitro experiments were confirmed by the in vivo methylation patterns.
Collapse
Affiliation(s)
- Hiroyuki Takuma
- From the Department of Materials Science and Biotechnology, Graduate School of Science and Engineering, Ehime University, Bunkyo 3, Matsuyama, Ehime 790-8577, Japan and
| | - Natsumi Ushio
- From the Department of Materials Science and Biotechnology, Graduate School of Science and Engineering, Ehime University, Bunkyo 3, Matsuyama, Ehime 790-8577, Japan and
| | - Masayuki Minoji
- From the Department of Materials Science and Biotechnology, Graduate School of Science and Engineering, Ehime University, Bunkyo 3, Matsuyama, Ehime 790-8577, Japan and
| | - Ai Kazayama
- From the Department of Materials Science and Biotechnology, Graduate School of Science and Engineering, Ehime University, Bunkyo 3, Matsuyama, Ehime 790-8577, Japan and
| | - Naoki Shigi
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 2-4-7 Aomi, Koto-ku, Tokyo 135-0064, Japan
| | - Akira Hirata
- From the Department of Materials Science and Biotechnology, Graduate School of Science and Engineering, Ehime University, Bunkyo 3, Matsuyama, Ehime 790-8577, Japan and
| | - Chie Tomikawa
- From the Department of Materials Science and Biotechnology, Graduate School of Science and Engineering, Ehime University, Bunkyo 3, Matsuyama, Ehime 790-8577, Japan and
| | - Anna Ochi
- From the Department of Materials Science and Biotechnology, Graduate School of Science and Engineering, Ehime University, Bunkyo 3, Matsuyama, Ehime 790-8577, Japan and
| | - Hiroyuki Hori
- From the Department of Materials Science and Biotechnology, Graduate School of Science and Engineering, Ehime University, Bunkyo 3, Matsuyama, Ehime 790-8577, Japan and
| |
Collapse
|
24
|
Kawamura T, Anraku R, Hasegawa T, Tomikawa C, Hori H. Transfer RNA methyltransferases from Thermoplasma acidophilum, a thermoacidophilic archaeon. Int J Mol Sci 2014; 16:91-113. [PMID: 25546389 PMCID: PMC4307237 DOI: 10.3390/ijms16010091] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2014] [Accepted: 12/12/2014] [Indexed: 02/03/2023] Open
Abstract
We investigated tRNA methyltransferase activities in crude cell extracts from the thermoacidophilic archaeon Thermoplasma acidophilum. We analyzed the modified nucleosides in native initiator and elongator tRNAMet, predicted the candidate genes for the tRNA methyltransferases on the basis of the tRNAMet and tRNALeu sequences, and characterized Trm5, Trm1 and Trm56 by purifying recombinant proteins. We found that the Ta0997, Ta0931, and Ta0836 genes of T. acidophilum encode Trm1, Trm56 and Trm5, respectively. Initiator tRNAMet from T. acidophilum strain HO-62 contained G+, m1I, and m22G, which were not reported previously in this tRNA, and the m2G26 and m22G26 were formed by Trm1. In the case of elongator tRNAMet, our analysis showed that the previously unidentified G modification at position 26 was a mixture of m2G and m22G, and that they were also generated by Trm1. Furthermore, purified Trm1 and Trm56 could methylate the precursor of elongator tRNAMet, which has an intron at the canonical position. However, the speed of methyl-transfer by Trm56 to the precursor RNA was considerably slower than that to the mature transcript, which suggests that Trm56 acts mainly on the transcript after the intron has been removed. Moreover, cellular arrangements of the tRNA methyltransferases in T. acidophilum are discussed.
Collapse
Affiliation(s)
- Takuya Kawamura
- Department of Materials Science and Biotechnology, Graduate School of Science and Engineering, Ehime Univsersity, Bunkyo 3, Matsuyama, Ehime 790-8577, Japan.
| | - Ryou Anraku
- Department of Materials Science and Biotechnology, Graduate School of Science and Engineering, Ehime Univsersity, Bunkyo 3, Matsuyama, Ehime 790-8577, Japan.
| | - Takahiro Hasegawa
- Department of Materials Science and Biotechnology, Graduate School of Science and Engineering, Ehime Univsersity, Bunkyo 3, Matsuyama, Ehime 790-8577, Japan.
| | - Chie Tomikawa
- Department of Materials Science and Biotechnology, Graduate School of Science and Engineering, Ehime Univsersity, Bunkyo 3, Matsuyama, Ehime 790-8577, Japan.
| | - Hiroyuki Hori
- Department of Materials Science and Biotechnology, Graduate School of Science and Engineering, Ehime Univsersity, Bunkyo 3, Matsuyama, Ehime 790-8577, Japan.
| |
Collapse
|