1
|
Nishitani A, Hiramatsu K, Kadooka C, Mori K, Okutsu K, Yoshizaki Y, Takamine K, Tashiro K, Goto M, Tamaki H, Futagami T. Expression of heterochromatin protein 1 affects citric acid production in Aspergillus luchuensis mut. kawachii. J Biosci Bioeng 2023; 136:443-451. [PMID: 37775438 DOI: 10.1016/j.jbiosc.2023.09.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 08/17/2023] [Accepted: 09/07/2023] [Indexed: 10/01/2023]
Abstract
A putative methyltransferase, LaeA, controls citric acid production through epigenetic regulation of the citrate exporter gene, cexA, in the white koji fungus Aspergillus luchuensis mut. kawachii. In this study, we investigated the role of another epigenetic regulator, heterochromatin protein 1, HepA, in citric acid production. The ΔhepA strain exhibited reduced citric acid production in liquid culture, although to a lesser extent compared to the ΔlaeA strain. In addition, the ΔlaeA ΔhepA strain showed citric acid production similar to the ΔlaeA strain, indicating that HepA plays a role in citric acid production, albeit with a less-significant regulatory effect than LaeA. RNA-seq analysis revealed that the transcriptomic profiles of the ΔhepA and ΔlaeA strains were similar, and the expression level of cexA was reduced in both strains. These findings suggest that the genes regulated by HepA are similar to those regulated by LaeA in A. luchuensis mut. kawachii. However, the reductions in citric acid production and cexA expression observed in the disruptants were mitigated in rice koji, a solid-state culture. Thus, the mechanism by which citric acid production is regulated differs between liquid and solid cultivation. Further investigation is thus needed to understand the regulatory mechanism in koji.
Collapse
Affiliation(s)
- Atsushi Nishitani
- United Graduate School of Agricultural Sciences, Kagoshima University, Kagoshima 890-0065, Japan; Center for Advanced Science Research and Promotion, Kagoshima University, Kagoshima 890-0065, Japan
| | - Kentaro Hiramatsu
- Graduate School of Agriculture, Forestry and Fisheries, Kagoshima University, Kagoshima 890-0065, Japan
| | - Chihiro Kadooka
- Department of Biotechnology and Life Sciences, Faculty of Biotechnology and Life Sciences, Sojo University, Kumamoto 860-0082, Japan
| | - Kazuki Mori
- Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, Fukuoka 819-0395, Japan
| | - Kayu Okutsu
- Graduate School of Agriculture, Forestry and Fisheries, Kagoshima University, Kagoshima 890-0065, Japan; Education and Research Center for Fermentation Studies, Faculty of Agriculture, Kagoshima University, Kagoshima 890-0065, Japan
| | - Yumiko Yoshizaki
- United Graduate School of Agricultural Sciences, Kagoshima University, Kagoshima 890-0065, Japan; Graduate School of Agriculture, Forestry and Fisheries, Kagoshima University, Kagoshima 890-0065, Japan; Education and Research Center for Fermentation Studies, Faculty of Agriculture, Kagoshima University, Kagoshima 890-0065, Japan
| | - Kazunori Takamine
- United Graduate School of Agricultural Sciences, Kagoshima University, Kagoshima 890-0065, Japan; Graduate School of Agriculture, Forestry and Fisheries, Kagoshima University, Kagoshima 890-0065, Japan; Education and Research Center for Fermentation Studies, Faculty of Agriculture, Kagoshima University, Kagoshima 890-0065, Japan
| | - Kosuke Tashiro
- Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, Fukuoka 819-0395, Japan
| | - Masatoshi Goto
- United Graduate School of Agricultural Sciences, Kagoshima University, Kagoshima 890-0065, Japan; Department of Applied Biochemistry and Food Science, Faculty of Agriculture, Saga University, Saga 840-8502, Japan
| | - Hisanori Tamaki
- United Graduate School of Agricultural Sciences, Kagoshima University, Kagoshima 890-0065, Japan; Graduate School of Agriculture, Forestry and Fisheries, Kagoshima University, Kagoshima 890-0065, Japan; Education and Research Center for Fermentation Studies, Faculty of Agriculture, Kagoshima University, Kagoshima 890-0065, Japan
| | - Taiki Futagami
- United Graduate School of Agricultural Sciences, Kagoshima University, Kagoshima 890-0065, Japan; Graduate School of Agriculture, Forestry and Fisheries, Kagoshima University, Kagoshima 890-0065, Japan; Education and Research Center for Fermentation Studies, Faculty of Agriculture, Kagoshima University, Kagoshima 890-0065, Japan.
| |
Collapse
|
2
|
Zhang Q, Hua X, Sun Y, Lin Z, Cao Y, Zhao P, Xia Q. Dynamic chromatin conformation and accessibility changes mediate the spatial-specific gene regulatory network in Bombyx mori. Int J Biol Macromol 2023; 240:124415. [PMID: 37060980 DOI: 10.1016/j.ijbiomac.2023.124415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 04/06/2023] [Accepted: 04/07/2023] [Indexed: 04/17/2023]
Abstract
Silk gland genes of Bombyx mori can have strict spatial expression patterns, which impact their functions and silk quality; however, our understanding of their regulation mechanisms is currently insufficient. To address this, the middle silk gland (MSG) and posterior silk gland (PSG) of the silkworm were investigated. Gene ontology annotation showed that spatially specific expressed genes were involved in the formation of H3k9me and chromatin topology. Chromatin conformation data generated by Hi-C showed that the topologically associated domain boundaries around FibL and Sericin1 genes were significantly different between MSG and PSG. Changes in chromatin conformation led to changes in chromatin activity, which significantly affected the expression of nearby genes in silkworm. Chromatin accessibility regions of MSG and PSG were analyzed using FAIRE-seq, and 1006 transcription factor motifs were identified in open chromatin regions. Furthermore, the spatial-specific expression patterns of silk gland genes were mainly associated with homeobox-contained transcription factors, such as POU-M2, which was specifically bound and relatively highly expressed in the MSG. The regulatory network mediated by POU-M2 regulated most of the spatial-specific expressed genes in MSG, such as ADH1. These results can aid in improving silk performance, optimizing silkworm breeding, and improving the gene spatial regulatory model research for insects.
Collapse
Affiliation(s)
- Quan Zhang
- Biological Science Research Center, Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Southwest University, 400715 Chongqing, China; Key Laboratory for Germplasm Creation in Upper Reaches of the Yangtze River, Ministry of Agriculture and Rural Affairs, 400715 Chongqing, China; Engineering Laboratory of Sericultural and Functional Genome and Biotechnology, Development and Reform Commission, 400715 Chongqing, China
| | - Xiaoting Hua
- Biological Science Research Center, Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Southwest University, 400715 Chongqing, China; Key Laboratory for Germplasm Creation in Upper Reaches of the Yangtze River, Ministry of Agriculture and Rural Affairs, 400715 Chongqing, China; Engineering Laboratory of Sericultural and Functional Genome and Biotechnology, Development and Reform Commission, 400715 Chongqing, China
| | - Yueting Sun
- Biological Science Research Center, Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Southwest University, 400715 Chongqing, China; Key Laboratory for Germplasm Creation in Upper Reaches of the Yangtze River, Ministry of Agriculture and Rural Affairs, 400715 Chongqing, China
| | - Zhongying Lin
- Biological Science Research Center, Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Southwest University, 400715 Chongqing, China
| | - Yang Cao
- Biological Science Research Center, Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Southwest University, 400715 Chongqing, China; Key Laboratory for Germplasm Creation in Upper Reaches of the Yangtze River, Ministry of Agriculture and Rural Affairs, 400715 Chongqing, China; Engineering Laboratory of Sericultural and Functional Genome and Biotechnology, Development and Reform Commission, 400715 Chongqing, China.
| | - Ping Zhao
- Biological Science Research Center, Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Southwest University, 400715 Chongqing, China; Key Laboratory for Germplasm Creation in Upper Reaches of the Yangtze River, Ministry of Agriculture and Rural Affairs, 400715 Chongqing, China; Engineering Laboratory of Sericultural and Functional Genome and Biotechnology, Development and Reform Commission, 400715 Chongqing, China.
| | - Qingyou Xia
- Biological Science Research Center, Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Southwest University, 400715 Chongqing, China; Key Laboratory for Germplasm Creation in Upper Reaches of the Yangtze River, Ministry of Agriculture and Rural Affairs, 400715 Chongqing, China; Engineering Laboratory of Sericultural and Functional Genome and Biotechnology, Development and Reform Commission, 400715 Chongqing, China.
| |
Collapse
|
3
|
Shoji K, Umemura Y, Katsuma S, Tomari Y. The piRNA cluster torimochi is an expanding transposon in cultured silkworm cells. PLoS Genet 2023; 19:e1010632. [PMID: 36758066 PMCID: PMC9946225 DOI: 10.1371/journal.pgen.1010632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 02/22/2023] [Accepted: 01/20/2023] [Indexed: 02/11/2023] Open
Abstract
PIWI proteins and PIWI-interacting RNAs (piRNAs) play a central role in repressing transposable elements in animal germ cells. It is thought that piRNAs are mainly produced from discrete genomic loci named piRNA clusters, which often contain many "dead" transposon remnants from past invasions and have heterochromatic features. In the genome of silkworm ovary-derived cultured cells called BmN4, a well-established model for piRNA research, torimochi was previously annotated as a unique and specialized genomic region that can capture transgenes and produce new piRNAs bearing a trans-silencing activity. However, the sequence identity of torimochi has remained elusive. Here, we carefully characterized torimochi by utilizing the updated silkworm genome sequence and the long-read sequencer MinION. We found that torimochi is in fact a full-length gypsy-like LTR retrotransposon, which is exceptionally active and has massively expanded its copy number in BmN4 cells. Many copies of torimochi in BmN4 cells have features of open chromatin and the ability to produce piRNAs. Therefore, torimochi may represent a young, growing piRNA cluster, which is still "alive" and active in transposition yet capable of trapping other transposable elements to produce de novo piRNAs.
Collapse
Affiliation(s)
- Keisuke Shoji
- Laboratory of RNA Function, Institute for Quantitative Biosciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
- * E-mail: (K.S); (Y.T)
| | - Yusuke Umemura
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Meguro-ku, Tokyo, Japan
| | - Susumu Katsuma
- Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Yukihide Tomari
- Laboratory of RNA Function, Institute for Quantitative Biosciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
- * E-mail: (K.S); (Y.T)
| |
Collapse
|
4
|
Characterization of a Novel Heterochromatin Protein 1 Homolog “HP1c” in the Silkworm, Bombyx mori. INSECTS 2022; 13:insects13070631. [PMID: 35886807 PMCID: PMC9316600 DOI: 10.3390/insects13070631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 07/09/2022] [Accepted: 07/11/2022] [Indexed: 12/04/2022]
Abstract
Simple Summary Heterochromatin protein 1 (HP1) plays a major role in the formation and maintenance of heterochromatin and in the regulation of gene expression. Five HP1 genes have been found in Drosophila melanogaster and three HP1 genes in Homo sapiens, while in Bombyx mori, two HP1 genes (BmHP1a and BmHP1b) have been reported. In the present study, we analyzed the function of the novel Bombyx mori HP1 gene (BmHP1c), the third HP1 gene in silkworm. BmHP1c has different characteristics from BmHP1a and BmHP1b in terms of transcriptional repression activity, dimer formation, subcellular localization, and effects of RNAi on cell cycle progression. These findings indicate that BmHP1c plays a different role than BmHP1a and BmHP1b. Abstract Heterochromatin protein 1 plays an important role in chromatin structure and gene expression regulation. Three HP1 genes have been found in Homo sapiens, and five HP1 genes have been reported in Drosophila melanogaster. On the other hand, in Bombyx mori, only two HP1 genes, BmHP1a and BmHP1b, were reported. In this research, we have reported the molecular and functional characterization of a novel Bombyx mori HP1 gene (BmHP1c), which had stronger transcriptional repression activity than BmHP1a. BmHP1a and BmHP1b is reported to form homo- and heterodimers, but in co-immunoprecipitation experiments, no homo- or hetero-dimer formation of BmHP1c with the other silkworm HP1s is detected. The intracellular localization of BmHP1c is not only in the nucleus but also in the cytoplasm like mammalian HP1γ. In contrast to human HP1a and b, all three BmHP1s were localized preferentially in the regions poorly stained with DAPI. Interestingly, the double knockdown of BmHP1a and b, but not BmHP1c with a or b, arrested the cell cycle at the G2/M phase. These results suggest that BmHP1c is not essential for cell progression and plays a different role than BmHP1a and BmHP1b.
Collapse
|
5
|
Kawamoto M, Kiuchi T, Katsuma S. SilkBase: an integrated transcriptomic and genomic database for Bombyx mori and related species. Database (Oxford) 2022; 2022:6603636. [PMID: 35670730 PMCID: PMC9216573 DOI: 10.1093/database/baac040] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 04/21/2022] [Accepted: 05/21/2022] [Indexed: 11/13/2022]
Abstract
We introduce SilkBase as an integrated database for transcriptomic and genomic resources of the domesticated silkworm Bombyx mori and related species. SilkBase is the oldest B. mori database that was originally established as the expressed sequence tag database since 1999. Here, we upgraded the database by including the datasets of the newly assembled B. mori complete genome sequence, predicted gene models, bacterial artificial chromosome (BAC)-end and fosmid-end sequences, complementary DNA (cDNA) reads from 69 libraries, RNA-seq data from 10 libraries, PIWI-interacting RNAs (piRNAs) from 13 libraries, ChIP-seq data of 9 histone modifications and HP1 proteins and transcriptome and/or genome data of four B. mori-related species, i.e. Bombyx mandarina, Trilocha varians, Ernolatia moorei and Samia ricini. Our new integrated genome browser easily provides a snapshot of tissue- and stage-specific gene expression, alternative splicing, production of piRNAs and histone modifications at the gene locus of interest. Moreover, SilkBase is useful for performing comparative studies among five closely related lepidopteran insects. Database URL: https://silkbase.ab.a.u-tokyo.ac.jp
Collapse
Affiliation(s)
- Munetaka Kawamoto
- Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo 113-8657, Japan.,Infinity Matrix, Shiohama, Koto-ku, Tokyo 135-0043, Japan
| | - Takashi Kiuchi
- Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Susumu Katsuma
- Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo 113-8657, Japan
| |
Collapse
|
6
|
Tang M, He S, Gong X, Lü P, Taha RH, Chen K. High-Quality de novo Chromosome-Level Genome Assembly of a Single Bombyx mori With BmNPV Resistance by a Combination of PacBio Long-Read Sequencing, Illumina Short-Read Sequencing, and Hi-C Sequencing. Front Genet 2021; 12:718266. [PMID: 34603381 PMCID: PMC8481875 DOI: 10.3389/fgene.2021.718266] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 08/05/2021] [Indexed: 12/17/2022] Open
Abstract
The reference genomes of Bombyx mori (B. mori), Silkworm Knowledge-based database (SilkDB) and SilkBase, have served as the gold standard for nearly two decades. Their use has fundamentally shaped model organisms and accelerated relevant studies on lepidoptera. However, the current reference genomes of B. mori do not accurately represent the full set of genes for any single strain. As new genome-wide sequencing technologies have emerged and the cost of high-throughput sequencing technology has fallen, it is now possible for standard laboratories to perform full-genome assembly for specific strains. Here we present a high-quality de novo chromosome-level genome assembly of a single B. mori with nuclear polyhedrosis virus (BmNPV) resistance through the integration of PacBio long-read sequencing, Illumina short-read sequencing, and Hi-C sequencing. In addition, regular bioinformatics analyses, such as gene family, phylogenetic, and divergence analyses, were performed. The sample was from our unique B. mori species (NB), which has strong inborn resistance to BmNPV. Our genome assembly showed good collinearity with SilkDB and SilkBase and particular regions. To the best of our knowledge, this is the first genome assembly with BmNPV resistance, which should be a more accurate insect model for resistance studies.
Collapse
Affiliation(s)
- Min Tang
- School of Life Sciences, Jiangsu University, Zhenjiang, China
| | - Suqun He
- School of Life Sciences, Jiangsu University, Zhenjiang, China
| | - Xun Gong
- Institute of Clinical Pharmacology, Anhui Medical University, Hefei, China.,Department of Medical Rheumatology, Columbia University, New York, NY, United States
| | - Peng Lü
- School of Life Sciences, Jiangsu University, Zhenjiang, China
| | - Rehab H Taha
- Department of Sericulture, Plant Protection Research Institute, Agricultural Research Center, Giza, Egypt
| | - Keping Chen
- School of Life Sciences, Jiangsu University, Zhenjiang, China
| |
Collapse
|
7
|
H3K4me3 histone modification in baculovirus-infected silkworm cells. Virus Genes 2021; 57:459-463. [PMID: 34185196 DOI: 10.1007/s11262-021-01858-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Accepted: 06/21/2021] [Indexed: 10/21/2022]
Abstract
Baculovirus infection modulates the chromatin states and gene expression of host insect cells. Here we performed chromatin immunoprecipitation followed by deep sequencing (ChIP-seq) of H3 trimethylated at Lys4 (H3K4me3) histone modification in Bombyx mori nucleopolyhedrovirus-infected Bombyx mori cells. The ChIP-seq data revealed the changes of the genome-wide distribution and accumulation of euchromatic histone marks in host insect cells during the progression of baculovirus infection.
Collapse
|
8
|
Kong X, Wei G, Chen N, Zhao S, Shen Y, Zhang J, Li Y, Zeng X, Wu X. Dynamic chromatin accessibility profiling reveals changes in host genome organization in response to baculovirus infection. PLoS Pathog 2020; 16:e1008633. [PMID: 32511266 PMCID: PMC7326278 DOI: 10.1371/journal.ppat.1008633] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 06/30/2020] [Accepted: 05/14/2020] [Indexed: 12/11/2022] Open
Abstract
DNA viruses can hijack and manipulate the host chromatin state to facilitate their infection. Multiple lines of evidences reveal that DNA virus infection results in the host chromatin relocation, yet there is little known about the effects of viral infection on the architecture of host chromatin. Here, a combination of epigenomic, transcriptomic and biochemical assays were conducted to investigate the temporal dynamics of chromatin accessibility in response to Bombyx mori nucleopolyhedrovirus (BmNPV) infection. The high-quality ATAC-seq data indicated that progressive chromatin remodeling took place following BmNPV infection. Viral infection resulted in a more open chromatin architecture, along with the marginalization of host genome and nucleosome disassembly. Moreover, our results revealed that chromatin accessibility in uninfected cells was regulated by euchromatic modifications, whereas the viral-induced highly accessible chromatin regions were originally associated with facultative heterochromatic modification. Overall, our findings illustrate for the first time the organization and accessibility of host chromatin in BmNPV-infected cells, which lay the foundation for future studies on epigenomic regulation mediated by DNA viruses. As a well-studied arthropod-specific double-stranded DNA virus, Bombyx mori nucleopolyhedrovirus (BmNPV) is a representative member of baculoviruses. BmNPV infection results in significant host chromatin marginalization, which has also been found in most DNA viruses. However, the effects of baculovirus infection on the organization and accessibility of host chromatin are poorly understood. Here, by using ATAC-seq, we show that DNA virus BmNPV infection gradually remodels the accessibility of host chromatin. ATAC-seq data reveal that the marginalized host chromatin is a more accessible architecture along with the depletion of multi-nucleosome depositions. Moreover, our findings suggest the increased accessibility regions are regulated by the facultative heterochromatic modification. Overall, we provide a novel understanding of molecular mechanisms by which baculovirus and DNA viruses alter the organization of host chromatin in epigenomic regulation.
Collapse
Affiliation(s)
- Xiangshuo Kong
- Institute of Sericulture and Apiculture, College of Animal Science, Zhejiang University, Hangzhou, China
| | | | - Nan Chen
- Institute of Sericulture and Apiculture, College of Animal Science, Zhejiang University, Hangzhou, China
| | - Shudi Zhao
- Institute of Sericulture and Apiculture, College of Animal Science, Zhejiang University, Hangzhou, China
| | - Yunwang Shen
- Institute of Sericulture and Apiculture, College of Animal Science, Zhejiang University, Hangzhou, China
| | - Jianjia Zhang
- Institute of Sericulture and Apiculture, College of Animal Science, Zhejiang University, Hangzhou, China
| | - Yang Li
- Institute of Sericulture and Apiculture, College of Animal Science, Zhejiang University, Hangzhou, China
| | - Xiaoqun Zeng
- Institute of Sericulture and Apiculture, College of Animal Science, Zhejiang University, Hangzhou, China
| | - Xiaofeng Wu
- Institute of Sericulture and Apiculture, College of Animal Science, Zhejiang University, Hangzhou, China
- * E-mail:
| |
Collapse
|
9
|
Complex epigenetic regulation of alkaloid biosynthesis and host interaction by heterochromatin protein I in a fungal endophyte-plant symbiosis. Fungal Genet Biol 2019; 125:71-83. [DOI: 10.1016/j.fgb.2019.02.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 01/29/2019] [Accepted: 02/03/2019] [Indexed: 01/10/2023]
|
10
|
Katsuma S, Kawamoto M, Shoji K, Aizawa T, Kiuchi T, Izumi N, Ogawa M, Mashiko T, Kawasaki H, Sugano S, Tomari Y, Suzuki Y, Iwanaga M. Transcriptome profiling reveals infection strategy of an insect maculavirus. DNA Res 2018; 25:4816134. [PMID: 29360973 PMCID: PMC6014269 DOI: 10.1093/dnares/dsx056] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Accepted: 01/03/2018] [Indexed: 11/14/2022] Open
Abstract
Bombyx mori macula-like virus (BmMLV) is a positive, single-stranded insect RNA virus that is closely related to plant maculaviruses. BmMLV is currently characterized as an unclassified maculavirus. BmMLV accumulates at extremely high levels in cell lines derived from the silkworm, Bombyx mori, but it does not lead to lethality and establishes persistent infections. It is unknown how this insect maculavirus replicates and establishes persistent infections in insect cells. Here, we showed that BmMLV p15, which is located on a subgenomic fragment and is not found in plant maculaviruses, is highly expressed in BmMLV-infected silkworm cells and that p15 protein is required to establish BmMLV infections in silkworm cells. We also showed that two distinct small RNA-mediated pathways maintain BmMLV levels in BmMLV-infected silkworm cells, thereby allowing the virus to establish persistent infection. Virus-derived siRNAs and piRNAs were both produced as the infection progressed. Knockdown experiments demonstrated that the exogenous RNAi pathway alone or RNAi and piRNA pathways function cooperatively to silence BmMLV RNA and that both pathways are important for normal growth of BmMLV-infected silkworm cells. On the basis of our study, we propose a mechanism of how a plant virus-like insect virus can establish persistent infections in insect cells.
Collapse
Affiliation(s)
- Susumu Katsuma
- Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Munetaka Kawamoto
- Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Keisuke Shoji
- Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-8657, Japan
- Department of Agrobiology and Bioresources, School of Agriculture, Utsunomiya University, Utsunomiya-shi, Tochigi 321-8505, Japan
| | - Takahiro Aizawa
- Department of Agrobiology and Bioresources, School of Agriculture, Utsunomiya University, Utsunomiya-shi, Tochigi 321-8505, Japan
| | - Takashi Kiuchi
- Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Natsuko Izumi
- Institute of Molecular and Cellular Biosciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-0032, Japan
| | - Moe Ogawa
- Department of Agrobiology and Bioresources, School of Agriculture, Utsunomiya University, Utsunomiya-shi, Tochigi 321-8505, Japan
| | - Takaaki Mashiko
- Department of Biological Production Science, United Graduate School of Agricultural Science, Tokyo University of Agriculture and Technology, Fuchu-shi, Tokyo 183-8509, Japan
| | - Hideki Kawasaki
- Department of Agrobiology and Bioresources, School of Agriculture, Utsunomiya University, Utsunomiya-shi, Tochigi 321-8505, Japan
| | - Sumio Sugano
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Minato-ku, Tokyo 108-8639, Japan
| | - Yukihide Tomari
- Institute of Molecular and Cellular Biosciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-0032, Japan
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-0032, Japan
| | - Yutaka Suzuki
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba 277-0882, Japan
| | - Masashi Iwanaga
- Department of Agrobiology and Bioresources, School of Agriculture, Utsunomiya University, Utsunomiya-shi, Tochigi 321-8505, Japan
| |
Collapse
|
11
|
Zhou QZ, Zhang B, Yu QY, Zhang Z. BmncRNAdb: a comprehensive database of non-coding RNAs in the silkworm, Bombyx mori. BMC Bioinformatics 2016; 17:370. [PMID: 27623959 PMCID: PMC5022206 DOI: 10.1186/s12859-016-1251-y] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Accepted: 09/08/2016] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Long non-coding RNAs (lncRNAs) may play critical roles in a wide range of developmental processes of higher organisms. Recently, lncRNAs have been widely identified across eukaryotes and many databases of lncRNAs have been developed for human, mouse, fruit fly, etc. However, there is rare information about them in the only completely domesticated insect, silkworm (Bombyx mori). DESCRIPTION In this study, we systematically scanned lncRNAs using the available silkworm RNA-seq data and public unigenes. Finally, we identified and collected 6281 lncRNAs in the silkworm. Besides, we also collected 1986 microRNAs (miRNAs) from previous studies. Then, we organized them into a comprehensive and web-based database, BmncRNAdb. This database offers a user-friendly interface for data browse and online analysis as well as the three online tools for users to predict the target genes of lncRNA or miRNA. CONCLUSIONS We have systematically identified and collected the silkworm lncRNAs and constructed a comprehensive database of the silkworm lncRNAs and miRNAs. This work gives a glimpse into lncRNAs of the silkworm and lays foundations for the ncRNAs study of the silkworm and other insects in the future. The BmncRNAdb is freely available at http://gene.cqu.edu.cn/BmncRNAdb/index.php .
Collapse
Affiliation(s)
- Qiu-Zhong Zhou
- Laboratory of Evolutionary and Functional Genomics, School of Life Sciences, Chongqing University, Huxi Campus, No. 55 Daxuecheng South Rd., Shapingba, Chongqing, 401331 China
| | - Bindan Zhang
- School of Economics and Business Administration, Chongqing University, Campus A, No. 174 Shazheng Rd., Shapingba, Chongqing, 400044 China
| | - Quan-You Yu
- Laboratory of Evolutionary and Functional Genomics, School of Life Sciences, Chongqing University, Huxi Campus, No. 55 Daxuecheng South Rd., Shapingba, Chongqing, 401331 China
| | - Ze Zhang
- Laboratory of Evolutionary and Functional Genomics, School of Life Sciences, Chongqing University, Huxi Campus, No. 55 Daxuecheng South Rd., Shapingba, Chongqing, 401331 China
| |
Collapse
|