1
|
Lax E, Do Carmo S, Enuka Y, Sapozhnikov DM, Welikovitch LA, Mahmood N, Rabbani SA, Wang L, Britt JP, Hancock WW, Yarden Y, Szyf M. Methyl-CpG binding domain 2 (Mbd2) is an epigenetic regulator of autism-risk genes and cognition. Transl Psychiatry 2023; 13:259. [PMID: 37443311 PMCID: PMC10344909 DOI: 10.1038/s41398-023-02561-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 06/29/2023] [Accepted: 07/04/2023] [Indexed: 07/15/2023] Open
Abstract
The Methyl-CpG-Binding Domain Protein family has been implicated in neurodevelopmental disorders. The Methyl-CpG-binding domain 2 (Mbd2) binds methylated DNA and was shown to play an important role in cancer and immunity. Some evidence linked this protein to neurodevelopment. However, its exact role in neurodevelopment and brain function is mostly unknown. Here we show that Mbd2-deficiency in mice (Mbd2-/-) results in deficits in cognitive, social and emotional functions. Mbd2 binds regulatory DNA regions of neuronal genes in the hippocampus and loss of Mbd2 alters the expression of hundreds of genes with a robust down-regulation of neuronal gene pathways. Further, a genome-wide DNA methylation analysis found an altered DNA methylation pattern in regulatory DNA regions of neuronal genes in Mbd2-/- mice. Differentially expressed genes significantly overlap with gene-expression changes observed in brains of Autism Spectrum Disorder (ASD) individuals. Notably, downregulated genes are significantly enriched for human ortholog ASD risk genes. Observed hippocampal morphological abnormalities were similar to those found in individuals with ASD and ASD rodent models. Hippocampal Mbd2 knockdown partially recapitulates the behavioral phenotypes observed in Mbd2-/- mice. These findings suggest that Mbd2 is a novel epigenetic regulator of genes that are associated with ASD in humans. Mbd2 loss causes behavioral alterations that resemble those found in ASD individuals.
Collapse
Affiliation(s)
- Elad Lax
- Department of Molecular Biology, Ariel University, Ariel, Israel.
- Department of Pharmacology and Therapeutics, McGill University, Montreal, QC, Canada.
| | - Sonia Do Carmo
- Department of Pharmacology and Therapeutics, McGill University, Montreal, QC, Canada
| | - Yehoshua Enuka
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, 76100, Israel
| | - Daniel M Sapozhnikov
- Department of Pharmacology and Therapeutics, McGill University, Montreal, QC, Canada
| | - Lindsay A Welikovitch
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
- Department of Neurology, Massachusetts General Hospital, Charlestown, MA, 02129, USA
- Harvard Medical School, Boston, MA, 02115, USA
| | - Niaz Mahmood
- Department of Medicine, McGill University Health Center, Montreal, QC, Canada
- Department of Biochemistry, McGill University, Montreal, QC, Canada
| | - Shafaat A Rabbani
- Department of Medicine, McGill University Health Center, Montreal, QC, Canada
| | - Liqing Wang
- Division of Transplant Immunology, Department of Pathology and Laboratory Medicine, and Biesecker Center for Pediatric Liver Diseases, Children's Hospital of Philadelphia and Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Jonathan P Britt
- Department of Psychology, McGill University, Montreal, QC, Canada
| | - Wayne W Hancock
- Division of Transplant Immunology, Department of Pathology and Laboratory Medicine, and Biesecker Center for Pediatric Liver Diseases, Children's Hospital of Philadelphia and Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Yosef Yarden
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, 76100, Israel
| | - Moshe Szyf
- Department of Pharmacology and Therapeutics, McGill University, Montreal, QC, Canada
| |
Collapse
|
2
|
Shoaib Z, Fan TM, Irudayaraj J. Osteosarcoma mechanobiology and therapeutic targets. Br J Pharmacol 2021; 179:201-217. [PMID: 34679192 PMCID: PMC9305477 DOI: 10.1111/bph.15713] [Citation(s) in RCA: 65] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 09/15/2021] [Accepted: 09/22/2021] [Indexed: 11/28/2022] Open
Abstract
Osteosarcoma (OS) is the one of the most common primary tumors of bone with less than a 20% 5-year survival rate after the development of metastases. OS is highly predisposed in Paget's disease (PD) of bone, and both have common characteristic skeletal features due to rapid bone remodeling. OS prognosis is location dependent which further emphasizes the likely contribution of the bone microenvironment in its pathogenesis. Mechanobiology is the phenomenon when mechanical cues from the changing physical microenvironment of bone are transduced to biological pathways through mechanosensitive cellular components. Mechanobiology-driven therapies have been used for curbing tumor progression by direct alteration of the physical microenvironment or inhibition of metastasis-associated mechanosensitive proteins. This review emphasizes the contribution of mechanobiology to OS progression, and sheds light on current mechanobiology-based therapies and potential new targets for improving disease management. Additionally, the variety of 3D models currently used to study OS mechanobiology are summarized.
Collapse
Affiliation(s)
- Zunaira Shoaib
- Department of Pathobiology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Timothy M Fan
- Department of Veterinary Clinical Medicine, University of Illinois at Urbana-Champaign, Urbana, IL, USA.,Cancer Center at Illinois, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Joseph Irudayaraj
- Department of Bioengineering, Nick Holonyak Micro and Nanotechnology Laboratory, University of Illinois at Urbana-Champaign, IL, USA.,Biomedical Research Center, Carle Foundation Hospital, Urbana, IL, USA.,Cancer Center at Illinois, University of Illinois Urbana-Champaign, Urbana, IL, USA
| |
Collapse
|
3
|
Pathania A, Liu W, Matityahu A, Irudayaraj J, Onn I. Chromosome loading of cohesin depends on conserved residues in Scc3. Curr Genet 2021; 67:447-459. [PMID: 33404730 DOI: 10.1007/s00294-020-01150-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 12/12/2020] [Accepted: 12/15/2020] [Indexed: 10/22/2022]
Abstract
Cohesin is essential for sister chromatid cohesion, which ensures equal segregation of the chromatids to daughter cells. However, the molecular mechanism by which cohesin mediates this function is elusive. Scc3, one of the four core subunits of cohesin, is vital to cohesin activity. However, the mechanism by which Scc3 contributes to the activity and identity of its functional domains is not fully understood. Here, we describe an in-frame five-amino acid insertion mutation after glutamic acid 704 (scc3-E704ins) in yeast Scc3, located in the middle of the second armadillo repeat. Mutated cohesin-scc3-E704ins complexes are unable to establish cohesion. Detailed molecular and genetic analyses revealed that the mutated cohesin has reduced affinity to the Scc2 loader. This inhibits its enrichment at centromeres and chromosomal arms. Mutant complexes show a slow diffusion rate in live cells suggesting that they induce a major conformational change in the complex. The analysis of systematic mutations in the insertion region of Scc3 revealed two conserved aspartic acid residues that are essential for the activity. The study offers a better understanding of the contribution of Scc3 to cohesin activity and the mechanism by which cohesin tethers the sister chromatids during the cell cycle.
Collapse
Affiliation(s)
- Anjali Pathania
- The Azrieli Faculty of Medicine, Bar-Ilan University, 8 Henrietta Szold St, P.O. Box 1589, 1311502, Safed, Israel
| | - Wenjie Liu
- Micro and Nanotechnology Laboratory, Department of Bioengineering, Beckman Institute, Carl Woese Institute of Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Carle Foundation Hospital, Mills Breast Cancer Institute, Urbana, IL, USA
| | - Avi Matityahu
- The Azrieli Faculty of Medicine, Bar-Ilan University, 8 Henrietta Szold St, P.O. Box 1589, 1311502, Safed, Israel
| | - Joseph Irudayaraj
- Micro and Nanotechnology Laboratory, Department of Bioengineering, Beckman Institute, Carl Woese Institute of Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Carle Foundation Hospital, Mills Breast Cancer Institute, Urbana, IL, USA
| | - Itay Onn
- The Azrieli Faculty of Medicine, Bar-Ilan University, 8 Henrietta Szold St, P.O. Box 1589, 1311502, Safed, Israel.
| |
Collapse
|
4
|
Liu W, Biton E, Pathania A, Matityahu A, Irudayaraj J, Onn I. Monomeric cohesin state revealed by live-cell single-molecule spectroscopy. EMBO Rep 2020; 21:e48211. [PMID: 31886609 PMCID: PMC7001500 DOI: 10.15252/embr.201948211] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 11/28/2019] [Accepted: 12/04/2019] [Indexed: 12/17/2022] Open
Abstract
The cohesin complex plays an important role in the maintenance of genome stability. Cohesin is composed of four core subunits and a set of regulatory subunits that interact with the core subunits. Less is known about cohesin dynamics in live cells and on the contribution of individual subunits to the overall complex. Understanding the tethering mechanism of cohesin is still a challenge, especially because the proposed mechanisms are still not conclusive. Models proposed to describe tethering depend on either the monomeric cohesin ring or a cohesin dimer. Here, we investigate the role of cohesin dynamics and stoichiometry in live yeast cells at single-molecule resolution. We explore the effect of regulatory subunit deletion on cohesin mobility and found that depletion of different regulatory subunits has opposing effects. Finally, we show that cohesin exists mostly as a canonical monomer throughout the cell cycle, and its monomeric form is independent of its regulatory factors. Our results demonstrate that single-molecule tools have the potential to provide new insights into the cohesin mechanism of action in live cells.
Collapse
Affiliation(s)
- Wenjie Liu
- Department of Bioengineering, Micro and Nanotechnology LaboratoryCancer Center at IllinoisUniversity of Illinois at Urbana‐ChampaignUrbanaILUSA
- Mills Breast Cancer InstituteCarle Foundation HospitalUrbanaILUSA
| | - Elisheva Biton
- The Azrieli Faculty of MedicineBar‐Ilan UniversitySafedIsrael
| | - Anjali Pathania
- The Azrieli Faculty of MedicineBar‐Ilan UniversitySafedIsrael
| | - Avi Matityahu
- The Azrieli Faculty of MedicineBar‐Ilan UniversitySafedIsrael
| | - Joseph Irudayaraj
- Department of Bioengineering, Micro and Nanotechnology LaboratoryCancer Center at IllinoisUniversity of Illinois at Urbana‐ChampaignUrbanaILUSA
- Mills Breast Cancer InstituteCarle Foundation HospitalUrbanaILUSA
| | - Itay Onn
- The Azrieli Faculty of MedicineBar‐Ilan UniversitySafedIsrael
| |
Collapse
|
5
|
Liu W, Irudayaraj J. Understanding the dynamics and structure of epigenetic states with single-molecule fluorescence microscopy. CURRENT OPINION IN BIOMEDICAL ENGINEERING 2019. [DOI: 10.1016/j.cobme.2019.08.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
6
|
Wang X, Shi J, Cai G, Zheng E, Liu D, Wu Z, Li Z. Overexpression of MBD3 Improves Reprogramming of Cloned Pig Embryos. Cell Reprogram 2019; 21:221-228. [PMID: 31393170 DOI: 10.1089/cell.2019.0008] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Methyl-CpG-binding domain protein 3 (MBD3) is a core component of the nucleosome remodeling and deacetylase (NuRD) complex, which is crucial for pluripotent stem cell differentiation and embryonic development. MBD3 was shown to play important roles in transcription factor-induced somatic cell reprogramming. Expression level of MBD3 was demonstrated to be higher in somatic cell nuclear transfer-generated cloned pig embryos than in fertilization-derived porcine embryos. However, the functions of MBD3 in nuclear transfer-mediated somatic cell reprogramming are unknown. In this study, MBD3 was overexpressed in cloned pig embryos, and the effects of MBD3 overexpression on gene transcription, DNA methylation, and in vitro developmental competence of cloned pig embryos were analyzed. Results indicated that overexpression of MBD3 in cloned pig embryos not only increased blastocyst rate and number of cells per blastocyst but also upregulated mRNA expression levels and decreased the DNA methylation of NANOG, OCT4, and LINE1 genes to the levels close to those in in vivo fertilization-produced pig embryos. These findings suggest that overexpression of MBD3 improves reprogramming of cloned pig embryos.
Collapse
Affiliation(s)
- Xingwang Wang
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Junsong Shi
- Guangdong Wen's Breeding Swine Company, Yunfu, Guangdong, China
| | - Gengyuan Cai
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Enqin Zheng
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Dewu Liu
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Zhenfang Wu
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Zicong Li
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China
| |
Collapse
|
7
|
Liang MR, Zeng Y, Zeng SY, Zhang JW, Yang BC, Zhang ZY, Liu FY, Luo Y, Zou Y, Wang F, Huang OP. The Expression of MBD6 Is Associated with Tumor Size in Uterine Leiomyomas. Genet Test Mol Biomarkers 2019; 23:523-532. [PMID: 31313936 DOI: 10.1089/gtmb.2019.0070] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Background: Uterine leiomyoma (UL) is the most common benign smooth muscle tumor of the uterus in reproductive women. Prior studies indicated that methyl-CpG-binding domain proteins (MBDs) may be involved in the pathogenesis of UL. Materials and Methods: In this study, UL tissues and paired adjacent myometrium were collected from a total of 51 patients. The expression of MBD mRNAs and their cognate proteins were analyzed via quantitative polymerase chain reaction assays and western blotting, respectively. The relationships between the MBD expression levels and the patients' clinicopathologic variables were assessed using Student's t test, nonparametric tests, or Pearson χ2 methods. Results: Our results show that both the mRNA and protein levels of MBD2 were significantly decreased in ULs compared to the adjacent myometrium. In addition, MBD6 protein expression was also decreased significantly in UL samples when compared to the adjacent myometrium. There was, however, no significant difference on the mRNA expression of MBD6 between these two groups. Neither the mRNA nor the protein levels of the other MBD members (MBD1, MBD3, MBD4, MBD5, and MeCP2) showed any significant differences between ULs and the adjacent myometria. The decreased expression of the MBD6 protein was correlated with the tumor size of ULs. Conclusions: These results suggest that the dysregulated expression of MBD2 and MBD6 in ULs may play a role in their development; however, a larger sample size together with cellular functional assays should be carried out to further elucidate the precise role of MBD6 in ULs.
Collapse
Affiliation(s)
- Mei-Rong Liang
- 1Medical College of Nanchang University, Nanchang, Jiangxi, P.R. China.,2Department of Oncology, Jiangxi Maternal and Child Health Hospital, Nanchang, Jiangxi, P.R. China.,3Key Laboratory of Women's Reproductive Health of Jiangxi Province, Jiangxi Maternal and Child Health Hospital, Nanchang, Jiangxi, P.R. China
| | - Yang Zeng
- 3Key Laboratory of Women's Reproductive Health of Jiangxi Province, Jiangxi Maternal and Child Health Hospital, Nanchang, Jiangxi, P.R. China
| | - Si-Yuan Zeng
- 2Department of Oncology, Jiangxi Maternal and Child Health Hospital, Nanchang, Jiangxi, P.R. China
| | - Jun-Wen Zhang
- 1Medical College of Nanchang University, Nanchang, Jiangxi, P.R. China
| | - Bi-Cheng Yang
- 3Key Laboratory of Women's Reproductive Health of Jiangxi Province, Jiangxi Maternal and Child Health Hospital, Nanchang, Jiangxi, P.R. China
| | - Zi-Yu Zhang
- 3Key Laboratory of Women's Reproductive Health of Jiangxi Province, Jiangxi Maternal and Child Health Hospital, Nanchang, Jiangxi, P.R. China
| | - Fa-Ying Liu
- 3Key Laboratory of Women's Reproductive Health of Jiangxi Province, Jiangxi Maternal and Child Health Hospital, Nanchang, Jiangxi, P.R. China
| | - Yong Luo
- 3Key Laboratory of Women's Reproductive Health of Jiangxi Province, Jiangxi Maternal and Child Health Hospital, Nanchang, Jiangxi, P.R. China
| | - Yang Zou
- 3Key Laboratory of Women's Reproductive Health of Jiangxi Province, Jiangxi Maternal and Child Health Hospital, Nanchang, Jiangxi, P.R. China
| | - Feng Wang
- 3Key Laboratory of Women's Reproductive Health of Jiangxi Province, Jiangxi Maternal and Child Health Hospital, Nanchang, Jiangxi, P.R. China
| | - Ou-Ping Huang
- 1Medical College of Nanchang University, Nanchang, Jiangxi, P.R. China.,3Key Laboratory of Women's Reproductive Health of Jiangxi Province, Jiangxi Maternal and Child Health Hospital, Nanchang, Jiangxi, P.R. China.,4Department of Gynecology, Jiangxi Maternal and Child Health Hospital, Nanchang, Jiangxi, P.R. China
| |
Collapse
|
8
|
Lee CH, Shih YP, Ho MR, Wang AHJ. The C-terminal D/E-rich domain of MBD3 is a putative Z-DNA mimic that competes for Zα DNA-binding activity. Nucleic Acids Res 2019; 46:11806-11821. [PMID: 30304469 PMCID: PMC6294567 DOI: 10.1093/nar/gky933] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Accepted: 10/04/2018] [Indexed: 12/25/2022] Open
Abstract
The Z-DNA binding domain (Zα), derived from the human RNA editing enzyme ADAR1, can induce and stabilize the Z-DNA conformation. However, the biological function of Zα/Z-DNA remains elusive. Herein, we sought to identify proteins associated with Zα to gain insight into the functional network of Zα/Z-DNA. By pull-down, biophysical and biochemical analyses, we identified a novel Zα-interacting protein, MBD3, and revealed that Zα interacted with its C-terminal acidic region, an aspartate (D)/glutamate (E)-rich domain, with high affinity. The D/E-rich domain of MBD3 may act as a DNA mimic to compete with Z-DNA for binding to Zα. Dimerization of MBD3 via intermolecular interaction of the D/E-rich domain and its N-terminal DNA binding domain, a methyl-CpG-binding domain (MBD), attenuated the high affinity interaction of Zα and the D/E-rich domain. By monitoring the conformation transition of DNA, we found that Zα could compete with the MBD domain for binding to the Z-DNA forming sequence, but not vice versa. Furthermore, co-immunoprecipitation experiments confirmed the interaction of MBD3 and ADAR1 in vivo. Our findings suggest that the interplay of Zα and MBD3 may regulate the transition of the DNA conformation between B- and Z-DNA and thereby modulate chromatin accessibility, resulting in alterations in gene expression.
Collapse
Affiliation(s)
- Chi-Hua Lee
- Institute of Biological Chemistry, Academia Sinica, Taipei 115, Taiwan
| | - Yan-Ping Shih
- Institute of Biological Chemistry, Academia Sinica, Taipei 115, Taiwan
| | - Meng-Ru Ho
- Institute of Biological Chemistry, Academia Sinica, Taipei 115, Taiwan
| | - Andrew H-J Wang
- Institute of Biological Chemistry, Academia Sinica, Taipei 115, Taiwan
| |
Collapse
|
9
|
Liu W, Cui Y, Ren W, Irudayaraj J. Epigenetic biomarker screening by FLIM-FRET for combination therapy in ER+ breast cancer. Clin Epigenetics 2019; 11:16. [PMID: 30700309 PMCID: PMC6354376 DOI: 10.1186/s13148-019-0620-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Accepted: 01/21/2019] [Indexed: 01/13/2023] Open
Abstract
Hormone-dependent gene expression involves dynamic and orchestrated regulation of epigenome leading to a cancerous state. Estrogen receptor (ER)-positive breast cancer rely on chromatin remodeling and association with epigenetic factors in inducing ER-dependent oncogenesis and thus cell over-proliferation. The mechanistic differences between epigenetic regulation and hormone signaling provide an avenue for combination therapy of ER-positive breast cancer. We hypothesized that epigenetic biomarkers within single nucleosome proximity of ER-dependent genes could serve as potential therapeutic targets. We described here a Fluorescence lifetime imaging-based Förster resonance energy transfer (FLIM-FRET) methodology for biomarker screening that could facilitate combination therapy based on our study. We screened 11 epigenetic-related markers which include oxidative forms of DNA methylation, histone modifications, and methyl-binding domain proteins. Among them, we identified H4K12acetylation (H4K12ac) and H3K27 acetylation (H3K27ac) as potential epigenetic therapeutic targets. When histone acetyltransferase inhibitor targeting H4K12ac and H3K27ac was combined with tamoxifen, an enhanced therapeutic outcome was observed against ER-positive breast cancer both in vitro and in vivo. Together, we demonstrate a single molecule approach as an effective screening tool for devising targeted epigenetic therapy.
Collapse
Affiliation(s)
- Wenjie Liu
- Department of Agricultural and Biological Engineering, Purdue University, West Lafayette, IN, 47907, USA
- Bindley Bioscience Center, Purdue University, West Lafayette, 47907, IN, USA
- Present Address: Department of Bioengineering, Cancer Center at Illinois, Micro and Nanotechnology Laboratory, University of Illinois at Urbana-Champaign, Champaign, IL, 61801, USA
| | - Yi Cui
- Department of Agricultural and Biological Engineering, Purdue University, West Lafayette, IN, 47907, USA
- Bindley Bioscience Center, Purdue University, West Lafayette, 47907, IN, USA
- Earth and Biological Science Directorate, Pacific Northwest National Laboratory, Richland, WA, 99354, USA
| | - Wen Ren
- Department of Agricultural and Biological Engineering, Purdue University, West Lafayette, IN, 47907, USA
- Bindley Bioscience Center, Purdue University, West Lafayette, 47907, IN, USA
| | - Joseph Irudayaraj
- Department of Agricultural and Biological Engineering, Purdue University, West Lafayette, IN, 47907, USA.
- Bindley Bioscience Center, Purdue University, West Lafayette, 47907, IN, USA.
- Present Address: Department of Bioengineering, Cancer Center at Illinois, Micro and Nanotechnology Laboratory, University of Illinois at Urbana-Champaign, Champaign, IL, 61801, USA.
| |
Collapse
|
10
|
Adult Neural Stem Cell Multipotency and Differentiation Are Directed by the Methyl-CpG-Binding Protein MBD1. J Neurosci 2018; 37:4228-4230. [PMID: 28424299 DOI: 10.1523/jneurosci.0411-17.2017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Revised: 03/23/2017] [Accepted: 03/25/2017] [Indexed: 11/21/2022] Open
|
11
|
Analysis of the concentrations and size distributions of cell-free DNA in schizophrenia using fluorescence correlation spectroscopy. Transl Psychiatry 2018; 8:104. [PMID: 29795286 PMCID: PMC5966419 DOI: 10.1038/s41398-018-0153-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Revised: 04/03/2018] [Accepted: 04/11/2018] [Indexed: 01/05/2023] Open
Abstract
Cell-free DNA (cfDNA), which is primarily released following cell death, has been described and developed to serve as an effective biomarker in autoimmune diseases which may share the pathogenesis with schizophrenia. In this study, we hypothesized and explored whether the concentrations and size distributions of cfDNA are abnormal in schizophrenia. A total of 65 patients with schizophrenia (SZ), 29 patients with mood disorders (MD) and 62 matched healthy controls (HC) were included in the study. Fluorescence correlation spectroscopy was used to assay the molar concentrations and size distributions of cfDNA. Fluorometric quantification and quantitative real-time PCR (qPCR) were performed to verify the results. The cfDNA levels were approximately two-fold higher in the SZ group ((29 ± 15) nM) than in the healthy controls ((15 ± 9) nM; P-value = 0.00062), but the levels in patients with MD were not significantly different from those in the healthy controls ((17 ± 10) nM; P-value = 0.343). According to the size distribution analysis, cfDNA in schizophrenia patients was composed of shorter DNA molecules and showed an apoptosis-like distribution pattern. Our study shows the elevated levels and short sizes of cfDNA in schizophrenia patients, which provide direct evidences supporting increased apoptotic activity in the disease. cfDNA may be developed to serve as an auxiliary diagnostic marker for the disease in the future.
Collapse
|
12
|
Zhu Q, Stöger R, Alberio R. A Lexicon of DNA Modifications: Their Roles in Embryo Development and the Germline. Front Cell Dev Biol 2018; 6:24. [PMID: 29637072 PMCID: PMC5880922 DOI: 10.3389/fcell.2018.00024] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Accepted: 02/27/2018] [Indexed: 12/12/2022] Open
Abstract
5-methylcytosine (5mC) on CpG dinucleotides has been viewed as the major epigenetic modification in eukaryotes for a long time. Apart from 5mC, additional DNA modifications have been discovered in eukaryotic genomes. Many of these modifications are thought to be solely associated with DNA damage. However, growing evidence indicates that some base modifications, namely 5-hydroxymethylcytosine (5hmC), 5-formylcytosine (5fC), 5-carboxylcytosine (5caC), and N6-methadenine (6mA), may be of biological relevance, particularly during early stages of embryo development. Although abundance of these DNA modifications in eukaryotic genomes can be low, there are suggestions that they cooperate with other epigenetic markers to affect DNA-protein interactions, gene expression, defense of genome stability and epigenetic inheritance. Little is still known about their distribution in different tissues and their functions during key stages of the animal lifecycle. This review discusses current knowledge and future perspectives of these novel DNA modifications in the mammalian genome with a focus on their dynamic distribution during early embryonic development and their potential function in epigenetic inheritance through the germ line.
Collapse
Affiliation(s)
- Qifan Zhu
- School of Biosciences, University of Nottingham, Nottingham, United Kingdom
| | - Reinhard Stöger
- School of Biosciences, University of Nottingham, Nottingham, United Kingdom
| | - Ramiro Alberio
- School of Biosciences, University of Nottingham, Nottingham, United Kingdom
| |
Collapse
|
13
|
Cui Y, Li J, Weng L, Wirbisky SE, Freeman JL, Liu J, Liu Q, Yuan X, Irudayaraj J. Regulatory landscape and clinical implication of MBD3 in human malignant glioma. Oncotarget 2018; 7:81698-81714. [PMID: 27835581 PMCID: PMC5340251 DOI: 10.18632/oncotarget.13173] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Accepted: 10/19/2016] [Indexed: 12/19/2022] Open
Abstract
In this article we inspect the roles and functions of the methyl-CpG-binding domain protein 3 (MBD3) in human malignant glioma, to assess its potential as an epigenetic biomarker for prognosis. The regulatory effects of MBD3 on glioma transcriptome were first profiled by high-throughput microarray. Our results indicate that MBD3 is involved in both transcriptional activation and repression. Furthermore, MBD3 fine-controls a spectrum of proteins critical for cellular metabolism and proliferation, thereby contributing to an exquisite anti-glioma network. Specifically, the expression of MHC class II molecules was found to positively correlate with MBD3, which provides new insight into the immune escape of gliomagenesis. In addition, MBD3 participates in constraining a number of oncogenic non-coding RNAs whose over-activation could drive cells into excessive growth and higher malignancy. Having followed up a pilot cohort, we noted that the survival of malignant glioma patients was proportional to the content of MBD3 and 5-hydroxymethylcytosine (5hmC) in their tumor cells. The progression-free survival (PFS) and overall survival (OS) were relatively poor for patients with lower amount of MBD3 and 5hmC in the tissue biopsies. Taken together, this work enriches our understanding of the mechanistic involvement of MBD3 in malignant glioma.
Collapse
Affiliation(s)
- Yi Cui
- Department of Neurosurgery, Xiangya Hospital of Central South University, Changsha, Hunan 410008, China.,Biological Engineering and Bindley Bioscience Center, Purdue University, West Lafayette, IN 47907, USA
| | - Jian Li
- Department of Neurosurgery, Xiangya Hospital of Central South University, Changsha, Hunan 410008, China
| | - Ling Weng
- Department of Neurology, Xiangya Hospital of Central South University, Changsha, Hunan 410008, China
| | - Sara E Wirbisky
- School of Health Sciences, Purdue University, West Lafayette, IN 47907, USA
| | - Jennifer L Freeman
- School of Health Sciences, Purdue University, West Lafayette, IN 47907, USA
| | - Jingping Liu
- Department of Neurosurgery, Xiangya Hospital of Central South University, Changsha, Hunan 410008, China
| | - Qing Liu
- Department of Neurosurgery, Xiangya Hospital of Central South University, Changsha, Hunan 410008, China.,The Institute of Skull Base Surgery & Neuro-Oncology at Hunan, Xiangya Hospital, Changsha, Hunan 410008, China
| | - Xianrui Yuan
- Department of Neurosurgery, Xiangya Hospital of Central South University, Changsha, Hunan 410008, China.,The Institute of Skull Base Surgery & Neuro-Oncology at Hunan, Xiangya Hospital, Changsha, Hunan 410008, China
| | - Joseph Irudayaraj
- Biological Engineering and Bindley Bioscience Center, Purdue University, West Lafayette, IN 47907, USA
| |
Collapse
|
14
|
Bhandari PN, Cui Y, Elzey BD, Goergen CJ, Long CM, Irudayaraj J. Oxygen nanobubbles revert hypoxia by methylation programming. Sci Rep 2017; 7:9268. [PMID: 28839175 PMCID: PMC5570893 DOI: 10.1038/s41598-017-08988-7] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Accepted: 07/14/2017] [Indexed: 01/12/2023] Open
Abstract
Targeting the hypoxic tumor microenvironment has a broad impact in cancer epigenetics and therapeutics. Oxygen encapsulated nanosize carboxymethyl cellulosic nanobubbles were developed for mitigating the hypoxic regions of tumors to weaken the hypoxia-driven pathways and inhibit tumor growth. We show that 5-methylcytosine (5mC) hypomethylation in hypoxic regions of a tumor can be reverted to enhance cancer treatment by epigenetic regulation, using oxygen nanobubbles in the sub-100 nm size range, both, in vitro and in vivo. Oxygen nanobubbles were effective in significantly delaying tumor progression and improving survival rates in mice models. Further, significant hypermethylation was observed in promoter DNA region of BRCA1 due to oxygen nanobubble (ONB) treatment. The nanobubbles can also reprogram several hypoxia associated and tumor suppressor genes such as MAT2A and PDK-1, in addition to serving as an ultrasound contrast agent. Our approach to develop nanosized oxygen encapsulated bubbles as an ultrasound contrast agent for methylation reversal is expected to have a significant impact in epigenetic programming and to serve as an adjuvant to cancer treatment.
Collapse
Affiliation(s)
- Pushpak N Bhandari
- Department of Agricultural and Biological Engineering, Bindley Bioscience Center, Purdue Center for Cancer Research, Purdue University, 225 South University Street, West Lafayette, Indiana, 47907, USA
- Purdue University Center for Cancer Research, West Lafayette, Indiana, 47907, USA
| | - Yi Cui
- Department of Agricultural and Biological Engineering, Bindley Bioscience Center, Purdue Center for Cancer Research, Purdue University, 225 South University Street, West Lafayette, Indiana, 47907, USA
- Purdue University Center for Cancer Research, West Lafayette, Indiana, 47907, USA
| | - Bennett D Elzey
- Department of Comparative Pathobiology, Purdue University, West Lafayette, Indiana, 47907, USA
| | - Craig J Goergen
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana, 47907, USA
| | - Christopher M Long
- Department of Agricultural and Biological Engineering, Bindley Bioscience Center, Purdue Center for Cancer Research, Purdue University, 225 South University Street, West Lafayette, Indiana, 47907, USA
- Purdue University Center for Cancer Research, West Lafayette, Indiana, 47907, USA
| | - Joseph Irudayaraj
- Department of Agricultural and Biological Engineering, Bindley Bioscience Center, Purdue Center for Cancer Research, Purdue University, 225 South University Street, West Lafayette, Indiana, 47907, USA.
- Purdue University Center for Cancer Research, West Lafayette, Indiana, 47907, USA.
| |
Collapse
|
15
|
Naz A, Cui Y, Collins CJ, Thompson DH, Irudayaraj J. PLGA-PEG nano-delivery system for epigenetic therapy. Biomed Pharmacother 2017; 90:586-597. [PMID: 28407579 DOI: 10.1016/j.biopha.2017.03.093] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2017] [Revised: 03/22/2017] [Accepted: 03/27/2017] [Indexed: 12/31/2022] Open
Abstract
Efficient delivery of cytidine analogues such as Azacitidine (AZA) into solid tumors constitutes a primary challenge in epigenetic therapies. We developed a di-block nano-vector based on poly(lactic-co-glycolic acid) (PLGA) and poly(ethylene glycol) (PEG) for stabilization of the conjugated AZA under physiological conditions. With equimolar drug content, our nano-conjugate could elicit a better anti-proliferative effect over free drug in breast cancer both in vitro and in vivo, through reactivation of p21 and BRCA1 to restrict cell proliferation. In addition, we applied single-molecule fluorescence tools to characterize the intracellular behavior of the AZA-PLGE-PEG nano-micelles at a finer spatiotemporal resolution. Our results suggest that the nano-micelles could effectively enrich in cancer cells and may not be limited by nucleoside transporters. Afterwards, the internalized nano-micelles exhibit pH-dependent release and resistance to active efflux. Altogether, our work describes a delivery strategy for DNA demethylating agents with nanoscale tunability, providing a cost-effective option for pharmaceutics.
Collapse
Affiliation(s)
- Asia Naz
- Bindley Bioscience Center and Purdue Center for Cancer Research, Department of Agricultural and Biological Engineering, Purdue University, West Lafayette, IN 47907, USA; Department of Pharmaceutical Chemistry, University of Karachi, Karachi 75270, Pakistan
| | - Yi Cui
- Bindley Bioscience Center and Purdue Center for Cancer Research, Department of Agricultural and Biological Engineering, Purdue University, West Lafayette, IN 47907, USA.
| | | | - David H Thompson
- Department of Chemistry, Purdue University, West Lafayette, IN 47907, USA
| | - Joseph Irudayaraj
- Bindley Bioscience Center and Purdue Center for Cancer Research, Department of Agricultural and Biological Engineering, Purdue University, West Lafayette, IN 47907, USA.
| |
Collapse
|
16
|
Chowdhury B, Cho IH, Irudayaraj J. Technical advances in global DNA methylation analysis in human cancers. J Biol Eng 2017; 11:10. [PMID: 28261325 PMCID: PMC5331624 DOI: 10.1186/s13036-017-0052-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Accepted: 02/10/2017] [Indexed: 02/07/2023] Open
Abstract
Prototypical abnormalities of genome-wide DNA methylation constitute the most widely investigated epigenetic mechanism in human cancers. Errors in the cellular machinery to faithfully replicate the global 5-methylcytosine (5mC) patterns, commonly observed during tumorigenesis, give rise to misregulated biological pathways beneficial to the rapidly propagating tumor mass but deleterious to the healthy tissues of the affected individual. A growing body of evidence suggests that the global DNA methylation levels could serve as utilitarian biomarkers in certain cancer types. Important breakthroughs in the recent years have uncovered further oxidized derivatives of 5mC - 5-hydroxymethylcytosine (5hmC), 5-formylcytosine (5fC) and 5-carboxylcytosine (5caC), thereby expanding our understanding of the DNA methylation dynamics. While the biological roles of these epigenetic derivatives are being extensively characterized, this review presents a perspective on the opportunity of innovation in the global methylation analysis platforms. While multiple methods for global analysis of 5mC in clinical samples exist and have been reviewed elsewhere, two of the established methods - Liquid Chromatography coupled with mass spectrometry (LC-MS/MS) and Immunoquantification have successfully evolved to include the quantitation of 5hmC, 5fC and 5caC. Although the analytical performance of LC-MS/MS is superior, the simplicity afforded by the experimental procedure of immunoquantitation ensures it’s near ubiquity in clinical applications. Recent developments in spectroscopy, nanotechnology and sequencing also provide immense promise for future evaluations and are discussed briefly. Finally, we provide a perspective on the current scenario of global DNA methylation analysis tools and present suggestions to develop the next generation toolset.
Collapse
Affiliation(s)
- Basudev Chowdhury
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, 47907 IN USA
| | - Il-Hoon Cho
- Department of Biomedical Laboratory Science, College of Health Science, Eulji University, Seongnam, 461-713 Republic of Korea
| | - Joseph Irudayaraj
- Bindley Bioscience Center, Purdue University, West Lafayette, IN 47907 USA
| |
Collapse
|
17
|
Wang R, Cui Y, Xu Y, Irudayaraj J. Basic studies on epigenetic carcinogenesis of low-dose exposure to 1-trichloromethyl-1,2,3,4-tetrahydro-β-carboline (TaClo) in vitro. PLoS One 2017; 12:e0172243. [PMID: 28199384 PMCID: PMC5310788 DOI: 10.1371/journal.pone.0172243] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Accepted: 02/01/2017] [Indexed: 11/30/2022] Open
Abstract
1-Trichloromethyl-1,2,3,4-tetrahydro-β-carboline (TaClo) has been widely studied as a neurotoxic substance, however, only few reports have explored its effect on carcinogenicity. Since the aberrant modification of DNA methylation occurs very early in almost all human cancers, the focus of this study is to assess the carcinogenicity of TaClo by characterizing alterations of the epigenetic state, specifically, DNA methylation, upon exposure to TaClo in a HEK 293 model cell line. Our results suggest that TaClo could induce global DNA hypomethylation and transcriptional repression of critical tumor suppressor genes by increasing their promoter methylation. Enhanced cell proliferation, migration and anchorage independent growth were observed in cells exposed to TaClo. Our study highlights the epigenetic toxicity of TaClo, which contributes to its carcinogenicity by altering the DNA methylation status.
Collapse
Affiliation(s)
- Renjie Wang
- College of Chemistry and Chemical Engineering, Chongqing University, Chongqing, China
- Department of Agricultural and Biological Engineering, Bindley Bioscience Center, Purdue University, West Lafayette, Indiana, United States of America
- International R & D Center of Micro-Nano Systems and New Materials Technolog, Chongqing University, Chongqing, China
- Key disciplines laboratory of Novel Micro-Nano Devices and System Technology, Chongqing University, Chongqing, China
| | - Yi Cui
- Department of Agricultural and Biological Engineering, Bindley Bioscience Center, Purdue University, West Lafayette, Indiana, United States of America
| | - Yi Xu
- College of Chemistry and Chemical Engineering, Chongqing University, Chongqing, China
- International R & D Center of Micro-Nano Systems and New Materials Technolog, Chongqing University, Chongqing, China
- Key disciplines laboratory of Novel Micro-Nano Devices and System Technology, Chongqing University, Chongqing, China
- Microsystem Research Center, School of Optoelectronic Engineering, Chongqing University, Chongqing, China
| | - Joseph Irudayaraj
- Department of Agricultural and Biological Engineering, Bindley Bioscience Center, Purdue University, West Lafayette, Indiana, United States of America
- * E-mail:
| |
Collapse
|
18
|
Hainer SJ, McCannell KN, Yu J, Ee LS, Zhu LJ, Rando OJ, Fazzio TG. DNA methylation directs genomic localization of Mbd2 and Mbd3 in embryonic stem cells. eLife 2016; 5. [PMID: 27849519 PMCID: PMC5111885 DOI: 10.7554/elife.21964] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Accepted: 11/01/2016] [Indexed: 12/22/2022] Open
Abstract
Cytosine methylation is an epigenetic and regulatory mark that functions in part through recruitment of chromatin remodeling complexes containing methyl-CpG binding domain (MBD) proteins. Two MBD proteins, Mbd2 and Mbd3, were previously shown to bind methylated or hydroxymethylated DNA, respectively; however, both of these findings have been disputed. Here, we investigated this controversy using experimental approaches and re-analysis of published data and find no evidence for methylation-independent functions of Mbd2 or Mbd3. We show that chromatin localization of Mbd2 and Mbd3 is highly overlapping and, unexpectedly, we find Mbd2 and Mbd3 are interdependent for chromatin association. Further investigation reveals that both proteins are required for normal levels of cytosine methylation and hydroxymethylation in murine embryonic stem cells. Furthermore, Mbd2 and Mbd3 regulate overlapping sets of genes that are also regulated by DNA methylation/hydroxymethylation factors. These findings reveal an interdependent regulatory mechanism mediated by the DNA methylation machinery and its readers.
Collapse
Affiliation(s)
- Sarah J Hainer
- Department of Molecular, Cell, and Cancer Biology, University of Massachusetts Medical School, Worcester, United States
| | - Kurtis N McCannell
- Department of Molecular, Cell, and Cancer Biology, University of Massachusetts Medical School, Worcester, United States
| | - Jun Yu
- Department of Molecular, Cell, and Cancer Biology, University of Massachusetts Medical School, Worcester, United States
| | - Ly-Sha Ee
- Department of Molecular, Cell, and Cancer Biology, University of Massachusetts Medical School, Worcester, United States
| | - Lihua J Zhu
- Department of Molecular, Cell, and Cancer Biology, University of Massachusetts Medical School, Worcester, United States.,Program in Bioinformatics and Integrative Biology, University of Massachusetts Medical School, Worcester, United States.,Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, United States
| | - Oliver J Rando
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, United States
| | - Thomas G Fazzio
- Department of Molecular, Cell, and Cancer Biology, University of Massachusetts Medical School, Worcester, United States.,Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, United States
| |
Collapse
|
19
|
Cui Y, Liu J, Irudayaraj J. Beyond quantification: in situ analysis of transcriptome and pre-mRNA alternative splicing at the nanoscale. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2016; 9. [PMID: 27813271 DOI: 10.1002/wnan.1443] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Revised: 09/02/2016] [Accepted: 10/02/2016] [Indexed: 11/08/2022]
Abstract
In situ analysis offers a venue for dissecting the complex transcriptome in its natural context to tap into cellular processes that could explain the phenotypic physiology and pathology yet to be understood. Over the past decades, enormous progress has been made to improve the resolution, sensitivity, and specificity of single-cell technologies. The continued efforts in RNA research not only facilitates mechanistic studies of molecular biology but also provides state-of-the-art strategies for diagnostic purposes. The implementation of novel bio-imaging platforms has yielded valuable information for inspecting gene expression, mapping regulatory networks, and classifying cell types. In this article, we discuss the merits and technical challenges in single-molecule in situ RNA profiling. Advanced in situ hybridization methodologies developed for a variety of detection modalities are reviewed. Considering the fact that in mammalian cells the number of protein products immensely exceeds that of the actual coding genes due to pre-mRNA alternative splicing, tools capable of elucidating this process in intact cells are highlighted. To conclude, we point out future directions for in situ transcriptome analysis and expect a plethora of opportunities and discoveries in this field. WIREs Nanomed Nanobiotechnol 2017, 9:e1443. doi: 10.1002/wnan.1443 For further resources related to this article, please visit the WIREs website.
Collapse
Affiliation(s)
- Yi Cui
- Department of Agricultural and Biological Engineering, Bindley Bioscience Center and Birck Nanotechnology Center, Purdue Center for Cancer Research, Purdue University, West Lafayette, IN, USA.,Environmental Molecular Science Laboratory, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Jing Liu
- Department of Nanoscience and Nanoengineering, South Dakota School of Mines & Technology, Rapid City, SD, USA
| | - Joseph Irudayaraj
- Department of Agricultural and Biological Engineering, Bindley Bioscience Center and Birck Nanotechnology Center, Purdue Center for Cancer Research, Purdue University, West Lafayette, IN, USA
| |
Collapse
|
20
|
Choudhury SR, Cui Y, Narayanan A, Gilley DP, Huda N, Lo CL, Zhou FC, Yernool D, Irudayaraj J. Optogenetic regulation of site-specific subtelomeric DNA methylation. Oncotarget 2016; 7:50380-50391. [PMID: 27391261 PMCID: PMC5226589 DOI: 10.18632/oncotarget.10394] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Accepted: 06/18/2016] [Indexed: 01/24/2023] Open
Abstract
Telomere length homeostasis, critical for chromosomal integrity and genome stability, is controlled by intricate molecular regulatory machinery that includes epigenetic modifications. Here, we examine site-specific and spatiotemporal alteration of the subtelomeric methylation of CpG islands using optogenetic tools to understand the epigenetic regulatory mechanisms of telomere length maintenance. Human DNA methyltransferase3A (DNMT3A) were assembled selectively at chromosome ends by fusion to cryptochrome 2 protein (CRY2) and its interacting complement, the basic helix loop helix protein-1 (CIB1). CIB1 was fused to the telomere-associated protein telomere repeat binding factor-1 (TRF1), which localized the protein complex DNMT3A-CRY2 at telomeric regions upon excitation by blue-light monitored by single-molecule fluorescence analyses. Increased methylation was achieved selectively at subtelomeric CpG sites on the six examined chromosome ends specifically after blue-light activation, which resulted in progressive increase in telomere length over three generations of HeLa cell replications. The modular design of the fusion constructs presented here allows for the selective substitution of other chromatin modifying enzymes and for loci-specific targeting to regulate the epigenetic pathways at telomeres and other selected genomic regions of interest.
Collapse
Affiliation(s)
- Samrat Roy Choudhury
- Department of Agricultural & Biological Engineering, Bindley Bioscience Center, Purdue Center for Cancer Research, Purdue University, West Lafayette, IN 47907, USA
| | - Yi Cui
- Department of Agricultural & Biological Engineering, Bindley Bioscience Center, Purdue Center for Cancer Research, Purdue University, West Lafayette, IN 47907, USA
| | - Anoop Narayanan
- Bindley Laboratory of Structural Biology, Bindley Bioscience Center, Purdue University, West Lafayette, IN 47907, USA
| | - David P. Gilley
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Nazmul Huda
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Chiao-Ling Lo
- Department of Anatomy and Cell Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Feng C. Zhou
- Department of Anatomy and Cell Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Stark Institute of Neuroscience Research, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Dinesh Yernool
- Bindley Laboratory of Structural Biology, Bindley Bioscience Center, Purdue University, West Lafayette, IN 47907, USA
| | - Joseph Irudayaraj
- Department of Agricultural & Biological Engineering, Bindley Bioscience Center, Purdue Center for Cancer Research, Purdue University, West Lafayette, IN 47907, USA
| |
Collapse
|
21
|
MBD3 mediates epigenetic regulation on EPAS1 promoter in cancer. Tumour Biol 2016; 37:13455-13467. [PMID: 27465550 DOI: 10.1007/s13277-016-5237-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Accepted: 07/15/2016] [Indexed: 10/21/2022] Open
Abstract
Hypoxia-inducible factor 2α (HIF2α) plays critical roles in cancer progression. Although the mechanisms of HIF2α translation and degradation have been well studied, the mechanism for HIF2α regulation at transcriptional level is still not fully understood. Here, we present evidence that DNA methylation in promoter contributes to transcription of EPAS1 coding HIF2α. Methylated CpG binding protein 3 (MBD3) contributes to the intricate regulatory mechanism. We showed that MBD3 bound to the EPAS1 promoter in breast cancer cells and amplified EPAS1 transcription through demethylating CpG located around transcriptional start site in MDA-MB-468 cells. This enabled MDA-MB-468 cells to activate HIF2α-mediated angiogenesis. However, in 7860 cells, the demethylation function of MBD3 on EPAS1 was not observed because of the poor methylated-CpG promoter. Nevertheless, depletion of MBD3 induced by shRNA decreased EPAS1 transcription and therefore decreased HIF2α-mediated cellular response in both MDA-MB-468 and 7860 cancer cells. These results indicated that the endogenous MBD3 was involved in regulating the transcription and therefore the transcriptional activities of HIF2α, suggesting that MBD3 may be a potential therapeutic target of tumor.
Collapse
|
22
|
Cui Y, Wang X, Ren W, Liu J, Irudayaraj J. Optical Clearing Delivers Ultrasensitive Hyperspectral Dark-Field Imaging for Single-Cell Evaluation. ACS NANO 2016; 10:3132-43. [PMID: 26895095 PMCID: PMC5338466 DOI: 10.1021/acsnano.6b00142] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
A single-cell optical clearing methodology is developed and demonstrated in hyperspectral dark-field microscopy (HSDFM) and imaging of plasmonic nanoprobes. Our strategy relies on a combination of delipidation and refractive index (RI) matching with highly biocompatible and affordable agents. Before applying the RI-matching solution, the delipidation step by using a mild solvent effectively eliminates those high-density, lipid-enriched granular structures which emit strong scattering. Upon treatment, the background scattering from cellular organelles could be repressed to a negligible level while the scattering signals from plasmonic nanomaterials increase, leading to a significant improvement of the signal-to-noise ratio (SNR). With this method established, the versatility and applicability of HSDFM are greatly enhanced. In our demonstration, quantitative mapping of the dimerization-activated receptor kinase HER2 is achieved in a single cancer cell by a nonfluorescent approach. High-resolution imaging for oncogenic mRNAs, namely ER, PR, and HER2, is performed with single labeling. More importantly, in situ multiplex detection of mRNA and protein is made possible by HSDFM since it overcomes the difficulties of complex staining and signal imbalance suffered by the conventional optical imaging. Last, we show that with optical clearing, characterization of intracellularly grown gold particulates is accomplished at an unprecedented spatiotemporal resolution. Taken together, the uniqueness of optical clearing and HSDFM is expected to open ample avenues for single-cell studies and biomedical engineering.
Collapse
|
23
|
Cui Y, Choudhury SR, Irudayaraj J. Epigenetic Toxicity of Trichloroethylene: A Single-Molecule Perspective. Toxicol Res (Camb) 2016; 5:641-650. [PMID: 28944004 DOI: 10.1039/c5tx00454c] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
The volatile, water soluble trichloroethylene (TCE) is a hazardous industrial waste and could lead to various health problems, including cancer, neuropathy, cardiovascular defects, and immune diseases. Toxicological studies taking use of in vitro and in vivo models have been conducted to understand the biological impacts of TCE at the genetic, transcriptomic, metabolomic, and signaling levels. The epigenetic aberrations induced by TCE have also been reported in a number of model organisms, while a detailed mechanistic elucidation is lacking. In this study we uncover an unreported mechanism accounting for the epigenetic toxicity due to TCE exposure by monitoring the single-molecule dynamics of DNA methyltransferase 3a (Dnmt3a) in living cells. TCE-induced global DNA hypomethylation could be partly attributed to the disrupted Dnmt3a-DNA association. By analyzing the components of detached Dnmt3a, we found that the Dnmt3a oligomers (e.g., dimer, trimer, and high-order oligomers) dissociated from heterochromatin in a dose-dependent manner upon exposure. Thereafter the diminished DNA-binding affinity of Dnmt3a resulted in a significant decrease in 5-methylcytosine (5mC) under both acute high-dosage and chronic low-dosage TCE exposure. The resulting DNA demethylation might also be contributed by the elevated expression of ten-eleven-translocation (Tet) enzymes and reformed cysteine cycle. Besides the global effect, we further identified that a group of heterochromatin-located, cancer-related microRNAs (miRNAs) experienced promoter demethylation upon TCE exposure.
Collapse
Affiliation(s)
- Yi Cui
- Department of Agricultural and Biological Engineering, Bindley Bioscience Center, Purdue Center for Cancer Research, Purdue University, West Lafayette, IN 47907, USA
| | - Samrat Roy Choudhury
- Department of Agricultural and Biological Engineering, Bindley Bioscience Center, Purdue Center for Cancer Research, Purdue University, West Lafayette, IN 47907, USA
| | - Joseph Irudayaraj
- Department of Agricultural and Biological Engineering, Bindley Bioscience Center, Purdue Center for Cancer Research, Purdue University, West Lafayette, IN 47907, USA
| |
Collapse
|
24
|
Wang X, Cui Y, Irudayaraj J. Single-Cell Quantification of Cytosine Modifications by Hyperspectral Dark-Field Imaging. ACS NANO 2015; 9:11924-32. [PMID: 26505210 PMCID: PMC4766098 DOI: 10.1021/acsnano.5b04451] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Epigenetic modifications on DNA, especially on cytosine, play a critical role in regulating gene expression and genome stability. It is known that the levels of different cytosine derivatives are highly dynamic and are regulated by a variety of factors that act on the chromatin. Here we report an optical methodology based on hyperspectral dark-field imaging (HSDFI) using plasmonic nanoprobes to quantify the recently identified cytosine modifications on DNA in single cells. Gold (Au) and silver (Ag) nanoparticles (NPs) functionalized with specific antibodies were used as contrast-generating agents due to their strong local surface plasmon resonance (LSPR) properties. With this powerful platform we have revealed the spatial distribution and quantity of 5-carboxylcytosine (5caC) at the different stages in cell cycle and demonstrated that 5caC was a stably inherited epigenetic mark. We have also shown that the regional density of 5caC on a single chromosome can be mapped due to the spectral sensitivity of the nanoprobes in relation to the interparticle distance. Notably, HSDFI enables an efficient removal of the scattering noises from nonspecifically aggregated nanoprobes, to improve accuracy in the quantification of different cytosine modifications in single cells. Further, by separating the LSPR fingerprints of AuNPs and AgNPs, multiplex detection of two cytosine modifications was also performed. Our results demonstrate HSDFI as a versatile platform for spatial and spectroscopic characterization of plasmonic nanoprobe-labeled nuclear targets at the single-cell level for quantitative epigenetic screening.
Collapse
|
25
|
Chowdhury B, McGovern A, Cui Y, Choudhury SR, Cho IH, Cooper B, Chevassut T, Lossie AC, Irudayaraj J. The hypomethylating agent Decitabine causes a paradoxical increase in 5-hydroxymethylcytosine in human leukemia cells. Sci Rep 2015; 5:9281. [PMID: 25901663 PMCID: PMC4894448 DOI: 10.1038/srep09281] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2014] [Accepted: 02/19/2015] [Indexed: 12/20/2022] Open
Abstract
The USFDA approved "epigenetic drug", Decitabine, exerts its effect by hypomethylating DNA, demonstrating the pivotal role aberrant genome-wide DNA methylation patterns play in cancer ontology. Using sensitive technologies in a cellular model of Acute Myeloid Leukemia, we demonstrate that while Decitabine reduces the global levels of 5-methylcytosine (5mC), it results in paradoxical increase of 5-hydroxymethylcytosine (5hmC), 5-formylcytosine (5fC) and 5-carboxylcytosine (5caC) levels. Hitherto, the only biological mechanism known to generate 5hmC, 5fC and 5caC, involving oxidation of 5mC by members of Ten-Eleven-Translocation (TET) dioxygenase family, was not observed to undergo any alteration during DAC treatment. Using a multi-compartmental model of DNA methylation, we show that partial selectivity of TET enzymes for hemi-methylated CpG dinucleotides could lead to such alterations in 5hmC content. Furthermore, we investigated the binding of TET1-catalytic domain (CD)-GFP to DNA by Fluorescent Correlation Spectroscopy in live cells and detected the gradual increase of the DNA bound fraction of TET1-CD-GFP after treatment with Decitabine. Our study provides novel insights on the therapeutic activity of DAC in the backdrop of the newly discovered derivatives of 5mC and suggests that 5hmC has the potential to serve as a biomarker for monitoring the clinical success of patients receiving DAC.
Collapse
Affiliation(s)
- Basudev Chowdhury
- Department of Biological Sciences, Purdue University, West Lafayette 47907, IN
- Bindley Biosciences Center, Discovery Park, Purdue University, West Lafayette 47907, IN
| | - Andrew McGovern
- Department of Healthcare Management and Policy, University of Surrey, Guildford, GY2 7XH, UK
- Brighton and Sussex Medical School, Falmer, Brighton, East Sussex, BN1 9PS, UK
| | - Yi Cui
- Bindley Biosciences Center, Discovery Park, Purdue University, West Lafayette 47907, IN
- Department of Agricultural and Biological Engineering, Purdue University, West Lafayette, IN 47907
| | - Samrat Roy Choudhury
- Bindley Biosciences Center, Discovery Park, Purdue University, West Lafayette 47907, IN
- Department of Agricultural and Biological Engineering, Purdue University, West Lafayette, IN 47907
| | - Il-Hoon Cho
- Bindley Biosciences Center, Discovery Park, Purdue University, West Lafayette 47907, IN
- Department of Agricultural and Biological Engineering, Purdue University, West Lafayette, IN 47907
| | - Bruce Cooper
- Bindley Biosciences Center, Discovery Park, Purdue University, West Lafayette 47907, IN
| | - Timothy Chevassut
- Brighton and Sussex Medical School, Falmer, Brighton, East Sussex, BN1 9PS, UK
| | - Amy C. Lossie
- Bindley Biosciences Center, Discovery Park, Purdue University, West Lafayette 47907, IN
- Department of Animal Sciences, Purdue University, West Lafayette, IN 47907
| | - Joseph Irudayaraj
- Bindley Biosciences Center, Discovery Park, Purdue University, West Lafayette 47907, IN
- Department of Agricultural and Biological Engineering, Purdue University, West Lafayette, IN 47907
| |
Collapse
|