1
|
Shi X, Yin Y, Guo X, Liu M, Ma F, Tian L, Zheng M, Liu G. The histone deacetylase inhibitor SAHA exerts a protective effect against myocardial ischemia/reperfusion injury by inhibiting sodium-calcium exchanger. Biochem Biophys Res Commun 2023; 671:105-115. [PMID: 37300940 DOI: 10.1016/j.bbrc.2023.05.120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 05/29/2023] [Accepted: 05/30/2023] [Indexed: 06/12/2023]
Abstract
Calcium overload performs a crucial function in the pathogenesis of myocardial ischemia-reperfusion (I/R) damage, which contributes to mitochondrial impairment and apoptosis of cardiomyocytes. Suberoylanilide hydroxamic acid (SAHA), a small molecule histone deacetylases inhibitor with modulatory capacity on Na+-Ca2+ exchanger (NCX), is proven to have protective potential towards cardiac remodeling and injury, but the mechanism remains unclear. Hence, Hence, our present research explored the modulation of NCX-Ca2+-CaMKII by SAHA in myocardial I/R damage. Our outcomes indicate that in vitro hypoxia and reoxygenation models of myocardial cells, SAHA treatment inhibited the increase in expression of NCX1, intracellular Ca2+ concentration, expression of CaMKII and self-phosphorylated CaMKII, and cell apoptosis. In addition, SAHA treatment improved myocardial cell mitochondrial swelling inhibited mitochondrial membrane potential diminution and the openness of the mitochondrial permeability transition pore, and protected against mitochondrial dysfunction following I/R injury. In vivo, SAHA treatment alleviated the decrease in FS% and EF%, the increase in the myocardial infarct area, and myocardial enzyme levels caused by I/R injury, while also reducing myocardial cell apoptosis, and inhibiting mitochondrial fission and mitochondrial membrane rupture. These results indicated that SAHA treatment alleviated myocardial cell apoptosis as well as mitochondrial dysfunction resulting from myocardial I/R impairment, and contributed to myocardial function recovery by inhibiting the NCX-Ca2+-CaMKII pathway. These findings offered additional theoretical support to explore the mechanism of SAHA as a therapeutic agent in cardiac I/R damage and develop new treatment strategies.
Collapse
Affiliation(s)
- Xiaocui Shi
- Department of Cardiology, Hebei Key Laboratory of Cardiac Injury Repair Mechanism Study, Hebei International Joint Research Center for Structural Heart Disease, Hebei Engineering Research Center of Intelligent Medical Clinical Application, The First Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050000, China
| | - Yajuan Yin
- Department of Cardiology, Hebei Key Laboratory of Cardiac Injury Repair Mechanism Study, Hebei International Joint Research Center for Structural Heart Disease, Hebei Engineering Research Center of Intelligent Medical Clinical Application, The First Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050000, China
| | - Xuwen Guo
- Department of Cardiology, Hebei Key Laboratory of Cardiac Injury Repair Mechanism Study, Hebei International Joint Research Center for Structural Heart Disease, Hebei Engineering Research Center of Intelligent Medical Clinical Application, The First Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050000, China
| | - Mei Liu
- Department of Cardiology, Hebei Key Laboratory of Cardiac Injury Repair Mechanism Study, Hebei International Joint Research Center for Structural Heart Disease, Hebei Engineering Research Center of Intelligent Medical Clinical Application, The First Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050000, China
| | - Fangfang Ma
- Department of Cardiology, Hebei Key Laboratory of Cardiac Injury Repair Mechanism Study, Hebei International Joint Research Center for Structural Heart Disease, Hebei Engineering Research Center of Intelligent Medical Clinical Application, The First Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050000, China
| | - Li Tian
- Department of Cardiology, Hebei Key Laboratory of Cardiac Injury Repair Mechanism Study, Hebei International Joint Research Center for Structural Heart Disease, Hebei Engineering Research Center of Intelligent Medical Clinical Application, The First Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050000, China
| | - Mingqi Zheng
- Department of Cardiology, Hebei Key Laboratory of Heart and Metabolism, The First Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050000, China
| | - Gang Liu
- Department of Cardiology, Hebei Key Laboratory of Cardiac Injury Repair Mechanism Study, Hebei International Joint Research Center for Structural Heart Disease, Hebei Engineering Research Center of Intelligent Medical Clinical Application, The First Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050000, China.
| |
Collapse
|
2
|
Sandonà M, Cavioli G, Renzini A, Cedola A, Gigli G, Coletti D, McKinsey TA, Moresi V, Saccone V. Histone Deacetylases: Molecular Mechanisms and Therapeutic Implications for Muscular Dystrophies. Int J Mol Sci 2023; 24:4306. [PMID: 36901738 PMCID: PMC10002075 DOI: 10.3390/ijms24054306] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 02/13/2023] [Accepted: 02/19/2023] [Indexed: 02/24/2023] Open
Abstract
Histone deacetylases (HDACs) are enzymes that regulate the deacetylation of numerous histone and non-histone proteins, thereby affecting a wide range of cellular processes. Deregulation of HDAC expression or activity is often associated with several pathologies, suggesting potential for targeting these enzymes for therapeutic purposes. For example, HDAC expression and activity are higher in dystrophic skeletal muscles. General pharmacological blockade of HDACs, by means of pan-HDAC inhibitors (HDACi), ameliorates both muscle histological abnormalities and function in preclinical studies. A phase II clinical trial of the pan-HDACi givinostat revealed partial histological improvement and functional recovery of Duchenne Muscular Dystrophy (DMD) muscles; results of an ongoing phase III clinical trial that is assessing the long-term safety and efficacy of givinostat in DMD patients are pending. Here we review the current knowledge about the HDAC functions in distinct cell types in skeletal muscle, identified by genetic and -omic approaches. We describe the signaling events that are affected by HDACs and contribute to muscular dystrophy pathogenesis by altering muscle regeneration and/or repair processes. Reviewing recent insights into HDAC cellular functions in dystrophic muscles provides new perspectives for the development of more effective therapeutic approaches based on drugs that target these critical enzymes.
Collapse
Affiliation(s)
| | - Giorgia Cavioli
- Unit of Histology and Medical Embryology, Department of Human Anatomy, Histology, Forensic Medicine and Orthopedics, University of Rome “La Sapienza”, 00161 Rome, Italy
| | - Alessandra Renzini
- Unit of Histology and Medical Embryology, Department of Human Anatomy, Histology, Forensic Medicine and Orthopedics, University of Rome “La Sapienza”, 00161 Rome, Italy
| | - Alessia Cedola
- Institute of Nanotechnology, National Research Council (CNR-NANOTEC), University of Rome “La Sapienza”, 00181 Rome, Italy
| | - Giuseppe Gigli
- Institute of Nanotechnology, National Research Council (CNR-NANOTEC), 73100 Lecce, Italy
| | - Dario Coletti
- Unit of Histology and Medical Embryology, Department of Human Anatomy, Histology, Forensic Medicine and Orthopedics, University of Rome “La Sapienza”, 00161 Rome, Italy
- CNRS UMR 8256, INSERM ERL U1164, Biological Adaptation and Aging B2A, Sorbonne Université, 75005 Paris, France
| | - Timothy A. McKinsey
- Department of Medicine, Division of Cardiology and Consortium for Fibrosis Research & Translation, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Viviana Moresi
- Institute of Nanotechnology, National Research Council (CNR-NANOTEC), University of Rome “La Sapienza”, 00181 Rome, Italy
| | - Valentina Saccone
- IRCCS Fondazione Santa Lucia, 00143 Rome, Italy
- Department of Life Science and Public Health, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| |
Collapse
|
3
|
Sanganalmath SK, Dubey S, Veeranki S, Narisetty K, Krishnamurthy P. The interplay of inflammation, exosomes and Ca 2+ dynamics in diabetic cardiomyopathy. Cardiovasc Diabetol 2023; 22:37. [PMID: 36804872 PMCID: PMC9942322 DOI: 10.1186/s12933-023-01755-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 01/25/2023] [Indexed: 02/22/2023] Open
Abstract
Diabetes mellitus is one of the prime risk factors for cardiovascular complications and is linked with high morbidity and mortality. Diabetic cardiomyopathy (DCM) often manifests as reduced cardiac contractility, myocardial fibrosis, diastolic dysfunction, and chronic heart failure. Inflammation, changes in calcium (Ca2+) handling and cardiomyocyte loss are often implicated in the development and progression of DCM. Although the existence of DCM was established nearly four decades ago, the exact mechanisms underlying this disease pathophysiology is constantly evolving. Furthermore, the complex pathophysiology of DCM is linked with exosomes, which has recently shown to facilitate intercellular (cell-to-cell) communication through biomolecules such as micro RNA (miRNA), proteins, enzymes, cell surface receptors, growth factors, cytokines, and lipids. Inflammatory response and Ca2+ signaling are interrelated and DCM has been known to adversely affect many of these signaling molecules either qualitatively and/or quantitatively. In this literature review, we have demonstrated that Ca2+ regulators are tightly controlled at different molecular and cellular levels during various biological processes in the heart. Inflammatory mediators, miRNA and exosomes are shown to interact with these regulators, however how these mediators are linked to Ca2+ handling during DCM pathogenesis remains elusive. Thus, further investigations are needed to understand the mechanisms to restore cardiac Ca2+ homeostasis and function, and to serve as potential therapeutic targets in the treatment of DCM.
Collapse
Affiliation(s)
- Santosh K Sanganalmath
- Department of Internal Medicine, Division of Cardiovascular Medicine, University of Nevada Las Vegas School of Medicine, Las Vegas, NV, 89102, USA.
| | - Shubham Dubey
- Department of Biomedical Engineering, Schools of Medicine and Engineering, University of Alabama at Birmingham, University Blvd., Birmingham, AL, 35294, USA
| | - Sudhakar Veeranki
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY, 40506, USA
| | | | - Prasanna Krishnamurthy
- Department of Biomedical Engineering, Schools of Medicine and Engineering, University of Alabama at Birmingham, University Blvd., Birmingham, AL, 35294, USA
| |
Collapse
|
4
|
Pozo MR, Meredith GW, Entcheva E. Human iPSC-Cardiomyocytes as an Experimental Model to Study Epigenetic Modifiers of Electrophysiology. Cells 2022; 11:200. [PMID: 35053315 PMCID: PMC8774228 DOI: 10.3390/cells11020200] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 12/31/2021] [Accepted: 01/01/2022] [Indexed: 02/04/2023] Open
Abstract
The epigenetic landscape and the responses to pharmacological epigenetic regulators in each human are unique. Classes of epigenetic writers and erasers, such as histone acetyltransferases, HATs, and histone deacetylases, HDACs, control DNA acetylation/deacetylation and chromatin accessibility, thus exerting transcriptional control in a tissue- and person-specific manner. Rapid development of novel pharmacological agents in clinical testing-HDAC inhibitors (HDACi)-targets these master regulators as common means of therapeutic intervention in cancer and immune diseases. The action of these epigenetic modulators is much less explored for cardiac tissue, yet all new drugs need to be tested for cardiotoxicity. To advance our understanding of chromatin regulation in the heart, and specifically how modulation of DNA acetylation state may affect functional electrophysiological responses, human-induced pluripotent stem-cell-derived cardiomyocyte (hiPSC-CM) technology can be leveraged as a scalable, high-throughput platform with ability to provide patient-specific insights. This review covers relevant background on the known roles of HATs and HDACs in the heart, the current state of HDACi development, applications, and any adverse cardiac events; it also summarizes relevant differential gene expression data for the adult human heart vs. hiPSC-CMs along with initial transcriptional and functional results from using this new experimental platform to yield insights on epigenetic control of the heart. We focus on the multitude of methodologies and workflows needed to quantify responses to HDACis in hiPSC-CMs. This overview can help highlight the power and the limitations of hiPSC-CMs as a scalable experimental model in capturing epigenetic responses relevant to the human heart.
Collapse
Affiliation(s)
| | | | - Emilia Entcheva
- Department of Biomedical Engineering, George Washington University, Washington, DC 20052, USA; (M.R.P.); (G.W.M.)
| |
Collapse
|
5
|
Mittal A, Garg R, Bahl A, Khullar M. Molecular Mechanisms and Epigenetic Regulation in Diabetic Cardiomyopathy. Front Cardiovasc Med 2022; 8:725532. [PMID: 34977165 PMCID: PMC8716459 DOI: 10.3389/fcvm.2021.725532] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 11/15/2021] [Indexed: 12/25/2022] Open
Abstract
Diabetes mellitus (DM) is an important lifestyle disease. Type 2 diabetes is one of the prime contributors to cardiovascular diseases (CVD) and diabetic cardiomyopathy (DbCM) and leads to increased morbidity and mortality in patients with DM. DbCM is a typical cardiac disease, characterized by cardiac remodeling in the presence of DM and in the absence of other comorbidities such as hypertension, valvular diseases, and coronary artery disease. DbCM is associated with defective cardiac metabolism, altered mitochondrial structure and function, and other physiological and pathophysiological signaling mechanisms such as oxidative stress, inflammation, myocardial apoptosis, and autophagy. Epigenetic modifiers are crucial players in the pathogenesis of DbCM. Thus, it is important to explore the role of epigenetic modifiers or modifications in regulating molecular pathways associated with DbCM. In this review, we have discussed the role of various epigenetic mechanisms such as histone modifications (acetylation and methylation), DNA methylation and non-coding RNAs in modulating molecular pathways involved in the pathophysiology of the DbCM.
Collapse
Affiliation(s)
- Anupam Mittal
- Department of Translational and Regenerative Medicine, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Rajni Garg
- Council of Scientific and Industrial Research - Institute of Microbial Technology, Chandigarh, India
| | - Ajay Bahl
- Department of Cardiology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Madhu Khullar
- Department of Experimental Medicine and Biotechnology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| |
Collapse
|
6
|
Astragaloside IV Reduces OxLDL-Induced BNP Overexpression by Regulating HDAC. JOURNAL OF HEALTHCARE ENGINEERING 2021; 2021:3433615. [PMID: 34900182 PMCID: PMC8664502 DOI: 10.1155/2021/3433615] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 11/12/2021] [Accepted: 11/16/2021] [Indexed: 12/21/2022]
Abstract
Effective drug intervention is the most important method to improve the prognosis, improve the quality of life, and prolong the life of patients with heart failure. This study aimed to explore the protective effect of astragaloside IV on myocardial cell injury induced by oxidized low-density lipoprotein (OxLDL) and its regulatory mechanism on the increase of brain natriuretic peptide (BNP) caused by myocardial cell injury. The model of myocardial cell injury, protection, and histone deacetylase (HDAC) inhibition in HL-1 mice was established by OxLDL treatment, astragaloside IV intervention, and UF010 coincubation. The effects of OxLDL and astragaloside IV on apoptosis were detected by flow cytometry. The expression level of BNP mRNA and protein in cells was investigated by real-time fluorescence quantification, western blot, and enzyme-linked immunosorbent assay. HDAC activity in nucleus was calibrated by fluorescence absorption intensity. Enzyme-linked immunosorbent assay (ELISA) was applied to test eNOS level in myocardial cells. OxLDL significantly promoted apoptosis, upregulated BNP mRNA, increased BNP protein level inside and outside cells, and decreased eNOS level. Compared with OxLDL treatment group, apoptosis decreased, BNP mRNA expression level decreased, BNP protein concentration decreased, and eNOS level increased significantly combined with low and high concentration astragaloside IV treatment group. HDAC activity significantly increased in OxLDL treatment group and significantly decreased after combined incubation with low and high concentrations of astragaloside IV. Inhibition of HDAC significantly increased eNOS level and decreased BNP protein level. In conclusion, astragaloside IV can reverse the low level of eNOS caused by OxLDL by regulating HDAC activity to protect myocardial cells from oxide damage, which is manifested by the decrease of BNP concentration.
Collapse
|
7
|
CircNCX1: the "Lord of the Ring" in the Heart - Insight into Its Sequence Characteristic, Expression, Molecular Mechanisms, and Clinical Application. J Cardiovasc Transl Res 2021; 15:571-586. [PMID: 34642871 DOI: 10.1007/s12265-021-10176-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 09/20/2021] [Indexed: 12/21/2022]
Abstract
Circular RNAs (circRNAs) are covalently closed single-stranded RNAs with regulatory activity and regarded as new types of therapeutic targets in diseases such as cancers. By means of RNA-Seq technology, numerous cardiac circRNAs were discovered. Although some candidates were detected to involve in heart disease in murine model, relative low sequence conservation and expression level of their human homologs might result in an insignificant, even distinct effect in the human heart. Therefore, the therapeutic significance of circRNAs should be more strictly considered. It is also necessary to discuss which circRNA is suitable for being applied in heart disease treatment. Here, we are willing to introduce a ~ 1830 nt circular transcript generated from single exon of sodium/calcium exchanger 1 (ncx1) gene (also called solute carrier family 8 member A1, slc8a1), usually named circNCX1 or circSLC8A1, which is gradually coming into our view. circNCX1 is one of the most cardiac-enriched circRNAs. It is widely existent in vertebrate and relatively conserved, indicating its indispensability during the evolution of species. Indeed, circNCX1 was shown to involve in heart development by some expression analysis. It was further revealed that the dysregulation of circNCX1 is one of the key pathogeneses of heart diseases including ischemic cardiac injury and hypertrophic cardiomyopathy. To make the significance of circNCX1 in the heart clear, we comprehensively dissected circNCX1 in the aspects of its parental gene structure, conservation, biogenesis and expression profiles, function, molecular mechanisms, and clinical application in this review. New medicine or therapeutic schedules based on circNCX1 are expected in the future.
Collapse
|
8
|
Sun A, Simsek Papur O, Dirkx E, Wong L, Sips T, Wang S, Strzelecka A, Nabben M, Glatz JFC, Neumann D, Luiken JJFP. Phosphatidylinositol 4-kinase IIIβ mediates contraction-induced GLUT4 translocation and shows its anti-diabetic action in cardiomyocytes. Cell Mol Life Sci 2020; 78:2839-2856. [PMID: 33090289 PMCID: PMC8004495 DOI: 10.1007/s00018-020-03669-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 08/31/2020] [Accepted: 10/05/2020] [Indexed: 01/15/2023]
Abstract
In the diabetic heart, long-chain fatty acid (LCFA) uptake is increased at the expense of glucose uptake. This metabolic shift ultimately leads to insulin resistance and a reduced cardiac function. Therefore, signaling kinases that mediate glucose uptake without simultaneously stimulating LCFA uptake could be considered attractive anti-diabetic targets. Phosphatidylinositol-4-kinase-IIIβ (PI4KIIIβ) is a lipid kinase downstream of protein kinase D1 (PKD1) that mediates Golgi-to-plasma membrane vesicular trafficking in HeLa-cells. In this study, we evaluated whether PI4KIIIβ is involved in myocellular GLUT4 translocation induced by contraction or oligomycin (an F1F0-ATP synthase inhibitor that activates contraction-like signaling). Pharmacological targeting, with compound MI14, or genetic silencing of PI4KIIIβ inhibited contraction/oligomycin-stimulated GLUT4 translocation and glucose uptake in cardiomyocytes but did not affect CD36 translocation nor LCFA uptake. Addition of the PI4KIIIβ enzymatic reaction product phosphatidylinositol-4-phosphate restored oligomycin-stimulated glucose uptake in the presence of MI14. PI4KIIIβ activation by PKD1 involves Ser294 phosphorylation and altered its localization with unchanged enzymatic activity. Adenoviral PI4KIIIβ overexpression stimulated glucose uptake, but did not activate hypertrophic signaling, indicating that unlike PKD1, PI4KIIIβ is selectively involved in GLUT4 translocation. Finally, PI4KIIIβ overexpression prevented insulin resistance and contractile dysfunction in lipid-overexposed cardiomyocytes. Together, our studies identify PI4KIIIβ as positive and selective regulator of GLUT4 translocation in response to contraction-like signaling, suggesting PI4KIIIβ as a promising target to rescue defective glucose uptake in diabetics.
Collapse
Affiliation(s)
- A Sun
- Department of Genetics and Cell Biology, Faculty of Health, Medicine and Life Sciences, Maastricht University Medical Center+, 6200 MD, Maastricht, The Netherlands
| | - O Simsek Papur
- Department of Genetics and Cell Biology, Faculty of Health, Medicine and Life Sciences, Maastricht University Medical Center+, 6200 MD, Maastricht, The Netherlands
| | - E Dirkx
- Department of Genetics and Cell Biology, Faculty of Health, Medicine and Life Sciences, Maastricht University Medical Center+, 6200 MD, Maastricht, The Netherlands
| | - L Wong
- Department of Genetics and Cell Biology, Faculty of Health, Medicine and Life Sciences, Maastricht University Medical Center+, 6200 MD, Maastricht, The Netherlands.,Department of Clinical Genetics, Faculty of Health, Medicine and Life Sciences, Maastricht University Medical Center+, 6200 MD, Maastricht, The Netherlands
| | - T Sips
- Department of Genetics and Cell Biology, Faculty of Health, Medicine and Life Sciences, Maastricht University Medical Center+, 6200 MD, Maastricht, The Netherlands
| | - S Wang
- Department of Genetics and Cell Biology, Faculty of Health, Medicine and Life Sciences, Maastricht University Medical Center+, 6200 MD, Maastricht, The Netherlands
| | - A Strzelecka
- Department of Genetics and Cell Biology, Faculty of Health, Medicine and Life Sciences, Maastricht University Medical Center+, 6200 MD, Maastricht, The Netherlands
| | - M Nabben
- Department of Genetics and Cell Biology, Faculty of Health, Medicine and Life Sciences, Maastricht University Medical Center+, 6200 MD, Maastricht, The Netherlands.,Department of Clinical Genetics, Faculty of Health, Medicine and Life Sciences, Maastricht University Medical Center+, 6200 MD, Maastricht, The Netherlands.,CARIM School for Cardiovascular Diseases, Maastricht, The Netherlands
| | - J F C Glatz
- Department of Genetics and Cell Biology, Faculty of Health, Medicine and Life Sciences, Maastricht University Medical Center+, 6200 MD, Maastricht, The Netherlands.,Department of Clinical Genetics, Faculty of Health, Medicine and Life Sciences, Maastricht University Medical Center+, 6200 MD, Maastricht, The Netherlands
| | - D Neumann
- Department of Pathology, Faculty of Health, Medicine and Life Sciences, Maastricht University Medical Center+, 6200 MD, Maastricht, The Netherlands.,CARIM School for Cardiovascular Diseases, Maastricht, The Netherlands
| | - J J F P Luiken
- Department of Genetics and Cell Biology, Faculty of Health, Medicine and Life Sciences, Maastricht University Medical Center+, 6200 MD, Maastricht, The Netherlands.
| |
Collapse
|
9
|
Taha TY, Anirudhan V, Limothai U, Loeb DD, Petukhov PA, McLachlan A. Modulation of hepatitis B virus pregenomic RNA stability and splicing by histone deacetylase 5 enhances viral biosynthesis. PLoS Pathog 2020; 16:e1008802. [PMID: 32822428 PMCID: PMC7467325 DOI: 10.1371/journal.ppat.1008802] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 09/02/2020] [Accepted: 07/13/2020] [Indexed: 12/15/2022] Open
Abstract
Hepatitis B virus (HBV) is a worldwide health problem without curative treatments. Investigation of the regulation of HBV biosynthesis by class I and II histone deacetylases (HDACs) demonstrated that catalytically active HDAC5 upregulates HBV biosynthesis. HDAC5 expression increased both the stability and splicing of the HBV 3.5 kb RNA without altering the translational efficiency of the viral pregenomic or spliced 2.2 kb RNAs. Together, these observations point to a broader role of HDAC5 in regulating RNA splicing and transcript stability while specifically identifying a potentially novel approach toward antiviral HBV therapeutic development. This study demonstrates that HDAC5 deacetylation of host cellular factor(s) results in increased HBV biosynthesis by enhancing viral transcript stability and splicing via direct or indirect binding of host factors to viral intron sequences. This represents the first demonstration of this type of post-transcriptional regulation in the liver and is similar to observations seen for cellular transcripts in neural and cardiac cell types. These observations suggest a more general phenomenon which could represent an additional post-transcriptional code governing the regulation of RNA:protein interactions and hence RNA metabolism. Therefore, covalent modifications of RNA binding proteins may modulate post-transcriptional gene expression in an analogous manner to the known histone code that controls gene transcription. Although this analysis primarily relates to the mechanism(s) by which HDAC5 governs HBV RNA metabolism, it does have significant therapeutic implications. The inhibition of HDAC5 in combination with current nucleos(t)ide analog drugs targeting the viral reverse transcriptase/DNA polymerase might aid in the treatment and possible resolution of chronic infections by targeting both host and viral factors.
Collapse
Affiliation(s)
- Taha Y. Taha
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois at Chicago, Chicago, Illinois, United States of America
| | - Varada Anirudhan
- Department of Microbiology and Immunology, College of Medicine, University of Illinois at Chicago, Chicago, Illinois, United States of America
| | - Umaporn Limothai
- Center of Excellence in Hepatitis and Liver Cancer, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Daniel D. Loeb
- McArdle Laboratory for Cancer Research, University of Wisconsin - Madison, Madison, Wisconsin, United States of America
| | - Pavel A. Petukhov
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois at Chicago, Chicago, Illinois, United States of America
- * E-mail: (PAP); (AM)
| | - Alan McLachlan
- Department of Microbiology and Immunology, College of Medicine, University of Illinois at Chicago, Chicago, Illinois, United States of America
- * E-mail: (PAP); (AM)
| |
Collapse
|
10
|
Di Giorgio E, Dalla E, Franforte E, Paluvai H, Minisini M, Trevisanut M, Picco R, Brancolini C. Different class IIa HDACs repressive complexes regulate specific epigenetic responses related to cell survival in leiomyosarcoma cells. Nucleic Acids Res 2020; 48:646-664. [PMID: 31754707 PMCID: PMC6954409 DOI: 10.1093/nar/gkz1120] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 10/28/2019] [Accepted: 11/13/2019] [Indexed: 02/07/2023] Open
Abstract
Transcriptional networks supervising class IIa HDAC expression are poorly defined. Here we demonstrate that MEF2D is the key factor controlling HDAC9 transcription. This control, which is part of a negative feed-back loop during muscle differentiation, is hijacked in cancer. In leiomyosarcomas the MEF2D/HDAC9 vicious circuit sustains proliferation and cell survival, through the repression of the death receptor FAS. Comprehensive genome-wide studies demonstrate that HDAC4 and HDAC9 control different genetic programs and show both specific and common genomic binding sites. Although the number of MEF2-target genes commonly regulated is similar, only HDAC4 represses many additional genes that are not MEF2D targets. As expected, HDAC4-/- and HDAC9-/- cells increase H3K27ac levels around the TSS of the respective repressed genes. However, these genes rarely show binding of the HDACs at their promoters. Frequently HDAC4 and HDAC9 bind intergenic regions. We demonstrate that these regions, recognized by MEF2D/HDAC4/HDAC9 repressive complexes, show the features of active enhancers. In these regions HDAC4 and HDAC9 can differentially influence H3K27 acetylation. Our studies describe new layers of class IIa HDACs regulation, including a dominant positional effect, and can contribute to explain the pleiotropic actions of MEF2 TFs.
Collapse
Affiliation(s)
- Eros Di Giorgio
- Department of Medicine, Università degli Studi di Udine. P.le Kolbe 4, 33100 Udine, Italy
| | - Emiliano Dalla
- Department of Medicine, Università degli Studi di Udine. P.le Kolbe 4, 33100 Udine, Italy
| | - Elisa Franforte
- Department of Medicine, Università degli Studi di Udine. P.le Kolbe 4, 33100 Udine, Italy
| | | | - Martina Minisini
- Department of Medicine, Università degli Studi di Udine. P.le Kolbe 4, 33100 Udine, Italy
| | - Matteo Trevisanut
- Department of Medicine, Università degli Studi di Udine. P.le Kolbe 4, 33100 Udine, Italy
| | - Raffaella Picco
- Department of Medicine, Università degli Studi di Udine. P.le Kolbe 4, 33100 Udine, Italy
| | - Claudio Brancolini
- Department of Medicine, Università degli Studi di Udine. P.le Kolbe 4, 33100 Udine, Italy
| |
Collapse
|
11
|
Role of HDACs in cardiac electropathology: Therapeutic implications for atrial fibrillation. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2020; 1867:118459. [DOI: 10.1016/j.bbamcr.2019.03.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2018] [Revised: 03/07/2019] [Accepted: 03/13/2019] [Indexed: 12/21/2022]
|
12
|
Sarvagalla S, Kolapalli SP, Vallabhapurapu S. The Two Sides of YY1 in Cancer: A Friend and a Foe. Front Oncol 2019; 9:1230. [PMID: 31824839 PMCID: PMC6879672 DOI: 10.3389/fonc.2019.01230] [Citation(s) in RCA: 103] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Accepted: 10/28/2019] [Indexed: 12/12/2022] Open
Abstract
Yin Yang 1 (YY1), a dual function transcription factor, is known to regulate transcriptional activation and repression of many genes associated with multiple cellular processes including cellular differentiation, DNA repair, autophagy, cell survival vs. apoptosis, and cell division. Owing to its role in processes that upon deregulation are linked to malignant transformation, YY1 has been implicated as a major driver of many cancers. While a large body of evidence supports the role of YY1 as a tumor promoter, recent reports indicated that YY1 also functions as a tumor suppressor. The mechanism by which YY1 brings out opposing outcome in tumor growth vs. suppression is not completely clear and some of the recent reports have provided significant insight into this. Likewise, the mechanism by which YY1 functions both as a transcriptional activator and repressor is not completely clear. It is likely that the proteins with which YY1 interacts might determine its function as an activator or repressor of transcription as well as its role as a tumor suppressor or promoter. Hence, a collection of YY1-protein interactions in the context of different cancers would help us gain an insight into how YY1 promotes or suppresses cancers. This review focuses on the YY1 interacting partners and its target genes in different cancer models. Finally, we discuss the possibility of therapeutically targeting the YY1 in cancers where it functions as a tumor promoter.
Collapse
Affiliation(s)
- Sailu Sarvagalla
- Division of Biology, Indian Institute of Science Education and Research Tirupati, Tirupati, India
| | | | - Sivakumar Vallabhapurapu
- Division of Biology, Indian Institute of Science Education and Research Tirupati, Tirupati, India
| |
Collapse
|
13
|
Yang Y, Huang W, Qiu R, Liu R, Zeng Y, Gao J, Zheng Y, Hou Y, Wang S, Yu W, Leng S, Feng D, Wang Y. LSD1 coordinates with the SIN3A/HDAC complex and maintains sensitivity to chemotherapy in breast cancer. J Mol Cell Biol 2019; 10:285-301. [PMID: 29741645 DOI: 10.1093/jmcb/mjy021] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2017] [Accepted: 01/21/2018] [Indexed: 01/26/2023] Open
Abstract
Lysine-specific demethylase 1 (LSD1) was the first histone demethylase identified as catalysing the removal of mono- and di-methylation marks on histone H3-K4. Despite the potential broad action of LSD1 in transcription regulation, recent studies indicate that LSD1 may coordinate with multiple epigenetic regulatory complexes including CoREST/HDAC complex, NuRD complex, SIRT1, and PRC2, implying complicated mechanistic actions of this seemingly simple enzyme. Here, we report that LSD1 is also an integral component of the SIN3A/HDAC complex. Transcriptional target analysis using ChIP-on-chip technology revealed that the LSD1/SIN3A/HDAC complex targets several cellular signalling pathways that are critically involved in cell proliferation, survival, metastasis, and apoptosis, especially the p53 signalling pathway. We have demonstrated that LSD1 coordinates with the SIN3A/HDAC complex in inhibiting a series of genes such as CASP7, TGFB2, CDKN1A(p21), HIF1A, TERT, and MDM2, some of which are oncogenic. Our experiments also found that LSD1 and SIN3A are required for optimal survival and growth of breast cancer cells while also essential for the maintenance of epithelial homoeostasis and chemosensitivity. Our data indicate that LSD1 is a functional alternative subunit of the SIN3A/HDAC complex, providing a molecular basis for the interplay of histone demethylation and deacetylation in chromatin remodelling, and suggest that the LSD1/SIN3A/HDAC complex could be a target for breast cancer therapeutic strategies.
Collapse
Affiliation(s)
- Yang Yang
- 2011 Collaborative Innovation Center of Tianjin for Medical Epigenetics, Tianjin Key Laboratory of Cellular and Molecular Immunology, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Wei Huang
- 2011 Collaborative Innovation Center of Tianjin for Medical Epigenetics, Tianjin Key Laboratory of Cellular and Molecular Immunology, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Rongfang Qiu
- 2011 Collaborative Innovation Center of Tianjin for Medical Epigenetics, Tianjin Key Laboratory of Cellular and Molecular Immunology, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Ruiqiong Liu
- 2011 Collaborative Innovation Center of Tianjin for Medical Epigenetics, Tianjin Key Laboratory of Cellular and Molecular Immunology, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Yi Zeng
- 2011 Collaborative Innovation Center of Tianjin for Medical Epigenetics, Tianjin Key Laboratory of Cellular and Molecular Immunology, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Jie Gao
- 2011 Collaborative Innovation Center of Tianjin for Medical Epigenetics, Tianjin Key Laboratory of Cellular and Molecular Immunology, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Yu Zheng
- 2011 Collaborative Innovation Center of Tianjin for Medical Epigenetics, Tianjin Key Laboratory of Cellular and Molecular Immunology, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China.,Department of Biotherapy, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin Clinical Research Center for Cancer, Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, China
| | - Yongqiang Hou
- 2011 Collaborative Innovation Center of Tianjin for Medical Epigenetics, Tianjin Key Laboratory of Cellular and Molecular Immunology, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Shuang Wang
- 2011 Collaborative Innovation Center of Tianjin for Medical Epigenetics, Tianjin Key Laboratory of Cellular and Molecular Immunology, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Wenqian Yu
- 2011 Collaborative Innovation Center of Tianjin for Medical Epigenetics, Tianjin Key Laboratory of Cellular and Molecular Immunology, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Shuai Leng
- 2011 Collaborative Innovation Center of Tianjin for Medical Epigenetics, Tianjin Key Laboratory of Cellular and Molecular Immunology, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Dandan Feng
- 2011 Collaborative Innovation Center of Tianjin for Medical Epigenetics, Tianjin Key Laboratory of Cellular and Molecular Immunology, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Yan Wang
- 2011 Collaborative Innovation Center of Tianjin for Medical Epigenetics, Tianjin Key Laboratory of Cellular and Molecular Immunology, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China.,Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| |
Collapse
|
14
|
Li MCH, O'Brien TJ, Todaro M, Powell KL. Acquired cardiac channelopathies in epilepsy: Evidence, mechanisms, and clinical significance. Epilepsia 2019; 60:1753-1767. [PMID: 31353444 DOI: 10.1111/epi.16301] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2019] [Revised: 07/07/2019] [Accepted: 07/07/2019] [Indexed: 12/13/2022]
Abstract
There is growing evidence that cardiac dysfunction in patients with chronic epilepsy could play a pathogenic role in sudden unexpected death in epilepsy (SUDEP). Recent animal studies have revealed that epilepsy secondarily alters the expression of cardiac ion channels alongside abnormal cardiac electrophysiology and remodeling. These molecular findings represent novel evidence for an acquired cardiac channelopathy in epilepsy, distinct from inherited ion channels mutations associated with cardiocerebral phenotypes. Specifically, seizure activity has been shown to alter the messenger RNA (mRNA) and protein expression of voltage-gated sodium channels (Nav 1.1, Nav 1.5), voltage-gated potassium channels (Kv 4.2, Kv 4.3), sodium-calcium exchangers (NCX1), and nonspecific cation-conducting channels (HCN2, HCN4). The pathophysiology may involve autonomic dysfunction and structural cardiac disease, as both are independently associated with epilepsy and ion channel dysregulation. Indeed, in vivo and in vitro studies of cardiac pathology reveal a complex network of signaling pathways and transcription factors regulating ion channel expression in the setting of sympathetic overactivity, cardiac failure, and hypertrophy. Other mechanisms such as circulating inflammatory mediators or exogenous effects of antiepileptic medications lack evidence. Moreover, an acquired cardiac channelopathy may underlie the electrophysiologic cardiac abnormalities seen in chronic epilepsy, potentially contributing to the increased risk of malignant arrhythmias and sudden death. Therefore, further investigation is necessary to establish whether cardiac ion channel dysregulation similarly occurs in patients with epilepsy, and to characterize any pathogenic relationship with SUDEP.
Collapse
Affiliation(s)
- Michael C H Li
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Victoria, Australia.,Department of Medicine, Royal Melbourne Hospital, University of Melbourne, Parkville, Victoria, Australia
| | - Terence J O'Brien
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Victoria, Australia.,Department of Medicine, Royal Melbourne Hospital, University of Melbourne, Parkville, Victoria, Australia
| | - Marian Todaro
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Victoria, Australia.,Department of Medicine, Royal Melbourne Hospital, University of Melbourne, Parkville, Victoria, Australia.,Department of Neurology, Royal Melbourne Hospital, Parkville, Victoria, Australia
| | - Kim L Powell
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Victoria, Australia
| |
Collapse
|
15
|
Choi SY, Kee HJ, Sun S, Seok YM, Ryu Y, Kim GR, Kee SJ, Pflieger M, Kurz T, Kassack MU, Jeong MH. Histone deacetylase inhibitor LMK235 attenuates vascular constriction and aortic remodelling in hypertension. J Cell Mol Med 2019; 23:2801-2812. [PMID: 30734467 PMCID: PMC6433685 DOI: 10.1111/jcmm.14188] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Revised: 01/07/2019] [Accepted: 01/10/2019] [Indexed: 12/17/2022] Open
Abstract
Here, we report that LMK235, a class I and histone deacetylase (HDAC6)‐preferential HDAC inhibitor, reduces hypertension via inhibition of vascular contraction and vessel hypertrophy. Angiotensin II‐infusion mice and spontaneously hypertensive rats (SHRs) were used to test the anti‐hypertensive effect of LMK235. Daily injection of LMK235 lowered angiotensin II‐induced systolic blood pressure (BP). A reduction in systolic BP in SHRs was observed on the second day when SHRs were treated with 3 mg/kg LMK235 every 3 days. However, LMK235 treatment did not affect angiotensin‐converting enzyme 1 and angiotensin II receptor mRNA expression in either hypertensive model. LMK235, acting via the nitric oxide pathway, facilitated the relaxing of vascular contractions induced by a thromboxane A2 agonist in the rat aortic and mesenteric artery ring test. In addition, LMK235 increased nitric oxide production in HUVECs and inhibited the increasing of aortic wall thickness in both animal hypertensive models. LMK235 decreased the enhanced cell cycle‐related genes cyclin D1 and E2F3 in angiotensin II‐infusion mice and restored the decreased p21 expression. In addition, LMK235 suppressed calcium calmodulin‐dependent protein kinase II (CaMKII) α, which is related to vascular smooth muscle cell proliferation. Inhibition or knockdown of HDAC5 blocked the CaMKIIα‐induced cell cycle gene expression. Immunoprecipitation demonstrated that class I HDACs were involved in the inhibition of CaMKII α‐induced HDAC4/5 by LMK235. We suggest that LMK235 should be further investigated for its use in the development of new therapeutic options to treat hypertension via reducing vascular hyperplasia or vasoconstriction.
Collapse
Affiliation(s)
- Sin Young Choi
- Heart Research Center of Chonnam National University Hospital, Gwangju, Republic of Korea.,Hypertension Heart Failure Research Center, Chonnam National University Hospital, Gwangju, Republic of Korea.,Molecular Medicine, Brain Korea 21 PLUS, Chonnam National University Graduate School, Gwangju, Republic of Korea
| | - Hae Jin Kee
- Heart Research Center of Chonnam National University Hospital, Gwangju, Republic of Korea.,Hypertension Heart Failure Research Center, Chonnam National University Hospital, Gwangju, Republic of Korea
| | - Simei Sun
- Heart Research Center of Chonnam National University Hospital, Gwangju, Republic of Korea.,Hypertension Heart Failure Research Center, Chonnam National University Hospital, Gwangju, Republic of Korea.,Molecular Medicine, Brain Korea 21 PLUS, Chonnam National University Graduate School, Gwangju, Republic of Korea.,Zhoushan Hospital, Zhejiang University School of Medicine, Zhoushan, Zhejiang, China
| | - Young Mi Seok
- National Development Institute of Korean Medicine, Gyeongsan-si, Gyeongsangbuk-do, Republic of Korea
| | - Yuhee Ryu
- Heart Research Center of Chonnam National University Hospital, Gwangju, Republic of Korea.,Hypertension Heart Failure Research Center, Chonnam National University Hospital, Gwangju, Republic of Korea
| | - Gwi Ran Kim
- Heart Research Center of Chonnam National University Hospital, Gwangju, Republic of Korea.,Hypertension Heart Failure Research Center, Chonnam National University Hospital, Gwangju, Republic of Korea
| | - Seung-Jung Kee
- Department of Laboratory Medicine, Chonnam National University, Medical School and Hospital, Gwangju, Republic of Korea
| | - Marc Pflieger
- Institute of Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Thomas Kurz
- Institute of Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Matthias U Kassack
- Institute of Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Myung Ho Jeong
- Heart Research Center of Chonnam National University Hospital, Gwangju, Republic of Korea.,Hypertension Heart Failure Research Center, Chonnam National University Hospital, Gwangju, Republic of Korea
| |
Collapse
|
16
|
Wright LH, Herr DJ, Brown SS, Kasiganesan H, Menick DR. Angiokine Wisp-1 is increased in myocardial infarction and regulates cardiac endothelial signaling. JCI Insight 2018; 3:95824. [PMID: 29467324 DOI: 10.1172/jci.insight.95824] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Accepted: 01/10/2018] [Indexed: 12/17/2022] Open
Abstract
Myocardial infarctions (MIs) cause the loss of myocytes due to lack of sufficient oxygenation and latent revascularization. Although the administration of histone deacetylase (HDAC) inhibitors reduces the size of infarctions and improves cardiac physiology in small-animal models of MI injury, the cellular targets of the HDACs, which the drugs inhibit, are largely unspecified. Here, we show that WNT-inducible secreted protein-1 (Wisp-1), a matricellular protein that promotes angiogenesis in cancers as well as cell survival in isolated cardiac myocytes and neurons, is a target of HDACs. Further, Wisp-1 transcription is regulated by HDACs and can be modified by the HDAC inhibitor, suberanilohydroxamic acid (SAHA/vorinostat), after MI injury. We observe that, at 7 days after MI, Wisp-1 is elevated 3-fold greater in the border zone of infarction in mice that experience an MI injury and are injected daily with SAHA, relative to MI alone. Additionally, human coronary artery endothelial cells (HCAECs) produce WISP-1 and are responsive to autocrine WISP-1-mediated signaling, which functionally promotes their proangiogenic behavior. Altering endogenous expression of WISP-1 in HCAECs directly impacts their network density in vitro. Therapeutic interventions after a heart attack define the extent of infarct injury, cell survival, and overall prognosis. Our studies shown here identify a potentially novel cardiac angiokine, Wisp-1, that may contribute to beneficial post-MI treatment modalities.
Collapse
Affiliation(s)
| | | | - Symone S Brown
- College of Graduate Studies, Summer Undergraduate Research Program, Medical University of South Carolina, Charleston, South Carolina, USA
| | | | - Donald R Menick
- Division of Cardiology, and.,Ralph H. Johnson VA Medical Center, Charleston, South Carolina, USA
| |
Collapse
|
17
|
Butler KV, Chiarella AM, Jin J, Hathaway NA. Targeted Gene Repression Using Novel Bifunctional Molecules to Harness Endogenous Histone Deacetylation Activity. ACS Synth Biol 2018; 7:38-45. [PMID: 29073761 DOI: 10.1021/acssynbio.7b00295] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Epigenome editing is a powerful method for life science research and could give rise to new therapies for diseases initiated or maintained by epigenetic dysregulation, including several types of cancers and autoimmune disorders. In addition, much is still unknown about the mechanisms by which histone-modifying proteins work in concert to properly regulate gene expression. To investigate and manipulate complex epigenetic interactions in live cells, we have developed a small molecule platform for specifically inducing gene repression and histone deacetylation at a reporter gene. We synthesized bifunctional ligands, or chemical epigenetic modifiers (CEMs), that contain two functional groups: a FK506 derivative capable of binding to a FKBP-Gal4 fusion transcription factor, and a histone deacetylase (HDAC) inhibitor that recruits HDAC-containing corepressor complexes. In our reporter cell line, which contains a GFP reporter allele upstream of a Gal4 DNA binding array in the murine Oct4 locus, our lead CEM repressed GFP expression by 50%. We also show that CEM recruitment of deacetylation activity causes marked deacetylation along our target loci. This system allowed us to detail the direct results of deacetylation to chromatin and measure the resulting gene expression in a chemically dependent and reversible manner. The CEMs system provides new insights into epigenetic gene regulation and has the potential to control disease-relevant gene regulation. The CEMs are derived from FDA-approved epigenetic modulator drugs, and use their pharmacology in a gene-specific way that avoids the toxicities and off-target effects caused by whole-cell application of these drugs.
Collapse
Affiliation(s)
- Kyle V. Butler
- Center
for Chemical Biology and Drug Discovery, Departments of Pharmacological
Sciences and Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
| | - Anna M. Chiarella
- Division
of Chemical Biology and Medicinal Chemistry, Center for Integrative
Chemical Biology and Drug Discovery, UNC Eshelman School of Pharmacy, Chapel Hill, North Carolina 27599, United States
| | - Jian Jin
- Center
for Chemical Biology and Drug Discovery, Departments of Pharmacological
Sciences and Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
| | - Nathaniel A. Hathaway
- Division
of Chemical Biology and Medicinal Chemistry, Center for Integrative
Chemical Biology and Drug Discovery, UNC Eshelman School of Pharmacy, Chapel Hill, North Carolina 27599, United States
| |
Collapse
|
18
|
Bin Dhuban K, d’Hennezel E, Nagai Y, Xiao Y, Shao S, Istomine R, Alvarez F, Ben-Shoshan M, Ochs H, Mazer B, Li B, Sekine C, Berezov A, Hancock W, Torgerson TR, Greene MI, Piccirillo CA. Suppression by human FOXP3
+
regulatory T cells requires FOXP3-TIP60 interactions. Sci Immunol 2017; 2. [DOI: 10.1126/sciimmunol.aai9297] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2023]
Abstract
Targeting the FOXP3-TIP60 interaction may modulate T
reg
activity in IPEX and other autoimmune and inflammatory diseases.
Collapse
Affiliation(s)
- Khalid Bin Dhuban
- Department of Microbiology and Immunology, McGill University and Research Institute of McGill University Health Centre, Montréal, Québec H3A 2B4, Canada
- Program in Infectious Diseases and Immunology in Global Health, Centre for Translational Biology, Research Institute of McGill University Health Centre, Montréal, Québec H4A 3J1, Canada
| | - Eva d’Hennezel
- Department of Microbiology and Immunology, McGill University and Research Institute of McGill University Health Centre, Montréal, Québec H3A 2B4, Canada
| | - Yasuhiro Nagai
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA 19104–6082, USA
| | - Yan Xiao
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA 19104–6082, USA
| | - Steven Shao
- Department of Microbiology and Immunology, McGill University and Research Institute of McGill University Health Centre, Montréal, Québec H3A 2B4, Canada
- Program in Infectious Diseases and Immunology in Global Health, Centre for Translational Biology, Research Institute of McGill University Health Centre, Montréal, Québec H4A 3J1, Canada
| | - Roman Istomine
- Department of Microbiology and Immunology, McGill University and Research Institute of McGill University Health Centre, Montréal, Québec H3A 2B4, Canada
- Program in Infectious Diseases and Immunology in Global Health, Centre for Translational Biology, Research Institute of McGill University Health Centre, Montréal, Québec H4A 3J1, Canada
| | - Fernando Alvarez
- Department of Microbiology and Immunology, McGill University and Research Institute of McGill University Health Centre, Montréal, Québec H3A 2B4, Canada
- Program in Infectious Diseases and Immunology in Global Health, Centre for Translational Biology, Research Institute of McGill University Health Centre, Montréal, Québec H4A 3J1, Canada
| | - Moshe Ben-Shoshan
- Division of Pediatric Allergy and Clinical Immunology, Department of Pediatrics, McGill University Health Center, Montréal, Québec H3H 1P3, Canada
| | - Hans Ochs
- Department of Pediatrics, University of Washington School of Medicine, Seattle, WA 98101–1304, USA
| | - Bruce Mazer
- Division of Pediatric Allergy and Clinical Immunology, Department of Pediatrics, McGill University Health Center, Montréal, Québec H3H 1P3, Canada
- FOCiS Centre of Excellence in Translational Immunology (CETI), Montréal, Québec H4A 3J1, Canada
| | - Bin Li
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA 19104–6082, USA
| | | | - Alan Berezov
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA 19104–6082, USA
| | - Wayne Hancock
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA 19104–6082, USA
| | - Troy R. Torgerson
- Division of Pediatric Allergy and Clinical Immunology, Department of Pediatrics, McGill University Health Center, Montréal, Québec H3H 1P3, Canada
| | - Mark I. Greene
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA 19104–6082, USA
| | - Ciriaco A. Piccirillo
- Department of Microbiology and Immunology, McGill University and Research Institute of McGill University Health Centre, Montréal, Québec H3A 2B4, Canada
- Program in Infectious Diseases and Immunology in Global Health, Centre for Translational Biology, Research Institute of McGill University Health Centre, Montréal, Québec H4A 3J1, Canada
- FOCiS Centre of Excellence in Translational Immunology (CETI), Montréal, Québec H4A 3J1, Canada
- Division of Allergy and Clinical Immunology, Department of Medicine, McGill University and McGill University Health Centre, Montreal, Quebec, Canada
| |
Collapse
|
19
|
Wright LH, Menick DR. A class of their own: exploring the nondeacetylase roles of class IIa HDACs in cardiovascular disease. Am J Physiol Heart Circ Physiol 2016; 311:H199-206. [PMID: 27208161 PMCID: PMC5005290 DOI: 10.1152/ajpheart.00271.2016] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Accepted: 05/13/2016] [Indexed: 11/22/2022]
Abstract
Histone deacetylases (HDACs) play integral roles in many cardiovascular biological processes ranging from transcriptional and translational regulation to protein stabilization and localization. There are 18 known HDACs categorized into 4 classes that can differ on the basis of substrate targets, subcellular localization, and regulatory binding partners. HDACs are classically known for their ability to remove acetyl groups from histone and nonhistone proteins that have lysine residues. However, despite their nomenclature and classical functions, discoveries from many research groups over the past decade have suggested that nondeacetylase roles exist for class IIa HDACs. This is not surprising given that class IIa HDACs have, for example, relatively poor deacetylase capabilities and are often shuttled in and out of nuclei upon specific pathological and nonpathological cardiac events. This review aims to consolidate and elucidate putative nondeacetylase roles for class IIa HDACs and, where possible, highlight studies that provide evidence for their noncanonical roles, especially in the context of cardiovascular maladies. There has been great interest recently in exploring the pharmacological regulators of HDACs for use in therapeutic interventions for treating cardiovascular diseases and inflammation. Thus it is of interest to earnestly consider nonenzymatic and or nondeacetylase roles of HDACs that might be key in potentiating or abrogating pathologies. These noncanonical HDAC functions may possibly yield new mechanisms and targets for drug discovery.
Collapse
Affiliation(s)
- Lillianne H Wright
- Department of Medicine, Division of Cardiology, Medical University of South Carolina; and
| | - Donald R Menick
- Department of Medicine, Division of Cardiology, Medical University of South Carolina; and Ralph Johnson Veteran's Hospital, Charleston, South Carolina
| |
Collapse
|