1
|
Galperin MY, Vera Alvarez R, Karamycheva S, Makarova KS, Wolf YI, Landsman D, Koonin EV. COG database update 2024. Nucleic Acids Res 2024:gkae983. [PMID: 39494517 DOI: 10.1093/nar/gkae983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 10/08/2024] [Accepted: 10/14/2024] [Indexed: 11/05/2024] Open
Abstract
The Clusters of Orthologous Genes (COG) database, originally created in 1997, has been updated to reflect the constantly growing collection of completely sequenced prokaryotic genomes. This update increased the genome coverage from 1309 to 2296 species, including 2103 bacteria and 193 archaea, in most cases, with a single representative genome per genus. This set covers all genera of bacteria and archaea that included organisms with 'complete genomes' as per NCBI databases in November 2023. The number of COGs has been expanded from 4877 to 4981, primarily by including protein families involved in bacterial protein secretion. Accordingly, COG pathways and functional groups now include secretion systems of types II through X, as well as Flp/Tad and type IV pili. These groupings allow straightforward identification and examination of the prokaryotic lineages that encompass-or lack-a particular secretion system. Other developments include improved annotations for the rRNA and tRNA modification proteins, multi-domain signal transduction proteins, and some previously uncharacterized protein families. The new version of COGs is available at https://www.ncbi.nlm.nih.gov/research/COG, as well as on the NCBI FTP site https://ftp.ncbi.nlm.nih.gov/pub/COG/, which also provides archived data from previous COG releases.
Collapse
Affiliation(s)
- Michael Y Galperin
- Computational Biology Branch, Division of Intramural Research, National Library of Medicine, National Institutes of Health, 8600 Rockville Pike, Bethesda, MD 20894, USA
| | - Roberto Vera Alvarez
- Computational Biology Branch, Division of Intramural Research, National Library of Medicine, National Institutes of Health, 8600 Rockville Pike, Bethesda, MD 20894, USA
| | - Svetlana Karamycheva
- Computational Biology Branch, Division of Intramural Research, National Library of Medicine, National Institutes of Health, 8600 Rockville Pike, Bethesda, MD 20894, USA
| | - Kira S Makarova
- Computational Biology Branch, Division of Intramural Research, National Library of Medicine, National Institutes of Health, 8600 Rockville Pike, Bethesda, MD 20894, USA
| | - Yuri I Wolf
- Computational Biology Branch, Division of Intramural Research, National Library of Medicine, National Institutes of Health, 8600 Rockville Pike, Bethesda, MD 20894, USA
| | - David Landsman
- Computational Biology Branch, Division of Intramural Research, National Library of Medicine, National Institutes of Health, 8600 Rockville Pike, Bethesda, MD 20894, USA
| | - Eugene V Koonin
- Computational Biology Branch, Division of Intramural Research, National Library of Medicine, National Institutes of Health, 8600 Rockville Pike, Bethesda, MD 20894, USA
| |
Collapse
|
2
|
Loo CE, Hix MA, Wang T, Cisneros GA, Kohli RM. Revealing Drivers for Carboxy- S-adenosyl-l-methionine Use by Neomorphic Variants of a DNA Methyltransferase. ACS Chem Biol 2023; 18:2224-2232. [PMID: 37379458 PMCID: PMC10592258 DOI: 10.1021/acschembio.3c00184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/30/2023]
Abstract
Methylation of DNA plays a key role in diverse biological processes spanning from bacteria to mammals. DNA methyltransferases (MTases) typically employ S-adenosyl-l-methionine (SAM) as a critical cosubstrate and the relevant methyl donor for modification of the C5 position of cytosine. Recently, work on the CpG-specific bacterial MTase, M.MpeI, has shown that a single N374K point mutation can confer the enzyme with the neomorphic ability to use the sparse, naturally occurring metabolite carboxy-S-adenosyl-l-methionine (CxSAM) in order to generate the unnatural DNA modification, 5-carboxymethylcytosine (5cxmC). Here, we aimed to investigate the mechanistic basis for this DNA carboxymethyltransferase (CxMTase) activity by employing a combination of computational modeling and in vitro characterization. Modeling of substrate interactions with the enzyme variant allowed us to identify a favorable salt bridge between CxSAM and N374K that helps to rationalize selectivity of the CxMTase. Unexpectedly, we also discovered a potential role for a key active site E45 residue that makes a bidentate interaction with the ribosyl sugar of CxSAM, located on the opposite face of the CxMTase active site. Prompted by these modeling results, we further explored the space-opening E45D mutation and found that the E45D/N374K double mutant in fact inverts selectivity, preferring CxSAM over SAM in biochemical assays. These findings provide new insight into CxMTase active site architecture and may offer broader utility given the numerous opportunities offered by using SAM analogs for selective molecular labeling in concert with nucleic acid or even protein-modifying MTases.
Collapse
Affiliation(s)
- Christian E. Loo
- Graduate Group in Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Mark A. Hix
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, United States
| | - Tong Wang
- Graduate Group in Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - G. Andrés Cisneros
- Department of Physics, University of Texas at Dallas, Richardson, Texas 75801, United States; Department of Chemistry and Biochemistry, University of Texas at Dallas, Richardson, Texas 75801, United States
| | - Rahul M. Kohli
- Department of Medicine and Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|
3
|
Yoo J, Lee J, Kim J. Structural basis for the selective methylation of 5-carboxymethoxyuridine in tRNA modification. Nucleic Acids Res 2023; 51:9432-9441. [PMID: 37587716 PMCID: PMC10516636 DOI: 10.1093/nar/gkad668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 07/26/2023] [Accepted: 08/09/2023] [Indexed: 08/18/2023] Open
Abstract
Posttranscriptional modifications of tRNA are widely conserved in all domains of life. Especially, those occurring within the anticodon often modulate translational efficiency. Derivatives of 5-hydroxyuridine are specifically found in bacterial tRNA, where 5-methoxyuridine and 5-carboxymethoxyuridine are the major species in Gram-positive and Gram-negative bacteria, respectively. In certain tRNA species, 5-carboxymethoxyuridine can be further methylated by CmoM to form the methyl ester. In this report, we present the X-ray crystal structure of Escherichia coli CmoM complexed with tRNASer1, which contains 5-carboxymethoxyuridine at the 5'-end of anticodon (the 34th position of tRNA). The 2.22 Å resolution structure of the enzyme-tRNA complex reveals that both the protein and tRNA undergo local conformational changes around the binding interface. Especially, the hypomodified uracil base is flipped out from the canonical stacked conformation enabling the specific molecular interactions with the enzyme. Moreover, the structure illustrates that the enzyme senses exclusively the anticodon arm region of the substrate tRNA and examines the presence of key determinants, 5-carboxymethoxyuridine at position 34 and guanosine at position 35, offering molecular basis for the discriminatory mechanism against non-cognate tRNAs.
Collapse
Affiliation(s)
- Jaehun Yoo
- Department of Chemistry, Gwangju Institute of Science and Technology, Gwangju 61005, Korea
| | - Jangmin Lee
- Department of Chemistry, Gwangju Institute of Science and Technology, Gwangju 61005, Korea
| | - Jungwook Kim
- Department of Chemistry, Gwangju Institute of Science and Technology, Gwangju 61005, Korea
| |
Collapse
|
4
|
Abstract
Covering: from 2000 up to the very early part of 2023S-Adenosyl-L-methionine (SAM) is a naturally occurring trialkyl sulfonium molecule that is typically associated with biological methyltransfer reactions. However, SAM is also known to donate methylene, aminocarboxypropyl, adenosyl and amino moieties during natural product biosynthetic reactions. The reaction scope is further expanded as SAM itself can be modified prior to the group transfer such that a SAM-derived carboxymethyl or aminopropyl moiety can also be transferred. Moreover, the sulfonium cation in SAM has itself been found to be critical for several other enzymatic transformations. Thus, while many SAM-dependent enzymes are characterized by a methyltransferase fold, not all of them are necessarily methyltransferases. Furthermore, other SAM-dependent enzymes do not possess such a structural feature suggesting diversification along different evolutionary lineages. Despite the biological versatility of SAM, it nevertheless parallels the chemistry of sulfonium compounds used in organic synthesis. The question thus becomes how enzymes catalyze distinct transformations via subtle differences in their active sites. This review summarizes recent advances in the discovery of novel SAM utilizing enzymes that rely on Lewis acid/base chemistry as opposed to radical mechanisms of catalysis. The examples are categorized based on the presence of a methyltransferase fold and the role played by SAM within the context of known sulfonium chemistry.
Collapse
Affiliation(s)
- Yu-Hsuan Lee
- Department of Chemistry, University of Texas at Austin, Austin, TX 78712, USA.
| | - Daan Ren
- Department of Chemistry, University of Texas at Austin, Austin, TX 78712, USA.
| | - Byungsun Jeon
- Department of Chemistry, University of Texas at Austin, Austin, TX 78712, USA.
| | - Hung-Wen Liu
- Department of Chemistry, University of Texas at Austin, Austin, TX 78712, USA.
- Division of Chemical Biology & Medicinal Chemistry, College of Pharmacy, University of Texas at Austin, Austin, TX 78712, USA
| |
Collapse
|
5
|
Müller M, Germer P, Andexer JN. Biocatalytic One-Carbon Transfer – A Review. SYNTHESIS-STUTTGART 2022. [DOI: 10.1055/s-0040-1719884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
Abstract
AbstractThis review provides an overview of different C1 building blocks as substrates of enzymes, or part of their cofactors, and the resulting functionalized products. There is an emphasis on the broad range of possibilities of biocatalytic one-carbon extensions with C1 sources of different oxidation states. The identification of uncommon biosynthetic strategies, many of which might serve as templates for synthetic or biotechnological applications, towards one-carbon extensions is supported by recent genomic and metabolomic progress and hence we refer principally to literature spanning from 2014 to 2020.1 Introduction2 Methane, Methanol, and Methylamine3 Glycine4 Nitromethane5 SAM and SAM Ylide6 Other C1 Building Blocks7 Formaldehyde and Glyoxylate as Formaldehyde Equivalents8 Cyanide9 Formic Acid10 Formyl-CoA and Oxalyl-CoA11 Carbon Monoxide12 Carbon Dioxide13 Conclusions
Collapse
|
6
|
Zhang W, Foo M, Eren AM, Pan T. tRNA modification dynamics from individual organisms to metaepitranscriptomics of microbiomes. Mol Cell 2022; 82:891-906. [PMID: 35032425 PMCID: PMC8897278 DOI: 10.1016/j.molcel.2021.12.007] [Citation(s) in RCA: 56] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 12/08/2021] [Accepted: 12/09/2021] [Indexed: 12/17/2022]
Abstract
tRNA is the most extensively modified RNA in cells. On average, a bacterial tRNA contains 8 modifications per molecule and a eukaryotic tRNA contains 13 modifications per molecule. Recent studies reveal that tRNA modifications are highly dynamic and respond extensively to environmental conditions. Functions of tRNA modification dynamics include enhanced, on-demand decoding of specific codons in response genes and regulation of tRNA fragment biogenesis. This review summarizes recent advances in the studies of tRNA modification dynamics in biological processes, tRNA modification erasers, and human-associated bacteria. Furthermore, we use the term "metaepitranscriptomics" to describe the potential and approach of tRNA modification studies in natural biological communities such as microbiomes. tRNA is highly modified in cells, and tRNA modifications respond extensively to environmental conditions to enhance translation of specific genes and produce tRNA fragments on demand. We review recent advances in tRNA sequencing methods, tRNA modification dynamics in biological processes, and tRNA modification studies in natural communities such as the microbiomes.
Collapse
Affiliation(s)
- Wen Zhang
- Department of Biochemistry & Molecular Biology, University of Chicago, Chicago, IL 60637, USA
| | - Marcus Foo
- Committee on Microbiology, University of Chicago, Chicago, IL 60637, USA
| | - A. Murat Eren
- Committee on Microbiology, University of Chicago, Chicago, IL 60637, USA;,Department of Medicine, University of Chicago, Chicago, IL 60637, USA;,Josephine Bay Paul Center for Comparative Molecular Biology and Evolution, Marine Biological Laboratory, Woods Hole, MA, 02543, USA
| | - Tao Pan
- Department of Biochemistry & Molecular Biology, University of Chicago, Chicago, IL 60637, USA; Committee on Microbiology, University of Chicago, Chicago, IL 60637, USA.
| |
Collapse
|
7
|
Jeong H, Kim J. Unique anticodon loop conformation with the flipped-out wobble nucleotide in the crystal structure of unbound tRNA Val. RNA (NEW YORK, N.Y.) 2021; 27:1330-1338. [PMID: 34315814 PMCID: PMC8522699 DOI: 10.1261/rna.078863.121] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 07/24/2021] [Indexed: 06/13/2023]
Abstract
During protein synthesis on ribosome, tRNA recognizes its cognate codon of mRNA through base-pairing with the anticodon. The 5'-end nucleotide of the anticodon is capable of wobble base-pairing, offering a molecular basis for codon degeneracy. The wobble nucleotide is often targeted for post-transcriptional modification, which affects the specificity and fidelity of the decoding process. Flipping-out of a wobble nucleotide in the anticodon loop has been proposed to be necessary for modifying enzymes to access the target nucleotide, which has been captured in selective structures of protein-bound complexes. Meanwhile, all other structures of free or ribosome-bound tRNA display anticodon bases arranged in stacked conformation. We report the X-ray crystal structure of unbound tRNAVal1 to a 2.04 Å resolution showing two different conformational states of wobble uridine in the anticodon loop, one stacked on the neighboring base and the other swiveled out toward solvent. In addition, the structure reveals a rare magnesium ion coordination to the nitrogen atom of a nucleobase, which has been sampled very rarely among known structures of nucleic acids.
Collapse
MESH Headings
- Anticodon/chemistry
- Anticodon/genetics
- Anticodon/metabolism
- Base Pairing
- Escherichia coli/genetics
- Escherichia coli/metabolism
- Metals/metabolism
- Models, Molecular
- Nucleic Acid Conformation
- Protein Biosynthesis
- RNA, Messenger/chemistry
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- RNA, Transfer, Val/chemistry
- RNA, Transfer, Val/genetics
- RNA, Transfer, Val/metabolism
- Ribosomes/genetics
- Ribosomes/metabolism
Collapse
Affiliation(s)
- Hyeonju Jeong
- Department of Chemistry, Gwangju Institute of Science and Technology, Gwangju 61005, Korea
| | - Jungwook Kim
- Department of Chemistry, Gwangju Institute of Science and Technology, Gwangju 61005, Korea
| |
Collapse
|
8
|
Tang Q, Pavlidis IV, Badenhorst CPS, Bornscheuer UT. From Natural Methylation to Versatile Alkylations Using Halide Methyltransferases. Chembiochem 2021; 22:2584-2590. [PMID: 33890381 PMCID: PMC8453949 DOI: 10.1002/cbic.202100153] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 04/22/2021] [Indexed: 11/06/2022]
Abstract
Halide methyltransferases (HMTs) enable the enzymatic synthesis of S-adenosyl-l-methionine (SAM) from S-adenosyl-l-homocysteine (SAH) and methyl iodide. Characterisation of a range of naturally occurring HMTs and subsequent protein engineering led to HMT variants capable of synthesising ethyl, propyl, and allyl analogues of SAM. Notably, HMTs do not depend on chemical synthesis of methionine analogues, as required by methionine adenosyltransferases (MATs). However, at the moment MATs have a much broader substrate scope than the HMTs. Herein we provide an overview of the discovery and engineering of promiscuous HMTs and how these strategies will pave the way towards a toolbox of HMT variants for versatile chemo- and regioselective biocatalytic alkylations.
Collapse
Affiliation(s)
- Qingyun Tang
- Institute of BiochemistryUniversity of GreifswaldFelix-Hausdorff-Str. 417489GreifswaldGermany
| | - Ioannis V. Pavlidis
- Dept. of ChemistryUniversity of CreteVoutes University Campus70013HeraklionGreece
| | | | - Uwe T. Bornscheuer
- Institute of BiochemistryUniversity of GreifswaldFelix-Hausdorff-Str. 417489GreifswaldGermany
| |
Collapse
|
9
|
|
10
|
Jeong S, Kim J. Structural snapshots of CmoB in various states during wobble uridine modification of tRNA. Biochem Biophys Res Commun 2020; 534:604-609. [PMID: 33213836 DOI: 10.1016/j.bbrc.2020.11.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 11/09/2020] [Indexed: 10/23/2022]
Abstract
CmoB utilizes carboxy-S-adenosyl-l-methionine (CxSAM) to carry out unusual carboxymethyl transfer to form 5-carboxymethoxyuridine (cmo5U) of several tRNA species in Gram-negative bacteria. In this report, we present three X-ray crystal structures of CmoB from Vibrio vulnificus representing different states in the course of the reaction pathway; i.e., apo-, substrate-bound, and product-bound forms. Especially, the crystal structure of apo-CmoB unveils a novel open state of the enzyme, capturing unprecedented conformational dynamics around the substrate-binding site. The apo-structure demonstrates that the open conformation favors the release of CxSAM thus representing an inactive form. Our crystal structures of CmoB complexed with CxSAM and S-adenosyl-l-homocysteine (SAH) and combined binding assay results support the proposed mechanism underlying the cofactor selectivity, where CmoB preferentially senses negative charge around amino acid residues Lys-91, Tyr-200, and Arg-315.
Collapse
Affiliation(s)
- Sehwang Jeong
- Department of Chemistry, Gwangju Institute of Science and Technology, Gwangju, 61005, South Korea
| | - Jungwook Kim
- Department of Chemistry, Gwangju Institute of Science and Technology, Gwangju, 61005, South Korea.
| |
Collapse
|
11
|
Discovery of an Unnatural DNA Modification Derived from a Natural Secondary Metabolite. Cell Chem Biol 2020; 28:97-104.e4. [PMID: 33053370 DOI: 10.1016/j.chembiol.2020.09.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 08/19/2020] [Accepted: 09/23/2020] [Indexed: 02/06/2023]
Abstract
Despite widespread interest for understanding how modified bases have evolved their contemporary functions, limited experimental evidence exists for measuring how close an organism is to accidentally creating a new, modified base within the framework of its existing genome. Here, we describe the biochemical and structural basis for how a single-point mutation in E. coli's naturally occurring cytosine methyltransferase can surprisingly endow a neomorphic ability to create the unnatural DNA base, 5-carboxymethylcytosine (5cxmC), in vivo. Mass spectrometry, bacterial genetics, and structure-guided biochemistry reveal this base to be exclusively derived from the natural but sparse secondary metabolite carboxy-S-adenosyl-L-methionine (CxSAM). Our discovery of a new, unnatural DNA modification reveals insights into the substrate selectivity of DNA methyltransferase enzymes, offers a promising new biotechnological tool for the characterization of the mammalian epigenome, and provides an unexpected model for how neomorphic bases could arise in nature from repurposed host metabolites.
Collapse
|
12
|
Herbert AJ, Shepherd SA, Cronin VA, Bennett MR, Sung R, Micklefield J. Engineering Orthogonal Methyltransferases to Create Alternative Bioalkylation Pathways. Angew Chem Int Ed Engl 2020; 59:14950-14956. [PMID: 32402113 PMCID: PMC7496830 DOI: 10.1002/anie.202004963] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 05/05/2020] [Indexed: 11/10/2022]
Abstract
S-adenosyl-l-methionine (SAM)-dependent methyltransferases (MTs) catalyse the methylation of a vast array of small metabolites and biomacromolecules. Recently, rare carboxymethylation pathways have been discovered, including carboxymethyltransferase enzymes that utilise a carboxy-SAM (cxSAM) cofactor generated from SAM by a cxSAM synthase (CmoA). We show how MT enzymes can utilise cxSAM to catalyse carboxymethylation of tetrahydroisoquinoline (THIQ) and catechol substrates. Site-directed mutagenesis was used to create orthogonal MTs possessing improved catalytic activity and selectivity for cxSAM, with subsequent coupling to CmoA resulting in more efficient and selective carboxymethylation. An enzymatic approach was also developed to generate a previously undescribed co-factor, carboxy-S-adenosyl-l-ethionine (cxSAE), thereby enabling the stereoselective transfer of a chiral 1-carboxyethyl group to the substrate.
Collapse
Affiliation(s)
- Abigail J. Herbert
- Department of Chemistry and Manchester Institute of BiotechnologyThe University of Manchester131 Princess StreetManchesterM1 7DNUK
| | - Sarah A. Shepherd
- Department of Chemistry and Manchester Institute of BiotechnologyThe University of Manchester131 Princess StreetManchesterM1 7DNUK
| | - Victoria A. Cronin
- Department of Chemistry and Manchester Institute of BiotechnologyThe University of Manchester131 Princess StreetManchesterM1 7DNUK
| | - Matthew R. Bennett
- Department of Chemistry and Manchester Institute of BiotechnologyThe University of Manchester131 Princess StreetManchesterM1 7DNUK
| | - Rehana Sung
- Department of Chemistry and Manchester Institute of BiotechnologyThe University of Manchester131 Princess StreetManchesterM1 7DNUK
| | - Jason Micklefield
- Department of Chemistry and Manchester Institute of BiotechnologyThe University of Manchester131 Princess StreetManchesterM1 7DNUK
| |
Collapse
|
13
|
Herbert AJ, Shepherd SA, Cronin VA, Bennett MR, Sung R, Micklefield J. Engineering Orthogonal Methyltransferases to Create Alternative Bioalkylation Pathways. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202004963] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Abigail J. Herbert
- Department of Chemistry and Manchester Institute of Biotechnology The University of Manchester 131 Princess Street Manchester M1 7DN UK
| | - Sarah A. Shepherd
- Department of Chemistry and Manchester Institute of Biotechnology The University of Manchester 131 Princess Street Manchester M1 7DN UK
| | - Victoria A. Cronin
- Department of Chemistry and Manchester Institute of Biotechnology The University of Manchester 131 Princess Street Manchester M1 7DN UK
| | - Matthew R. Bennett
- Department of Chemistry and Manchester Institute of Biotechnology The University of Manchester 131 Princess Street Manchester M1 7DN UK
| | - Rehana Sung
- Department of Chemistry and Manchester Institute of Biotechnology The University of Manchester 131 Princess Street Manchester M1 7DN UK
| | - Jason Micklefield
- Department of Chemistry and Manchester Institute of Biotechnology The University of Manchester 131 Princess Street Manchester M1 7DN UK
| |
Collapse
|
14
|
Ting CP, Funk MA, Halaby SL, Zhang Z, Gonen T, van der Donk WA. Use of a scaffold peptide in the biosynthesis of amino acid-derived natural products. Science 2019; 365:280-284. [PMID: 31320540 PMCID: PMC6686864 DOI: 10.1126/science.aau6232] [Citation(s) in RCA: 99] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 05/08/2019] [Accepted: 06/20/2019] [Indexed: 12/20/2022]
Abstract
Genome sequencing of environmental bacteria allows identification of biosynthetic gene clusters encoding unusual combinations of enzymes that produce unknown natural products. We identified a pathway in which a ribosomally synthesized small peptide serves as a scaffold for nonribosomal peptide extension and chemical modification. Amino acids are transferred to the carboxyl terminus of the peptide through adenosine triphosphate and amino acyl-tRNA-dependent chemistry that is independent of the ribosome. Oxidative rearrangement, carboxymethylation, and proteolysis of a terminal cysteine yields an amino acid-derived small molecule. Microcrystal electron diffraction demonstrates that the resulting product is isosteric to glutamate. We show that a similar peptide extension is used during the biosynthesis of the ammosamides, which are cytotoxic pyrroloquinoline alkaloids. These results suggest an alternative paradigm for biosynthesis of amino acid-derived natural products.
Collapse
Affiliation(s)
- Chi P. Ting
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana–Champaign, Urbana, IL, USA
| | - Michael A. Funk
- Department of Chemistry, University of Illinois at Urbana–Champaign, Urbana, IL, USA
| | - Steve L. Halaby
- Howard Hughes Medical Institute, University of California, Los Angeles, Los Angeles CA 90095, USA
- Departments of Biological Chemistry and Physiology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles CA 90095, USA
| | - Zhengan Zhang
- Department of Chemistry, University of Illinois at Urbana–Champaign, Urbana, IL, USA
| | - Tamir Gonen
- Howard Hughes Medical Institute, University of California, Los Angeles, Los Angeles CA 90095, USA
- Departments of Biological Chemistry and Physiology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles CA 90095, USA
| | - Wilfred A. van der Donk
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana–Champaign, Urbana, IL, USA
- Department of Chemistry, University of Illinois at Urbana–Champaign, Urbana, IL, USA
- Howard Hughes Medical Institute, University of Illinois at Urbana–Champaign, Urbana, IL, USA
| |
Collapse
|
15
|
Starbird CA, Perry NA, Chen Q, Berndt S, Yamakawa I, Loukachevitch LV, Limbrick EM, Bachmann BO, Iverson TM, McCulloch KM. The Structure of the Bifunctional Everninomicin Biosynthetic Enzyme EvdMO1 Suggests Independent Activity of the Fused Methyltransferase-Oxidase Domains. Biochemistry 2018; 57:6827-6837. [PMID: 30525509 DOI: 10.1021/acs.biochem.8b00836] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Members of the orthosomycin family of natural products are decorated polysaccharides with potent antibiotic activity and complex biosynthetic pathways. The defining feature of the orthosomycins is an orthoester linkage between carbohydrate moieties that is necessary for antibiotic activity and is likely formed by a family of conserved oxygenases. Everninomicins are octasaccharide orthosomycins produced by Micromonospora carbonacea that have two orthoester linkages and a methylenedioxy bridge, three features whose formation logically requires oxidative chemistry. Correspondingly, the evd gene cluster encoding everninomicin D encodes two monofunctional nonheme iron, α-ketoglutarate-dependent oxygenases and one bifunctional enzyme with an N-terminal methyltransferase domain and a C-terminal oxygenase domain. To investigate whether the activities of these domains are linked in the bifunctional enzyme EvdMO1, we determined the structure of the N-terminal methyltransferase domain to 1.1 Å and that of the full-length protein to 3.35 Å resolution. Both domains of EvdMO1 adopt the canonical folds of their respective superfamilies and are connected by a short linker. Each domain's active site is oriented such that it faces away from the other domain, and there is no evidence of a channel connecting the two. Our results support EvdMO1 working as a bifunctional enzyme with independent catalytic activities.
Collapse
|
16
|
Ryu H, Grove TL, Almo SC, Kim J. Identification of a novel tRNA wobble uridine modifying activity in the biosynthesis of 5-methoxyuridine. Nucleic Acids Res 2018; 46:9160-9169. [PMID: 29982645 PMCID: PMC6158493 DOI: 10.1093/nar/gky592] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Revised: 06/14/2018] [Accepted: 06/20/2018] [Indexed: 11/13/2022] Open
Abstract
Derivatives of 5-hydroxyuridine (ho5U), such as 5-methoxyuridine (mo5U) and 5-oxyacetyluridine (cmo5U), are ubiquitous modifications of the wobble position of bacterial tRNA that are believed to enhance translational fidelity by the ribosome. In gram-negative bacteria, the last step in the biosynthesis of cmo5U from ho5U involves the unique metabolite carboxy S-adenosylmethionine (Cx-SAM) and the carboxymethyl transferase CmoB. However, the equivalent position in the tRNA of Gram-positive bacteria is instead mo5U, where the methyl group is derived from SAM and installed by an unknown methyltransferase. By utilizing a cmoB-deficient strain of Escherichia coli as a host and assaying for the formation of mo5U in total RNA isolates with methyltransferases of unknown function from Bacillus subtilis, we found that this modification is installed by the enzyme TrmR (formerly known as YrrM). Furthermore, X-ray crystal structures of TrmR with and without the anticodon stemloop of tRNAAla have been determined, which provide insight into both sequence and structure specificity in the interactions of TrmR with tRNA.
Collapse
Affiliation(s)
- Huijeong Ryu
- Department of Chemistry, Gwangju Institute of Science and Technology, Gwangju 61005, Korea
| | - Tyler L Grove
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Steven C Almo
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Jungwook Kim
- Department of Chemistry, Gwangju Institute of Science and Technology, Gwangju 61005, Korea
| |
Collapse
|
17
|
Motorin Y, Seidu-Larry S, Helm M. DNA and RNA Pyrimidine Nucleobase Alkylation at the Carbon-5 Position. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 945:19-33. [PMID: 27826833 DOI: 10.1007/978-3-319-43624-1_2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/01/2023]
Abstract
The carbon 5 of pyrimidine nucleobases is a privileged position in terms of nucleoside modification in both DNA and RNA. The simplest modification of uridine at this position is methylation leading to thymine. Thymine is an integral part of the standard nucleobase repertoire of DNA that is synthesized at the nucleotide level. However, it also occurs in RNA, where it is synthesized posttranscriptionally at the polynucleotide level. The cytidine analogue 5-methylcytidine also occurs in both DNA and RNA, but is introduced at the polynucleotide level in both cases. The same applies to a plethora of additional derivatives found in nature, resulting either from a direct modification of the 5-position by electrophiles or by further derivatization of the 5-methylpyrimidines. Here, we review the structural diversity of these modified bases, the variety of cofactors that serve as carbon donors, and the common principles shared by enzymatic mechanisms generating them.
Collapse
Affiliation(s)
- Yuri Motorin
- IMoPA UMR7365 CNRS-UL, BioPole de l'Université de Lorraine, 9 avenue de la Foret de Haye, 54505, Vandoeuvre-les-Nancy, France.
| | - Salifu Seidu-Larry
- Department of Biochemistry, University of Cape Coast, College of Agriculture and Natural Sciences, School of Biological Sciences, Cape Coast, Ghana
- Institute of Pharmacy and Biochemistry, Johannes Gutenberg University Mainz, Staudingerweg 5, 55128, Mainz, Germany
| | - Mark Helm
- Institute of Pharmacy and Biochemistry, Johannes Gutenberg University Mainz, Staudingerweg 5, 55128, Mainz, Germany.
| |
Collapse
|
18
|
Bennett MR, Shepherd SA, Cronin VA, Micklefield J. Recent advances in methyltransferase biocatalysis. Curr Opin Chem Biol 2017; 37:97-106. [DOI: 10.1016/j.cbpa.2017.01.020] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Revised: 01/20/2017] [Accepted: 01/24/2017] [Indexed: 11/29/2022]
|
19
|
Sadler JC, Chung CWH, Mosley JE, Burley GA, Humphreys LD. Structural and Functional Basis of C-Methylation of Coumarin Scaffolds by NovO. ACS Chem Biol 2017; 12:374-379. [PMID: 28068060 DOI: 10.1021/acschembio.6b01053] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
C-methylation of aromatic small molecules by C-methyltransferases (C-MTs) is an important biological transformation that involves C-C bond formation using S-adenosyl-l-methionine (SAM) as the methyl donor. Here, two advances in the mechanistic understanding of C-methylation of the 8-position of coumarin substrates catalyzed by the C-MT NovO from Streptomyces spheroides are described. First, a crystal structure of NovO reveals the Arg116-Asn117 and His120-Arg121 motifs are essential for coumarin substrate binding. Second, the active-site His120 is responsible for deprotonation of the phenolic 7-hydroxyl group on the coumarin substrate, activating the rate-determining methyl transfer step from SAM. This work expands our mechanistic knowledge of C-MTs, which could be used in the downstream development of engineered biocatalysts for small molecule C-alkylations.
Collapse
Affiliation(s)
- Joanna C. Sadler
- GlaxoSmithKline Medicines Research Centre, Gunnels Wood Road, Stevenage, SG1 2NY, United Kingdom
- WestCHEM,
Department of Pure and Applied Chemistry, University of Strathclyde, 295 Cathedral Street, Glasgow G1 1XL, Scotland, United Kingdom
| | - Chun-wa H. Chung
- GlaxoSmithKline Medicines Research Centre, Gunnels Wood Road, Stevenage, SG1 2NY, United Kingdom
| | - Julie E. Mosley
- GlaxoSmithKline Medicines Research Centre, Gunnels Wood Road, Stevenage, SG1 2NY, United Kingdom
| | - Glenn A. Burley
- WestCHEM,
Department of Pure and Applied Chemistry, University of Strathclyde, 295 Cathedral Street, Glasgow G1 1XL, Scotland, United Kingdom
| | - Luke D. Humphreys
- GlaxoSmithKline Medicines Research Centre, Gunnels Wood Road, Stevenage, SG1 2NY, United Kingdom
| |
Collapse
|
20
|
Serebryakova M, Tsibulskaya D, Mokina O, Kulikovsky A, Nautiyal M, Van Aerschot A, Severinov K, Dubiley S. A Trojan-Horse Peptide-Carboxymethyl-Cytidine Antibiotic from Bacillus amyloliquefaciens. J Am Chem Soc 2016; 138:15690-15698. [PMID: 27934031 PMCID: PMC5152938 DOI: 10.1021/jacs.6b09853] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
![]()
Microcin
C and related antibiotics are Trojan-horse peptide-adenylates.
The peptide part is responsible for facilitated transport inside the
sensitive cell, where it gets processed to release a toxic warhead—a
nonhydrolyzable aspartyl-adenylate, which inhibits aspartyl-tRNA synthetase.
Adenylation of peptide precursors is carried out by MccB THIF-type
NAD/FAD adenylyltransferases. Here, we describe a novel microcin C-like
compound from Bacillus amyloliquefaciens. The B. amyloliquefaciens MccB demonstrates an unprecedented
ability to attach a terminal cytidine monophosphate to cognate precursor
peptide in cellular and cell free systems. The cytosine moiety undergoes
an additional modification—carboxymethylation—that is
carried out by the C-terminal domain of MccB and the MccS enzyme that
produces carboxy-SAM, which serves as a donor of the carboxymethyl
group. We show that microcin C-like compounds carrying terminal cytosines
are biologically active and target aspartyl-tRNA synthetase, and that
the carboxymethyl group prevents resistance that can occur due to
modification of the warhead. The results expand the repertoire of
known enzymatic modifications of peptides that can be used to obtain
new biological activities while avoiding or limiting bacterial resistance.
Collapse
Affiliation(s)
- Marina Serebryakova
- Institute of Gene Biology, Russian Academy of Science , 34/5 Vavilov str., 119334 Moscow, Russia.,A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University , Leninskie Gory 1, Bldg. 40, Moscow 119991, Russia
| | - Darya Tsibulskaya
- Institute of Gene Biology, Russian Academy of Science , 34/5 Vavilov str., 119334 Moscow, Russia
| | - Olga Mokina
- Institute of Gene Biology, Russian Academy of Science , 34/5 Vavilov str., 119334 Moscow, Russia.,Skolkovo Institute of Science and Technology , 3 Nobel str., 143026 Moscow, Russia
| | - Alexey Kulikovsky
- Institute of Gene Biology, Russian Academy of Science , 34/5 Vavilov str., 119334 Moscow, Russia.,Skolkovo Institute of Science and Technology , 3 Nobel str., 143026 Moscow, Russia
| | - Manesh Nautiyal
- KU Leuven , O&N Rega, Medicinal Chemistry, Herestraat 49 10, B-3000 Leuven, Belgium
| | - Arthur Van Aerschot
- KU Leuven , O&N Rega, Medicinal Chemistry, Herestraat 49 10, B-3000 Leuven, Belgium
| | - Konstantin Severinov
- Institute of Gene Biology, Russian Academy of Science , 34/5 Vavilov str., 119334 Moscow, Russia.,Skolkovo Institute of Science and Technology , 3 Nobel str., 143026 Moscow, Russia.,Waksman Institute for Microbiology , 190 Frelinghuysen Road, Piscataway, New Jersey 08854-8020, United States
| | - Svetlana Dubiley
- Institute of Gene Biology, Russian Academy of Science , 34/5 Vavilov str., 119334 Moscow, Russia.,Skolkovo Institute of Science and Technology , 3 Nobel str., 143026 Moscow, Russia
| |
Collapse
|
21
|
tRNA-mediated codon-biased translation in mycobacterial hypoxic persistence. Nat Commun 2016; 7:13302. [PMID: 27834374 PMCID: PMC5114619 DOI: 10.1038/ncomms13302] [Citation(s) in RCA: 109] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Accepted: 09/21/2016] [Indexed: 02/07/2023] Open
Abstract
Microbial pathogens adapt to the stress of infection by regulating transcription, translation and protein modification. We report that changes in gene expression in hypoxia-induced non-replicating persistence in mycobacteria—which models tuberculous granulomas—are partly determined by a mechanism of tRNA reprogramming and codon-biased translation. Mycobacterium bovis BCG responded to each stage of hypoxia and aerobic resuscitation by uniquely reprogramming 40 modified ribonucleosides in tRNA, which correlate with selective translation of mRNAs from families of codon-biased persistence genes. For example, early hypoxia increases wobble cmo5U in tRNAThr(UGU), which parallels translation of transcripts enriched in its cognate codon, ACG, including the DosR master regulator of hypoxic bacteriostasis. Codon re-engineering of dosR exaggerates hypoxia-induced changes in codon-biased DosR translation, with altered dosR expression revealing unanticipated effects on bacterial survival during hypoxia. These results reveal a coordinated system of tRNA modifications and translation of codon-biased transcripts that enhance expression of stress response proteins in mycobacteria. Mycobacteria can adapt to the stress of human infection by entering a dormant state. Here the authors show that hypoxia-induced dormancy in M. bovis BCG involves the reprogramming of tRNA wobble modifications and copy numbers, coupled with biased use of synonymous codons in survival genes.
Collapse
|