1
|
Juribašić Kulcsár M, Gabelica V, Plavec J. Solution-State Structure of a Long-Loop G-Quadruplex Formed Within Promoters of Plasmodium falciparum B var Genes. Chemistry 2024; 30:e202401190. [PMID: 38647110 DOI: 10.1002/chem.202401190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 04/19/2024] [Accepted: 04/22/2024] [Indexed: 04/25/2024]
Abstract
We report the high-resolution NMR solution-state structure of an intramolecular G-quadruplex with a diagonal loop of ten nucleotides. The G-quadruplex is formed by a 34-nt DNA sequence, d[CAG3T2A2G3TATA2CT3AG4T2AG3T2], named UpsB-Q-1. This sequence is found within promoters of the var genes of Plasmodium falciparum, which play a key role in malaria pathogenesis and evasion of the immune system. The [3+1]-hybrid G-quadruplex formed under physiologically relevant conditions exhibits a unique equilibrium between two structures, both stabilized by base stacking and non-canonical hydrogen bonding. Unique equilibrium of the two closely related 3D structures originates from a North-South repuckering of deoxyribose moiety of residue T27 in the lateral loop. Besides the 12 guanines involved in three G-quartets, most residues in loop regions are involved in interactions at both G-quartet-loop interfaces.
Collapse
Affiliation(s)
- Marina Juribašić Kulcsár
- Slovenian NMR Center, National Institute of Chemistry, Hajdrihova 19, SI-1000, Ljubljana, Slovenia
- Division of Physical Chemistry, Ruđer Bošković Institute, Bijenička cesta 54, HR-10000, Zagreb, Croatia
| | - Valérie Gabelica
- School of Pharmaceutical Sciences, University of Geneva, 1 rue Michel-Servet, CH-1211, Geneva 4, Switzerland
| | - Janez Plavec
- Slovenian NMR Center, National Institute of Chemistry, Hajdrihova 19, SI-1000, Ljubljana, Slovenia
- Faculty of Chemistry and Chemical Technology, University of Ljubljana, Večna pot 113, SI-1000, Ljubljana, Slovenia
- EN-FIST Centre of Excellence, Trg OF 13, SI-1000, Ljubljana, Slovenia
| |
Collapse
|
2
|
Vianney YM, Dierks D, Weisz K. Structural Differences at Quadruplex-Duplex Interfaces Enable Ligand-Induced Topological Transitions. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2309891. [PMID: 38477454 PMCID: PMC11200018 DOI: 10.1002/advs.202309891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 02/13/2024] [Indexed: 03/14/2024]
Abstract
Quadruplex-duplex (QD) junctions, which represent unique structural motifs of both biological and technological significance, have been shown to constitute high-affinity binding sites for various ligands. A QD hybrid construct based on a human telomeric sequence, which harbors a duplex stem-loop in place of a short lateral loop, is structurally characterized by NMR. It folds into two major species with a (3+1) hybrid and a chair-type (2+2) antiparallel quadruplex domain coexisting in a K+ buffer solution. The antiparallel species is stabilized by an unusual capping structure involving a thymine and protonated adenine base AH+ of the lateral loop facing the hairpin duplex to form a T·AH+·G·C quartet with the interfacial G·C base pair at neutral pH. Addition and binding of Phen-DC3 to the QD hybrid mixture by its partial intercalation at corresponding QD junctions leads to a topological transition with exclusive formation of the (3+1) hybrid fold. In agreement with the available experimental data, such an unprecedented discrimination of QD junctions by a ligand can be rationalized following an induced fit mechanism.
Collapse
Affiliation(s)
- Yoanes Maria Vianney
- Institut für BiochemieUniversität GreifswaldFelix‐Hausdorff‐Str. 4D‐17489GreifswaldGermany
| | - Dorothea Dierks
- Institut für BiochemieUniversität GreifswaldFelix‐Hausdorff‐Str. 4D‐17489GreifswaldGermany
| | - Klaus Weisz
- Institut für BiochemieUniversität GreifswaldFelix‐Hausdorff‐Str. 4D‐17489GreifswaldGermany
| |
Collapse
|
3
|
Michel HM, Lemkul JA. Base pair dynamics, electrostatics, and thermodynamics at the LTR-III quadruplex:duplex junction. Biophys J 2024; 123:1129-1138. [PMID: 38576161 PMCID: PMC11079942 DOI: 10.1016/j.bpj.2024.03.042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 03/10/2024] [Accepted: 03/29/2024] [Indexed: 04/06/2024] Open
Abstract
G-quadruplexes (GQs) play key regulatory roles within the human genome and have also been identified to play similar roles in other eukaryotes, bacteria, archaea, and viruses. Human immunodeficiency virus 1, the etiological agent of acquired immunodeficiency syndrome, can form two GQs in its long terminal repeat (LTR) promoter region, each of which act to regulate viral gene expression in opposing manners. The major LTR GQ, called LTR-III, is a distinct hybrid GQ containing a 12-nucleotide duplex loop attached to the quadruplex motif. The resulting quadruplex:duplex junction (QDJ) has been hypothesized to serve as a selective drug targeting site. To better understand the dynamics of this QDJ, we performed conventional and enhanced-sampling molecular dynamics simulations using the Drude-2017 force field. We observed unbiased and reversible formation of additional base pairs in the QDJ, between Ade4:Thy14 and Gua3:Thy14. Both base pairs were electrostatically favored, but geometric constraints within the junction may drive the formation of, and preference for, the Ade4:Thy14 base pair. Finally, we demonstrated that the base pairs are separated only by small energy barriers that may enable transitions between both base-paired states. Together, these simulations provide new insights into the dynamics, electrostatics, and thermodynamics of the LTR-III QDJ.
Collapse
Affiliation(s)
- Haley M Michel
- Department of Biochemistry, Virginia Tech, Blacksburg, Virginia
| | - Justin A Lemkul
- Department of Biochemistry, Virginia Tech, Blacksburg, Virginia; Center for Drug Discovery, Virginia Tech, Blacksburg, Virginia.
| |
Collapse
|
4
|
Tanabe K, Miyazaki K, Umeno H, Takemoto M, Nakano S. Basic protein- and peptide-induced stabilization of long-loop DNA G-guadruplexes. Biochimie 2024; 219:110-117. [PMID: 37972915 DOI: 10.1016/j.biochi.2023.11.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 10/05/2023] [Accepted: 11/09/2023] [Indexed: 11/19/2023]
Abstract
The human genome contains many G-quadruplex-forming sequences, including sequences containing long single-stranded loops that are believed to be unfavorable for G-quadruplex formation. The intracellular environment of biological cells is crowded with proteins with charged surfaces. Understanding the effects of protein-rich environments is important for understanding the formation of G-quadruplexes in an intracellular environment. In this study, we investigated the structural stability of DNA G-quadruplexes in the presence of several types of globular proteins (lysozyme, cytochrome c, bovine serum albumin, myoglobin, histone proteins, and serum proteins), unstructured polypeptides (protamine and poly-l-lysine), and oligopeptides (RGG/RG-domain peptides and short repeated peptides). Thermal melting studies of G-quadruplex-forming oligonucleotides derived from the human telomeric repeat sequence revealed that environments containing high concentrations of proteins and peptides differently affected the G-quadruplex stability according to their loop lengths. We found that weak electrostatic interactions of G-quadruplex loops with basic proteins and peptides improved the stability of long-loop G-quadruplexes and the interactions were strengthened under crowded conditions simulated by dextran. The comparison of the effects of different types of proteins and peptides indicated that excluded volume interactions and structural flexibility of both DNA and polypeptide chains influenced the efficiency of their interactions. This study provides insights into long-loop G-quadruplex stability in a crowded intracellular environment and the recognition of G-quadruplexes by arginine-rich domains of G-quadruplex-binding proteins.
Collapse
Affiliation(s)
- Kazuya Tanabe
- Department of Nanobiochemistry, Faculty of Frontiers of Innovative Research in Science and Technology (FIRST), Konan University, 7-1-20, Minatojima-minamimachi, Chuo-ku, Kobe, 650-0047, Japan
| | - Kouichi Miyazaki
- Department of Nanobiochemistry, Faculty of Frontiers of Innovative Research in Science and Technology (FIRST), Konan University, 7-1-20, Minatojima-minamimachi, Chuo-ku, Kobe, 650-0047, Japan
| | - Hikari Umeno
- Department of Nanobiochemistry, Faculty of Frontiers of Innovative Research in Science and Technology (FIRST), Konan University, 7-1-20, Minatojima-minamimachi, Chuo-ku, Kobe, 650-0047, Japan
| | - Marina Takemoto
- Department of Nanobiochemistry, Faculty of Frontiers of Innovative Research in Science and Technology (FIRST), Konan University, 7-1-20, Minatojima-minamimachi, Chuo-ku, Kobe, 650-0047, Japan
| | - S Nakano
- Department of Nanobiochemistry, Faculty of Frontiers of Innovative Research in Science and Technology (FIRST), Konan University, 7-1-20, Minatojima-minamimachi, Chuo-ku, Kobe, 650-0047, Japan.
| |
Collapse
|
5
|
Kumari N, Das K, Sharma S, Dahal S, Desai SS, Roy U, Sharma A, Manjunath M, Gopalakrishnan V, Retheesh ST, Javadekar SM, Choudhary B, Raghavan SC. Evaluation of potential role of R-loop and G-quadruplex DNA in the fragility of c-MYC during chromosomal translocation associated with Burkitt's lymphoma. J Biol Chem 2023; 299:105431. [PMID: 37926284 PMCID: PMC10704377 DOI: 10.1016/j.jbc.2023.105431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 10/20/2023] [Accepted: 10/23/2023] [Indexed: 11/07/2023] Open
Abstract
t(8;14) translocation is the hallmark of Burkitt's lymphoma and results in c-MYC deregulation. During the translocation, c-MYC gene on chromosome 8 gets juxtaposed to the Ig switch regions on chromosome 14. Although the promoter of c-MYC has been investigated for its mechanism of fragility, little is known about other c-MYC breakpoint regions. We have analyzed the translocation break points at the exon 1/intron 1 of c-MYC locus from patients with Burkitt's lymphoma. Results showed that the breakpoint region, when present on a plasmid, could fold into an R-loop confirmation in a transcription-dependent manner. Sodium bisulfite modification assay revealed significant single-strandedness on chromosomal DNA of Burkitt's lymphoma cell line, Raji, and normal lymphocytes, revealing distinct R-loops covering up to 100 bp region. Besides, ChIP-DRIP analysis reveals that the R-loop antibody can bind to the breakpoint region. Further, we show the formation of stable parallel intramolecular G-quadruplex on non-template strand of the genome. Finally, incubation of purified AID in vitro or overexpression of AID within the cells led to enhanced mutation frequency at the c-MYC breakpoint region. Interestingly, anti-γH2AX can bind to DSBs generated at the c-MYC breakpoint region within the cells. The formation of R-loop and G-quadruplex was found to be mutually exclusive. Therefore, our results suggest that AID can bind to the single-stranded region of the R-loop and G4 DNA, leading to the deamination of cytosines to uracil and induction of DNA breaks in one of the DNA strands, leading to double-strand break, which could culminate in t(8;14) chromosomal translocation.
Collapse
Affiliation(s)
- Nitu Kumari
- Department of Biochemistry, Indian Institute of Science, Bangalore, India
| | - Kohal Das
- Department of Biochemistry, Indian Institute of Science, Bangalore, India
| | - Shivangi Sharma
- Department of Biochemistry, Indian Institute of Science, Bangalore, India; Institute of Bioinformatics and Applied Biotechnology, Bangalore, India
| | - Sumedha Dahal
- Department of Biochemistry, Indian Institute of Science, Bangalore, India
| | | | - Urbi Roy
- Department of Biochemistry, Indian Institute of Science, Bangalore, India
| | - Anju Sharma
- Department of Biochemistry, Indian Institute of Science, Bangalore, India
| | - Meghana Manjunath
- Institute of Bioinformatics and Applied Biotechnology, Bangalore, India
| | - Vidya Gopalakrishnan
- Department of Biochemistry, Indian Institute of Science, Bangalore, India; Department of Zoology, St Joseph's College, Irinjalakuda, Kerala, India
| | - S T Retheesh
- Department of Biochemistry, Indian Institute of Science, Bangalore, India
| | - Saniya M Javadekar
- Department of Biochemistry, Indian Institute of Science, Bangalore, India
| | - Bibha Choudhary
- Institute of Bioinformatics and Applied Biotechnology, Bangalore, India
| | - Sathees C Raghavan
- Department of Biochemistry, Indian Institute of Science, Bangalore, India.
| |
Collapse
|
6
|
Pathak R. G-Quadruplexes in the Viral Genome: Unlocking Targets for Therapeutic Interventions and Antiviral Strategies. Viruses 2023; 15:2216. [PMID: 38005893 PMCID: PMC10674748 DOI: 10.3390/v15112216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 11/01/2023] [Accepted: 11/03/2023] [Indexed: 11/26/2023] Open
Abstract
G-quadruplexes (G4s) are unique non-canonical four-stranded nucleic acid secondary structures formed by guanine-rich DNA or RNA sequences. Sequences with the potential to form quadruplex motifs (pG4s) are prevalent throughout the genomes of all organisms, spanning from prokaryotes to eukaryotes, and are enriched within regions of biological significance. In the past few years, the identification of pG4s within most of the Baltimore group viruses has attracted increasing attention due to their occurrence in regulatory regions of the genome and the subsequent implications for regulating critical stages of viral life cycles. In this context, the employment of specific G4 ligands has aided in comprehending the intricate G4-mediated regulatory mechanisms in the viral life cycle, showcasing the potential of targeting viral G4s as a novel antiviral strategy. This review offers a thorough update on the literature concerning G4s in viruses, including their identification and functional significance across most of the human-infecting viruses. Furthermore, it delves into potential therapeutic avenues targeting G4s, encompassing various G4-binding ligands, G4-interacting proteins, and oligonucleotide-based strategies. Finally, the article highlights both progress and challenges in the field, providing valuable insights into leveraging this unusual nucleic acid structure for therapeutic purposes.
Collapse
Affiliation(s)
- Rajiv Pathak
- Department of Genetics, Albert Einstein College of Medicine, New York, NY 10461, USA
| |
Collapse
|
7
|
Korsakova A, Phan AT. Prediction of G4 formation in live cells with epigenetic data: a deep learning approach. NAR Genom Bioinform 2023; 5:lqad071. [PMID: 37636021 PMCID: PMC10448861 DOI: 10.1093/nargab/lqad071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 05/25/2023] [Accepted: 07/26/2023] [Indexed: 08/29/2023] Open
Abstract
G-quadruplexes (G4s) are secondary structures abundant in DNA that may play regulatory roles in cells. Despite the ubiquity of the putative G-quadruplex-forming sequences (PQS) in the human genome, only a small fraction forms G4 structures in cells. Folded G4, histone methylation and chromatin accessibility are all parts of the complex cis regulatory landscape. We propose an approach for prediction of G4 formation in cells that incorporates epigenetic and chromatin accessibility data. The novel approach termed epiG4NN efficiently predicts cell-specific G4 formation in live cells based on a local epigenomic snapshot. Our results confirm the close relationship between H3K4me3 histone methylation, chromatin accessibility and G4 structure formation. Trained on A549 cell data, epiG4NN was then able to predict G4 formation in HEK293T and K562 cell lines. We observe the dependency of model performance with different epigenetic features on the underlying experimental condition of G4 detection. We expect that this approach will contribute to the systematic understanding of correlations between structural and epigenomic feature landscape.
Collapse
Affiliation(s)
- Anna Korsakova
- School of Physical and Mathematical Sciences, Nanyang Technological University, 637371, Singapore
| | - Anh Tuân Phan
- School of Physical and Mathematical Sciences, Nanyang Technological University, 637371, Singapore
- NTU Institute of Structural Biology, Nanyang Technological University, 636921, Singapore
| |
Collapse
|
8
|
Liu Y, Li J, Zhang Y, Wang Y, Chen J, Bian Y, Xia Y, Yang MH, Zheng K, Wang KB, Kong LY. Structure of the Major G-Quadruplex in the Human EGFR Oncogene Promoter Adopts a Unique Folding Topology with a Distinctive Snap-Back Loop. J Am Chem Soc 2023; 145:16228-16237. [PMID: 37460135 DOI: 10.1021/jacs.3c05214] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2023]
Abstract
EGFR tyrosine kinase inhibitors have made remarkable success in targeted cancer therapy. However, therapeutic resistance inevitably occurred and EGFR-targeting therapy has been demonstrated to have limited efficacy or utility in glioblastoma, colorectal cancer, and hepatocellular carcinoma. Therefore, there is a high demand for the development of new targets to inhibit EGFR signaling. Herein, we found that the EGFR oncogene proximal promoter sequence forms a unique type of snap-back loop containing G-quadruplex (G4), which can be targeted by small molecules. For the first time, we determined the NMR solution structure of this snap-back EGFR-G4, a three-tetrad-core, parallel-stranded G4 with naturally occurring flanking residues at both the 5'-end and 3'-end. The snap-back loop located at the 3'-end region forms a stable capping structure through two stacked G-triads connected by multiple potential hydrogen bonds. Notably, the flanking residues are consistently absent in reported snap-back G4s, raising the question of whether such structures truly exist under in vivo conditions. The resolved EGFR-G4 structure has eliminated the doubt and showed distinct structural features that distinguish it from the previously reported snap-back G4s, which lack the flanking residues. Furthermore, we found that the snap-back EGFR-G4 structure is highly stable and can form on an elongated DNA template to inhibit DNA polymerase. The unprecedented high-resolution EGFR-G4 structure has thus contributed a promising molecular target for developing alternative EGFR signaling inhibitors in cancer therapeutics. Meanwhile, the two stacked triads may provide an attractive site for specific small-molecule targeting.
Collapse
Affiliation(s)
- Yushuang Liu
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu 210009, People's Republic of China
| | - Jinzhu Li
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu 210009, People's Republic of China
| | - Yongqiang Zhang
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu 210009, People's Republic of China
| | - Yingying Wang
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu 210009, People's Republic of China
| | - Juannan Chen
- School of Biomedical Sciences, Hunan University, Changsha, Hunan 410082, People's Republic of China
| | - Yuting Bian
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu 210009, People's Republic of China
| | - Yuanzheng Xia
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu 210009, People's Republic of China
| | - Ming-Hua Yang
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu 210009, People's Republic of China
| | - Kewei Zheng
- School of Biomedical Sciences, Hunan University, Changsha, Hunan 410082, People's Republic of China
| | - Kai-Bo Wang
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu 210009, People's Republic of China
| | - Ling-Yi Kong
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu 210009, People's Republic of China
| |
Collapse
|
9
|
Khatik SY, Sudhakar S, Mishra S, Kalia J, Pradeepkumar PI, Srivatsan SG. Probing juxtaposed G-quadruplex and hairpin motifs using a responsive nucleoside probe: a unique scaffold for chemotherapy. Chem Sci 2023; 14:5627-5637. [PMID: 37265741 PMCID: PMC10231310 DOI: 10.1039/d3sc00519d] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 04/30/2023] [Indexed: 06/03/2023] Open
Abstract
Paucity of efficient probes and small molecule ligands that can distinguish different G-quadruplex (GQ) topologies poses challenges not only in understanding their basic structure but also in targeting an individual GQ form from others. Alternatively, G-rich sequences that harbour unique chimeric structural motifs (e.g., GQ-duplex or GQ-hairpin junctions) are perceived as new therapeutic hotspots. In this context, the epidermal growth factor receptor (EGFR) gene, implicated in many cancers, contains a 30 nucleotide G-rich segment in the promoter region, which adopts in vitro two unique architectures each composed of a GQ topology (parallel and hybrid-type) juxtaposed with a hairpin domain. Here, we report the use of a novel dual-app probe, C5-trifluoromethyl benzofuran-modified 2'-deoxyuridine (TFBF-dU), in the systematic analysis of EGFR GQs and their interaction with small molecules by fluorescence and 19F NMR techniques. Notably, distinct fluorescence and 19F NMR signals exhibited by the probe enabled the quantification of the relative population of random, parallel and hybrid-type GQ structures under different conditions, which could not be obtained by conventional CD and 1H NMR techniques. Using the fluorescence component, we quantified ligand binding properties of GQs, whereas the 19F label enabled the assessment of ligand-induced changes in GQ dynamics. Studies also revealed that mutations in the hairpin domain affected GQ formation and stability, which was further functionally verified in polymerase stop assay. We anticipate that these findings and useful properties of the nucleoside probe could be utilized in designing and evaluating binders that jointly target both GQ and hairpin domains for enhanced selectivity and druggability.
Collapse
Affiliation(s)
- Saddam Y Khatik
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Pune, Dr Homi Bhabha Road Pune 411008 India
| | - Sruthi Sudhakar
- Department of Chemistry, Indian Institute of Technology Bombay Mumbai 400076 India
| | - Satyajit Mishra
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Bhopal Bhopal Bypass Road, Bhauri Bhopal 462066 India
| | - Jeet Kalia
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Bhopal Bhopal Bypass Road, Bhauri Bhopal 462066 India
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Bhopal Bhopal Bypass Road, Bhauri Bhopal 462066 India
| | - P I Pradeepkumar
- Department of Chemistry, Indian Institute of Technology Bombay Mumbai 400076 India
| | - Seergazhi G Srivatsan
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Pune, Dr Homi Bhabha Road Pune 411008 India
| |
Collapse
|
10
|
Rodriguez J, Domínguez A, Aviñó A, Borgonovo G, Eritja R, Mazzini S, Gargallo R. Exploring the stabilizing effect on the i-motif of neighboring structural motifs and drugs. Int J Biol Macromol 2023; 242:124794. [PMID: 37182626 DOI: 10.1016/j.ijbiomac.2023.124794] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 04/18/2023] [Accepted: 04/25/2023] [Indexed: 05/16/2023]
Abstract
Cytosine-rich DNA sequences may fold into a structure known as i-motif, with potential in vivo modulation of gene expression. The stability of the i-motif is residual at neutral pH values. To increase it, the addition of neighboring moieties, such as Watson-Crick stabilized loops, tetrads, or non-canonical base pairs have been proposed. Taking a recently described i-motif structure as a model, the relative effect of these structural moieties, as well as several DNA ligands, on the stabilization of the i-motif has been studied. To this end, not only the original sequence but different mutants were considered. Spectroscopic techniques, PAGE, and multivariate data analysis methods have been used to model the folding/unfolding equilibria induced by changes of pH, temperature, and the presence of ligands. The results have shown that the duplex is the moiety that is responsible of the stabilization of the i-motif structure at neutral pH. The T:T base pair, on the contrary, shows little stabilization of the i-motif. From several selected DNA-binding ligands, the G-quadruplex ligand BA41 is shown to interact with the duplex moiety, whereas non-specific interaction and little stabilization has been observed within the i-motif.
Collapse
Affiliation(s)
- Judit Rodriguez
- Department of Chemical Engineering and Analytical Chemistry, Faculty of Chemistry, University of Barcelona, Marti i Franqués 1-11, E-08028 Barcelona, Spain
| | - Arnau Domínguez
- Institute for Advanced Chemistry of Catalonia (IQAC), CSIC, Networking Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Barcelona, Spain
| | - Anna Aviñó
- Institute for Advanced Chemistry of Catalonia (IQAC), CSIC, Networking Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Barcelona, Spain
| | - Gigliola Borgonovo
- Department of Food, Environmental and Nutritional Sciences (DEFENS), University of Milan (Università degli Studi di Milano), Milan, Italy
| | - Ramon Eritja
- Institute for Advanced Chemistry of Catalonia (IQAC), CSIC, Networking Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Barcelona, Spain
| | - Stefania Mazzini
- Department of Food, Environmental and Nutritional Sciences (DEFENS), University of Milan (Università degli Studi di Milano), Milan, Italy
| | - Raimundo Gargallo
- Department of Chemical Engineering and Analytical Chemistry, Faculty of Chemistry, University of Barcelona, Marti i Franqués 1-11, E-08028 Barcelona, Spain.
| |
Collapse
|
11
|
Papp C, Mukundan VT, Jenjaroenpun P, Winnerdy FR, Ow GS, Phan AT, Kuznetsov VA. Stable bulged G-quadruplexes in the human genome: identification, experimental validation and functionalization. Nucleic Acids Res 2023; 51:4148-4177. [PMID: 37094040 DOI: 10.1093/nar/gkad252] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 03/23/2023] [Accepted: 04/19/2023] [Indexed: 04/26/2023] Open
Abstract
DNA sequence composition determines the topology and stability of G-quadruplexes (G4s). Bulged G-quadruplex structures (G4-Bs) are a subset of G4s characterized by 3D conformations with bulges. Current search algorithms fail to capture stable G4-B, making their genome-wide study infeasible. Here, we introduced a large family of computationally defined and experimentally verified potential G4-B forming sequences (pG4-BS). We found 478 263 pG4-BS regions that do not overlap 'canonical' G4-forming sequences in the human genome and are preferentially localized in transcription regulatory regions including R-loops and open chromatin. Over 90% of protein-coding genes contain pG4-BS in their promoter or gene body. We observed generally higher pG4-BS content in R-loops and their flanks, longer genes that are associated with brain tissue, immune and developmental processes. Also, the presence of pG4-BS on both template and non-template strands in promoters is associated with oncogenesis, cardiovascular disease and stemness. Our G4-BS models predicted G4-forming ability in vitro with 91.5% accuracy. Analysis of G4-seq and CUT&Tag data strongly supports the existence of G4-BS conformations genome-wide. We reconstructed a novel G4-B 3D structure located in the E2F8 promoter. This study defines a large family of G4-like sequences, offering new insights into the essential biological functions and potential future therapeutic uses of G4-B.
Collapse
Affiliation(s)
- Csaba Papp
- Department of Urology, Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| | - Vineeth T Mukundan
- School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore
| | - Piroon Jenjaroenpun
- Division of Bioinformatics and Data Management for Research, Research Group and Research Network Division, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
- Bioinformatics Institute, A*STAR Biomedical Institutes, Singapore, Singapore
| | - Fernaldo Richtia Winnerdy
- School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore
| | - Ghim Siong Ow
- Bioinformatics Institute, A*STAR Biomedical Institutes, Singapore, Singapore
| | - Anh Tuân Phan
- School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore
- NTU Institute of Structural Biology, Nanyang Technological University, Singapore 636921, Singapore
| | - Vladimir A Kuznetsov
- Department of Urology, Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY 13210, USA
- Bioinformatics Institute, A*STAR Biomedical Institutes, Singapore, Singapore
| |
Collapse
|
12
|
Roy S, Bhattacharya S. Chemical Information and Computational Modeling of Targeting Hybrid Nucleic Acid Structures of PIM1 Sequences by Synthetic Pyrrole-Imidazole Carboxamide Drugs. J Chem Inf Model 2022; 62:6411-6422. [PMID: 35687766 DOI: 10.1021/acs.jcim.1c01500] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
DNA can adopt various distinct structural motifs, such as quadruplex, duplex, i-motifs, etc. which have multifarious applications in biomedical therapeutics. Quadruplex-duplex hybrids (QDHs) consist of the juxtaposed quadruplex and duplex motifs and are thermally stable and biologically relevant. Selective binding toward these secondary structures plays an important role in the evaluation of the structure-specific ligands. Herein, several small molecules containing anthraquinone conjugated oligopyrrole, oligoimidazole, and pyrrole-imidazole derivatives have been screened for the binding of the quadruplex-duplex nucleic acid hybrids formed in PIM1 sequences through docking and molecular dynamics (MD) simulation studies. The binding interaction of the anthraquinone polypyrrole ligands has also been checked by performing different biophysical experiments. PIM1, being a coactivator of the MYC oncogene, can be targeted by these small molecules to control MYC expression which is overexpressed in the majority of human cancer cells. Accordingly, these cancer cell-specific and blood-compatible anthraquinone conjugated oligopyrrole ligands can be employed for anticancer therapeutic applications. Thus, the structure-activity relationship (SAR) of the screened ligands manifested prudent structural information for designing PIM1 QDHs targeting small molecules.
Collapse
Affiliation(s)
- Soma Roy
- School of Applied & Interdisciplinary Sciences, Indian Association for the Cultivation of Science, Kolkata 700032, India
| | - Santanu Bhattacharya
- School of Applied & Interdisciplinary Sciences, Indian Association for the Cultivation of Science, Kolkata 700032, India.,Department of Organic Chemistry, Indian Institute of Science, Bangalore 560012, India
| |
Collapse
|
13
|
Vianney YM, Weisz K. High-affinity binding at quadruplex-duplex junctions: rather the rule than the exception. Nucleic Acids Res 2022; 50:11948-11964. [PMID: 36416262 PMCID: PMC9723630 DOI: 10.1093/nar/gkac1088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 10/19/2022] [Accepted: 10/26/2022] [Indexed: 11/24/2022] Open
Abstract
Quadruplex-duplex (Q-D) junctions constitute unique structural motifs in genomic sequences. Through comprehensive calorimetric as well as high-resolution NMR structural studies, Q-D junctions with a hairpin-type snapback loop coaxially stacked onto an outer G-tetrad were identified to be most effective binding sites for various polycyclic quadruplex ligands. The Q-D interface is readily recognized by intercalation of the ligand aromatic core structure between G-tetrad and the neighboring base pair. Based on the thermodynamic and structural data, guidelines for the design of ligands with enhanced selectivity towards a Q-D interface emerge. Whereas intercalation at Q-D junctions mostly outcompete stacking at the quadruplex free outer tetrad or intercalation between duplex base pairs to varying degrees, ligand side chains considerably contribute to the selectivity for a Q-D target over other binding sites. In contrast to common perceptions, an appended side chain that additionally interacts within the duplex minor groove may confer only poor selectivity. Rather, the Q-D selectivity is suggested to benefit from an extension of the side chain towards the exposed part of the G-tetrad at the junction. The presented results will support the design of selective high-affinity binding ligands for targeting Q-D interfaces in medicinal but also technological applications.
Collapse
Affiliation(s)
- Yoanes Maria Vianney
- Institute of Biochemistry, Universität Greifswald, Felix-Hausdorff-Str. 4, D-17489 Greifswald, Germany
| | - Klaus Weisz
- To whom correspondence should be addressed. Tel: +49 3834 420 4426; Fax: +49 3834 420 4427;
| |
Collapse
|
14
|
Zhu BC, He J, Xia XY, Jiang J, Liu W, Liu LY, Liang BB, Yao HG, Ke Z, Xia W, Mao ZW. Solution structure of a thrombin binding aptamer complex with a non-planar platinum(ii) compound. Chem Sci 2022; 13:8371-8379. [PMID: 35919711 PMCID: PMC9297526 DOI: 10.1039/d2sc01196d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Accepted: 05/29/2022] [Indexed: 11/21/2022] Open
Abstract
Thrombin Binding Aptamer (TBA) is a monomolecular well-defined two G-tetrad antiparallel G-quadruplex DNA that inhibits the activity of human α-thrombin. In this report, we synthesized a quasi-cross-shaped platinum(ii) compound (L'2LPt) with one cyclometalated and two carbene ligands. We found L'2LPt has selective affinity to bind the TBA G-quadruplex. A fibrinogen clotting assay revealed that L'2LPt can abrogate the inhibitory activity of TBA against thrombin. We solved the 1 : 1 L'2LPt-TBA complex structure by NMR, which revealed a unique self-adaptive property of L'2LPt upon binding to TBA. In the complex, a carbene ligand of L'2LPt rotates to pair with the cyclometalated ligand to form a plane stacking over half of the TBA G-tetrad and covered by lateral TT loops. It is notable that the heavy atom Pt stays out of the G-tetrad. Meanwhile, the other carbene ligand remains relatively perpendicular and forms a hydrogen bond with a guanine to anchor the L'2LPt position. This structure exhibits a quasi-cross-shaped Pt(ii) compound bound to the G-quadruplex with an unusual "wall-mounted" binding mode. Our structures provide insights into the specific recognition of antiparallel G-quadruplex DNA by a self-adaptive Pt(ii) compound and useful information for the design of selective G-quadruplex targeting non-planar molecules.
Collapse
Affiliation(s)
- Bo-Chen Zhu
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-sen University Guangzhou 510275 China
| | - Juan He
- School of Pharmaceutical and Chemical Engineering, Guangdong Pharmaceutical University Zhongshan 528458 China
| | - Xiao-Yu Xia
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-sen University Guangzhou 510275 China
| | - Jingxing Jiang
- School of Materials Science and Engineering, PCFM Lab, School of Chemistry, Sun Yat-sen University Guangzhou 510275 China
| | - Wenting Liu
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-sen University Guangzhou 510275 China
| | - Liu-Yi Liu
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-sen University Guangzhou 510275 China
| | - Bing-Bing Liang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-sen University Guangzhou 510275 China
| | - Hua-Gang Yao
- School of Pharmaceutical and Chemical Engineering, Guangdong Pharmaceutical University Zhongshan 528458 China
| | - Zhuofeng Ke
- School of Materials Science and Engineering, PCFM Lab, School of Chemistry, Sun Yat-sen University Guangzhou 510275 China
| | - Wei Xia
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-sen University Guangzhou 510275 China
| | - Zong-Wan Mao
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-sen University Guangzhou 510275 China
| |
Collapse
|
15
|
High-throughput techniques enable advances in the roles of DNA and RNA secondary structures in transcriptional and post-transcriptional gene regulation. Genome Biol 2022; 23:159. [PMID: 35851062 PMCID: PMC9290270 DOI: 10.1186/s13059-022-02727-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 07/07/2022] [Indexed: 12/27/2022] Open
Abstract
The most stable structure of DNA is the canonical right-handed double helix termed B DNA. However, certain environments and sequence motifs favor alternative conformations, termed non-canonical secondary structures. The roles of DNA and RNA secondary structures in transcriptional regulation remain incompletely understood. However, advances in high-throughput assays have enabled genome wide characterization of some secondary structures. Here, we describe their regulatory functions in promoters and 3’UTRs, providing insights into key mechanisms through which they regulate gene expression. We discuss their implication in human disease, and how advances in molecular technologies and emerging high-throughput experimental methods could provide additional insights.
Collapse
|
16
|
Boss BL, Wanees AE, Zaslow SJ, Normile TG, Izquierdo JA. Comparative genomics of the plant-growth promoting bacterium Sphingobium sp. strain AEW4 isolated from the rhizosphere of the beachgrass Ammophila breviligulata. BMC Genomics 2022; 23:508. [PMID: 35831788 PMCID: PMC9281055 DOI: 10.1186/s12864-022-08738-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 07/04/2022] [Indexed: 11/29/2022] Open
Abstract
Background The genus Sphingobium within the class Alpha-proteobacteria contains a small number of plant-growth promoting rhizobacteria (PGPR), although it is mostly comprised of organisms that play an important role in biodegradation and bioremediation in sediments and sandy soils. A Sphingobium sp. isolate was obtained from the rhizosphere of the beachgrass Ammophila breviligulata with a variety of plant growth-promoting properties and designated as Sphingobium sp. strain AEW4. Results Analysis of the 16S rRNA gene as well as full genome nucleotide and amino acid identities revealed that this isolate is most similar to Sphingobium xenophagum and Sphingobium hydrophobicum. Comparative genomics analyses indicate that the genome of strain AEW4 contains unique features that explain its relationship with a plant host as a PGPR, including pathways involved in monosaccharide utilization, fermentation pathways, iron sequestration, and resistance to osmotic stress. Many of these unique features are not broadly distributed across the genus. In addition, pathways involved in the metabolism of salicylate and catechol, phenyl acetate degradation, and DNA repair were also identified in this organism but not in most closely related organisms. Conclusion The genome of Sphingobium sp. strain AEW4 contains a number of distinctive features that are crucial to explain its role as a plant-growth promoting rhizobacterium, and comparative genomics analyses support its classification as a relevant Sphingobium strain involved in plant growth promotion of beachgrass and other plants. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-022-08738-8.
Collapse
Affiliation(s)
- Brianna L Boss
- Department of Biology, Hofstra University, Hempstead, NY, 11549, USA
| | - Abanoub E Wanees
- Department of Biology, Hofstra University, Hempstead, NY, 11549, USA
| | - Shari J Zaslow
- Department of Biology, Hofstra University, Hempstead, NY, 11549, USA
| | - Tyler G Normile
- Department of Biology, Hofstra University, Hempstead, NY, 11549, USA
| | | |
Collapse
|
17
|
Barshai M, Aubert A, Orenstein Y. G4detector: Convolutional Neural Network to Predict DNA G-Quadruplexes. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2022; 19:1946-1955. [PMID: 33872156 DOI: 10.1109/tcbb.2021.3073595] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
G-quadruplexes (G4s) are nucleic acid secondary structures that form within guanine-rich DNA or RNA sequences. G4 formation can affect chromatin architecture and gene regulation, and has been associated with genomic instability, genetic diseases, and cancer progression. The experimental data produced by the G4-seq experiment provides unprecedented details on G4 formation in the genome. Still, running the experimental protocol on a whole genome is an expensive and time-consuming process. Thus, it is highly desirable to have a computational method to predict G4 formation in new DNA sequences or whole genomes. Here, we present G4detector, a new method based on a convolutional neural network to predict G4s from DNA sequences. On top of the sequence information, we improved prediction accuracy by the addition of RNA secondary structure information. To train and test G4detector, we compiled novel high-throughput benchmarks over multiple species genomes measured by the G4-seq protocol. We show that G4detector outperforms extant methods for the same task on all benchmark datasets, can detect G4s genome-wide with high accuracy, and is able to extrapolate human-trained measurements to various non-human species. The code and benchmarks are publicly available on github.com/OrensteinLab/G4detector.
Collapse
|
18
|
Jana J, Vianney YM, Schröder N, Weisz K. Guiding the folding of G-quadruplexes through loop residue interactions. Nucleic Acids Res 2022; 50:7161-7175. [PMID: 35758626 PMCID: PMC9262619 DOI: 10.1093/nar/gkac549] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 05/25/2022] [Accepted: 06/14/2022] [Indexed: 12/24/2022] Open
Abstract
A G-rich sequence was designed to allow folding into either a stable parallel or hybrid-type topology. With the parent sequence featuring coexisting species, various related sequences with single and double mutations and with a shortened central propeller loop affected the topological equilibrium. Two simple modifications, likewise introduced separately to all sequences, were employed to lock folds into one of the topologies without noticeable structural alterations. The unique combination of sequence mutations, high-resolution NMR structural information, and the thermodynamic stability for both topological competitors identified critical loop residue interactions. In contrast to first loop residues, which are mostly disordered and exposed to solvent in both propeller and lateral loops bridging a narrow groove, the last loop residue in a lateral three-nucleotide loop is engaged in stabilizing stacking interactions. The propensity of single-nucleotide loops to favor all-parallel topologies by enforcing a propeller-like conformation of an additional longer loop is shown to result from their preference in linking two outer tetrads of the same tetrad polarity. Taken together, the present studies contribute to a better structural and thermodynamic understanding of delicate loop interactions in genomic and artificially designed quadruplexes, e.g. when employed as therapeutics or in other biotechnological applications.
Collapse
Affiliation(s)
- Jagannath Jana
- Institute of Biochemistry, Universität Greifswald, D-17489 Greifswald, Germany
| | | | - Nina Schröder
- Institute of Biochemistry, Universität Greifswald, D-17489 Greifswald, Germany
| | - Klaus Weisz
- To whom correspondence should be addressed. Tel: +49 3834 420 4426; Fax: +49 3834 420 4427;
| |
Collapse
|
19
|
Liu LY, Ma TZ, Zeng YL, Liu W, Mao ZW. Structural Basis of Pyridostatin and Its Derivatives Specifically Binding to G-Quadruplexes. J Am Chem Soc 2022; 144:11878-11887. [PMID: 35749293 DOI: 10.1021/jacs.2c04775] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The nucleic acid G-quadruplex (G4) has emerged as a promising therapeutic target for a variety of diseases such as cancer and neurodegenerative disease. Among small-molecule G4-binders, pyridostatin (PDS) and its derivatives (e.g., PyPDS) exhibit high specificity to G4s, but the structural basis for their specific recognition of G4s remains unknown. Here, we presented two solution structures of PyPDS and PDS with a quadruplex-duplex hybrid. The structures indicate that the rigid aromatic rings of PyPDS/PDS linked by flexible amide bonds match adaptively with G-tetrad planes, enhancing π-π stacking and achieving specific recognition of G4s. The aliphatic amine side chains of PyPDS/PDS adjust conformation to interact with the phosphate backbone via hydrogen bonding and electrostatic interactions, increasing affinity for G4s. Moreover, the N-H of PyPDS/PDS amide bonds interacts with two O6s of G-tetrad guanines via hydrogen bonding, achieving a further increase in affinity for G4s, which is different from most G4 ligands. Our findings reveal from structural perspectives that the rational assembly of rigid and flexible structural units in a ligand can synergistically improve the selectivity and affinity for G4s through spatial selective and adaptive matching.
Collapse
Affiliation(s)
- Liu-Yi Liu
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, P. R. China
| | - Tian-Zhu Ma
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, P. R. China
| | - You-Liang Zeng
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, P. R. China
| | - Wenting Liu
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, P. R. China
| | - Zong-Wan Mao
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, P. R. China
| |
Collapse
|
20
|
Scott L, Chalikian TV. Stabilization of G-Quadruplex-Duplex Hybrid Structures Induced by Minor Groove-Binding Drugs. Life (Basel) 2022; 12:life12040597. [PMID: 35455088 PMCID: PMC9030760 DOI: 10.3390/life12040597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 04/09/2022] [Accepted: 04/13/2022] [Indexed: 11/16/2022] Open
Abstract
Once it had been realized that G-quadruplexes exist in the cell and are involved in regulation of genomic processes, the quest for ligands recognizing these noncanonical structures was underway. Many organic compounds that tightly associate with G-quadruplexes have been identified. However, the specificity of G-quadruplex-binding ligands towards individual structures remains problematic, as the common recognition element of these ligands is the G-tetrad. In this paper, we focus on G-quadruplex-duplex hybrids (QDH) containing a hairpin duplex incorporated as a stem-loop into the G-quadruplex core. The presence of a stem-loop renders QDH amenable to sequence-specific recognition by duplex-binding drugs. Should the thermodynamic crosstalk between the stem-loop and the tetraplex core be sufficiently strong, the drug binding to the loop would lead to the stabilization of the entire structure. We studied the stabilizing influence of the minor groove-binders netropsin and Hoechst 33258 on a family of QDH structures, as well as a G-quadruplex and a hairpin modeling the G-quadruplex core and the stem-loop of the QDH’s. We found that the binding of either drug results in an enhancement of the thermal stability of all DNA structures, as expressed by increases in the melting temperature, TM. Analysis of the hierarchical order of increases in TM revealed that the drug-induced stabilization arises from drug binding to the G-quadruplex domain of a QDH and the stem-loop, if the latter contains an all-AT binding site. This result attests to the thermodynamic crosstalk between the stem-loop and the tetraplex core of a QDH. Given the existing library of minor groove-binding drugs recognizing mixed A·T and G·C DNA sequences, our results point to an untapped avenue for sequence-specific recognition of QDH structures in vitro and, possibly, in vivo; thereby, opening the way for selective stabilization of four-stranded DNA structures at predetermined genomic loci, with implications for the control of genomic events.
Collapse
|
21
|
Kumar S, Ramamurthy C, Choudhary D, Sekar A, Patra A, Bhavesh NS, Vivekanandan P. Contrasting roles for G-quadruplexes in regulating human Bcl-2 and virus homologues KSHV KS-Bcl-2 and EBV BHRF1. Sci Rep 2022; 12:5019. [PMID: 35322051 PMCID: PMC8943185 DOI: 10.1038/s41598-022-08161-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 03/03/2022] [Indexed: 01/14/2023] Open
Abstract
Herpesviruses are known to acquire several genes from their hosts during evolution. We found that a significant proportion of virus homologues encoded by HSV-1, HSV-2, EBV and KSHV and their human counterparts contain G-quadruplex motifs in their promoters. We sought to understand the role of G-quadruplexes in the regulatory regions of viral Bcl-2 homologues encoded by KSHV (KS-Bcl-2) and EBV (BHRF1). We demonstrate that the KSHV KS-Bcl-2 and the EBV BHRF1 promoter G-quadruplex motifs (KSHV-GQ and EBV-GQ) form stable intramolecular G-quadruplexes. Ligand-mediated stabilization of KS-Bcl-2 and BHRF1 promoter G-quadruplexes significantly increased the promoter activity resulting in enhanced transcription of these viral Bcl-2 homologues. Mutations disrupting KSHV-GQ and EBV-GQ inhibit promoter activity and render the KS-Bcl-2 and the BHRF1 promoters non-responsive to G-quadruplex ligand. In contrast, promoter G-quadruplexes of human bcl-2 gene inhibit promoter activity. Further, KS-Bcl-2 and BHRF1 promoter G-quadruplexes augment RTA (a virus-encoded transcription factor)-mediated increase in viral bcl-2 promoter activity. In sum, this work highlights how human herpesviruses have evolved to exploit promoter G-quadruplexes to regulate virus homologues to counter their cellular counterparts.
Collapse
Affiliation(s)
- Shivani Kumar
- Kusuma School of Biological Sciences, Indian Institute of Technology, Delhi, New Delhi, 110016, India
| | - Chitteti Ramamurthy
- Kusuma School of Biological Sciences, Indian Institute of Technology, Delhi, New Delhi, 110016, India
| | - Divya Choudhary
- Department of Chemical Engineering, Indian Institute of Technology, Delhi, New Delhi, 110016, India
| | - Aashika Sekar
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology, Delhi, New Delhi, 110016, India
| | - Anupam Patra
- Transcription Regulation Group, International Centre for Genetic Engineering and Biotechnology, Delhi, New Delhi, 110067, India
| | - Neel Sarovar Bhavesh
- Transcription Regulation Group, International Centre for Genetic Engineering and Biotechnology, Delhi, New Delhi, 110067, India
| | - Perumal Vivekanandan
- Kusuma School of Biological Sciences, Indian Institute of Technology, Delhi, New Delhi, 110016, India.
| |
Collapse
|
22
|
Vianney YM, Weisz K. Indoloquinoline Ligands Favor Intercalation at Quadruplex-Duplex Interfaces. Chemistry 2021; 28:e202103718. [PMID: 34905232 PMCID: PMC9303235 DOI: 10.1002/chem.202103718] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Indexed: 11/30/2022]
Abstract
Quadruplex‐duplex (Q‐D) junctions are increasingly considered promising targets for medicinal and technological applications. Here, a Q‐D hybrid with a hairpin‐type snapback loop coaxially stacked onto the quadruplex 3’‐outer tetrad was designed and employed as a target structure for the indoloquinoline ligand SYUIQ‐5. NMR spectral analysis demonstrated high‐affinity binding of the ligand at the quadruplex‐duplex interface with association constants determined by isothermal titration calorimetry of about 107 M−1 and large exothermicities ΔH° of −14 kcal/mol in a 120 mM K+ buffer at 40 °C. Determination of the ligand‐bound hybrid structure revealed intercalation of SYUIQ‐5 between 3’‐outer tetrad and the neighboring CG base pair, maximizing π–π stacking as well as electrostatic interactions with guanine carbonyl groups in close vicinity to the positively charged protonated quinoline nitrogen of the tetracyclic indoloquinoline. Exhibiting considerable flexibility, the SYUIQ‐5 sidechain resides in the duplex minor groove. Based on comparative binding studies with the non‐substituted N5‐methylated indoloquinoline cryptolepine, the sidechain is suggested to confer additional affinity and to fix the alignment of the intercalated indoloquinoline aromatic core. However, selectivity for the Q‐D junction mostly relies on the geometry and charge distribution of the indoloquinoline ring system. The presented results are expected to provide valuable guidelines for the design of ligands specifically targeting Q‐D interfaces.
Collapse
Affiliation(s)
- Yoanes Maria Vianney
- Universität Greifswald Mathematisch-Naturwissenschaftliche Fakultät: Universitat Greifswald Mathematisch-Naturwissenschaftliche Fakultat, Institut für Biochemie, Felix-Hausdorff-Str. 4, 17489, Greifswald, GERMANY
| | - Klaus Weisz
- Universität Greifswald, Institut für Biochemie, Felix-Hausdorff-Str. 4, 17487, Greifswald, GERMANY
| |
Collapse
|
23
|
Ravichandran S, Razzaq M, Parveen N, Ghosh A, Kim KK. The effect of hairpin loop on the structure and gene expression activity of the long-loop G-quadruplex. Nucleic Acids Res 2021; 49:10689-10706. [PMID: 34450640 PMCID: PMC8501965 DOI: 10.1093/nar/gkab739] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 08/10/2021] [Accepted: 08/24/2021] [Indexed: 12/29/2022] Open
Abstract
G-quadruplex (G4), a four-stranded DNA or RNA structure containing stacks of guanine tetrads, plays regulatory roles in many cellular functions. So far, conventional G4s containing loops of 1–7 nucleotides have been widely studied. Increasing experimental evidence suggests that unconventional G4s, such as G4s containing long loops (long-loop G4s), play a regulatory role in the genome by forming a stable structure. Other secondary structures such as hairpins in the loop might thus contribute to the stability of long-loop G4s. Therefore, investigation of the effect of the hairpin-loops on the structure and function of G4s is required. In this study, we performed a systematic biochemical investigation of model G4s containing long loops with various sizes and structures. We found that the long-loop G4s are less stable than conventional G4s, but their stability increased when the loop forms a hairpin (hairpin-G4). We also verified the biological significance of hairpin-G4s by showing that hairpin-G4s present in the genome also form stable G4s and regulate gene expression as confirmed by in cellulo reporter assays. This study contributes to expanding the scope and diversity of G4s, thus facilitating future studies on the role of G4s in the human genome.
Collapse
Affiliation(s)
- Subramaniyam Ravichandran
- Department of Precision Medicine, Graduate School of Basic Medical Science (GSBMS), Institute for Antimicrobial Resistance Research and Therapeutics, Sungkyunkwan University School of Medicine, Suwon 16419, Republic of Korea
| | - Maria Razzaq
- Department of Precision Medicine, Graduate School of Basic Medical Science (GSBMS), Institute for Antimicrobial Resistance Research and Therapeutics, Sungkyunkwan University School of Medicine, Suwon 16419, Republic of Korea
| | - Nazia Parveen
- Department of Precision Medicine, Graduate School of Basic Medical Science (GSBMS), Institute for Antimicrobial Resistance Research and Therapeutics, Sungkyunkwan University School of Medicine, Suwon 16419, Republic of Korea
| | - Ambarnil Ghosh
- Department of Precision Medicine, Graduate School of Basic Medical Science (GSBMS), Institute for Antimicrobial Resistance Research and Therapeutics, Sungkyunkwan University School of Medicine, Suwon 16419, Republic of Korea
| | - Kyeong Kyu Kim
- Department of Precision Medicine, Graduate School of Basic Medical Science (GSBMS), Institute for Antimicrobial Resistance Research and Therapeutics, Sungkyunkwan University School of Medicine, Suwon 16419, Republic of Korea
| |
Collapse
|
24
|
Teng FY, Jiang ZZ, Guo M, Tan XZ, Chen F, Xi XG, Xu Y. G-quadruplex DNA: a novel target for drug design. Cell Mol Life Sci 2021; 78:6557-6583. [PMID: 34459951 PMCID: PMC11072987 DOI: 10.1007/s00018-021-03921-8] [Citation(s) in RCA: 64] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 07/13/2021] [Accepted: 08/12/2021] [Indexed: 02/08/2023]
Abstract
G-quadruplex (G4) DNA is a type of quadruple helix structure formed by a continuous guanine-rich DNA sequence. Emerging evidence in recent years authenticated that G4 DNA structures exist both in cell-free and cellular systems, and function in different diseases, especially in various cancers, aging, neurological diseases, and have been considered novel promising targets for drug design. In this review, we summarize the detection method and the structure of G4, highlighting some non-canonical G4 DNA structures, such as G4 with a bulge, a vacancy, or a hairpin. Subsequently, the functions of G4 DNA in physiological processes are discussed, especially their regulation of DNA replication, transcription of disease-related genes (c-MYC, BCL-2, KRAS, c-KIT et al.), telomere maintenance, and epigenetic regulation. Typical G4 ligands that target promoters and telomeres for drug design are also reviewed, including ellipticine derivatives, quinoxaline analogs, telomestatin analogs, berberine derivatives, and CX-5461, which is currently in advanced phase I/II clinical trials for patients with hematologic cancer and BRCA1/2-deficient tumors. Furthermore, since the long-term stable existence of G4 DNA structures could result in genomic instability, we summarized the G4 unfolding mechanisms emerged recently by multiple G4-specific DNA helicases, such as Pif1, RecQ family helicases, FANCJ, and DHX36. This review aims to present a general overview of the field of G-quadruplex DNA that has progressed in recent years and provides potential strategies for drug design and disease treatment.
Collapse
Affiliation(s)
- Fang-Yuan Teng
- Experimental Medicine Center, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China
- Cardiovascular and Metabolic Diseases Key Laboratory of Luzhou, and Sichuan Clinical Research Center for Nephropathy, and Academician (Expert) Workstation of Sichuan Province, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Zong-Zhe Jiang
- Experimental Medicine Center, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China
- Cardiovascular and Metabolic Diseases Key Laboratory of Luzhou, and Sichuan Clinical Research Center for Nephropathy, and Academician (Expert) Workstation of Sichuan Province, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Man Guo
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China
- Cardiovascular and Metabolic Diseases Key Laboratory of Luzhou, and Sichuan Clinical Research Center for Nephropathy, and Academician (Expert) Workstation of Sichuan Province, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Xiao-Zhen Tan
- Experimental Medicine Center, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China
- Cardiovascular and Metabolic Diseases Key Laboratory of Luzhou, and Sichuan Clinical Research Center for Nephropathy, and Academician (Expert) Workstation of Sichuan Province, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Feng Chen
- Experimental Medicine Center, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Xu-Guang Xi
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A&F University, Yangling, 712100, Shaanxi, China.
- LBPA, Ecole Normale Supérieure Paris-Saclay, CNRS, Université Paris Saclay, 61, Avenue du Président Wilson, 94235, Cachan, France.
| | - Yong Xu
- Experimental Medicine Center, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China.
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China.
- Cardiovascular and Metabolic Diseases Key Laboratory of Luzhou, and Sichuan Clinical Research Center for Nephropathy, and Academician (Expert) Workstation of Sichuan Province, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China.
| |
Collapse
|
25
|
Ryazantsev DY, Myshkin MY, Alferova VA, Tsvetkov VB, Shustova EY, Kamzeeva PN, Kovalets PV, Zaitseva ER, Baleeva NS, Zatsepin TS, Shenkarev ZO, Baranov MS, Kozlovskaya LI, Aralov AV. Probing GFP Chromophore Analogs as Anti-HIV Agents Targeting LTR-III G-Quadruplex. Biomolecules 2021; 11:biom11101409. [PMID: 34680042 PMCID: PMC8533149 DOI: 10.3390/biom11101409] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Revised: 09/23/2021] [Accepted: 09/23/2021] [Indexed: 12/28/2022] Open
Abstract
Green fluorescent protein (GFP) chromophore and its congeners draw significant attention mostly for bioimaging purposes. In this work we probed these compounds as antiviral agents. We have chosen LTR-III DNA G4, the major G-quadruplex (G4) present in the long terminal repeat (LTR) promoter region of the human immunodeficiency virus-1 (HIV-1), as the target for primary screening and designing antiviral drug candidates. The stabilization of this G4 was previously shown to suppress viral gene expression and replication. FRET-based high-throughput screening (HTS) of 449 GFP chromophore-like compounds revealed a number of hits, sharing some general structural features. Structure-activity relationships (SAR) for the most effective stabilizers allowed us to establish structural fragments, important for G4 binding. Synthetic compounds, developed on the basis of SAR analysis, exhibited high LTR-III G4 stabilization level. NMR spectroscopy and molecular modeling revealed the possible formation of LTR-III G4-ligand complex with one of the lead selective derivative ZS260.1 positioned within the cavity, thus supporting the LTR-III G4 attractiveness for drug targeting. Selected compounds showed moderate activity against HIV-I (EC50 1.78–7.7 μM) in vitro, but the activity was accompanied by pronounced cytotoxicity.
Collapse
Affiliation(s)
- Dmitriy Y. Ryazantsev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia; (D.Y.R.); (M.Y.M.); (V.A.A.); (P.N.K.); (P.V.K.); (E.R.Z.); (N.S.B.); (Z.O.S.); (M.S.B.)
| | - Mikhail Yu. Myshkin
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia; (D.Y.R.); (M.Y.M.); (V.A.A.); (P.N.K.); (P.V.K.); (E.R.Z.); (N.S.B.); (Z.O.S.); (M.S.B.)
| | - Vera A. Alferova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia; (D.Y.R.); (M.Y.M.); (V.A.A.); (P.N.K.); (P.V.K.); (E.R.Z.); (N.S.B.); (Z.O.S.); (M.S.B.)
- Gause Institute of New Antibiotics, B. Pirogovskaya 11, 119021 Moscow, Russia
| | - Vladimir B. Tsvetkov
- World-Class Research Center “Digital Biodesign and Personalized Healthcare”, Sechenov First Moscow State Medical University, 8/2 Trubetskaya Str., 119146 Moscow, Russia;
- Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, 119435 Moscow, Russia
| | - Elena Y. Shustova
- Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of Russian Academy of Sciences, 108819 Moscow, Russia;
| | - Polina N. Kamzeeva
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia; (D.Y.R.); (M.Y.M.); (V.A.A.); (P.N.K.); (P.V.K.); (E.R.Z.); (N.S.B.); (Z.O.S.); (M.S.B.)
- D. Mendeleev University of Chemical Technology of Russia, 9 Miusskaya Sq., 125047 Moscow, Russia
| | - Polina V. Kovalets
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia; (D.Y.R.); (M.Y.M.); (V.A.A.); (P.N.K.); (P.V.K.); (E.R.Z.); (N.S.B.); (Z.O.S.); (M.S.B.)
| | - Elvira R. Zaitseva
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia; (D.Y.R.); (M.Y.M.); (V.A.A.); (P.N.K.); (P.V.K.); (E.R.Z.); (N.S.B.); (Z.O.S.); (M.S.B.)
- D. Mendeleev University of Chemical Technology of Russia, 9 Miusskaya Sq., 125047 Moscow, Russia
| | - Nadezhda S. Baleeva
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia; (D.Y.R.); (M.Y.M.); (V.A.A.); (P.N.K.); (P.V.K.); (E.R.Z.); (N.S.B.); (Z.O.S.); (M.S.B.)
- Pirogov Russian National Research Medical University, Ostrovitianov 1, 117997 Moscow, Russia
| | - Timofei S. Zatsepin
- Center for Life Sciences, Skolkovo Institute of Science and Technology, 121205 Moscow, Russia;
| | - Zakhar O. Shenkarev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia; (D.Y.R.); (M.Y.M.); (V.A.A.); (P.N.K.); (P.V.K.); (E.R.Z.); (N.S.B.); (Z.O.S.); (M.S.B.)
| | - Mikhail S. Baranov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia; (D.Y.R.); (M.Y.M.); (V.A.A.); (P.N.K.); (P.V.K.); (E.R.Z.); (N.S.B.); (Z.O.S.); (M.S.B.)
- Pirogov Russian National Research Medical University, Ostrovitianov 1, 117997 Moscow, Russia
| | - Liubov I. Kozlovskaya
- Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of Russian Academy of Sciences, 108819 Moscow, Russia;
- Sechenov First Moscow State Medical University, 119991 Moscow, Russia
- Correspondence: (L.I.K.); (A.V.A.)
| | - Andrey V. Aralov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia; (D.Y.R.); (M.Y.M.); (V.A.A.); (P.N.K.); (P.V.K.); (E.R.Z.); (N.S.B.); (Z.O.S.); (M.S.B.)
- G4_Interact, USERN, University of Pavia, 27100 Pavia, Italy
- Correspondence: (L.I.K.); (A.V.A.)
| |
Collapse
|
26
|
Liu L, Wang K, Liu W, Zeng Y, Hou M, Yang J, Mao Z. Spatial Matching Selectivity and Solution Structure of Organic–Metal Hybrid to Quadruplex–Duplex Hybrid. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202106256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Liu‐Yi Liu
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry School of Chemistry, State Key Laboratory of Oncology in South China Sun Yat-Sen University Guangzhou 510275 P. R. China
| | - Kang‐Nan Wang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry School of Chemistry, State Key Laboratory of Oncology in South China Sun Yat-Sen University Guangzhou 510275 P. R. China
| | - Wenting Liu
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry School of Chemistry, State Key Laboratory of Oncology in South China Sun Yat-Sen University Guangzhou 510275 P. R. China
| | - You‐Liang Zeng
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry School of Chemistry, State Key Laboratory of Oncology in South China Sun Yat-Sen University Guangzhou 510275 P. R. China
| | - Ming‐Xuan Hou
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry School of Chemistry, State Key Laboratory of Oncology in South China Sun Yat-Sen University Guangzhou 510275 P. R. China
| | - Jing Yang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry School of Chemistry, State Key Laboratory of Oncology in South China Sun Yat-Sen University Guangzhou 510275 P. R. China
| | - Zong‐Wan Mao
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry School of Chemistry, State Key Laboratory of Oncology in South China Sun Yat-Sen University Guangzhou 510275 P. R. China
| |
Collapse
|
27
|
Gudanis D, Zielińska K, Baranowski D, Kierzek R, Kozłowski P, Gdaniec Z. Impact of a Single Nucleotide Change or Non-Nucleoside Modifications in G-Rich Region on the Quadruplex-Duplex Hybrid Formation. Biomolecules 2021; 11:biom11081236. [PMID: 34439902 PMCID: PMC8392043 DOI: 10.3390/biom11081236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 08/13/2021] [Accepted: 08/15/2021] [Indexed: 12/02/2022] Open
Abstract
In this paper, a method to discriminate between two target RNA sequences that differ by one nucleotide only is presented. The method relies on the formation of alternative structures, i.e., quadruplex–duplex hybrid (QDH) and duplex with dangling ends (Dss), after hybridization of DNA or RNA G-rich oligonucleotides with target sequences containing 5′–GGGCUGG–3′ or 5′–GGGCGGG–3′ fragments. Using biophysical methods, we studied the effect of oligonucleotide types (DNA, RNA), non-nucleotide modifications (aliphatic linkers or abasic), and covalently attached G4 ligand on the ability of G-rich oligonucleotides to assemble a G-quadruplex motif. We demonstrated that all examined non-nucleotide modifications could mimic the external loops in the G-quadruplex domain of QDH structures without affecting their stability. Additionally, some modifications, in particular the presence of two abasic residues in the G-rich oligonucleotide, can induce the formation of non-canonical QDH instead of the Dss structure upon hybridization to a target sequence containing the GGGCUGG motif. Our results offer new insight into the sequential requirements for the formation of G-quadruplexes and provide important data on the effects of non-nucleotide modifications on G-quadruplex formation.
Collapse
Affiliation(s)
- Dorota Gudanis
- Correspondence: (D.G.); (Z.G.); Tel.: +48-61-852-85-03 (ext. 1286) (D.G.)
| | | | | | | | | | - Zofia Gdaniec
- Correspondence: (D.G.); (Z.G.); Tel.: +48-61-852-85-03 (ext. 1286) (D.G.)
| |
Collapse
|
28
|
Serrano-Chacón I, Mir B, Escaja N, González C. Structure of i-Motif/Duplex Junctions at Neutral pH. J Am Chem Soc 2021; 143:12919-12923. [PMID: 34370473 PMCID: PMC8397320 DOI: 10.1021/jacs.1c04679] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
We report here the three-dimensional structure of an i-motif/duplex junction, determined by NMR methods at neutral pH. By including a minor groove tetrad at one side of the C:C+ stack of a monomeric i-motif, and a stem/loop hairpin at the other side, we have designed stable DNA constructs in which i-DNA and B-DNA regions coexist in a wide range of experimental conditions. This study demonstrates that i- and B-DNA are structurally compatible, giving rise to a distinctive fold with peculiar groove shapes. The effect of different residues at the i-motif/duplex interface has been explored. We also show that these constructs can be adapted to sequences of biological relevance, like that found in the promoter region of the KRAS oncogene.
Collapse
Affiliation(s)
| | - Bartomeu Mir
- Inorganic and Organic Chemistry Department, Organic Chemistry Section, and IBUB, University of Barcelona, Martí i Franquès 1-11, 08028 Barcelona, Spain
| | - Núria Escaja
- Inorganic and Organic Chemistry Department, Organic Chemistry Section, and IBUB, University of Barcelona, Martí i Franquès 1-11, 08028 Barcelona, Spain.,BIOESTRAN associated unit UB-CSIC, 08028 Barcelona, Spain
| | - Carlos González
- Instituto de Química Física 'Rocasolano', CSIC, Serrano 119, 28006 Madrid, Spain.,BIOESTRAN associated unit UB-CSIC, 08028 Barcelona, Spain
| |
Collapse
|
29
|
Yang M, Carter S, Parmar S, Bume DD, Calabrese DR, Liang X, Yazdani K, Xu M, Liu Z, Thiele CJ, Schneekloth JS. Targeting a noncanonical, hairpin-containing G-quadruplex structure from the MYCN gene. Nucleic Acids Res 2021; 49:7856-7869. [PMID: 34289065 DOI: 10.1093/nar/gkab594] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 06/10/2021] [Accepted: 07/20/2021] [Indexed: 11/12/2022] Open
Abstract
The MYCN gene encodes the transcription factor N-Myc, a driver of neuroblastoma (NB). Targeting G-quadruplexes (G4s) with small molecules is attractive strategy to control the expression of undruggable proteins such as N-Myc. However, selective binders to G4s are challenging to identify due to the structural similarity of many G4s. Here, we report the discovery of a small molecule ligand (4) that targets the noncanonical, hairpin containing G4 structure found in the MYCN gene using small molecule microarrays (SMMs). Unlike many G4 binders, the compound was found to bind to a pocket at the base of the hairpin region of the MYCN G4. This compound stabilizes the G4 and has affinity of 3.5 ± 1.6 μM. Moreover, an improved analog, MY-8, suppressed levels of both MYCN and MYCNOS (a lncRNA embedded within the MYCN gene) in NBEB neuroblastoma cells. This work indicates that the approach of targeting complex, hybrid G4 structures that exist throughout the human genome may be an applicable strategy to achieve selectivity for targeting disease-relevant genes including protein coding (MYCN) as well as non-coding (MYCNOS) gene products.
Collapse
Affiliation(s)
- Mo Yang
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702-1201, USA
| | - Sakereh Carter
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892-1928, USA
| | - Shaifaly Parmar
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702-1201, USA
| | - Desta D Bume
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702-1201, USA
| | - David R Calabrese
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702-1201, USA
| | - Xiao Liang
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702-1201, USA
| | - Kamyar Yazdani
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702-1201, USA
| | - Man Xu
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892-1928, USA
| | - Zhihui Liu
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892-1928, USA
| | - Carol J Thiele
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892-1928, USA
| | - John S Schneekloth
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702-1201, USA
| |
Collapse
|
30
|
Liu LY, Wang KN, Liu W, Zeng YL, Hou MX, Yang J, Mao ZW. Spatial Matching Selectivity and Solution Structure of Organic-Metal Hybrid to Quadruplex-Duplex Hybrid. Angew Chem Int Ed Engl 2021; 60:20833-20839. [PMID: 34288320 DOI: 10.1002/anie.202106256] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Revised: 06/27/2021] [Indexed: 12/16/2022]
Abstract
The sequence-dependent DNA secondary structures possess structure polymorphism. To date, studies on regulated ligands mainly focus on individual DNA secondary topologies, while lack focus on quadruplex-duplex hybrids (QDHs). Here, we design an organic-metal hybrid ligand L1 Pt(dien), which matches and selectively binds one type of QDHs with lateral duplex stem-loop (QLDH) with high affinity, while shows poor affinity for other QDHs and individual G4 or duplex DNA. The solution structure of QLDH MYT1L-L1 Pt(dien) complex was determined by NMR. The structure reveals that L1 Pt(dien) presents a chair-type conformation, whose large aromatic "chair surface" intercalates into the G-quadruplex-duplex interface via π-π stacking and "backrest" platinum unit interacts with duplex region through hydrogen bonding and electrostatic interactions, showing a highly matched lock-key binding mode. Our work provided guidance for spatial matching design of selectively targeting ligands to QDH structures.
Collapse
Affiliation(s)
- Liu-Yi Liu
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, State Key Laboratory of Oncology in South China, Sun Yat-Sen University, Guangzhou, 510275, P. R. China
| | - Kang-Nan Wang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, State Key Laboratory of Oncology in South China, Sun Yat-Sen University, Guangzhou, 510275, P. R. China
| | - Wenting Liu
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, State Key Laboratory of Oncology in South China, Sun Yat-Sen University, Guangzhou, 510275, P. R. China
| | - You-Liang Zeng
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, State Key Laboratory of Oncology in South China, Sun Yat-Sen University, Guangzhou, 510275, P. R. China
| | - Ming-Xuan Hou
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, State Key Laboratory of Oncology in South China, Sun Yat-Sen University, Guangzhou, 510275, P. R. China
| | - Jing Yang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, State Key Laboratory of Oncology in South China, Sun Yat-Sen University, Guangzhou, 510275, P. R. China
| | - Zong-Wan Mao
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, State Key Laboratory of Oncology in South China, Sun Yat-Sen University, Guangzhou, 510275, P. R. China
| |
Collapse
|
31
|
Díaz-Casado L, Serrano-Chacón I, Montalvillo-Jiménez L, Corzana F, Bastida A, Santana AG, González C, Asensio JL. De Novo Design of Selective Quadruplex-Duplex Junction Ligands and Structural Characterisation of Their Binding Mode: Targeting the G4 Hot-Spot. Chemistry 2021; 27:6204-6212. [PMID: 33368678 DOI: 10.1002/chem.202005026] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Indexed: 01/03/2023]
Abstract
Targeting the interface between DNA quadruplex and duplex regions by small molecules holds significant promise in both therapeutics and nanotechnology. Herein, a new pharmacophore is reported, which selectively binds with high affinity to quadruplex-duplex junctions, while presenting a poorer affinity for G-quadruplex or duplex DNA alone. Ligands complying with the reported pharmacophore exhibit a significant affinity and selectivity for quadruplex-duplex junctions, including the one observed in the HIV-1 LTR-III sequence. The structure of the complex between a quadruplex-duplex junction with a ligand of this family has been determined by NMR methods. According to these data, the remarkable selectivity of this structural motif for quadruplex-duplex junctions is achieved through an unprecedented interaction mode so far unexploited in medicinal and biological chemistry: the insertion of a benzylic ammonium moiety into the centre of the partially exposed G-tetrad at the interface with the duplex. Further decoration of the described scaffolds with additional fragments opens up the road to the development of selective ligands for G-quadruplex-forming regions of the genome.
Collapse
Affiliation(s)
- Laura Díaz-Casado
- Glycochemistry and Molecular Recognition group-Dpt. Bio-Organic Chemistry, Instituto de Química Orgánica General (IQOG-CSIC), Juan de la Cierva 3., 28006, Madrid, Spain
| | - Israel Serrano-Chacón
- Instituto de Química-Física Rocasolano (IQFR-CSIC), Serrano 119., 28006, Madrid, Spain
| | - Laura Montalvillo-Jiménez
- Glycochemistry and Molecular Recognition group-Dpt. Bio-Organic Chemistry, Instituto de Química Orgánica General (IQOG-CSIC), Juan de la Cierva 3., 28006, Madrid, Spain
| | - Francisco Corzana
- Department of Chemistry, Centro de Investigación en Síntesis Química, Universidad de La Rioja, Madre de Dios, 53., 26006, Logroño, Spain
| | - Agatha Bastida
- Glycochemistry and Molecular Recognition group-Dpt. Bio-Organic Chemistry, Instituto de Química Orgánica General (IQOG-CSIC), Juan de la Cierva 3., 28006, Madrid, Spain
| | - Andrés G Santana
- Glycochemistry and Molecular Recognition group-Dpt. Bio-Organic Chemistry, Instituto de Química Orgánica General (IQOG-CSIC), Juan de la Cierva 3., 28006, Madrid, Spain
| | - Carlos González
- Instituto de Química-Física Rocasolano (IQFR-CSIC), Serrano 119., 28006, Madrid, Spain
| | - Juan Luis Asensio
- Glycochemistry and Molecular Recognition group-Dpt. Bio-Organic Chemistry, Instituto de Química Orgánica General (IQOG-CSIC), Juan de la Cierva 3., 28006, Madrid, Spain
| |
Collapse
|
32
|
Tan DJY, Winnerdy FR, Lim KW, Phan AT. Coexistence of two quadruplex-duplex hybrids in the PIM1 gene. Nucleic Acids Res 2020; 48:11162-11171. [PMID: 32976598 PMCID: PMC7641742 DOI: 10.1093/nar/gkaa752] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Revised: 08/26/2020] [Accepted: 08/31/2020] [Indexed: 12/31/2022] Open
Abstract
The triple-negative breast cancer (TNBC), a subtype of breast cancer which lacks of targeted therapies, exhibits a poor prognosis. It was shown recently that the PIM1 oncogene is highly related to the proliferation of TNBC cells. A quadruplex-duplex hybrid (QDH) forming sequence was recently found to exist near the transcription start site of PIM1. This structure could be an attractive target for regulation of the PIM1 gene expression and thus the treatment of TNBC. Here, we present the solution structures of two QDHs that could coexist in the human PIM1 gene. Form 1 is a three-G-tetrad-layered (3+1) G-quadruplex containing a propeller loop, a lateral loop and a stem-loop made up of three G•C Watson-Crick base pairs. On the other hand, Form 2 is an anti-parallel G-quadruplex comprising two G-tetrads and a G•C•G•C tetrad; the structure has three lateral loops with the middle stem-loop made up of two Watson-Crick G•C base pairs. These structures provide valuable information for the design of G-quadruplex-specific ligands for PIM1 transcription regulation.
Collapse
Affiliation(s)
- Derrick J Y Tan
- School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore
| | - Fernaldo Richtia Winnerdy
- School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore
| | - Kah Wai Lim
- School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore
| | - Anh Tuân Phan
- School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore.,NTU Institute of Structural Biology, Nanyang Technological University, Singapore 636921, Singapore
| |
Collapse
|
33
|
Vianney YM, Preckwinkel P, Mohr S, Weisz K. Quadruplex-Duplex Junction: A High-Affinity Binding Site for Indoloquinoline Ligands. Chemistry 2020; 26:16910-16922. [PMID: 32975874 PMCID: PMC7756412 DOI: 10.1002/chem.202003540] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 09/21/2020] [Indexed: 12/23/2022]
Abstract
A parallel quadruplex derived from the Myc promoter sequence was extended by a stem-loop duplex at either its 5'- or 3'-terminus to mimic a quadruplex-duplex (Q-D) junction as a potential genomic target. High-resolution structures of the hybrids demonstrate continuous stacking of the duplex on the quadruplex core without significant perturbations. An indoloquinoline ligand carrying an aminoalkyl side chain was shown to bind the Q-D hybrids with a very high affinity in the order Ka ≈107 m-1 irrespective of the duplex location at the quadruplex 3'- or 5'-end. NMR chemical shift perturbations identified the tetrad face of the Q-D junction as specific binding site for the ligand. However, calorimetric analyses revealed significant differences in the thermodynamic profiles upon binding to hybrids with either a duplex extension at the quadruplex 3'- or 5'-terminus. A large enthalpic gain and considerable hydrophobic effects are accompanied by the binding of one ligand to the 3'-Q-D junction, whereas non-hydrophobic entropic contributions favor binding with formation of a 2:1 ligand-quadruplex complex in case of the 5'-Q-D hybrid.
Collapse
Affiliation(s)
- Yoanes Maria Vianney
- Institute of Biochemistry, Universität Greifswald, Felix-Hausdorff-Str. 4, 17487, Greifswald, Germany
| | - Pit Preckwinkel
- Institute of Biochemistry, Universität Greifswald, Felix-Hausdorff-Str. 4, 17487, Greifswald, Germany
| | - Swantje Mohr
- Institute of Biochemistry, Universität Greifswald, Felix-Hausdorff-Str. 4, 17487, Greifswald, Germany
| | - Klaus Weisz
- Institute of Biochemistry, Universität Greifswald, Felix-Hausdorff-Str. 4, 17487, Greifswald, Germany
| |
Collapse
|
34
|
Ngoc Nguyen TQ, Lim KW, Phan AT. Duplex formation in a G-quadruplex bulge. Nucleic Acids Res 2020; 48:10567-10575. [PMID: 32960213 PMCID: PMC7544226 DOI: 10.1093/nar/gkaa738] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 08/21/2020] [Accepted: 08/31/2020] [Indexed: 01/05/2023] Open
Abstract
Beyond the consensus definition of G-quadruplex-forming motifs with tracts of continuous guanines, G-quadruplexes harboring bulges in the G-tetrad core are prevalent in the human genome. Here, we study the incorporation of a duplex hairpin within a bulge of a G-quadruplex. The NMR solution structure of a G-quadruplex containing a duplex bulge was resolved, revealing the structural details of the junction between the duplex bulge and the G-quadruplex. Unexpectedly, instead of an orthogonal connection the duplex stem was observed to stack below the G-quadruplex forming a unique quadruplex–duplex junction. Breaking up of the immediate base pair step at the junction, coupled with a narrowing of the duplex groove within the context of the bulge, led to a progressive transition between the quadruplex and duplex segments. This study revealed that a duplex bulge can be formed at various positions of a G-quadruplex scaffold. In contrast to a non-structured bulge, the stability of a G-quadruplex slightly increases with an increase in the duplex bulge size. A G-quadruplex structure containing a duplex bulge of up to 33 nt in size was shown to form, which was much larger than the previously reported 7-nt bulge. With G-quadruplexes containing duplex bulges representing new structural motifs with potential biological significance, our findings would broaden the definition of potential G-quadruplex-forming sequences.
Collapse
Affiliation(s)
- Thi Quynh Ngoc Nguyen
- School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore
| | - Kah Wai Lim
- School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore
| | - Anh Tuân Phan
- School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore.,NTU Institute of Structural Biology, Nanyang Technological University, Singapore 636921, Singapore
| |
Collapse
|
35
|
Gudanis D, Kaniowski D, Kulik K, Baranowski D, Gdaniec Z, Nawrot B. Formation of an RNA Quadruplex-Duplex Hybrid in Living Cells between mRNA of the Epidermal Growth Factor Receptor (EGFR) and a G-Rich Antisense Oligoribonucleotide. Cells 2020; 9:cells9112375. [PMID: 33138194 PMCID: PMC7692301 DOI: 10.3390/cells9112375] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 10/23/2020] [Accepted: 10/26/2020] [Indexed: 02/07/2023] Open
Abstract
Antisense DNA oligonucleotides, short interfering RNAs (siRNAs), and CRISPR/Cas9 genetic tools are the most useful therapeutic nucleic acids regulating gene expression based on the antisense specificity towards messenger RNA. Here, we present an effective novel strategy for inhibiting translation based on the antisense-controlled formation of an RNA quadruplex-duplex hybrid (QDH) between a G-rich RNA antisense oligoribonucleotide (Q-ASO) and specific mRNA, comprising two distant G-tracts. We selected epidermal growth factor receptor (EGFR) as a well-established target protein in anticancer therapy. The chemically modified, bi-functional anti-EGFR Q-ASO and a 56-nt long EGFR mRNA fragment, in the presence of potassium ions, were shown to form in vitro very stable parallel G-quadruplex containing a 28-nt long external loop folding to two duplex-stem structure. Besides, the Q-ASOs effectively reduced EGFR mRNA levels compared to the non-modified RNA and DNA antisense oligonucleotides (rASO, dASO). In addition, the hybridization specificity of Q-ASO comprising a covalently attached fluorescent tag was confirmed in living cells by visualization of the G4 green fluorescent species in the presence of other antisense inhibitors under competitive conditions. The results presented here offer novel insights into the potential application of Q-ASOs for the detection and/or alteration of (patho)biological processes through RNA:RNA quadruplex-duplex formation in cellular systems.
Collapse
Affiliation(s)
- Dorota Gudanis
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, 61-704 Poznan, Poland; (D.B.); (Z.G.)
- Correspondence: ; Tel.: +48-61-852-85-03 (ext. 1286)
| | - Damian Kaniowski
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, 90-363 Lodz, Poland; (D.K.); (K.K.); (B.N.)
| | - Katarzyna Kulik
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, 90-363 Lodz, Poland; (D.K.); (K.K.); (B.N.)
| | - Daniel Baranowski
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, 61-704 Poznan, Poland; (D.B.); (Z.G.)
| | - Zofia Gdaniec
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, 61-704 Poznan, Poland; (D.B.); (Z.G.)
| | - Barbara Nawrot
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, 90-363 Lodz, Poland; (D.K.); (K.K.); (B.N.)
| |
Collapse
|
36
|
Kumar S, Choudhary D, Patra A, Bhavesh NS, Vivekanandan P. Analysis of G-quadruplexes upstream of herpesvirus miRNAs: evidence of G-quadruplex mediated regulation of KSHV miR-K12-1-9,11 cluster and HCMV miR-US33. BMC Mol Cell Biol 2020; 21:67. [PMID: 32972365 PMCID: PMC7513282 DOI: 10.1186/s12860-020-00306-w] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 08/24/2020] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND G-quadruplexes regulate gene expression, recombination, packaging and latency in herpesviruses. Herpesvirus-encoded miRNAs have been linked to important biological functions. The presence and the biological role of G-quadruplexes have not been studied in the regulatory regions of virus miRNA. We hypothesized that herpesvirus-encoded miRNAs are regulated by G-quadruplexes in their promoters. RESULTS We analyzed the 1 kb regulatory regions of all herpesvirus-encoded miRNAs for the presence of putative quadruplex-forming sequences (PQS). Over two-third (67%) of the regulatory regions of herpesvirus miRNAs had atleast 1 PQS. The 200 bp region of the promoter proximal to herpesvirus miRNA is particularly enriched for PQS. We chose to study the G-quadruplex motifs in the promoters of miR-K12 cluster in Kaposi's sarcoma-associated Herpesvirus (KSHV miR-K12-1-9,11) and the miR-US33 encoded by Human Cytomegalovirus (HCMV miR-US33). Biophysical characterization indicates that the G-quadruplex motifs in the promoters of the KSHV miR-K12 cluster and the HCMV miR-US33 form stable intramolecular G-quadruplexes in vitro. Mutations disrupting the G-quadruplex motif in the promoter of the KSHV miR-K12 cluster significantly inhibits promoter activity, while those disrupting the motif in the promoter of HCMV miR-US33 significantly enhance the promoter activity as compared to that of the respective wild-type promoter. Similarly, the addition of G-quadruplex binding ligands resulted in the modulation of promoter activity of the wild-type promoters (with intact G-quadruplex) but not the mutant promoters (containing quadruplex-disrupting mutations). CONCLUSION Our findings highlight previously unknown mechanisms of regulation of virus-encoded miRNA and also shed light on new roles for G-quadruplexes in herpesvirus biology.
Collapse
Affiliation(s)
- Shivani Kumar
- Kusuma School of Biological Sciences, Indian Institute of Technology Delhi, New Delhi, India
| | - Divya Choudhary
- Department of Chemical Engineering, Indian Institute of Technology Delhi, New Delhi, India
| | - Anupam Patra
- Transcription Regulation Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Neel Sarovar Bhavesh
- Transcription Regulation Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Perumal Vivekanandan
- Kusuma School of Biological Sciences, Indian Institute of Technology Delhi, New Delhi, India
| |
Collapse
|
37
|
Cao Y, Li W, Gao T, Ding P, Pei R. One Terminal Guanosine Flip of Intramolecular Parallel G-Quadruplex: Catalytic Enhancement of G-Quadruplex/Hemin DNAzymes. Chemistry 2020; 26:8631-8638. [PMID: 32428287 DOI: 10.1002/chem.202001462] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 05/13/2020] [Indexed: 11/09/2022]
Abstract
Numerous studies have shown compelling evidence that incorporation of an inversion of polarity site (IPS) in G-rich sequences can affect the topological and structural characteristics of G-quadruplexes (G4s). Herein, the influence of IPS on the formation of a previously studied intramolecular parallel G4 of d(G3 TG3 TG3 TG3 ) (TTT) and its stacked higher-order structures is explored. Insertion of 3'-3' or 5'-5' IPS did not change the parallel folding pattern of TTT. However, both the species and position of the IPS in TTT have a significant impact on the G4 stability and end-stacking through the alteration of G4-G4 interfaces properties. The data demonstrate that one base flip in each terminal G-tetrad can stabilize parallel G4s and facilitate intermolecular packing of monomeric G4s. Such modifications can also enhance the fluorescence and enzymatic performances by promoting interactions between parallel G4s with N-methyl mesoporphyrin IX (NMM) and hemin, respectively.
Collapse
Affiliation(s)
- Yanwei Cao
- CAS Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionic, Chinese Academy of Sciences, Suzhou, 215123, P. R. China
| | - Wenjing Li
- CAS Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionic, Chinese Academy of Sciences, Suzhou, 215123, P. R. China
| | - Tian Gao
- CAS Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionic, Chinese Academy of Sciences, Suzhou, 215123, P. R. China
| | - Pi Ding
- CAS Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionic, Chinese Academy of Sciences, Suzhou, 215123, P. R. China
| | - Renjun Pei
- CAS Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionic, Chinese Academy of Sciences, Suzhou, 215123, P. R. China
| |
Collapse
|
38
|
Maity A, Winnerdy FR, Chang WD, Chen G, Phan AT. Intra-locked G-quadruplex structures formed by irregular DNA G-rich motifs. Nucleic Acids Res 2020; 48:3315-3327. [PMID: 32100003 PMCID: PMC7102960 DOI: 10.1093/nar/gkaa008] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 12/30/2019] [Accepted: 02/24/2020] [Indexed: 12/14/2022] Open
Abstract
G-rich DNA sequences with tracts of three or more continuous guanines (G≥3) are known to have high propensity to adopt stable G-quadruplex (G4) structures. Bioinformatic analyses suggest high prevalence of G-rich sequences with short G-tracts (G≤2) in the human genome. However, due to limited structural studies, the folding principles of such sequences remain largely unexplored and hence poorly understood. Here, we present the solution NMR structure of a sequence named AT26 consisting of irregularly spaced G2 tracts and two isolated single guanines. The structure is a four-layered G4 featuring two bi-layered blocks, locked between themselves in an unprecedented fashion making it a stable scaffold. In addition to edgewise and propeller-type loops, AT26 also harbors two V-shaped loops: a 2-nt V-shaped loop spanning two G-tetrad layers and a 0-nt V-shaped loop spanning three G-tetrad layers, which are named as VS- and VR-loop respectively, based on their distinct structural features. The intra-lock motif can be a basis for extending the G-tetrad core and a very stable intra-locked G4 can be formed by a sequence with G-tracts of various lengths including several G2 tracts. Findings from this study will aid in understanding the folding of G4 topologies from sequences containing irregularly spaced multiple short G-tracts.
Collapse
Affiliation(s)
- Arijit Maity
- School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore
| | - Fernaldo Richtia Winnerdy
- School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore
| | - Weili Denyse Chang
- School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore
| | - Gang Chen
- School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore
| | - Anh Tuân Phan
- School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore.,NTU Institute of Structural Biology, Nanyang Technological University, Singapore 636921, Singapore
| |
Collapse
|
39
|
Chasing Particularities of Guanine- and Cytosine-Rich DNA Strands. Molecules 2020; 25:molecules25030434. [PMID: 31972988 PMCID: PMC7037129 DOI: 10.3390/molecules25030434] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 01/17/2020] [Accepted: 01/20/2020] [Indexed: 01/17/2023] Open
Abstract
By substitution of natural nucleotides by their abasic analogs (i.e., 1',2'-dideoxyribose phosphate residue) at critically chosen positions within 27-bp DNA constructs originating from the first intron of N-myc gene, we hindered hybridization within the guanine- and cytosine-rich central region and followed formation of non-canonical structures. The impeded hybridization between the complementary strands leads to time-dependent structural transformations of guanine-rich strand that are herein characterized with the use of solution-state NMR, CD spectroscopy, and native polyacrylamide gel electrophoresis. Moreover, the DNA structural changes involve transformation of intra- into inter-molecular G-quadruplex structures that are thermodynamically favored. Intriguingly, the transition occurs in the presence of complementary cytosine-rich strands highlighting the inability of Watson-Crick base-pairing to preclude the transformation between G-quadruplex structures that occurs via intertwining mechanism and corroborates a role of G-quadruplex structures in DNA recombination processes.
Collapse
|
40
|
Kuznetsov VA, Bondarenko V, Wongsurawat T, Yenamandra SP, Jenjaroenpun P. Toward predictive R-loop computational biology: genome-scale prediction of R-loops reveals their association with complex promoter structures, G-quadruplexes and transcriptionally active enhancers. Nucleic Acids Res 2019; 46:7566-7585. [PMID: 29945198 PMCID: PMC6125637 DOI: 10.1093/nar/gky554] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Accepted: 06/08/2018] [Indexed: 12/31/2022] Open
Abstract
R-loops are three-stranded RNA:DNA hybrid structures essential for many normal and pathobiological processes. Previously, we generated a quantitative R-loop forming sequence (RLFS) model, quantitative model of R-loop-forming sequences (QmRLFS) and predicted ∼660 000 RLFSs; most of them located in genes and gene-flanking regions, G-rich regions and disease-associated genomic loci in the human genome. Here, we conducted a comprehensive comparative analysis of these RLFSs using experimental data and demonstrated the high performance of QmRLFS predictions on the nucleotide and genome scales. The preferential co-localization of RLFS with promoters, U1 splice sites, gene ends, enhancers and non-B DNA structures, such as G-quadruplexes, provides evidence for the mechanical linkage between DNA tertiary structures, transcription initiation and R-loops in critical regulatory genome regions. We introduced and characterized an abundant class of reverse-forward RLFS clusters highly enriched in non-B DNA structures, which localized to promoters, gene ends and enhancers. The RLFS co-localization with promoters and transcriptionally active enhancers suggested new models for in cis and in trans regulation by RNA:DNA hybrids of transcription initiation and formation of 3D-chromatin loops. Overall, this study provides a rationale for the discovery and characterization of the non-B DNA regulatory structures involved in the formation of the RNA:DNA interactome as the basis for an emerging quantitative R-loop biology and pathobiology.
Collapse
Affiliation(s)
- Vladimir A Kuznetsov
- Bioinformatics Institute, Agency for Science, Technology and Research (A*STAR), Singapore 138671, Singapore.,Department of Urology, Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| | - Vladyslav Bondarenko
- Bioinformatics Institute, Agency for Science, Technology and Research (A*STAR), Singapore 138671, Singapore
| | - Thidathip Wongsurawat
- Bioinformatics Institute, Agency for Science, Technology and Research (A*STAR), Singapore 138671, Singapore.,Department of Biomedical Informatics, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Surya P Yenamandra
- Bioinformatics Institute, Agency for Science, Technology and Research (A*STAR), Singapore 138671, Singapore
| | - Piroon Jenjaroenpun
- Bioinformatics Institute, Agency for Science, Technology and Research (A*STAR), Singapore 138671, Singapore.,Department of Biomedical Informatics, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| |
Collapse
|
41
|
Karg B, Mohr S, Weisz K. Duplex‐Guided Refolding into Novel G‐Quadruplex (3+1) Hybrid Conformations. Angew Chem Int Ed Engl 2019; 58:11068-11071. [DOI: 10.1002/anie.201905372] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Indexed: 01/01/2023]
Affiliation(s)
- Beatrice Karg
- Institut für BiochemieUniversität Greifswald Felix-Hausdorff-Str. 4 17487 Greifswald Germany
| | - Swantje Mohr
- Institut für BiochemieUniversität Greifswald Felix-Hausdorff-Str. 4 17487 Greifswald Germany
| | - Klaus Weisz
- Institut für BiochemieUniversität Greifswald Felix-Hausdorff-Str. 4 17487 Greifswald Germany
| |
Collapse
|
42
|
Lightfoot HL, Hagen T, Tatum NJ, Hall J. The diverse structural landscape of quadruplexes. FEBS Lett 2019; 593:2083-2102. [PMID: 31325371 DOI: 10.1002/1873-3468.13547] [Citation(s) in RCA: 88] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2019] [Revised: 07/09/2019] [Accepted: 07/15/2019] [Indexed: 12/15/2022]
Abstract
G-quadruplexes are secondary structures formed in G-rich sequences in DNA and RNA. Considerable research over the past three decades has led to in-depth insight into these unusual structures in DNA. Since the more recent exploration into RNA G-quadruplexes, such structures have demonstrated their in cellulo existence, function and roles in pathology. In comparison to Watson-Crick-based secondary structures, most G-quadruplexes display highly redundant structural characteristics. However, numerous reports of G-quadruplex motifs/structures with unique features (e.g. bulges, long loops, vacancy) have recently surfaced, expanding the repertoire of G-quadruplex scaffolds. This review addresses G-quadruplex formation and structure, including recent reports of non-canonical G-quadruplex structures. Improved methods of detection will likely further expand this collection of novel structures and ultimately change the face of quadruplex-RNA targeting as a therapeutic strategy.
Collapse
Affiliation(s)
- Helen L Lightfoot
- Department of Chemistry and Applied Biosciences, Institute of Pharmaceutical Sciences, ETH Zurich, Switzerland
| | - Timo Hagen
- Department of Chemistry and Applied Biosciences, Institute of Pharmaceutical Sciences, ETH Zurich, Switzerland
| | - Natalie J Tatum
- Newcastle Cancer Centre, Northern Institute for Cancer Research, Medical School, Newcastle University, Newcastle upon Tyne, UK
| | - Jonathan Hall
- Department of Chemistry and Applied Biosciences, Institute of Pharmaceutical Sciences, ETH Zurich, Switzerland
| |
Collapse
|
43
|
Karg B, Mohr S, Weisz K. Duplex‐gesteuerte Umfaltung in neuartige G‐Quadruplex‐(3+1)‐ Hybridkonformationen. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201905372] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Beatrice Karg
- Institut für BiochemieUniversität Greifswald Felix-Hausdorff-Straße 4 17487 Greifswald Deutschland
| | - Swantje Mohr
- Institut für BiochemieUniversität Greifswald Felix-Hausdorff-Straße 4 17487 Greifswald Deutschland
| | - Klaus Weisz
- Institut für BiochemieUniversität Greifswald Felix-Hausdorff-Straße 4 17487 Greifswald Deutschland
| |
Collapse
|
44
|
Asamitsu S, Bando T, Sugiyama H. Ligand Design to Acquire Specificity to Intended G-Quadruplex Structures. Chemistry 2018; 25:417-430. [PMID: 30051593 DOI: 10.1002/chem.201802691] [Citation(s) in RCA: 111] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Revised: 07/14/2018] [Indexed: 12/17/2022]
Abstract
A G-quadruplex is a nucleic acid secondary structure that is adopted by guanine-rich sequences, and is considered to be relevant in various pharmacological and biological contexts. G-Quadruplexes have also attracted great attention in the field of DNA nanotechnology because of their extremely high thermal stability and the availability of many defined structures. To date, a large repertory of DNA/RNA G-quadruplex-interactive ligands has been developed by numerous laboratories. Several relevant reviews have also been published that have helped researchers to grasp the full scope of G-quadruplex research from its outset to the present. This review focuses on the G-quadruplex ligands that allow targeting of specific G-quadruplexes. Moreover, unique ligands, successful methodologies, and future perspectives in relation to specific G-quadruplex recognition are also addressed.
Collapse
Affiliation(s)
- Sefan Asamitsu
- Department of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa-Oiwakecho, Sakyo, Kyoto, 606-8502, Japan
| | - Toshikazu Bando
- Department of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa-Oiwakecho, Sakyo, Kyoto, 606-8502, Japan
| | - Hiroshi Sugiyama
- Department of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa-Oiwakecho, Sakyo, Kyoto, 606-8502, Japan.,Institute for Integrated Cell-Material Science (WPI-iCeMS), Kyoto University, Sakyo, Kyoto, 606-8501, Japan
| |
Collapse
|
45
|
Butovskaya E, Heddi B, Bakalar B, Richter SN, Phan AT. Major G-Quadruplex Form of HIV-1 LTR Reveals a (3 + 1) Folding Topology Containing a Stem-Loop. J Am Chem Soc 2018; 140:13654-13662. [PMID: 30299955 PMCID: PMC6202629 DOI: 10.1021/jacs.8b05332] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
![]()
Nucleic
acids can form noncanonical four-stranded structures called
G-quadruplexes. G-quadruplex-forming sequences are found in several
genomes including human and viruses. Previous studies showed that
the G-rich sequence located in the U3 promoter region of the HIV-1
long terminal repeat (LTR) folds into a set of dynamically interchangeable
G-quadruplex structures. G-quadruplexes formed in the LTR could act
as silencer elements to regulate viral transcription. Stabilization
of LTR G-quadruplexes by G-quadruplex-specific ligands resulted in
decreased viral production, suggesting the possibility of targeting
viral G-quadruplex structures for antiviral purposes. Among all the
G-quadruplexes formed in the LTR sequence, LTR-III was shown to be the major G-quadruplex conformation in vitro. Here we report the NMR structure of LTR-III in K+ solution, revealing the formation of a unique quadruplex–duplex
hybrid consisting of a three-layer (3 + 1) G-quadruplex scaffold,
a 12-nt diagonal loop containing a conserved duplex-stem, a 3-nt lateral
loop, a 1-nt propeller loop, and a V-shaped loop. Our structure showed
several distinct features including a quadruplex–duplex junction,
representing an attractive motif for drug targeting. The structure
solved in this study may be used as a promising target to selectively
impair the viral cycle.
Collapse
Affiliation(s)
- Elena Butovskaya
- School of Physical and Mathematical Sciences , Nanyang Technological University , Singapore 637371 , Singapore.,Department of Molecular Medicine , University of Padua , Padua 35121 , Italy
| | - Brahim Heddi
- School of Physical and Mathematical Sciences , Nanyang Technological University , Singapore 637371 , Singapore.,Laboratoire de Biologie et Pharmacologie Appliquée, CNRS, École Normale Supérieure Paris-Saclay , Cachan 94235 , France
| | - Blaž Bakalar
- School of Physical and Mathematical Sciences , Nanyang Technological University , Singapore 637371 , Singapore
| | - Sara N Richter
- Department of Molecular Medicine , University of Padua , Padua 35121 , Italy
| | - Anh Tuân Phan
- School of Physical and Mathematical Sciences , Nanyang Technological University , Singapore 637371 , Singapore
| |
Collapse
|
46
|
Szlachta K, Thys RG, Atkin ND, Pierce LCT, Bekiranov S, Wang YH. Alternative DNA secondary structure formation affects RNA polymerase II promoter-proximal pausing in human. Genome Biol 2018; 19:89. [PMID: 30001206 PMCID: PMC6042338 DOI: 10.1186/s13059-018-1463-8] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Accepted: 06/13/2018] [Indexed: 01/24/2023] Open
Abstract
BACKGROUND Alternative DNA secondary structures can arise from single-stranded DNA when duplex DNA is unwound during DNA processes such as transcription, resulting in the regulation or perturbation of these processes. We identify sites of high propensity to form stable DNA secondary structure across the human genome using Mfold and ViennaRNA programs with parameters for analyzing DNA. RESULTS The promoter-proximal regions of genes with paused transcription are significantly and energetically more favorable to form DNA secondary structure than non-paused genes or genes without RNA polymerase II (Pol II) binding. Using Pol II ChIP-seq, GRO-seq, NET-seq, and mNET-seq data, we arrive at a robust set of criteria for Pol II pausing, independent of annotation, and find that a highly stable secondary structure is likely to form about 10-50 nucleotides upstream of a Pol II pausing site. Structure probing data confirm the existence of DNA secondary structures enriched at the promoter-proximal regions of paused genes in human cells. Using an in vitro transcription assay, we demonstrate that Pol II pausing at HSPA1B, a human heat shock gene, is affected by manipulating DNA secondary structure upstream of the pausing site. CONCLUSIONS Our results indicate alternative DNA secondary structure formation as a mechanism for how GC-rich sequences regulate RNA Pol II promoter-proximal pausing genome-wide.
Collapse
Affiliation(s)
- Karol Szlachta
- Department of Biochemistry and Molecular Genetics, University of Virginia, 1340 Jefferson Park Avenue, Charlottesville, VA, 22908-0733, USA
| | - Ryan G Thys
- Department of Biochemistry and Molecular Genetics, University of Virginia, 1340 Jefferson Park Avenue, Charlottesville, VA, 22908-0733, USA
| | - Naomi D Atkin
- Department of Biochemistry and Molecular Genetics, University of Virginia, 1340 Jefferson Park Avenue, Charlottesville, VA, 22908-0733, USA
| | | | - Stefan Bekiranov
- Department of Biochemistry and Molecular Genetics, University of Virginia, 1340 Jefferson Park Avenue, Charlottesville, VA, 22908-0733, USA.
| | - Yuh-Hwa Wang
- Department of Biochemistry and Molecular Genetics, University of Virginia, 1340 Jefferson Park Avenue, Charlottesville, VA, 22908-0733, USA.
| |
Collapse
|
47
|
Chaudhary S, Kaushik M, Kukreti R, Kukreti S. Structural switch from a multistranded G-quadruplex to single strands as a consequence of point mutation in the promoter of the human GRIN1 gene. MOLECULAR BIOSYSTEMS 2018; 13:1805-1816. [PMID: 28702665 DOI: 10.1039/c7mb00360a] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
A huge number of G-rich sequences forming quadruplexes are found in the human genome, especially in telomeric regions, UTRs, and the promoter regions of a number of genes. One such gene is GRIN1 encoding the NR1 subunit of the N-methyl-d-aspartate receptor (NMDA). Several lines of reports have implicated that attenuated function of NMDA results in schizophrenia, a genetic disorder characterized by hallucinations, delusions, and psychosis. Involvement of the GRIN1 gene in the pathogenesis of schizophrenia has been extensively analysed. Recent reports have demonstrated that polymorphism in the promoter region of GRIN1 at position -855 (G/C) has a possible association with schizophrenia. The binding site for the NF-κB transcription factor gets altered due to this mutation, resulting in reduced gene expression as well as NMDA activity. By combining gel electrophoresis (PAGE), circular dichroism (CD) and CD melting techniques, the G → C single nucleotide polymorphism (SNP) at the G-rich sequence (d-CTTAGCCCGAGGAG[combining low line]GGGGGTCCCAAGT; GRIN1) was investigated. We report that the GRIN1 sequence can form an octameric/multistranded quadruplex structure with parallel conformation in the presence of K+ as well as Na+. CD and gel studies are in good correlation in order to detect molecularity and strand conformation. The parallel G-quadruplex species was hypothesized to be octameric in K+/Na+ salts. The mutated sequence (d-CTTAGCCCGAGGAC[combining low line]GGGGGTCCCAAGT; GRIN1M) remained single stranded under physiological conditions. CD melting studies support the formation of an interstranded G-quadruplex structure by the GRIN1 sequence. Two structural models are propounded for a multistranded parallel G-quadruplex conformation which might be responsible for regulating the gene expression normally underlying memory and learning.
Collapse
Affiliation(s)
- Swati Chaudhary
- Nucleic Acids Research Laboratory, Department of Chemistry, University of Delhi, Delhi, India.
| | | | | | | |
Collapse
|
48
|
Asamitsu S, Obata S, Phan AT, Hashiya K, Bando T, Sugiyama H. Simultaneous Binding of Hybrid Molecules Constructed with Dual DNA-Binding Components to a G-Quadruplex and Its Proximal Duplex. Chemistry 2018; 24:4428-4435. [DOI: 10.1002/chem.201705945] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Indexed: 12/24/2022]
Affiliation(s)
- Sefan Asamitsu
- Department of Chemistry; Graduate School of Science Kyoto University, Kitashirakawa-Oiwakecho, Sakyo; Kyoto 606-8502 Japan
| | - Shunsuke Obata
- Department of Chemistry; Graduate School of Science Kyoto University, Kitashirakawa-Oiwakecho, Sakyo; Kyoto 606-8502 Japan
| | - Anh Tuân Phan
- School of Physical and Mathematical Sciences; Nanyang Technological University; Singapore 637371 Singapore
| | - Kaori Hashiya
- Department of Chemistry; Graduate School of Science Kyoto University, Kitashirakawa-Oiwakecho, Sakyo; Kyoto 606-8502 Japan
| | - Toshikazu Bando
- Department of Chemistry; Graduate School of Science Kyoto University, Kitashirakawa-Oiwakecho, Sakyo; Kyoto 606-8502 Japan
| | - Hiroshi Sugiyama
- Department of Chemistry; Graduate School of Science Kyoto University, Kitashirakawa-Oiwakecho, Sakyo; Kyoto 606-8502 Japan
- Institute for Integrated Cell-Material Science (WPI-iCeMS); Kyoto University, Sakyo; Kyoto 606-8501 Japan
| |
Collapse
|
49
|
Guo S, Lu H. Conjunction of potential G-quadruplex and adjacent cis-elements in the 5' UTR of hepatocyte nuclear factor 4-alpha strongly inhibit protein expression. Sci Rep 2017; 7:17444. [PMID: 29234104 PMCID: PMC5727235 DOI: 10.1038/s41598-017-17629-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Accepted: 11/28/2017] [Indexed: 01/11/2023] Open
Abstract
Hepatocyte nuclear factor 4-alpha (HNF4α) is a well established master regulator of liver development and function. We identified the in vitro presence of a stable secondary structure, G-quadruplex (G4) in the 5' UTR of P1-HNF4A, the predominant HNF4α isoform(s) in adult liver. Our data suggest that the cooperation of G4 and the adjacent putative protein-binding sites within the 5' UTR was necessary and sufficient to mediate a strong translational repression. This was supported by analysis of deleted/mutated 5'UTRs and two native regulatory single-nucleotide polymorphisms in the 5'UTR. Additional results indicated that G4 motifs in the 5' UTRs of other liver-enriched transcription factors also inhibited protein expression. Moreover, pyridostatin, a G4 ligand, specifically potentiated the translational suppressing effect of P1-HNF4A-5' UTR. In summary, the present study provides the first evidence of the presence of G4 in human P1-HNF4A-5' UTR in vitro, and establishes a novel working model of strong inhibition of protein translation via interactions of G4 with potential RNA-binding proteins (RBPs). The protein expression of the tumor suppressor HNF4α may be inhibited by interactions of RBPs with the G4 motif in the 5' UTR to promote cell proliferation during liver development and carcinogenesis.
Collapse
Affiliation(s)
- Shangdong Guo
- Department of Pharmacology, SUNY Upstate Medical University, Syracuse, NY, 13210, United States
| | - Hong Lu
- Department of Pharmacology, SUNY Upstate Medical University, Syracuse, NY, 13210, United States.
| |
Collapse
|
50
|
Greco ML, Kotar A, Rigo R, Cristofari C, Plavec J, Sissi C. Coexistence of two main folded G-quadruplexes within a single G-rich domain in the EGFR promoter. Nucleic Acids Res 2017; 45:10132-10142. [PMID: 28973461 PMCID: PMC5737278 DOI: 10.1093/nar/gkx678] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Accepted: 07/22/2017] [Indexed: 12/15/2022] Open
Abstract
EGFR is an oncogene which codifies for a tyrosine kinase receptor that represents an important target for anticancer therapy. Indeed, several human cancers showed an upregulation of the activity of this protein. The promoter of this gene contains some G-rich domains, thus representing a yet unexplored point of intervention to potentially silence this gene. Here, we explore the conformational equilibria of a 30-nt long sequence located at position −272 (EGFR-272). By merging spectroscopic and electrophoretic analysis performed on the wild-type sequence as well as on a wide panel of related mutants, we were able to prove that in potassium ion containing solution this sequence folds into two main G-quadruplex structures, one parallel and one hybrid. They show comparable thermal stabilities and affinities for the metal ion and, indeed, they are always co-present in solution. The folding process is driven by a hairpin occurring in the domain corresponding to the terminal loop which works as an important stabilizing element for both the identified G-quadruplex arrangements.
Collapse
Affiliation(s)
- Maria L Greco
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, v. Marzolo 5, Padova 35131, Italy
| | - Anita Kotar
- Slovenian NMR Center, National Institute of Chemistry, Hajdrihova 19, 1000 Ljubljana, Slovenia
| | - Riccardo Rigo
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, v. Marzolo 5, Padova 35131, Italy
| | - Camilla Cristofari
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, v. Marzolo 5, Padova 35131, Italy
| | - Janez Plavec
- Slovenian NMR Center, National Institute of Chemistry, Hajdrihova 19, 1000 Ljubljana, Slovenia.,EN-FIST Center of Excellence, Trg OF 13, 1000 Ljubljana, Slovenia.,Faculty of Chemistry and Chemical Technology, University of Ljubljana, Večna pot 113, Ljubljana, Slovenia
| | - Claudia Sissi
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, v. Marzolo 5, Padova 35131, Italy
| |
Collapse
|