1
|
Montgomery JS, Judson ME, Foster MP. Protein and DNA Conformational Changes Contribute to Specificity of Cre Recombinase. Biochemistry 2025; 64:1055-1064. [PMID: 39957070 DOI: 10.1021/acs.biochem.4c00841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2025]
Abstract
Cre, a conservative site-specific tyrosine recombinase, is a powerful gene editing tool in the laboratory. Expanded applications in human health are hindered by a lack of understanding of the mechanism by which Cre selectively binds and recombines its cognate loxP sequences. This knowledge is essential for retargeting the enzyme to new sites and for mitigating the effects of off-target recombination. Prior studies have suggested that in addition to a few base-specific contacts to cognate loxP DNA, the enzyme's specificity is enhanced by (1) autoinhibition involving a conformational change in the protein's C-terminal helix and (2) indirect readout via binding-coupled conformational changes in the target DNA. We used isothermal titration calorimetry (ITC), circular dichroism (CD), and heteronuclear NMR spectroscopy to investigate DNA site recognition by wild-type Cre and a deletion mutant lacking the C-terminal helix. ITC of Cre and a C-terminal deletion variant against cognate and noncognate DNA recombinase binding elements (RBEs) reveal that the C-terminus reduces DNA binding affinity by 6-fold toward cognate DNA. Additionally, ITC revealed highly unfavorable binding enthalpy, which, when combined with evidence from CD and NMR of structural differences between cognate and noncognate complexes, supports a model in which binding-coupled DNA bending provides a unique structure-thermodynamic signature of cognate complexes. Together, these findings advance our understanding of site recognition by Cre recombinase.
Collapse
Affiliation(s)
- Jonathan S Montgomery
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
- Ohio State Biochemistry Graduate Program, The Ohio State University, Columbus, Ohio 43210, United States
| | - Megan E Judson
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| | - Mark P Foster
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
- Ohio State Biochemistry Graduate Program, The Ohio State University, Columbus, Ohio 43210, United States
- Biophysics Graduate Program, The Ohio State University, Columbus, Ohio 43210, United States
- Center for RNA Biology, The Ohio State University, Columbus, Ohio 43210, United States
| |
Collapse
|
2
|
Montgomery JS, Judson ME, Foster MP. Protein and DNA Conformational Changes Contribute to Specificity of Cre Recombinase. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.11.627928. [PMID: 39713331 PMCID: PMC11661208 DOI: 10.1101/2024.12.11.627928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/24/2024]
Abstract
Cre, a conservative site-specific tyrosine recombinase, is a powerful gene editing tool in the laboratory. Expanded applications in human health are hindered by lack of understanding of the mechanism by which Cre selectively binds and recombines its cognate loxP sequences. This knowledge is essential for retargeting the enzyme to new sites and for mitigating effects of off-target recombination. Prior studies have suggested that in addition to a few base-specific contacts to cognate loxP DNA, the enzyme's specificity is enhanced by (1) autoinhibition involving a conformational change in the protein's C-terminal helix, and (2) indirect readout via binding-coupled conformational changes in the target DNA. We used isothermal titration calorimetry (ITC), circular dichroism (CD) and heteronuclear NMR spectroscopy to investigate DNA site recognition by wild-type Cre and a deletion mutant lacking the C-terminal helix. ITC of Cre and a C-terminal deletion variant against cognate and non-cognate DNA recombinase binding elements (RBEs) reveal that the C-terminus reduces DNA binding affinity by six-fold towards cognate DNA. Additionally, ITC revealed highly unfavorable binding enthalpy, which when combined with evidence from CD and NMR of structural differences between cognate and non-cognate complexes support a model in which binding-coupled DNA bending provides a unique structure-thermodynamic signature of cognate complexes. Together, these findings advance our understanding of site-recognition by Cre recombinase.
Collapse
Affiliation(s)
- Jonathan S. Montgomery
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio.3
- Ohio State Biochemistry Graduate Program, The Ohio State University, Columbus, Ohio
| | - Megan E. Judson
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio.3
| | - Mark P. Foster
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio.3
- Ohio State Biochemistry Graduate Program, The Ohio State University, Columbus, Ohio
- Biophysics Graduate Program, The Ohio State University, Columbus, Ohio
- Center for RNA Biology. The Ohio State University, Columbus, Ohio
| |
Collapse
|
3
|
Devarajan A. Optically Controlled CRISPR-Cas9 and Cre Recombinase for Spatiotemporal Gene Editing: A Review. ACS Synth Biol 2024; 13:25-44. [PMID: 38134336 DOI: 10.1021/acssynbio.3c00596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2023]
Abstract
CRISPR-Cas9 and Cre recombinase, two tools extensively used for genome interrogation, have catalyzed key breakthroughs in our understanding of complex biological processes and diseases. However, the immense complexity of biological systems and off-target effects hinder clinical applications, necessitating the development of platforms to control gene editing over spatial and temporal dimensions. Among the strategies developed for inducible control, light is particularly attractive as it is noninvasive and affords high spatiotemporal resolution. The principles for optical control of Cas9 and Cre recombinase are broadly similar and involve photocaged enzymes and small molecules, engineered split- and single-chain constructs, light-induced expression, and delivery by light-responsive nanocarriers. Few systems enable spatiotemporal control with a high dynamic range without loss of wild-type editing efficiencies. Such systems posit the promise of light-activatable systems in the clinic. While the prospect of clinical applications is palpably exciting, optimization and extensive preclinical validation are warranted. Judicious integration of optically activated CRISPR and Cre, tailored for the desired application, may help to bridge the "bench-to-bedside" gap in therapeutic gene editing.
Collapse
Affiliation(s)
- Archit Devarajan
- Department of Biological Sciences, Indian Institute of Science Education and Research Bhopal, Bhauri, Bhopal, Madhya Pradesh, India - 462066
| |
Collapse
|
4
|
Zhang H, Fu X, Gong X, Wang Y, Zhang H, Zhao Y, Shen Y. Systematic dissection of key factors governing recombination outcomes by GCE-SCRaMbLE. Nat Commun 2022; 13:5836. [PMID: 36192484 PMCID: PMC9530153 DOI: 10.1038/s41467-022-33606-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 09/26/2022] [Indexed: 11/08/2022] Open
Abstract
With the completion of Sc2.0 chromosomes, synthetic chromosome rearrangement and modification by loxP-mediated evolution (SCRaMbLE) becomes more critical for in-depth investigation of fundamental biological questions and screening of industrially valuable characteristics. Further applications, however, are hindered due to the lack of facile and tight regulation of the SCRaMbLE process, and limited understanding of key factors that may affect the rearrangement outcomes. Here we propose an approach to precisely regulate SCRaMbLE recombination in a dose-dependent manner using genetic code expansion (GCE) technology with low basal activity. By systematically analyzing 1380 derived strains and six yeast pools subjected to GCE-SCRaMbLE, we find that Cre enzyme abundance, genome ploidy and chromosome conformation play key roles in recombination frequencies and determine the SCRaMbLE outcomes. With these insights, the GCE-SCRaMbLE system will serve as a powerful tool in the future exploitation and optimization of the Sc2.0-related technologies.
Collapse
Affiliation(s)
- Huiming Zhang
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
- BGI Research-Shenzhen, BGI, Shenzhen, 518083, China
- Guangdong Provincial Key Laboratory of Genome Read and Write, Shenzhen, 518120, China
| | - Xian Fu
- BGI Research-Shenzhen, BGI, Shenzhen, 518083, China.
- Guangdong Provincial Key Laboratory of Genome Read and Write, Shenzhen, 518120, China.
- BGI Research-Changzhou, BGI, Changzhou, 213000, China.
| | - Xuemei Gong
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
- BGI Research-Shenzhen, BGI, Shenzhen, 518083, China
- Guangdong Provincial Key Laboratory of Genome Read and Write, Shenzhen, 518120, China
| | - Yun Wang
- BGI Research-Shenzhen, BGI, Shenzhen, 518083, China
- Guangdong Provincial Key Laboratory of Genome Read and Write, Shenzhen, 518120, China
- BGI Research-Changzhou, BGI, Changzhou, 213000, China
| | - Haolin Zhang
- BGI Research-Shenzhen, BGI, Shenzhen, 518083, China
- Guangdong Provincial Key Laboratory of Genome Read and Write, Shenzhen, 518120, China
| | - Yu Zhao
- Institute for Systems Genetics and Department of Biochemistry and Molecular Pharmacology, NYU Langone Health, New York, NY, 10016, USA
| | - Yue Shen
- BGI Research-Shenzhen, BGI, Shenzhen, 518083, China.
- Guangdong Provincial Key Laboratory of Genome Read and Write, Shenzhen, 518120, China.
- BGI Research-Changzhou, BGI, Changzhou, 213000, China.
- Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China.
| |
Collapse
|
5
|
Stachowski K, Norris A, Potter D, Wysocki V, Foster M. Mechanisms of Cre recombinase synaptic complex assembly and activation illuminated by Cryo-EM. Nucleic Acids Res 2022; 50:1753-1769. [PMID: 35104890 PMCID: PMC8860596 DOI: 10.1093/nar/gkac032] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 01/04/2022] [Accepted: 01/12/2022] [Indexed: 12/15/2022] Open
Abstract
Cre recombinase selectively recognizes DNA and prevents non-specific DNA cleavage through an orchestrated series of assembly intermediates. Cre recombines two loxP DNA sequences featuring a pair of palindromic recombinase binding elements and an asymmetric spacer region, by assembly of a tetrameric synaptic complex, cleavage of an opposing pair of strands, and formation of a Holliday junction intermediate. We used Cre and loxP variants to isolate the monomeric Cre-loxP (54 kDa), dimeric Cre2-loxP (110 kDa), and tetrameric Cre4-loxP2 assembly intermediates, and determined their structures using cryo-EM to resolutions of 3.9, 4.5 and 3.2 Å, respectively. Progressive and asymmetric bending of the spacer region along the assembly pathway enables formation of increasingly intimate interfaces between Cre protomers and illuminates the structural bases of biased loxP strand cleavage order and half-the-sites activity. Application of 3D variability analysis to the tetramer data reveals constrained conformational sampling along the pathway between protomer activation and Holliday junction isomerization. These findings underscore the importance of protein and DNA flexibility in Cre-mediated site selection, controlled activation of alternating protomers, the basis for biased strand cleavage order, and recombination efficiency. Such considerations may advance development of site-specific recombinases for use in gene editing applications.
Collapse
Affiliation(s)
- Kye Stachowski
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210, USA
| | - Andrew S Norris
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210, USA
- Resource for Native Mass Spectrometry Guided Structural Biology, The Ohio State University, Columbus, OH 43210, USA
| | - Devante Potter
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210, USA
| | - Vicki H Wysocki
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210, USA
- Resource for Native Mass Spectrometry Guided Structural Biology, The Ohio State University, Columbus, OH 43210, USA
| | - Mark P Foster
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
6
|
Hoersten J, Ruiz-Gómez G, Lansing F, Rojo-Romanos T, Schmitt L, Sonntag J, Pisabarro M, Buchholz F. Pairing of single mutations yields obligate Cre-type site-specific recombinases. Nucleic Acids Res 2022; 50:1174-1186. [PMID: 34951450 PMCID: PMC8789052 DOI: 10.1093/nar/gkab1240] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 11/24/2021] [Accepted: 12/06/2021] [Indexed: 12/28/2022] Open
Abstract
Tyrosine site-specific recombinases (SSRs) represent a versatile genome editing tool with considerable therapeutic potential. Recent developments to engineer and evolve SSRs into heterotetramers to improve target site flexibility signified a critical step towards their broad utility in genome editing. However, SSR monomers can form combinations of different homo- and heterotetramers in cells, increasing their off-target potential. Here, we discover that two paired mutations targeting residues implicated in catalysis lead to simple obligate tyrosine SSR systems, where the presence of all distinct subunits to bind as a heterotetramer is obligatory for catalysis. Therefore, only when the paired mutations are applied as single mutations on each recombinase subunit, the engineered SSRs can efficiently recombine the intended target sequence, while the subunits carrying the point mutations expressed in isolation are inactive. We demonstrate the utility of the obligate SSR system to improve recombination specificity of a designer-recombinase for a therapeutic target in human cells. Furthermore, we show that the mutations render the naturally occurring SSRs, Cre and Vika, obligately heteromeric for catalytic proficiency, providing a straight-forward approach to improve their applied properties. These results facilitate the development of safe and effective therapeutic designer-recombinases and advance our mechanistic understanding of SSR catalysis.
Collapse
Affiliation(s)
- Jenna Hoersten
- Medical Faculty and University Hospital Carl Gustav Carus, UCC Section Medical Systems Biology, TU Dresden, 01307 Dresden, Germany
| | - Gloria Ruiz-Gómez
- Structural Bioinformatics, BIOTEC TU Dresden, Tatzberg 47-51, 01307 Dresden, Germany
| | - Felix Lansing
- Medical Faculty and University Hospital Carl Gustav Carus, UCC Section Medical Systems Biology, TU Dresden, 01307 Dresden, Germany
| | - Teresa Rojo-Romanos
- Medical Faculty and University Hospital Carl Gustav Carus, UCC Section Medical Systems Biology, TU Dresden, 01307 Dresden, Germany
| | - Lukas Theo Schmitt
- Medical Faculty and University Hospital Carl Gustav Carus, UCC Section Medical Systems Biology, TU Dresden, 01307 Dresden, Germany
| | - Jan Sonntag
- Medical Faculty and University Hospital Carl Gustav Carus, UCC Section Medical Systems Biology, TU Dresden, 01307 Dresden, Germany
| | - M Teresa Pisabarro
- Structural Bioinformatics, BIOTEC TU Dresden, Tatzberg 47-51, 01307 Dresden, Germany
| | - Frank Buchholz
- Medical Faculty and University Hospital Carl Gustav Carus, UCC Section Medical Systems Biology, TU Dresden, 01307 Dresden, Germany
| |
Collapse
|
7
|
Lansing F, Mukhametzyanova L, Rojo-Romanos T, Iwasawa K, Kimura M, Paszkowski-Rogacz M, Karpinski J, Grass T, Sonntag J, Schneider PM, Günes C, Hoersten J, Schmitt LT, Rodriguez-Muela N, Knöfler R, Takebe T, Buchholz F. Correction of a Factor VIII genomic inversion with designer-recombinases. Nat Commun 2022; 13:422. [PMID: 35058465 PMCID: PMC8776779 DOI: 10.1038/s41467-022-28080-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 12/22/2021] [Indexed: 01/16/2023] Open
Abstract
Despite advances in nuclease-based genome editing technologies, correcting human disease-causing genomic inversions remains a challenge. Here, we describe the potential use of a recombinase-based system to correct the 140 kb inversion of the F8 gene frequently found in patients diagnosed with severe Hemophilia A. Employing substrate-linked directed molecular evolution, we develop a coupled heterodimeric recombinase system (RecF8) achieving 30% inversion of the target sequence in human tissue culture cells. Transient RecF8 treatment of endothelial cells, differentiated from patient-derived induced pluripotent stem cells (iPSCs) of a hemophilic donor, results in 12% correction of the inversion and restores Factor VIII mRNA expression. In this work, we present designer-recombinases as an efficient and specific means towards treatment of monogenic diseases caused by large gene inversions. Correction of disease-causing large genomic inversions remains challenging. Here, the authors developed a dual designer-recombinase system (RecF8) that efficiently corrects a 140 kb inversion frequently found in patients with severe Hemophilia A.
Collapse
|
8
|
Nishizono H, Hayano Y, Nakahata Y, Ishigaki Y, Yasuda R. Rapid generation of conditional knockout mice using the CRISPR-Cas9 system and electroporation for neuroscience research. Mol Brain 2021; 14:148. [PMID: 34556164 PMCID: PMC8461926 DOI: 10.1186/s13041-021-00859-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Accepted: 09/13/2021] [Indexed: 11/10/2022] Open
Abstract
The Cre/LoxP-based conditional knockout technology is a powerful tool for gene function analysis that allows region- and time-specific gene manipulation. However, inserting a pair of LoxP cassettes to generate conditional knockout can be technically challenging and thus time- and resource-consuming. This study proposes an efficient, low-cost method to generate floxed mice using in vitro fertilization and the CRISPR-Cas9 system over two consecutive generations. This method allowed us to produce floxed mice targeting exons 5 and 6 of CaMK1 in a short period of 125 days, using only 16 mice. In addition, we directly edited the genome of fertilized eggs of mice with our target genetic background, C57BL/6 N, to eliminate additional backcrossing steps. We confirmed that the genome of the generated floxed mice was responsive to the Cre protein. This low-cost, time-saving method for generating conditional knockout will facilitate comprehensive, tissue-specific genome analyses.
Collapse
Affiliation(s)
- Hirofumi Nishizono
- Medical Research Institute, Kanazawa Medical University, 1-1 Daigaku, Uchinada, Ishikawa, 920-0293, Japan.
- Max Planck Florida Institute for Neuroscience, 1 Max Planck Way, Jupiter, FL, 33458, USA.
| | - Yuki Hayano
- Max Planck Florida Institute for Neuroscience, 1 Max Planck Way, Jupiter, FL, 33458, USA
| | - Yoshihisa Nakahata
- Max Planck Florida Institute for Neuroscience, 1 Max Planck Way, Jupiter, FL, 33458, USA
| | - Yasuhito Ishigaki
- Medical Research Institute, Kanazawa Medical University, 1-1 Daigaku, Uchinada, Ishikawa, 920-0293, Japan
| | - Ryohei Yasuda
- Max Planck Florida Institute for Neuroscience, 1 Max Planck Way, Jupiter, FL, 33458, USA.
| |
Collapse
|
9
|
DNA binding induces a cis-to- trans switch in Cre recombinase to enable intasome assembly. Proc Natl Acad Sci U S A 2020; 117:24849-24858. [PMID: 32968014 DOI: 10.1073/pnas.2011448117] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Mechanistic understanding of DNA recombination in the Cre-loxP system has largely been guided by crystallographic structures of tetrameric synaptic complexes. Those studies have suggested a role for protein conformational dynamics that has not been well characterized at the atomic level. We used solution nuclear magnetic resonance (NMR) spectroscopy to discover the link between intrinsic flexibility and function in Cre recombinase. Transverse relaxation-optimized spectroscopy (TROSY) NMR spectra show the N-terminal and C-terminal catalytic domains (CreNTD and CreCat) to be structurally independent. Amide 15N relaxation measurements of the CreCat domain reveal fast-timescale dynamics in most regions that exhibit conformational differences in active and inactive Cre protomers in crystallographic tetramers. However, the C-terminal helix αN, implicated in assembly of synaptic complexes and regulation of DNA cleavage activity via trans protein-protein interactions, is unexpectedly rigid in free Cre. Chemical shift perturbations and intra- and intermolecular paramagnetic relaxation enhancement (PRE) NMR data reveal an alternative autoinhibitory conformation for the αN region of free Cre, wherein it packs in cis over the protein DNA binding surface and active site. Moreover, binding to loxP DNA induces a conformational change that dislodges the C terminus, resulting in a cis-to-trans switch that is likely to enable protein-protein interactions required for assembly of recombinogenic Cre intasomes. These findings necessitate a reexamination of the mechanisms by which this widely utilized gene-editing tool selects target sites, avoids spurious DNA cleavage activity, and controls DNA recombination efficiency.
Collapse
|
10
|
Lansing F, Paszkowski-Rogacz M, Schmitt LT, Schneider PM, Rojo Romanos T, Sonntag J, Buchholz F. A heterodimer of evolved designer-recombinases precisely excises a human genomic DNA locus. Nucleic Acids Res 2020; 48:472-485. [PMID: 31745551 PMCID: PMC7107906 DOI: 10.1093/nar/gkz1078] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 10/29/2019] [Accepted: 11/04/2019] [Indexed: 01/04/2023] Open
Abstract
Site-specific recombinases (SSRs) such as the Cre/loxP system are useful genome engineering tools that can be repurposed by altering their DNA-binding specificity. However, SSRs that delete a natural sequence from the human genome have not been reported thus far. Here, we describe the generation of an SSR system that precisely excises a 1.4 kb fragment from the human genome. Through a streamlined process of substrate-linked directed evolution we generated two separate recombinases that, when expressed together, act as a heterodimer to delete a human genomic sequence from chromosome 7. Our data indicates that designer-recombinases can be generated in a manageable timeframe for precision genome editing. A large-scale bioinformatics analysis suggests that around 13% of all human protein-coding genes could be targetable by dual designer-recombinase induced genomic deletion (dDRiGD). We propose that heterospecific designer-recombinases, which work independently of the host DNA repair machinery, represent an efficient and safe alternative to nuclease-based genome editing technologies.
Collapse
Affiliation(s)
- Felix Lansing
- Medical Faculty and University Hospital Carl Gustav Carus, UCC Section Medical Systems Biology, TU Dresden, 01307 Dresden, Germany
| | - Maciej Paszkowski-Rogacz
- Medical Faculty and University Hospital Carl Gustav Carus, UCC Section Medical Systems Biology, TU Dresden, 01307 Dresden, Germany
| | - Lukas Theo Schmitt
- Medical Faculty and University Hospital Carl Gustav Carus, UCC Section Medical Systems Biology, TU Dresden, 01307 Dresden, Germany
| | - Paul Martin Schneider
- Medical Faculty and University Hospital Carl Gustav Carus, UCC Section Medical Systems Biology, TU Dresden, 01307 Dresden, Germany
| | - Teresa Rojo Romanos
- Medical Faculty and University Hospital Carl Gustav Carus, UCC Section Medical Systems Biology, TU Dresden, 01307 Dresden, Germany
| | - Jan Sonntag
- Medical Faculty and University Hospital Carl Gustav Carus, UCC Section Medical Systems Biology, TU Dresden, 01307 Dresden, Germany
| | - Frank Buchholz
- Medical Faculty and University Hospital Carl Gustav Carus, UCC Section Medical Systems Biology, TU Dresden, 01307 Dresden, Germany
| |
Collapse
|
11
|
Bogdanove AJ, Bohm A, Miller JC, Morgan RD, Stoddard BL. Engineering altered protein-DNA recognition specificity. Nucleic Acids Res 2018; 46:4845-4871. [PMID: 29718463 PMCID: PMC6007267 DOI: 10.1093/nar/gky289] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 04/03/2018] [Accepted: 04/06/2018] [Indexed: 02/07/2023] Open
Abstract
Protein engineering is used to generate novel protein folds and assemblages, to impart new properties and functions onto existing proteins, and to enhance our understanding of principles that govern protein structure. While such approaches can be employed to reprogram protein-protein interactions, modifying protein-DNA interactions is more difficult. This may be related to the structural features of protein-DNA interfaces, which display more charged groups, directional hydrogen bonds, ordered solvent molecules and counterions than comparable protein interfaces. Nevertheless, progress has been made in the redesign of protein-DNA specificity, much of it driven by the development of engineered enzymes for genome modification. Here, we summarize the creation of novel DNA specificities for zinc finger proteins, meganucleases, TAL effectors, recombinases and restriction endonucleases. The ease of re-engineering each system is related both to the modularity of the protein and the extent to which the proteins have evolved to be capable of readily modifying their recognition specificities in response to natural selection. The development of engineered DNA binding proteins that display an ideal combination of activity, specificity, deliverability, and outcomes is not a fully solved problem, however each of the current platforms offers unique advantages, offset by behaviors and properties requiring further study and development.
Collapse
Affiliation(s)
- Adam J Bogdanove
- Plant Pathology and Plant-Microbe Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, USA
| | - Andrew Bohm
- Sackler School of Graduate Biomedical Sciences, Tufts University, 136 Harrison Avenue, Boston, MA 02111, USA
| | - Jeffrey C Miller
- Sangamo Therapeutics Inc. 501 Canal Blvd., Richmond, CA 94804, USA
| | - Richard D Morgan
- New England Biolabs, Inc., 240 County Road, Ipswich, MA 01938, USA
| | - Barry L Stoddard
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, 1100 Fairview Ave. N., Seattle, WA 98019, USA
| |
Collapse
|
12
|
Mutations in Gene fusA1 as a Novel Mechanism of Aminoglycoside Resistance in Clinical Strains of Pseudomonas aeruginosa. Antimicrob Agents Chemother 2018; 62:AAC.01835-17. [PMID: 29133559 DOI: 10.1128/aac.01835-17] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Accepted: 11/05/2017] [Indexed: 01/03/2023] Open
Abstract
Resistance of clinical strains of Pseudomonas aeruginosa to aminoglycosides can result from production of transferable aminoglycoside-modifying enzymes, of 16S rRNA methylases, and/or mutational derepression of intrinsic multidrug efflux pump MexXY(OprM). We report here the characterization of a new type of mutant that is 4- to 8-fold more resistant to 2-deoxystreptamine derivatives (e.g., gentamicin, amikacin, and tobramycin) than the wild-type strain PAO1. The genetic alterations of three in vitro mutants were mapped on fusA1 and found to result in single amino acid substitutions in domains II, III, and V of elongation factor G (EF-G1A), a key component of translational machinery. Transfer of the mutated fusA1 alleles into PAO1 reproduced the resistance phenotype. Interestingly, fusA1 mutants with other amino acid changes in domains G, IV, and V of EF-G1A were identified among clinical strains with decreased susceptibility to aminoglycosides. Allelic-exchange experiments confirmed the relevance of these latter mutations and of three other previously reported alterations located in domains G and IV. Pump MexXY(OprM) partly contributed to the resistance conferred by the mutated EF-G1A variants and had additive effects on aminoglycoside MICs when mutationally upregulated. Altogether, our data demonstrate that cystic fibrosis (CF) and non-CF strains of P. aeruginosa can acquire a therapeutically significant resistance to important aminoglycosides via a new mechanism involving mutations in elongation factor EF-G1A.
Collapse
|
13
|
Meinke G, Karpinski J, Buchholz F, Bohm A. Crystal structure of an engineered, HIV-specific recombinase for removal of integrated proviral DNA. Nucleic Acids Res 2017; 45:9726-9740. [PMID: 28934476 PMCID: PMC5766204 DOI: 10.1093/nar/gkx603] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Accepted: 07/06/2017] [Indexed: 01/07/2023] Open
Abstract
As part of the HIV infection cycle, viral DNA inserts into the genome of host cells such that the integrated DNA encoding the viral proteins is flanked by long terminal repeat (LTR) regions from the retrovirus. In an effort to develop novel genome editing techniques that safely excise HIV provirus from cells, Tre, an engineered version of Cre recombinase, was designed to target a 34-bp sequence within the HIV-1 LTR (loxLTR). The sequence targeted by Tre lacks the symmetry present in loxP, the natural DNA substrate for Cre. We report here the crystal structure of a catalytically inactive (Y324F) mutant of this engineered Tre recombinase in complex with the loxLTR DNA substrate. We also report that 17 of the 19 amino acid changes relative to Cre contribute to the altered specificity, even though many of these residues do not contact the DNA directly. We hypothesize that some mutations increase the flexibility of the Cre tetramer and that this, along with flexibility in the DNA, enable the engineered enzyme and DNA substrate to adopt complementary conformations.
Collapse
Affiliation(s)
- Gretchen Meinke
- Department of Developmental, Molecular and Chemical Biology, Tufts University School of Medicine, Boston, MA 02111, USA
| | - Janet Karpinski
- Medical Systems Biology, UCC, Medical Faculty Carl Gustav Carus, TU Dresden, 01307 Dresden, Germany
| | - Frank Buchholz
- Medical Systems Biology, UCC, Medical Faculty Carl Gustav Carus, TU Dresden, 01307 Dresden, Germany,Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, 01307 Dresden, Germany,German Cancer Research Center (DKFZ), Heidelberg and German Cancer Consortium (DKTK) partner site Dresden, 01307 Dresden, Germany,National Center for Tumor Diseases (NCT), University Hospital Carl Gustav Carus, TU Dresden, 01307 Dresden, Germany
| | - Andrew Bohm
- Department of Developmental, Molecular and Chemical Biology, Tufts University School of Medicine, Boston, MA 02111, USA,To whom correspondence should be addressed. Tel: +1 617 636 2994; Fax: +1 617 636 2409;
| |
Collapse
|
14
|
Meinke G, Bohm A, Hauber J, Pisabarro MT, Buchholz F. Cre Recombinase and Other Tyrosine Recombinases. Chem Rev 2016; 116:12785-12820. [PMID: 27163859 DOI: 10.1021/acs.chemrev.6b00077] [Citation(s) in RCA: 95] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Tyrosine-type site-specific recombinases (T-SSRs) have opened new avenues for the predictable modification of genomes as they enable precise genome editing in heterologous hosts. These enzymes are ubiquitous in eubacteria, prevalent in archaea and temperate phages, present in certain yeast strains, but barely found in higher eukaryotes. As tools they find increasing use for the generation and systematic modification of genomes in a plethora of organisms. If applied in host organisms, they enable precise DNA cleavage and ligation without the gain or loss of nucleotides. Criteria directing the choice of the most appropriate T-SSR system for genetic engineering include that, whenever possible, the recombinase should act independent of cofactors and that the target sequences should be long enough to be unique in a given genome. This review is focused on recent advancements in our mechanistic understanding of simple T-SSRs and their application in developmental and synthetic biology, as well as in biomedical research.
Collapse
Affiliation(s)
- Gretchen Meinke
- Department of Developmental, Molecular & Chemical Biology, Tufts University School of Medicine , Boston, Massachusetts 02111, United States
| | - Andrew Bohm
- Department of Developmental, Molecular & Chemical Biology, Tufts University School of Medicine , Boston, Massachusetts 02111, United States
| | - Joachim Hauber
- Heinrich Pette Institute, Leibniz Institute for Experimental Virology , 20251 Hamburg, Germany
| | | | - Frank Buchholz
- Medical Systems Biology, UCC, Medical Faculty Carl Gustav Carus TU Dresden , 01307 Dresden, Germany
| |
Collapse
|