1
|
Pandiyan A, Mallikarjun J, Maheshwari H, Gowrishankar J. Pathological R-loops in bacteria from engineered expression of endogenous antisense RNAs whose synthesis is ordinarily terminated by Rho. Nucleic Acids Res 2024:gkae839. [PMID: 39373509 DOI: 10.1093/nar/gkae839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 08/13/2024] [Accepted: 09/12/2024] [Indexed: 10/08/2024] Open
Abstract
In many bacteria, the essential factors Rho and NusG mediate termination of synthesis of nascent transcripts (including antisense RNAs) that are not being simultaneously translated. It has been proposed that in Rho's absence toxic RNA-DNA hybrids (R-loops) may be generated from nascent untranslated transcripts, and genome-wide mapping studies in Escherichia coli have identified putative loci of R-loop formation from more than 100 endogenous antisense transcripts that are synthesized only in a Rho-deficient strain. Here we provide evidence that engineered expression in wild-type E. coli of several such individual antisense regions on a plasmid or the chromosome generates R-loops that, in an RNase H-modulated manner, serve to disrupt genome integrity. Rho inhibition was associated with increased prevalence of antisense R-loops also in Xanthomonas oryzae pv. oryzae and Caulobacter crescentus. Our results confirm the essential role of Rho in several bacterial genera for prevention of toxic R-loops from pervasive yet cryptic endogenous antisense transcripts. Engineered antisense R-looped regions may be useful for studies on both site-specific impediments to bacterial chromosomal replication and the mechanisms of their resolution.
Collapse
Affiliation(s)
- Apuratha Pandiyan
- Indian Institute of Science Education and Research Mohali, Sector 81, SAS Nagar 140306, Punjab, India
| | - Jillella Mallikarjun
- Indian Institute of Science Education and Research Mohali, Sector 81, SAS Nagar 140306, Punjab, India
- Centre for DNA Fingerprinting and Diagnostics, Uppal Road, Hyderabad 500039, Telengana, India
| | - Himanshi Maheshwari
- Indian Institute of Science Education and Research Mohali, Sector 81, SAS Nagar 140306, Punjab, India
| | - Jayaraman Gowrishankar
- Indian Institute of Science Education and Research Mohali, Sector 81, SAS Nagar 140306, Punjab, India
| |
Collapse
|
2
|
Hu J, Xing Z, Yang H, Zhou Y, Guo L, Zhang X, Xu L, Liu Q, Ye J, Zhong X, Wang J, Lin R, Long E, Jiang J, Chen L, Pan Y, He L, Chen JY. Deep learning-enhanced R-loop prediction provides mechanistic implications for repeat expansion diseases. iScience 2024; 27:110584. [PMID: 39188986 PMCID: PMC11345597 DOI: 10.1016/j.isci.2024.110584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 04/17/2024] [Accepted: 07/22/2024] [Indexed: 08/28/2024] Open
Abstract
R-loops play diverse functional roles, but controversial genomic localization of R-loops have emerged from experimental approaches, posing significant challenges for R-loop research. The development and application of an accurate computational tool for studying human R-loops remains an unmet need. Here, we introduce DeepER, a deep learning-enhanced R-loop prediction tool. DeepER showcases outstanding performance compared to existing tools, facilitating accurate genome-wide annotation of R-loops and a deeper understanding of the position- and context-dependent effects of nucleotide composition on R-loop formation. DeepER also unveils a strong association between certain tandem repeats and R-loop formation, opening a new avenue for understanding the mechanisms underlying some repeat expansion diseases. To facilitate broader utilization, we have developed a user-friendly web server as an integral component of R-loopBase. We anticipate that DeepER will find extensive applications in the field of R-loop research.
Collapse
Affiliation(s)
- Jiyun Hu
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Chemistry and Biomedicine Innovation Center (ChemBIC), Department of Neurology at Nanjing Drum Tower Hospital, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Zetong Xing
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Chemistry and Biomedicine Innovation Center (ChemBIC), Department of Neurology at Nanjing Drum Tower Hospital, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Hongbing Yang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Chemistry and Biomedicine Innovation Center (ChemBIC), Department of Neurology at Nanjing Drum Tower Hospital, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Yongli Zhou
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Chemistry and Biomedicine Innovation Center (ChemBIC), Department of Neurology at Nanjing Drum Tower Hospital, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Liufei Guo
- School of Computer Science and Technology, Xi’an University of Posts and Telecommunications, Xi’an, Shaanxi 710121, China
| | - Xianhong Zhang
- RNA Institute, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, Hubei 430072, China
| | - Longsheng Xu
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Chemistry and Biomedicine Innovation Center (ChemBIC), Department of Neurology at Nanjing Drum Tower Hospital, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Qiong Liu
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Jing Ye
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Chemistry and Biomedicine Innovation Center (ChemBIC), Department of Neurology at Nanjing Drum Tower Hospital, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Xiaoming Zhong
- Center of Excellence for Leukemia Studies, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Jixin Wang
- Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, China
| | - Ruoyao Lin
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Chemistry and Biomedicine Innovation Center (ChemBIC), Department of Neurology at Nanjing Drum Tower Hospital, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Erping Long
- Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, China
| | - Jiewei Jiang
- School of Electronic Engineering, Xi’an University of Posts and Telecommunications, Xi’an, Shaanxi 710121, China
| | - Liang Chen
- RNA Institute, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, Hubei 430072, China
| | - Yongcheng Pan
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Lang He
- School of Computer Science and Technology, Xi’an University of Posts and Telecommunications, Xi’an, Shaanxi 710121, China
| | - Jia-Yu Chen
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Chemistry and Biomedicine Innovation Center (ChemBIC), Department of Neurology at Nanjing Drum Tower Hospital, Nanjing University, Nanjing, Jiangsu 210023, China
- Nanchuang (Jiangsu) Institute of Chemistry and Health, Nanjing, Jiangsu 210023, China
| |
Collapse
|
3
|
Smith SS. The bisulfite reaction with cytosine and genomic DNA structure. Anal Biochem 2024; 691:115532. [PMID: 38609028 DOI: 10.1016/j.ab.2024.115532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 02/19/2024] [Accepted: 04/04/2024] [Indexed: 04/14/2024]
Abstract
The bisulfite reaction with native DNA has been extensively employed in the detection of non-B DNA structures that can form spontaneously in DNA. These sequences are dynamic in that they can adopt both normal Watson-Crick paired B-DNA or unusual structures like the Triplex, G-Quadruplex, i-motif and Cruciform or Hairpin. Considerable evidence now suggests that these dynamic sequences play roles in both epigenetics and mutagenesis. The bisulfite reaction with native DNA offers a key approach to their detection. In this application whole cells, isolated nuclei or isolated DNA are treated with bisulfite under non-denaturing conditions in order to detect bisulfite accessible regions DNA that are associated with these structures. Here I review the stereochemistry of the bisulfite reaction, the electronic structure of its DNA cytosine substrates and its application in the detection of unusual structures in native DNA.
Collapse
Affiliation(s)
- Steven S Smith
- Department of Stem Cell Biology and Regenerative Medicine, Beckman Research Institute of the City of Hope, Duarte, CA, USA.
| |
Collapse
|
4
|
Mukhopadhyay P, Miller H, Stoja A, Bishop AJR. Approaches for Mapping and Analysis of R-loops. Curr Protoc 2024; 4:e1037. [PMID: 38666626 DOI: 10.1002/cpz1.1037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/04/2024]
Abstract
R-loops are nucleic acid structures composed of a DNA:RNA hybrid with a displaced non-template single-stranded DNA. Current approaches to identify and map R-loop formation across the genome employ either an antibody targeted against R-loops (S9.6) or a catalytically inactivated form of RNase H1 (dRNH1), a nuclease that can bind and resolve DNA:RNA hybrids via RNA exonuclease activity. This overview article outlines several ways to map R-loops using either methodology, explaining the differences and similarities among the approaches. Bioinformatic analysis of R-loops involves several layers of quality control and processing before visualizing the data. This article provides resources and tools that can be used to accurately process R-loop mapping data and explains the advantages and disadvantages of the resources as compared to one another. © 2024 Wiley Periodicals LLC.
Collapse
Affiliation(s)
- Pramiti Mukhopadhyay
- Greehey Children's Cancer Research Institute, UT Health San Antonio, San Antonio, Texas
| | | | - Aiola Stoja
- Greehey Children's Cancer Research Institute, UT Health San Antonio, San Antonio, Texas
| | - Alexander J R Bishop
- Greehey Children's Cancer Research Institute, UT Health San Antonio, San Antonio, Texas
| |
Collapse
|
5
|
Miller HE, Montemayor D, Levy S, Sharma K, Frost B, Bishop AJR. RLSuite: An Integrative R-Loop Bioinformatics Framework. JOURNAL OF BIOINFORMATICS AND SYSTEMS BIOLOGY : OPEN ACCESS 2023; 6:364-378. [PMID: 38292828 PMCID: PMC10827345 DOI: 10.26502/jbsb.5107071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
We recently described the development of a database of 810 R-loop mapping datasets and used this data to conduct a meta-analysis of R-loops. R-loops are three-stranded nucleic acid structures containing RNA:DNA hybrids and we were able to verify that 30% of expressed genes have an associated R-loop in a location conserved manner.. Moreover, intergenic R-loops map to enhancers, super enhancers and with TAD domain boundaries. This work demonstrated that R-loop mapping via high-throughput sequencing can reveal novel insight into R-loop biology, however the analysis and quality control of these data is a non-trivial task for which few bioinformatic tools exist. Herein we describe RLSuite, an integrative R-loop bioinformatics framework for pre-processing, quality control, and downstream analysis of R-loop mapping data. RLSuite enables users to compare their data to hundreds of public datasets and generate a user-friendly analysis report for sharing with non-bioinformatician colleagues. Taken together, RLSuite is a novel analysis framework that should greatly benefit the emerging R-loop bioinformatics community in a rapidly expanding aspect of epigenetic control that is still poorly understood.
Collapse
Affiliation(s)
- H E Miller
- Department of Cell Systems and Anatomy, UT Health San Antonio, San Antonio, TX, USA
- Greehey Children's Cancer Research Institute, UT Health San Antonio, San Antonio, TX, USA
- Bioinformatics Research Network, Atlanta, GA, USA
| | - D Montemayor
- Department of Medicine, UT Health San Antonio, San Antonio, TX, USA
- Center for Precision Medicine, UT Health San Antonio, San Antonio, TX, USA
| | - S Levy
- Department of Cell Systems and Anatomy, UT Health San Antonio, San Antonio, TX, USA
- Bioinformatics Research Network, Atlanta, GA, USA
- Sam & Ann Barshop Institute for Longevity & Aging Studies, UT Health San Antonio, San Antonio, TX, USA
- Glenn Biggs Institute for Alzheimer's and Neurodegenerative Diseases, UT Health San Antonio, San Antonio, TX, USA
| | - K Sharma
- Department of Medicine, UT Health San Antonio, San Antonio, TX, USA
- Center for Precision Medicine, UT Health San Antonio, San Antonio, TX, USA
| | - B Frost
- Department of Cell Systems and Anatomy, UT Health San Antonio, San Antonio, TX, USA
- Sam & Ann Barshop Institute for Longevity & Aging Studies, UT Health San Antonio, San Antonio, TX, USA
- Glenn Biggs Institute for Alzheimer's and Neurodegenerative Diseases, UT Health San Antonio, San Antonio, TX, USA
| | - A J R Bishop
- Department of Cell Systems and Anatomy, UT Health San Antonio, San Antonio, TX, USA
- Greehey Children's Cancer Research Institute, UT Health San Antonio, San Antonio, TX, USA
- May's Cancer Center, UT Health San Antonio, San Antonio, TX, USA
| |
Collapse
|
6
|
Li K, Wu Z, Zhou J, Xu W, Li L, Liu C, Li W, Zhang C, Sun Q. R-loopAtlas: An integrated R-loop resource from 254 plant species sustained by a deep-learning-based tool. MOLECULAR PLANT 2023; 16:493-496. [PMID: 36536599 DOI: 10.1016/j.molp.2022.12.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 11/20/2022] [Accepted: 12/16/2022] [Indexed: 06/17/2023]
Affiliation(s)
- Kuan Li
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China; Tsinghua-Peking Center for Life Sciences, Beijing 100084, China
| | - Zhenzhen Wu
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Science, Kunming 650201, China
| | - Jincong Zhou
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China; Tsinghua-Peking Center for Life Sciences, Beijing 100084, China
| | - Wei Xu
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Ling Li
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Science, Kunming 650201, China
| | - Chao Liu
- Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, China
| | - Wei Li
- Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, China
| | - Chengjun Zhang
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Science, Kunming 650201, China; Haiyan Engineering & Technology Center, Zhejiang Institute of Advanced Technology, Jiaxing 314022, China.
| | - Qianwen Sun
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China; Tsinghua-Peking Center for Life Sciences, Beijing 100084, China.
| |
Collapse
|
7
|
Fan C, Chen K, Wang Y, Ball EV, Stenson PD, Mort M, Bacolla A, Kehrer-Sawatzki H, Tainer JA, Cooper DN, Zhao H. Profiling human pathogenic repeat expansion regions by synergistic and multi-level impacts on molecular connections. Hum Genet 2023; 142:245-274. [PMID: 36344696 PMCID: PMC10290229 DOI: 10.1007/s00439-022-02500-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 10/24/2022] [Indexed: 11/09/2022]
Abstract
Whilst DNA repeat expansions cause numerous heritable human disorders, their origins and underlying pathological mechanisms are often unclear. We collated a dataset comprising 224 human repeat expansions encompassing 203 different genes, and performed a systematic analysis with respect to key topological features at the DNA, RNA and protein levels. Comparison with controls without known pathogenicity and genomic regions lacking repeats, allowed the construction of the first tool to discriminate repeat regions harboring pathogenic repeat expansions (DPREx). At the DNA level, pathogenic repeat expansions exhibited stronger signals for DNA regulatory factors (e.g. H3K4me3, transcription factor-binding sites) in exons, promoters, 5'UTRs and 5'genes but were not significantly different from controls in introns, 3'UTRs and 3'genes. Additionally, pathogenic repeat expansions were also found to be enriched in non-B DNA structures. At the RNA level, pathogenic repeat expansions were characterized by lower free energy for forming RNA secondary structure and were closer to splice sites in introns, exons, promoters and 5'genes than controls. At the protein level, pathogenic repeat expansions exhibited a preference to form coil rather than other types of secondary structure, and tended to encode surface-located protein domains. Guided by these features, DPREx ( http://biomed.nscc-gz.cn/zhaolab/geneprediction/# ) achieved an Area Under the Curve (AUC) value of 0.88 in a test on an independent dataset. Pathogenic repeat expansions are thus located such that they exert a synergistic influence on the gene expression pathway involving inter-molecular connections at the DNA, RNA and protein levels.
Collapse
Affiliation(s)
- Cong Fan
- Department of Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, 107 Yan Jiang West Road, Guangzhou, 500001, People's Republic of China
| | - Ken Chen
- School of Computer Science and Engineering, Sun Yat-Sen University, Guangzhou, 500001, China
| | - Yukai Wang
- School of Life Science, Sun Yat-Sen University, Guangzhou, 500001, China
| | - Edward V Ball
- Institute of Medical Genetics, School of Medicine, Cardiff University, Heath Park, Cardiff, CF14 4XN, UK
| | - Peter D Stenson
- Institute of Medical Genetics, School of Medicine, Cardiff University, Heath Park, Cardiff, CF14 4XN, UK
| | - Matthew Mort
- Institute of Medical Genetics, School of Medicine, Cardiff University, Heath Park, Cardiff, CF14 4XN, UK
| | - Albino Bacolla
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, 6767 Bertner Avenue, Houston, TX, 77030, USA
| | | | - John A Tainer
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, 6767 Bertner Avenue, Houston, TX, 77030, USA
| | - David N Cooper
- Institute of Medical Genetics, School of Medicine, Cardiff University, Heath Park, Cardiff, CF14 4XN, UK
| | - Huiying Zhao
- Department of Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, 107 Yan Jiang West Road, Guangzhou, 500001, People's Republic of China.
| |
Collapse
|
8
|
Miller HE, Montemayor D, Li J, Levy SA, Pawar R, Hartono S, Sharma K, Frost B, Chedin F, Bishop AJR. Exploration and analysis of R-loop mapping data with RLBase. Nucleic Acids Res 2023; 51:D1129-D1137. [PMID: 36039757 PMCID: PMC9825527 DOI: 10.1093/nar/gkac732] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 08/17/2022] [Indexed: 01/30/2023] Open
Abstract
R-loops are three-stranded nucleic acid structures formed from the hybridization of RNA and DNA. In 2012, Ginno et al. introduced the first R-loop mapping method. Since that time, dozens of R-loop mapping studies have been conducted, yielding hundreds of publicly available datasets. Current R-loop databases provide only limited access to these data. Moreover, no web tools for analyzing user-supplied R-loop datasets have yet been described. In our recent work, we reprocessed 810 R-loop mapping samples, building the largest R-loop data resource to date. We also defined R-loop consensus regions and developed a framework for R-loop data analysis. Now, we introduce RLBase, a user-friendly database that provides the capability to (i) explore hundreds of public R-loop mapping datasets, (ii) explore R-loop consensus regions, (iii) analyze user-supplied data and (iv) download standardized and reprocessed datasets. RLBase is directly accessible via the following URL: https://gccri.bishop-lab.uthscsa.edu/shiny/rlbase/.
Collapse
Affiliation(s)
- Henry E Miller
- Department of Cell Systems and Anatomy, UT Health San Antonio, San Antonio, TX 78229, USA.,Greehey Children's Cancer Research Institute, UT Health San Antonio, San Antonio, TX 78229, USA.,Bioinformatics Research Network, Atlanta, GA 30317, USA
| | - Daniel Montemayor
- Department of Medicine, UT Health San Antonio, San Antonio, TX 78229, USA.,Center for Precision Medicine, UT Health San Antonio, San Antonio, TX 78229, USA
| | - Janet Li
- Bioinformatics Research Network, Atlanta, GA 30317, USA.,Bioinformatics Graduate Program, University of British Columbia, Vancouver, BC V6T 1Z2, Canada.,Canada's Michael Smith Genome Sciences Center, BC Cancer Research, Vancouver, BC V5Z 1L3, Canada
| | - Simon A Levy
- Department of Cell Systems and Anatomy, UT Health San Antonio, San Antonio, TX 78229, USA.,Bioinformatics Research Network, Atlanta, GA 30317, USA.,Sam & Ann Barshop Institute for Longevity & Aging Studies, UT Health San Antonio, San Antonio, TX 78229, USA.,Glenn Biggs Institute for Alzheimer's and Neurodegenerative Diseases, UT Health San Antonio, San Antonio, TX 78229, USA
| | - Roshan Pawar
- Bioinformatics Research Network, Atlanta, GA 30317, USA.,Faculty of Applied Science, University of British Columbia, Vancouver, BC V6T 1Z2, Canada
| | - Stella Hartono
- Department of Molecular and Cellular Biology, UC Davis, Davis, CA 95616, USA
| | - Kumar Sharma
- Department of Medicine, UT Health San Antonio, San Antonio, TX 78229, USA.,Center for Precision Medicine, UT Health San Antonio, San Antonio, TX 78229, USA
| | - Bess Frost
- Department of Cell Systems and Anatomy, UT Health San Antonio, San Antonio, TX 78229, USA.,Sam & Ann Barshop Institute for Longevity & Aging Studies, UT Health San Antonio, San Antonio, TX 78229, USA.,Glenn Biggs Institute for Alzheimer's and Neurodegenerative Diseases, UT Health San Antonio, San Antonio, TX 78229, USA
| | - Frédéric Chedin
- Department of Molecular and Cellular Biology, UC Davis, Davis, CA 95616, USA
| | - Alexander J R Bishop
- Department of Cell Systems and Anatomy, UT Health San Antonio, San Antonio, TX 78229, USA.,Greehey Children's Cancer Research Institute, UT Health San Antonio, San Antonio, TX 78229, USA.,May's Cancer Center, UT Health San Antonio, San Antonio, TX 78229, USA
| |
Collapse
|
9
|
Temporal regulation of head-on transcription at replication initiation sites. iScience 2022; 26:105791. [PMID: 36594032 PMCID: PMC9803852 DOI: 10.1016/j.isci.2022.105791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 09/14/2022] [Accepted: 12/08/2022] [Indexed: 12/13/2022] Open
Abstract
Head-on (HO) collisions between the DNA replication machinery and RNA polymerase over R-loop forming sequences (RLFS) are genotoxic, leading to replication fork blockage and DNA breaks. Current models suggest that HO collisions are avoided through replication initiation site (RIS) positioning upstream of active genes, ensuring co-orientation of replication fork movement and genic transcription. However, this model does not account for pervasive transcription, or intragenic RIS. Moreover, pervasive transcription initiation and CG-rich DNA is a feature of RIS, suggesting that HO transcription units (HO TUs) capable of forming R-loops might occur. Through mining phased GRO-seq data, and developing an informatics strategy to stringently identify RIS, we demonstrate that HO TUs containing RLFS occur at RIS in MCF-7 cells, and are downregulated at the G1/S phase boundary. Our analysis reveals a novel spatiotemporal relationship between transcription and replication, and supports the idea that HO collisions are avoided through transcriptional regulatory mechanisms.
Collapse
|
10
|
Khan ES, Danckwardt S. Pathophysiological Role and Diagnostic Potential of R-Loops in Cancer and Beyond. Genes (Basel) 2022; 13:genes13122181. [PMID: 36553448 PMCID: PMC9777984 DOI: 10.3390/genes13122181] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 11/07/2022] [Accepted: 11/14/2022] [Indexed: 11/24/2022] Open
Abstract
R-loops are DNA-RNA hybrids that play multifunctional roles in gene regulation, including replication, transcription, transcription-replication collision, epigenetics, and preserving the integrity of the genome. The aberrant formation and accumulation of unscheduled R-loops can disrupt gene expression and damage DNA, thereby causing genome instability. Recent links between unscheduled R-loop accumulation and the abundance of proteins that modulate R-loop biogenesis have been associated with numerous human diseases, including various cancers. Although R-loops are not necessarily causative for all disease entities described to date, they can perpetuate and even exacerbate the initially disease-eliciting pathophysiology, making them structures of interest for molecular diagnostics. In this review, we discuss the (patho) physiological role of R-loops in health and disease, their surprising diagnostic potential, and state-of-the-art techniques for their detection.
Collapse
Affiliation(s)
- Essak S. Khan
- Posttranscriptional Gene Regulation, Cancer Research and Experimental Hemostasis, University Medical Center Mainz, 55131 Mainz, Germany
- Institute for Clinical Chemistry and Laboratory Medicine, University Medical Center of the Johannes Gutenberg University, 55131 Mainz, Germany
- Center for Thrombosis and Hemostasis (CTH), University Medical Center of the Johannes Gutenberg University, 55131 Mainz, Germany
- German Consortium for Translational Cancer Research (DKTK), DKFZ Frankfurt-Mainz, 60590 Frankfurt am Main, Germany
| | - Sven Danckwardt
- Posttranscriptional Gene Regulation, Cancer Research and Experimental Hemostasis, University Medical Center Mainz, 55131 Mainz, Germany
- Institute for Clinical Chemistry and Laboratory Medicine, University Medical Center of the Johannes Gutenberg University, 55131 Mainz, Germany
- Center for Thrombosis and Hemostasis (CTH), University Medical Center of the Johannes Gutenberg University, 55131 Mainz, Germany
- German Center for Cardiovascular Research (DZHK), Rhine-Main, 55131 Mainz, Germany
- Correspondence:
| |
Collapse
|
11
|
Shi X, Teng H, Sun Z. An updated overview of experimental and computational approaches to identify non-canonical DNA/RNA structures with emphasis on G-quadruplexes and R-loops. Brief Bioinform 2022; 23:bbac441. [PMID: 36208174 PMCID: PMC9677470 DOI: 10.1093/bib/bbac441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 08/22/2022] [Accepted: 09/13/2022] [Indexed: 12/14/2022] Open
Abstract
Multiple types of non-canonical nucleic acid structures play essential roles in DNA recombination and replication, transcription, and genomic instability and have been associated with several human diseases. Thus, an increasing number of experimental and bioinformatics methods have been developed to identify these structures. To date, most reviews have focused on the features of non-canonical DNA/RNA structure formation, experimental approaches to mapping these structures, and the association of these structures with diseases. In addition, two reviews of computational algorithms for the prediction of non-canonical nucleic acid structures have been published. One of these reviews focused only on computational approaches for G4 detection until 2020. The other mainly summarized the computational tools for predicting cruciform, H-DNA and Z-DNA, in which the algorithms discussed were published before 2012. Since then, several experimental and computational methods have been developed. However, a systematic review including the conformation, sequencing mapping methods and computational prediction strategies for these structures has not yet been published. The purpose of this review is to provide an updated overview of conformation, current sequencing technologies and computational identification methods for non-canonical nucleic acid structures, as well as their strengths and weaknesses. We expect that this review will aid in understanding how these structures are characterised and how they contribute to related biological processes and diseases.
Collapse
Affiliation(s)
- Xiaohui Shi
- Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, The first Affiliated Hospital of WMU; Beijing Institutes of Life Science, Chinese Academy of Sciences; University of Chinese Academy of Sciences, Ouhai District, Wenzhou 325000, China
| | - Huajing Teng
- Department of Radiation Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education) at Peking University Cancer Hospital and Institute, Ouhai District, Wenzhou 325000, China
| | - Zhongsheng Sun
- Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, The first Affiliated Hospital of WMU; Beijing Institutes of Life Science, Chinese Academy of Sciences; CAS Center for Excellence in Biotic Interactions and State Key Laboratory of Integrated Management of Pest Insects and Rodents, University of Chinese Academy of Sciences; Institute of Genomic Medicine, Wenzhou Medical University; IBMC-BGI Center, the Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital); Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Ouhai District, Wenzhou 325000, China
| |
Collapse
|
12
|
Miller HE, Montemayor D, Abdul J, Vines A, Levy SA, Hartono SR, Sharma K, Frost B, Chédin F, Bishop AJR. Quality-controlled R-loop meta-analysis reveals the characteristics of R-loop consensus regions. Nucleic Acids Res 2022; 50:7260-7286. [PMID: 35758606 PMCID: PMC9303298 DOI: 10.1093/nar/gkac537] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Accepted: 06/16/2022] [Indexed: 12/13/2022] Open
Abstract
R-loops are three-stranded nucleic acid structures formed from the hybridization of RNA and DNA. While the pathological consequences of R-loops have been well-studied to date, the locations, classes, and dynamics of physiological R-loops remain poorly understood. R-loop mapping studies provide insight into R-loop dynamics, but their findings are challenging to generalize. This is due to the narrow biological scope of individual studies, the limitations of each mapping modality, and, in some cases, poor data quality. In this study, we reprocessed 810 R-loop mapping datasets from a wide array of biological conditions and mapping modalities. From this data resource, we developed an accurate R-loop data quality control method, and we reveal the extent of poor-quality data within previously published studies. We then identified a set of high-confidence R-loop mapping samples and used them to define consensus R-loop sites called 'R-loop regions' (RL regions). In the process, we identified a stark divergence between RL regions detected by S9.6 and dRNH-based mapping methods, particularly with respect to R-loop size, location, and colocalization with RNA binding factors. Taken together, this work provides a much-needed method to assess R-loop data quality and offers novel context regarding the differences between dRNH- and S9.6-based R-loop mapping approaches.
Collapse
Affiliation(s)
- Henry E Miller
- Department of Cell Systems and Anatomy, UT Health San Antonio, San Antonio, TX, USA.,Greehey Children's Cancer Research Institute, UT Health San Antonio, San Antonio, TX, USA.,Bioinformatics Research Network, Atlanta, GA, USA
| | - Daniel Montemayor
- Department of Medicine, UT Health San Antonio, San Antonio, TX, USA.,Center for Precision Medicine, UT Health San Antonio, San Antonio, TX, USA
| | - Jebriel Abdul
- Bioinformatics Research Network, Atlanta, GA, USA.,Department of Biology, University of Ottawa, Ottawa, Canada
| | - Anna Vines
- Bioinformatics Research Network, Atlanta, GA, USA.,Faculty of Arts, University of Bristol, Bristol, U.K
| | - Simon A Levy
- Department of Cell Systems and Anatomy, UT Health San Antonio, San Antonio, TX, USA.,Bioinformatics Research Network, Atlanta, GA, USA.,Sam & Ann Barshop Institute for Longevity & Aging Studies, UT Health San Antonio, San Antonio, TX, USA.,Glenn Biggs Institute for Alzheimer's and Neurodegenerative Diseases, UT Health San Antonio, San Antonio, TX, USA
| | - Stella R Hartono
- Department of Molecular and Cellular Biology, UC Davis, Davis, CA, USA
| | - Kumar Sharma
- Department of Medicine, UT Health San Antonio, San Antonio, TX, USA.,Center for Precision Medicine, UT Health San Antonio, San Antonio, TX, USA
| | - Bess Frost
- Department of Cell Systems and Anatomy, UT Health San Antonio, San Antonio, TX, USA.,Sam & Ann Barshop Institute for Longevity & Aging Studies, UT Health San Antonio, San Antonio, TX, USA.,Glenn Biggs Institute for Alzheimer's and Neurodegenerative Diseases, UT Health San Antonio, San Antonio, TX, USA
| | - Frédéric Chédin
- Department of Molecular and Cellular Biology, UC Davis, Davis, CA, USA
| | - Alexander J R Bishop
- Department of Cell Systems and Anatomy, UT Health San Antonio, San Antonio, TX, USA.,Greehey Children's Cancer Research Institute, UT Health San Antonio, San Antonio, TX, USA.,May's Cancer Center, UT Health San Antonio, San Antonio, TX, USA
| |
Collapse
|
13
|
Luo H, Zhu G, Eshelman MA, Fung TK, Lai Q, Wang F, Zeisig BB, Lesperance J, Ma X, Chen S, Cesari N, Cogle C, Chen B, Xu B, Yang FC, So CWE, Qiu Y, Xu M, Huang S. HOTTIP-dependent R-loop formation regulates CTCF boundary activity and TAD integrity in leukemia. Mol Cell 2022; 82:833-851.e11. [PMID: 35180428 PMCID: PMC8985430 DOI: 10.1016/j.molcel.2022.01.014] [Citation(s) in RCA: 51] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 10/29/2021] [Accepted: 01/19/2022] [Indexed: 01/09/2023]
Abstract
HOTTIP lncRNA is highly expressed in acute myeloid leukemia (AML) driven by MLL rearrangements or NPM1 mutations to mediate HOXA topologically associated domain (TAD) formation and drive aberrant transcription. However, the mechanism through which HOTTIP accesses CCCTC-binding factor (CTCF) chromatin boundaries and regulates CTCF-mediated genome topology remains unknown. Here, we show that HOTTIP directly interacts with and regulates a fraction of CTCF-binding sites (CBSs) in the AML genome by recruiting CTCF/cohesin complex and R-loop-associated regulators to form R-loops. HOTTIP-mediated R-loops reinforce the CTCF boundary and facilitate formation of TADs to drive gene transcription. Either deleting CBS or targeting RNase H to eliminate R-loops in the boundary CBS of β-catenin TAD impaired CTCF boundary activity, inhibited promoter/enhancer interactions, reduced β-catenin target expression, and mitigated leukemogenesis in xenograft mouse models with aberrant HOTTIP expression. Thus, HOTTIP-mediated R-loop formation directly reinforces CTCF chromatin boundary activity and TAD integrity to drive oncogene transcription and leukemia development.
Collapse
MESH Headings
- Animals
- CCCTC-Binding Factor/genetics
- CCCTC-Binding Factor/metabolism
- Cell Cycle Proteins/genetics
- Cell Cycle Proteins/metabolism
- Cell Line, Tumor
- Chromatin/genetics
- Chromatin/metabolism
- Chromosomal Proteins, Non-Histone/genetics
- Chromosomal Proteins, Non-Histone/metabolism
- Gene Expression Regulation, Leukemic
- HEK293 Cells
- Humans
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/metabolism
- Leukemia, Myeloid, Acute/pathology
- Mice, Transgenic
- R-Loop Structures
- RNA, Long Noncoding/genetics
- RNA, Long Noncoding/metabolism
- Structure-Activity Relationship
- Transcription, Genetic
- Transcriptional Activation
- beta Catenin/genetics
- beta Catenin/metabolism
- Cohesins
Collapse
Affiliation(s)
- Huacheng Luo
- Division of Pediatric Hematology/Oncology, Department of Pediatrics, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| | - Ganqian Zhu
- Department of Molecular Medicine, the University of Texas Health Science Center at San Antonio, San Antonio, TX 78229-3904, USA
| | - Melanie A Eshelman
- Division of Pediatric Hematology/Oncology, Department of Pediatrics, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| | - Tsz Kan Fung
- School of Cancer and Pharmaceutical Science, King's College London, London SE5 9NU, UK; Department of Haematological Medicine, King's College Hospital, London SE5 9RS, UK
| | - Qian Lai
- Division of Pediatric Hematology/Oncology, Department of Pediatrics, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA; Department of Hematology, The First Affiliated Hospital of Xiamen University, Xiamen 361003, China
| | - Fei Wang
- Department of Hematology and Oncology, The Affiliated Zhongda Hospital, Southeast University Medical School, Nanjing 21009, China
| | - Bernd B Zeisig
- School of Cancer and Pharmaceutical Science, King's College London, London SE5 9NU, UK; Department of Haematological Medicine, King's College Hospital, London SE5 9RS, UK
| | - Julia Lesperance
- Division of Pediatric Hematology/Oncology, Department of Pediatrics, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| | - Xiaoyan Ma
- Division of Pediatric Hematology/Oncology, Department of Pediatrics, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA; Department of Hematology and Oncology, The Affiliated Zhongda Hospital, Southeast University Medical School, Nanjing 21009, China
| | - Shi Chen
- Department of Molecular Medicine, the University of Texas Health Science Center at San Antonio, San Antonio, TX 78229-3904, USA
| | - Nicholas Cesari
- Division of Pediatric Hematology/Oncology, Department of Pediatrics, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| | - Christopher Cogle
- Division of Hematology/Oncology, Department of Medicine, University of Florida College of Medicine, Gainesville, FL 32610, USA
| | - Baoan Chen
- Department of Hematology and Oncology, The Affiliated Zhongda Hospital, Southeast University Medical School, Nanjing 21009, China
| | - Bing Xu
- Department of Hematology, The First Affiliated Hospital of Xiamen University, Xiamen 361003, China
| | - Feng-Chun Yang
- Department of Cell System & Anatomy, the University of Texas Health Science Center at San Antonio, San Antonio, TX 78229-3904, USA; Mays Cancer Center, Joe R. & Teresa Lozano Long School of Medicine, the University of Texas Health Science Center at San Antonio, San Antonio, TX 78229-3904, USA
| | - Chi Wai Eric So
- School of Cancer and Pharmaceutical Science, King's College London, London SE5 9NU, UK; Department of Haematological Medicine, King's College Hospital, London SE5 9RS, UK.
| | - Yi Qiu
- Department of Cellular and Molecular Physiology, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA; Penn State Cancer Institute, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA.
| | - Mingjiang Xu
- Department of Molecular Medicine, the University of Texas Health Science Center at San Antonio, San Antonio, TX 78229-3904, USA; Department of Cell System & Anatomy, the University of Texas Health Science Center at San Antonio, San Antonio, TX 78229-3904, USA.
| | - Suming Huang
- Division of Pediatric Hematology/Oncology, Department of Pediatrics, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA; Penn State Cancer Institute, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA.
| |
Collapse
|
14
|
Kwak YD, Shaw TI, Downing SM, Tewari A, Jin H, Li Y, Dumitrache LC, Katyal S, Khodakhah K, Russell HR, McKinnon PJ. Chromatin architecture at susceptible gene loci in cerebellar Purkinje cells characterizes DNA damage-induced neurodegeneration. SCIENCE ADVANCES 2021; 7:eabg6363. [PMID: 34910524 DOI: 10.1126/sciadv.abg6363] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The pathogenesis of inherited genome instability neurodegenerative syndromes remains largely unknown. Here, we report new disease-relevant murine models of genome instability–driven neurodegeneration involving disabled ATM and APTX that develop debilitating ataxia. We show that neurodegeneration and ataxia result from transcriptional interference in the cerebellum via aberrant messenger RNA splicing. Unexpectedly, these splicing defects were restricted to only Purkinje cells, disrupting the expression of critical homeostatic regulators including ITPR1, GRID2, and CA8. Abundant genotoxic R loops were also found at these Purkinje cell gene loci, further exacerbating DNA damage and transcriptional disruption. Using ATAC-seq to profile global chromatin accessibility in the cerebellum, we found a notably unique chromatin conformation specifically in Purkinje chromatin at the affected gene loci, thereby promoting susceptibility to DNA damage. These data reveal the pathogenic basis of DNA damage in the nervous system and suggest chromatin conformation as a feature in directing genome instability–associated neuropathology.
Collapse
Affiliation(s)
- Young Don Kwak
- Departments of Genetics and Cell Molecular Biology, Center for Pediatric Neurological Disease Research, St. Jude Pediatric Translational Neuroscience Initiative, Memphis, TN 38105, USA
| | | | - Susanna M Downing
- Departments of Genetics and Cell Molecular Biology, Center for Pediatric Neurological Disease Research, St. Jude Pediatric Translational Neuroscience Initiative, Memphis, TN 38105, USA
| | - Ambika Tewari
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Hongjian Jin
- Center for Applied Bioinformatics, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Yang Li
- Departments of Genetics and Cell Molecular Biology, Center for Pediatric Neurological Disease Research, St. Jude Pediatric Translational Neuroscience Initiative, Memphis, TN 38105, USA
| | - Lavinia C Dumitrache
- Departments of Genetics and Cell Molecular Biology, Center for Pediatric Neurological Disease Research, St. Jude Pediatric Translational Neuroscience Initiative, Memphis, TN 38105, USA
| | - Sachin Katyal
- CancerCare Manitoba Research Institute, CancerCare Manitoba and Department of Pharmacology and Therapeutics, University of Manitoba, Winnipeg, MB R3E OV9, Canada
| | - Kamran Khodakhah
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Helen R Russell
- Departments of Genetics and Cell Molecular Biology, Center for Pediatric Neurological Disease Research, St. Jude Pediatric Translational Neuroscience Initiative, Memphis, TN 38105, USA
| | - Peter J McKinnon
- Departments of Genetics and Cell Molecular Biology, Center for Pediatric Neurological Disease Research, St. Jude Pediatric Translational Neuroscience Initiative, Memphis, TN 38105, USA
- St. Jude Graduate School of Biomedical Sciences, Memphis, TN 38105, USA
| |
Collapse
|
15
|
Lin R, Zhong X, Zhou Y, Geng H, Hu Q, Huang Z, Hu J, Fu XD, Chen L, Chen JY. R-loopBase: a knowledgebase for genome-wide R-loop formation and regulation. Nucleic Acids Res 2021; 50:D303-D315. [PMID: 34792163 PMCID: PMC8728142 DOI: 10.1093/nar/gkab1103] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 09/28/2021] [Accepted: 10/21/2021] [Indexed: 11/13/2022] Open
Abstract
R-loops play versatile roles in many physiological and pathological processes, and are of great interest to scientists in multiple fields. However, controversy about their genomic localization and incomplete understanding of their regulatory network raise great challenges for R-loop research. Here, we present R-loopBase (https://rloopbase.nju.edu.cn) to tackle these pressing issues by systematic integration of genomics and literature data. First, based on 107 high-quality genome-wide R-loop mapping datasets generated by 11 different technologies, we present a reference set of human R-loop zones for high-confidence R-loop localization, and spot conservative genomic features associated with R-loop formation. Second, through literature mining and multi-omics analyses, we curate the most comprehensive list of R-loop regulatory proteins and their targeted R-loops in multiple species to date. These efforts help reveal a global regulatory network of R-loop dynamics and its potential links to the development of cancers and neurological diseases. Finally, we integrate billions of functional genomic annotations, and develop interactive interfaces to search, visualize, download and analyze R-loops and R-loop regulators in a well-annotated genomic context. R-loopBase allows all users, including those with little bioinformatics background to utilize these data for their own research. We anticipate R-loopBase will become a one-stop resource for the R-loop community.
Collapse
Affiliation(s)
- Ruoyao Lin
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing 210023, China
| | - Xiaoming Zhong
- Ben May Department for Cancer Research, University of Chicago, Chicago, IL 60637, USA
| | - Yongli Zhou
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing 210023, China
| | - Huichao Geng
- Hubei Key Laboratory of Cell Homeostasis, RNA Institute, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Qingxi Hu
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing 210023, China
| | - Zhihao Huang
- Hubei Key Laboratory of Cell Homeostasis, RNA Institute, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Jun Hu
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing 210023, China
| | - Xiang-Dong Fu
- Department of Cellular and Molecular Medicine, Institute of Genomic Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Liang Chen
- Hubei Key Laboratory of Cell Homeostasis, RNA Institute, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Jia-Yu Chen
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing 210023, China
| |
Collapse
|
16
|
Dasilva LF, Blumenthal E, Beckedorff F, Cingaram PR, Gomes Dos Santos H, Edupuganti RR, Zhang A, Dokaneheifard S, Aoi Y, Yue J, Kirstein N, Tayari MM, Shilatifard A, Shiekhattar R. Integrator enforces the fidelity of transcriptional termination at protein-coding genes. SCIENCE ADVANCES 2021; 7:eabe3393. [PMID: 34730992 PMCID: PMC8565846 DOI: 10.1126/sciadv.abe3393] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Accepted: 09/15/2021] [Indexed: 06/12/2023]
Abstract
Integrator regulates the 3′-end processing and termination of multiple classes of noncoding RNAs. Depletion of INTS11, the catalytic subunit of Integrator, or ectopic expression of its catalytic dead enzyme impairs the 3′-end processing and termination of a set of protein-coding transcripts termed Integrator-regulated termination (IRT) genes. This defect is manifested by increased RNA polymerase II (RNAPII) readthrough and occupancy of serine-2 phosphorylated RNAPII, de novo trimethylation of lysine-36 on histone H3, and a compensatory elevation of the cleavage and polyadenylation (CPA) complex beyond the canonical polyadenylation sites. 3′ RNA sequencing reveals that proximal polyadenylation site usage relies on the endonuclease activity of INTS11. The DNA sequence encompassing the transcription end sites of IRT genes features downstream polyadenylation motifs and an enrichment of GC content that permits the formation of secondary structures within the 3′UTR. Together, this study identifies a subset of protein-coding transcripts whose 3′ end processing requires the Integrator complex.
Collapse
Affiliation(s)
- Lucas Ferreira Dasilva
- Department of Human Genetics, University of Miami Miller School of Medicine, Sylvester Comprehensive Cancer Center, 1501 NW 10th Avenue, Miami, FL 33136, USA
| | - Ezra Blumenthal
- Department of Human Genetics, University of Miami Miller School of Medicine, Sylvester Comprehensive Cancer Center, 1501 NW 10th Avenue, Miami, FL 33136, USA
- Medical Scientist Training Program and Graduate Program in Cancer Biology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Felipe Beckedorff
- Department of Human Genetics, University of Miami Miller School of Medicine, Sylvester Comprehensive Cancer Center, 1501 NW 10th Avenue, Miami, FL 33136, USA
| | - Pradeep Reddy Cingaram
- Department of Human Genetics, University of Miami Miller School of Medicine, Sylvester Comprehensive Cancer Center, 1501 NW 10th Avenue, Miami, FL 33136, USA
| | - Helena Gomes Dos Santos
- Department of Human Genetics, University of Miami Miller School of Medicine, Sylvester Comprehensive Cancer Center, 1501 NW 10th Avenue, Miami, FL 33136, USA
| | - Raghu Ram Edupuganti
- Department of Human Genetics, University of Miami Miller School of Medicine, Sylvester Comprehensive Cancer Center, 1501 NW 10th Avenue, Miami, FL 33136, USA
| | - Anda Zhang
- Department of Human Genetics, University of Miami Miller School of Medicine, Sylvester Comprehensive Cancer Center, 1501 NW 10th Avenue, Miami, FL 33136, USA
| | - Sadat Dokaneheifard
- Department of Human Genetics, University of Miami Miller School of Medicine, Sylvester Comprehensive Cancer Center, 1501 NW 10th Avenue, Miami, FL 33136, USA
| | - Yuki Aoi
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Jingyin Yue
- Department of Human Genetics, University of Miami Miller School of Medicine, Sylvester Comprehensive Cancer Center, 1501 NW 10th Avenue, Miami, FL 33136, USA
| | - Nina Kirstein
- Department of Human Genetics, University of Miami Miller School of Medicine, Sylvester Comprehensive Cancer Center, 1501 NW 10th Avenue, Miami, FL 33136, USA
| | - Mina Masoumeh Tayari
- Department of Human Genetics, University of Miami Miller School of Medicine, Sylvester Comprehensive Cancer Center, 1501 NW 10th Avenue, Miami, FL 33136, USA
| | - Ali Shilatifard
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
- Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Ramin Shiekhattar
- Department of Human Genetics, University of Miami Miller School of Medicine, Sylvester Comprehensive Cancer Center, 1501 NW 10th Avenue, Miami, FL 33136, USA
| |
Collapse
|
17
|
Kunz M, Wolf B, Fuchs M, Christoph J, Xiao K, Thum T, Atlan D, Prokosch HU, Dandekar T. A comprehensive method protocol for annotation and integrated functional understanding of lncRNAs. Brief Bioinform 2021; 21:1391-1396. [PMID: 31578571 PMCID: PMC7373182 DOI: 10.1093/bib/bbz066] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 04/29/2019] [Accepted: 05/10/2019] [Indexed: 12/15/2022] Open
Abstract
Long non-coding RNAs (lncRNAs) are of fundamental biological importance; however, their functional role is often unclear or loosely defined as experimental characterization is challenging and bioinformatic methods are limited. We developed a novel integrated method protocol for the annotation and detailed functional characterization of lncRNAs within the genome. It combines annotation, normalization and gene expression with sequence-structure conservation, functional interactome and promoter analysis. Our protocol allows an analysis based on the tissue and biological context, and is powerful in functional characterization of experimental and clinical RNA-Seq datasets including existing lncRNAs. This is demonstrated on the uncharacterized lncRNA GATA6-AS1 in dilated cardiomyopathy.
Collapse
Affiliation(s)
- Meik Kunz
- Chair of Medical Informatics, Friedrich-Alexander University of Erlangen-Nürnberg, Erlangen, Germany
| | - Beat Wolf
- University of Applied Sciences and Arts of Western Switzerland, Perolles 80, 1700 Fribourg, Switzerland
| | - Maximilian Fuchs
- Functional Genomics and Systems Biology Group, Department of Bioinformatics, University of Würzburg, Germany
| | - Jan Christoph
- Chair of Medical Informatics, Friedrich-Alexander University of Erlangen-Nürnberg, Erlangen, Germany
| | - Ke Xiao
- Institute of Molecular and Translational Therapeutic Strategies (IMTTS), Hannover Medical School, Hannover, Germany
| | - Thomas Thum
- Institute of Molecular and Translational Therapeutic Strategies (IMTTS), Hannover Medical School, Hannover, Germany.,REBIRTH Excellence Cluster, Hannover Medical School, Hannover, Germany.,National Heart and Lung Institute, Imperial College London, London, UK
| | - David Atlan
- Phenosystems SA, 137 Rue de Tubize, 1440 Braine le Château, Belgium
| | - Hans-Ulrich Prokosch
- Chair of Medical Informatics, Friedrich-Alexander University of Erlangen-Nürnberg, Erlangen, Germany
| | - Thomas Dandekar
- Functional Genomics and Systems Biology Group, Department of Bioinformatics, University of Würzburg, Germany
| |
Collapse
|
18
|
Dettori LG, Torrejon D, Chakraborty A, Dutta A, Mohamed M, Papp C, Kuznetsov VA, Sung P, Feng W, Bah A. A Tale of Loops and Tails: The Role of Intrinsically Disordered Protein Regions in R-Loop Recognition and Phase Separation. Front Mol Biosci 2021; 8:691694. [PMID: 34179096 PMCID: PMC8222781 DOI: 10.3389/fmolb.2021.691694] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 05/14/2021] [Indexed: 11/13/2022] Open
Abstract
R-loops are non-canonical, three-stranded nucleic acid structures composed of a DNA:RNA hybrid, a displaced single-stranded (ss)DNA, and a trailing ssRNA overhang. R-loops perform critical biological functions under both normal and disease conditions. To elucidate their cellular functions, we need to understand the mechanisms underlying R-loop formation, recognition, signaling, and resolution. Previous high-throughput screens identified multiple proteins that bind R-loops, with many of these proteins containing folded nucleic acid processing and binding domains that prevent (e.g., topoisomerases), resolve (e.g., helicases, nucleases), or recognize (e.g., KH, RRMs) R-loops. However, a significant number of these R-loop interacting Enzyme and Reader proteins also contain long stretches of intrinsically disordered regions (IDRs). The precise molecular and structural mechanisms by which the folded domains and IDRs synergize to recognize and process R-loops or modulate R-loop-mediated signaling have not been fully explored. While studying one such modular R-loop Reader, the Fragile X Protein (FMRP), we unexpectedly discovered that the C-terminal IDR (C-IDR) of FMRP is the predominant R-loop binding site, with the three N-terminal KH domains recognizing the trailing ssRNA overhang. Interestingly, the C-IDR of FMRP has recently been shown to undergo spontaneous Liquid-Liquid Phase Separation (LLPS) assembly by itself or in complex with another non-canonical nucleic acid structure, RNA G-quadruplex. Furthermore, we have recently shown that FMRP can suppress persistent R-loops that form during transcription, a process that is also enhanced by LLPS via the assembly of membraneless transcription factories. These exciting findings prompted us to explore the role of IDRs in R-loop processing and signaling proteins through a comprehensive bioinformatics and computational biology study. Here, we evaluated IDR prevalence, sequence composition and LLPS propensity for the known R-loop interactome. We observed that, like FMRP, the majority of the R-loop interactome, especially Readers, contains long IDRs that are highly enriched in low complexity sequences with biased amino acid composition, suggesting that these IDRs could directly interact with R-loops, rather than being “mere flexible linkers” connecting the “functional folded enzyme or binding domains”. Furthermore, our analysis shows that several proteins in the R-loop interactome are either predicted to or have been experimentally demonstrated to undergo LLPS or are known to be associated with phase separated membraneless organelles. Thus, our overall results present a thought-provoking hypothesis that IDRs in the R-loop interactome can provide a functional link between R-loop recognition via direct binding and downstream signaling through the assembly of LLPS-mediated membrane-less R-loop foci. The absence or dysregulation of the function of IDR-enriched R-loop interactors can potentially lead to severe genomic defects, such as the widespread R-loop-mediated DNA double strand breaks that we recently observed in Fragile X patient-derived cells.
Collapse
Affiliation(s)
- Leonardo G Dettori
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY, United States
| | - Diego Torrejon
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY, United States
| | - Arijita Chakraborty
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY, United States
| | - Arijit Dutta
- Department of Biochemistry and Structural Biology, University of Texas Health San Antonio, San Antonio, TX, United States
| | - Mohamed Mohamed
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY, United States
| | - Csaba Papp
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY, United States.,Department of Urology, SUNY Upstate Medical University, Syracuse, NY, United States
| | - Vladimir A Kuznetsov
- Department of Urology, SUNY Upstate Medical University, Syracuse, NY, United States.,Bioinformatics Institute, ASTAR Biomedical Institutes, Singapore, Singapore
| | - Patrick Sung
- Department of Biochemistry and Structural Biology, University of Texas Health San Antonio, San Antonio, TX, United States
| | - Wenyi Feng
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY, United States
| | - Alaji Bah
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY, United States
| |
Collapse
|
19
|
Towards a comprehensive pipeline to identify and functionally annotate long noncoding RNA (lncRNA). Comput Biol Med 2020; 127:104028. [PMID: 33126123 DOI: 10.1016/j.compbiomed.2020.104028] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 09/28/2020] [Accepted: 09/29/2020] [Indexed: 12/20/2022]
Abstract
Long noncoding RNAs (lncRNAs) are implicated in various genetic diseases and cancer, attributed to their critical role in gene regulation. They are a divergent group of RNAs and are easily differentiated from other types with unique characteristics, functions, and mechanisms of action. In this review, we provide a list of some of the prominent data repositories containing lncRNAs, their interactome, and predicted and validated disease associations. Next, we discuss various wet-lab experiments formulated to obtain the data for these repositories. We also provide a critical review of in silico methods available for the identification purpose and suggest techniques to further improve their performance. The bulk of the methods currently focus on distinguishing lncRNA transcripts from the coding ones. Functional annotation of these transcripts still remains a grey area and more efforts are needed in that space. Finally, we provide details of current progress, discuss impediments, and illustrate a roadmap for developing a generalized computational pipeline for comprehensive annotation of lncRNAs, which is essential to accelerate research in this area.
Collapse
|
20
|
Abstract
Systematics is described for annotation of variations in RNA molecules. The conceptual framework is part of Variation Ontology (VariO) and facilitates depiction of types of variations, their functional and structural effects and other consequences in any RNA molecule in any organism. There are more than 150 RNA related VariO terms in seven levels, which can be further combined to generate even more complicated and detailed annotations. The terms are described together with examples, usually for variations and effects in human and in diseases. RNA variation type has two subcategories: variation classification and origin with subterms. Altogether six terms are available for function description. Several terms are available for affected RNA properties. The ontology contains also terms for structural description for affected RNA type, post-transcriptional RNA modifications, secondary and tertiary structure effects and RNA sugar variations. Together with the DNA and protein concepts and annotations, RNA terms allow comprehensive description of variations of genetic and non-genetic origin at all possible levels. The VariO annotations are readable both for humans and computer programs for advanced data integration and mining.
Collapse
Affiliation(s)
- Mauno Vihinen
- Department of Experimental Medical Science, Lund University, Lund, Sweden
| |
Collapse
|
21
|
R-loop-forming Sequences Analysis in Thousands of Viral Genomes Identify A New Common Element in Herpesviruses. Sci Rep 2020; 10:6389. [PMID: 32286400 PMCID: PMC7156643 DOI: 10.1038/s41598-020-63101-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Accepted: 03/20/2020] [Indexed: 11/16/2022] Open
Abstract
R-loops are RNA-DNA hybrid sequences that are emerging players in various biological processes, occurring in both prokaryotic and eukaryotic cells. In viruses, R-loop investigation is limited and functional importance is poorly understood. Here, we performed a computational approach to investigate prevalence, distribution, and location of R-loop forming sequences (RLFS) across more than 6000 viral genomes. A total of 14637 RLFS loci were identified in 1586 viral genomes. Over 70% of RLFS-positive genomes are dsDNA viruses. In the order Herpesvirales, RLFS were presented in all members whereas no RLFS was predicted in the order Ligamenvirales. Analysis of RLFS density in all RLFS-positive genomes revealed unusually high RLFS densities in herpesvirus genomes, with RLFS densities particularly enriched within repeat regions such as the terminal repeats (TRs). RLFS in TRs are positionally conserved between herpesviruses. Validating the computationally-identified RLFS, R-loop formation was experimentally confirmed in the TR and viral Bcl-2 promoter of Kaposi sarcoma-associated herpesvirus (KSHV). These predictions and validations support future analysis of RLFS in regulating the replication, transcription, and genome maintenance of herpesviruses.
Collapse
|
22
|
Zhang LH, Zhang XY, Hu T, Chen XY, Li JJ, Raida M, Sun N, Luo Y, Gao X. The SUMOylated METTL8 Induces R-loop and Tumorigenesis via m3C. iScience 2020; 23:100968. [PMID: 32199293 PMCID: PMC7082549 DOI: 10.1016/j.isci.2020.100968] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 02/08/2020] [Accepted: 03/03/2020] [Indexed: 01/26/2023] Open
Abstract
R-loops, three-stranded DNA-DNA:RNA hybrid structures, are best known for their deleterious effects on genome stability. The regulatory factors of this fundamental genetic structure remain unclear. Here, we reveal an epigenetic factor that controls R-loop stability. METTL8, a member of the methyltransferase-like protein family that methylates 3-methylcytidine (m3C), is a key factor in the R-loop regulating methyltransferase complex. Biochemical studies show that METTL8 forms a large SUMOylated nuclear RNA-binding protein complex (∼0.8 mega daltons) that contains well-reported R-loop related factors. Genetic ablation of METTL8 results in an overall reduction of R-loops in cells. Interaction assays indicated METTL8 binds to RNAs and is responsible for R-loop stability on selected gene regions. Our results demonstrate that the SUMOylated METTL8 promotes tumorigenesis by affecting genetic organization primarily in, or in close proximity to, the nucleolus and impacts the formation of regulatory R-loops through its methyltransferase activity on m3C. DNA:RNA hybrid structures are regulated by RNA methyltransferase via 3-methylcytidine SUMOylation stabilizes the RNA methyltransferase complex in the nucleus Dysregulation of DNA:RNA hybrids may induce tumorigenesis in mammalian cells
Collapse
Affiliation(s)
- Li-Hong Zhang
- Department of Biochemistry and Cancer Institute of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China; Key Laboratory of Cancer Prevention and Intervention of China National Ministry of Education, Hangzhou 310009, China
| | - Xue-Yun Zhang
- Department of Biochemistry and Cancer Institute of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China; Key Laboratory of Cancer Prevention and Intervention of China National Ministry of Education, Hangzhou 310009, China
| | - Tao Hu
- Department of Spine Surgery, Shanghai East Hospital, Tongji University, Shanghai 200092, China
| | - Xin-Yun Chen
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Jing-Jia Li
- Department of Biochemistry and Cancer Institute of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China; Key Laboratory of Cancer Prevention and Intervention of China National Ministry of Education, Hangzhou 310009, China
| | - Manfred Raida
- Life Sciences Institute, National University of Singapore, Singapore 117456, Singapore
| | - Ning Sun
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Yan Luo
- Department of Biochemistry and Cancer Institute of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China; Key Laboratory of Cancer Prevention and Intervention of China National Ministry of Education, Hangzhou 310009, China.
| | - Xiang Gao
- Department of Biochemistry and Cancer Institute of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China; Key Laboratory of Cancer Prevention and Intervention of China National Ministry of Education, Hangzhou 310009, China.
| |
Collapse
|
23
|
Amparo C, Clark J, Bedell V, Murata-Collins JL, Martella M, Pichiorri F, Warner EF, Abdelhamid MAS, Waller ZAE, Smith SS. Duplex DNA from Sites of Helicase-Polymerase Uncoupling Links Non-B DNA Structure Formation to Replicative Stress. Cancer Genomics Proteomics 2020; 17:101-115. [PMID: 32108033 DOI: 10.21873/cgp.20171] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 01/25/2020] [Accepted: 01/27/2020] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Replication impediments can produce helicase-polymerase uncoupling allowing lagging strand synthesis to continue for as much as 6 kb from the site of the impediment. MATERIALS AND METHODS We developed a cloning procedure designed to recover fragments from lagging strand near the helicase halt site. RESULTS A total of 62% of clones from a p53-deficient tumor cell line (PC3) and 33% of the clones from a primary cell line (HPS-19I) were within 5 kb of a G-quadruplex forming sequence. Analyses of a RACK7 gene sequence, that was cloned multiple times from the PC3 line, revealed multiple deletions in region about 1 kb from the cloned region that was present in a non-B conformation. Sequences from the region formed G-quadruplex and i-motif structures under physiological conditions. CONCLUSION Defects in components of non-B structure suppression systems (e.g. p53 helicase targeting) promote replication-linked damage selectively targeted to sequences prone to G-quadruplex and i-motif formation.
Collapse
Affiliation(s)
- Camille Amparo
- Division of Urology, City of Hope National Medical Center, Duarte, CA, U.S.A.,Beckman Research Institute, City of Hope, Duarte, CA, U.S.A
| | - Jarrod Clark
- Division of Urology, City of Hope National Medical Center, Duarte, CA, U.S.A.,Beckman Research Institute, City of Hope, Duarte, CA, U.S.A
| | - Victoria Bedell
- Division of Cytogenetics, City of Hope National Medical Center, Duarte, CA, U.S.A
| | | | - Marianna Martella
- Judy and Bernard Briskin Center for Multiple Myeloma Research, City of Hope National Medical Center, Duarte, CA, U.S.A.,Hematological Malignancies and Translational Science, City of Hope National Medical Center, Duarte, CA, U.S.A
| | - Flavia Pichiorri
- Judy and Bernard Briskin Center for Multiple Myeloma Research, City of Hope National Medical Center, Duarte, CA, U.S.A.,Hematological Malignancies and Translational Science, City of Hope National Medical Center, Duarte, CA, U.S.A
| | - Emily F Warner
- School of Pharmacy, University of East Anglia, Norwich Research Park, Norwich, U.K
| | | | - Zoë A E Waller
- School of Pharmacy, University of East Anglia, Norwich Research Park, Norwich, U.K
| | - Steven S Smith
- Beckman Research Institute, City of Hope, Duarte, CA, U.S.A. .,Hematological Malignancies and Translational Science, City of Hope National Medical Center, Duarte, CA, U.S.A
| |
Collapse
|
24
|
Ultra-deep Coverage Single-molecule R-loop Footprinting Reveals Principles of R-loop Formation. J Mol Biol 2020; 432:2271-2288. [PMID: 32105733 DOI: 10.1016/j.jmb.2020.02.014] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 01/27/2020] [Accepted: 02/06/2020] [Indexed: 12/12/2022]
Abstract
R-loops are a prevalent class of non-B DNA structures that have been associated with both positive and negative cellular outcomes. DNA:RNA immunoprecipitation (DRIP) approaches based on the anti-DNA:RNA hybrid S9.6 antibody revealed that R-loops form dynamically over conserved genic hotspots. We have developed an orthogonal approach that queries R-loops via the presence of long stretches of single-stranded DNA on their looped-out strand. Nondenaturing sodium bisulfite treatment catalyzes the conversion of unpaired cytosines to uracils, creating permanent genetic tags for the position of an R-loop. Long-read, single-molecule PacBio sequencing allows the identification of R-loop 'footprints' at near nucleotide resolution in a strand-specific manner on long single DNA molecules and at ultra-deep coverage. Single-molecule R-loop footprinting coupled with PacBio sequencing (SMRF-seq) revealed a strong agreement between S9.6-based and bisulfite-based R-loop mapping and confirmed that R-loops form over genic hotspots, including gene bodies and terminal gene regions. Based on the largest single-molecule R-loop dataset to date, we show that individual R-loops form nonrandomly, defining discrete sets of overlapping molecular clusters that pileup through larger R-loop zones. R-loops most often map to intronic regions and their individual start and stop positions do not match with intron-exon boundaries, reinforcing the model that they form cotranscriptionally from unspliced transcripts. SMRF-seq further established that R-loop distribution patterns are not simply driven by intrinsic DNA sequence features but most likely also reflect DNA topological constraints. Overall, DRIP-based and SMRF-based approaches independently provide a complementary and congruent view of R-loop distribution, consolidating our understanding of the principles underlying R-loop formation.
Collapse
|
25
|
Kuznetsov VA, Bondarenko V, Wongsurawat T, Yenamandra SP, Jenjaroenpun P. Toward predictive R-loop computational biology: genome-scale prediction of R-loops reveals their association with complex promoter structures, G-quadruplexes and transcriptionally active enhancers. Nucleic Acids Res 2019; 46:7566-7585. [PMID: 29945198 PMCID: PMC6125637 DOI: 10.1093/nar/gky554] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Accepted: 06/08/2018] [Indexed: 12/31/2022] Open
Abstract
R-loops are three-stranded RNA:DNA hybrid structures essential for many normal and pathobiological processes. Previously, we generated a quantitative R-loop forming sequence (RLFS) model, quantitative model of R-loop-forming sequences (QmRLFS) and predicted ∼660 000 RLFSs; most of them located in genes and gene-flanking regions, G-rich regions and disease-associated genomic loci in the human genome. Here, we conducted a comprehensive comparative analysis of these RLFSs using experimental data and demonstrated the high performance of QmRLFS predictions on the nucleotide and genome scales. The preferential co-localization of RLFS with promoters, U1 splice sites, gene ends, enhancers and non-B DNA structures, such as G-quadruplexes, provides evidence for the mechanical linkage between DNA tertiary structures, transcription initiation and R-loops in critical regulatory genome regions. We introduced and characterized an abundant class of reverse-forward RLFS clusters highly enriched in non-B DNA structures, which localized to promoters, gene ends and enhancers. The RLFS co-localization with promoters and transcriptionally active enhancers suggested new models for in cis and in trans regulation by RNA:DNA hybrids of transcription initiation and formation of 3D-chromatin loops. Overall, this study provides a rationale for the discovery and characterization of the non-B DNA regulatory structures involved in the formation of the RNA:DNA interactome as the basis for an emerging quantitative R-loop biology and pathobiology.
Collapse
Affiliation(s)
- Vladimir A Kuznetsov
- Bioinformatics Institute, Agency for Science, Technology and Research (A*STAR), Singapore 138671, Singapore.,Department of Urology, Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| | - Vladyslav Bondarenko
- Bioinformatics Institute, Agency for Science, Technology and Research (A*STAR), Singapore 138671, Singapore
| | - Thidathip Wongsurawat
- Bioinformatics Institute, Agency for Science, Technology and Research (A*STAR), Singapore 138671, Singapore.,Department of Biomedical Informatics, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Surya P Yenamandra
- Bioinformatics Institute, Agency for Science, Technology and Research (A*STAR), Singapore 138671, Singapore
| | - Piroon Jenjaroenpun
- Bioinformatics Institute, Agency for Science, Technology and Research (A*STAR), Singapore 138671, Singapore.,Department of Biomedical Informatics, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| |
Collapse
|
26
|
HOX transcript antisense RNA (HOTAIR) in cancer. Cancer Lett 2019; 454:90-97. [DOI: 10.1016/j.canlet.2019.04.016] [Citation(s) in RCA: 90] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 04/06/2019] [Accepted: 04/08/2019] [Indexed: 01/17/2023]
|
27
|
Abstract
BACKGROUND Numerous different types of variations can occur in DNA and have diverse effects and consequences. The Variation Ontology (VariO) was developed for systematic descriptions of variations and their effects at DNA, RNA and protein levels. RESULTS VariO use and terms for DNA variations are described in depth. VariO provides systematic names for variation types and detailed descriptions for changes in DNA function, structure and properties. The principles of VariO are presented along with examples from published articles or databases, most often in relation to human diseases. VariO terms describe local DNA changes, chromosome number and structure variants, chromatin alterations, as well as genomic changes, whether of genetic or non-genetic origin. CONCLUSIONS DNA variation systematics facilitates unambiguous descriptions of variations and their effects and further reuse and integration of data from different sources by both human and computers.
Collapse
Affiliation(s)
- Mauno Vihinen
- Department of Experimental Medical Science, Lund University, BMC B13, SE-22184, Lund, Sweden.
| |
Collapse
|
28
|
Hussain T, Liu B, Shrock MS, Williams T, Aldaz CM. WWOX, the FRA16D gene: A target of and a contributor to genomic instability. Genes Chromosomes Cancer 2018; 58:324-338. [PMID: 30350478 DOI: 10.1002/gcc.22693] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Accepted: 10/10/2018] [Indexed: 12/20/2022] Open
Abstract
WWOX is one of the largest human genes spanning over 1.11 Mbp in length at chr16q23.1-q23.2 and containing FRA16D, the second most common chromosomal fragile site. FRA16D is a hot spot of genomic instability, prone to breakage and for causing germline and somatic copy number variations (CNVs). Consequentially WWOX is frequent target for deletions in cancer. Esophageal, stomach, colon, bladder, ovarian, and uterine cancers are those most commonly affected by WWOX deep focal deletions. WWOX deletions significantly correlate with various clinicopathological features in esophageal carcinoma. WWOX is also a common target for translocations in multiple myeloma. By mapping R-loop (RNA:DNA hybrid) forming sequences (RFLS) we observe this to be a consistent feature aligning with germline and somatic CNV break points at the edges and core of FRA16D spanning from introns 5 to 8 of WWOX. Germline CNV polymorphisms affecting WWOX are extremely common in humans across different ethnic groups. Importantly, structural variants datasets allowed us to identify a specific hot spot for germline duplications and deletions within intron 5 of WWOX coinciding with the 5' edge of the FRA16D core and various RFLS. Recently, multiple pathogenic CNVs spanning WWOX have been identified associated with neurological conditions such as autism spectrum disorder, infantile epileptic encephalopathies, and other developmental anomalies. Loss of WWOX function has recently been associated with DNA damage repair abnormalities, increased genomic instability, and resistance to chemoradiotherapy. The described observations place WWOX both as a target of and a contributor to genomic instability. Both of these aspects will be discussed in this review.
Collapse
Affiliation(s)
- Tabish Hussain
- Department of Epigenetics and Molecular Carcinogenesis, Science Park, The University of Texas MD Anderson Cancer Center, Smithville, Texas
| | - Bin Liu
- Department of Epigenetics and Molecular Carcinogenesis, Science Park, The University of Texas MD Anderson Cancer Center, Smithville, Texas
| | - Morgan S Shrock
- Department of Radiation Oncology, The Ohio State University Wexner Medical Center, Columbus, Ohio
| | - Terence Williams
- Department of Radiation Oncology, The Ohio State University Wexner Medical Center, Columbus, Ohio
| | - C Marcelo Aldaz
- Department of Epigenetics and Molecular Carcinogenesis, Science Park, The University of Texas MD Anderson Cancer Center, Smithville, Texas
| |
Collapse
|
29
|
The G-rich Repeats in FMR1 and C9orf72 Loci Are Hotspots for Local Unpairing of DNA. Genetics 2018; 210:1239-1252. [PMID: 30396881 DOI: 10.1534/genetics.118.301672] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2018] [Accepted: 10/15/2018] [Indexed: 12/13/2022] Open
Abstract
Pathological mutations involving noncoding microsatellite repeats are typically located near promoters in CpG islands and are coupled with extensive repeat instability when sufficiently long. What causes these regions to be prone to repeat instability is not fully understood. There is a general consensus that instability results from the induction of unusual structures in the DNA by the repeats as a consequence of mispairing between complementary strands. In addition, there is some evidence that repeat instability is mediated by RNA transcription through the formation of three-stranded nucleic structures composed of persistent DNA:RNA hybrids, concomitant with single-strand DNA displacements (R-loops). Using human embryonic stem cells with wild-type and repeat expanded alleles in the FMR1 (CGGs) and C9orf72 (GGGGCCs) genes, we show that these loci constitute preferential sites (hotspots) for DNA unpairing. When R-loops are formed, DNA unpairing is more extensive, and is coupled with the interruptions of double-strand structures by the nontranscribing (G-rich) DNA strand. These interruptions are likely to reflect unusual structures in the DNA that drive repeat instability when the G-rich repeats considerably expand. Further, we demonstrate that when the CGGs in FMR1 are hyper-methylated and transcriptionally inactive, local DNA unpairing is abolished. Our study thus takes one more step toward the identification of dynamic, unconventional DNA structures across the G-rich repeats at FMR1 and C9orf72 disease-associated loci.
Collapse
|
30
|
Gibbons HR, Shaginurova G, Kim LC, Chapman N, Spurlock CF, Aune TM. Divergent lncRNA GATA3-AS1 Regulates GATA3 Transcription in T-Helper 2 Cells. Front Immunol 2018; 9:2512. [PMID: 30420860 PMCID: PMC6215836 DOI: 10.3389/fimmu.2018.02512] [Citation(s) in RCA: 88] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Accepted: 10/11/2018] [Indexed: 12/28/2022] Open
Abstract
Long non-coding RNAs (lncRNAs) possess a diverse array of regulatory functions including activation and silencing of gene transcription, regulation of splicing, and coordinating epigenetic modifications. GATA3-AS1 is a divergent lncRNA gene neighboring GATA3. GATA3 is considered the master regulator of TH2 lineage commitment enabling TH2 effector cells to efficiently transcribe genes encoding cytokines IL-4, IL-5, and IL-13. Here, we show that the GATA3-AS1 lncRNA is selectively expressed under TH2 polarizing conditions and is necessary for efficient transcription of GATA3, IL5, and IL13 genes, while being sufficient for GATA3 transcription. GATA3-AS1 is required for formation of permissive chromatin marks, H3K27 acetylation and H3K4 di/tri-methylation, at the GATA3-AS1-GATA3 locus. Further, GATA3-AS1 binds components of the MLL methyltransferase and forms a DNA-RNA hybrid (R-loop) thus tethering the MLL methyltransferase to the gene locus. Our results indicate a novel regulatory function for a divergent lncRNA and provide new insight into the function of lncRNAs in T helper cell differentiation.
Collapse
Affiliation(s)
- Hunter R. Gibbons
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University, Nashville, TN, United States
| | - Guzel Shaginurova
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Laura C. Kim
- Program in Cancer Biology, Vanderbilt University, Nashville, TN, United States
| | - Nathaniel Chapman
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University, Nashville, TN, United States
| | - Charles F. Spurlock
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Thomas M. Aune
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University, Nashville, TN, United States
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, United States
| |
Collapse
|
31
|
Abstract
During transcription, the nascent transcript behind an elongating RNA polymerase (RNAP) can invade the DNA duplex and hybridize with the complementary DNA template strand, generating a three-stranded "R-loop" structure, composed of an RNA:DNA duplex and an unpaired non-template DNA strand. R-loops can be strongly associated with actively transcribed loci by all RNAPs including the mitochondrial RNA polymerase (mtRNAP). In this chapter, we describe two protocols for the detection of RNA:DNA hybrids in living budding yeast cells, one that uses conventional chromatin immunoprecipitation (ChIP-qPCR) and one that uses DNA:RNA immunoprecipitation (DRIP-qPCR). Both protocols make use of the S9.6 antibody, which is believed to recognize the intermediate A/B helical RNA:DNA duplex conformation, with no sequence specificity.
Collapse
Affiliation(s)
- Aziz El Hage
- Wellcome Centre for Cell Biology, University of Edinburgh, Max Born Crescent, Edinburgh, EH9 3BF, UK.
| | - David Tollervey
- Wellcome Centre for Cell Biology, University of Edinburgh, Max Born Crescent, Edinburgh, EH9 3BF, UK
| |
Collapse
|
32
|
Xu W, Xu H, Li K, Fan Y, Liu Y, Yang X, Sun Q. The R-loop is a common chromatin feature of the Arabidopsis genome. NATURE PLANTS 2017; 3:704-714. [PMID: 28848233 DOI: 10.1038/s41477-017-0004-x] [Citation(s) in RCA: 128] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Accepted: 07/14/2017] [Indexed: 05/03/2023]
Abstract
R-loops are functional structures in chromatin comprising one single-stranded DNA and a DNA:RNA hybrid. Here, we report ssDRIP-seq, a single-strand DNA ligation-based library preparation technique for genome-wide identification of R-loops. When applied in Arabidopsis, ssDRIP-seq exhibits high efficiency, low bias and strand specificity. We found that Arabidopsis R-loops are enriched by both AT and GC skews, and are formed in the sense and antisense orientations. R-loops are strongly enriched in gene promoters and gene bodies, and are highly associated with noncoding RNA and repetitive genomic regions. Furthermore, R-loops are negatively correlated with CG DNA hypermethylation, and are prevalent in regions with multiple chromatin modifications, showing strong correlations with the activated and repressed gene loci. Our analyses indicate that R-loops are common features in the Arabidopsis genome and suggest that the R-loops play diverse roles in genome organization and gene regulation, thereby providing insights into plant nuclear genome formation and function.
Collapse
Affiliation(s)
- Wei Xu
- Tsinghua-Peking Joint Center for Life Sciences, Tsinghua University, Beijing, 100084, China
- Center for Plant Biology, Tsinghua University, Beijing, 100084, China
| | - Hui Xu
- Tsinghua-Peking Joint Center for Life Sciences, Tsinghua University, Beijing, 100084, China
- MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Kuan Li
- Center for Plant Biology, Tsinghua University, Beijing, 100084, China
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yingxu Fan
- Tsinghua-Peking Joint Center for Life Sciences, Tsinghua University, Beijing, 100084, China
- Center for Plant Biology, Tsinghua University, Beijing, 100084, China
| | - Yang Liu
- Tsinghua-Peking Joint Center for Life Sciences, Tsinghua University, Beijing, 100084, China
- MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Xuerui Yang
- Tsinghua-Peking Joint Center for Life Sciences, Tsinghua University, Beijing, 100084, China.
- MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, Beijing, 100084, China.
| | - Qianwen Sun
- Tsinghua-Peking Joint Center for Life Sciences, Tsinghua University, Beijing, 100084, China.
- Center for Plant Biology, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|