1
|
Jin C, Li S, Vallis KA, El-Sagheer AH, Brown T. Modular and automated synthesis of oligonucleotide-small molecule conjugates for cathepsin B mediated traceless release of payloads. RSC Chem Biol 2024; 5:738-744. [PMID: 39092443 PMCID: PMC11289880 DOI: 10.1039/d4cb00112e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 05/28/2024] [Indexed: 08/04/2024] Open
Abstract
The reversible attachment of small molecules to oligonucleotides provides versatile tools for the development of improved oligonucleotide therapeutics. However, cleavable linkers in the oligonucleotide field are scarce, particularly with respect to the requirement for traceless release of the payload in vivo. Herein, we describe a cathepsin B-cleavable dipeptide phosphoramidite, Val-Ala(NB) for the automated synthesis of oligonucleotide-small molecule conjugates. Val-Ala(NB) was protected by a photolabile 2-nitrobenzyl group to improve the stability of the peptide linker during DNA synthesis. Intracellular cathepsin B digests the dipeptide efficiently, releasing the payload-phosphate which is converted to the free payload by endogenous phosphatase enzymes. With the advantages of modular synthesis and stimuli-responsive drug release, we believe Val-Ala(NB) will be a potentially valuable cleavable linker for use in oligonucleotide-drug conjugates.
Collapse
Affiliation(s)
- Cheng Jin
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford 12 Mansfield Road Oxford OX1 3TA UK
- Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Zhejiang Cancer Hospital Hangzhou Zhejiang 310022 China
| | - Siqi Li
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford 12 Mansfield Road Oxford OX1 3TA UK
- Department of Oncology, University of Oxford Oxford OX3 7DQ UK
| | | | - Afaf H El-Sagheer
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford 12 Mansfield Road Oxford OX1 3TA UK
- School of Chemistry, University of Southampton Southampton SO17 1BJ UK
- Department of Science and Mathematics, Suez University, Faculty of Petroleum and Mining Engineering Suez 43721 Egypt
| | - Tom Brown
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford 12 Mansfield Road Oxford OX1 3TA UK
| |
Collapse
|
2
|
Xing GW, Gao J, Wang H, Liu YC. New Fluorophore and Its Applications in Visualizing Polystyrene Nanoplastics in Bean Sprouts and HeLa Cells. Molecules 2023; 28:7102. [PMID: 37894580 PMCID: PMC10609485 DOI: 10.3390/molecules28207102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 09/19/2023] [Accepted: 10/13/2023] [Indexed: 10/29/2023] Open
Abstract
In the domain of environmental science, pollutants of nanoscale plastic dimensions are acknowledged as subjects of intricate significance. Such entities, though minuscule, present formidable challenges to ecological systems and human health. The diminutive dimensions of these contaminants render their detection arduous, thus demanding the inception of avant-garde methodologies. The present manuscript postulates the employment of the tetraphenylethylene functional group with a fused xanthene (TPEF), a distinguished fluorophore, as an exemplary system for the discernment of nanoplastic particulates. The synthesis and characterization of TPEF have been exhaustively elucidated, revealing its paramount fluorescence attributes and inherent affinity for interaction with nanoplastics. When subjected to comparison with TPEF, nanoplastics are observed to manifest a more pronounced fluorescent luminescence than when associated with the conventional Nile Red (NR). Particularly, the TPEF has shown exceptional affinity for polystyrene (PS) nanoplastics. Further, the resilience of nanoplastics within the hypocotyl epidermis of soybeans, as well as their persistence in mung bean sprouts subsequent to rigorous rinsing protocols, has been meticulously examined. Additionally, this investigation furnishes empirical data signifying the existence of nano-dimensional plastic contaminants within HeLa cellular structures. The urgency of addressing the environmental ramifications engendered by these diminutive yet potent plastic constituents is emphatically highlighted in this manuscript. TPEF paves the way for prospective explorations, with the aspiration of devising efficacious mitigation strategies. Such strategies might encompass delineating the trajectories undertaken by nanoplastics within trophic networks or their ingress into human cellular architectures.
Collapse
Affiliation(s)
- Guo-Wen Xing
- College of Chemistry, Beijing Normal University, Beijing 100875, China;
| | - Jerry Gao
- Beijing No. 80 High School, Beijing 100102, China; (J.G.); (H.W.)
| | - Heng Wang
- Beijing No. 80 High School, Beijing 100102, China; (J.G.); (H.W.)
| | - Yi-Chen Liu
- College of Chemistry, Beijing Normal University, Beijing 100875, China;
| |
Collapse
|
3
|
Kuba M, Khoroshyy P, Lepšík M, Kužmová E, Kodr D, Kraus T, Hocek M. Real-time Imaging of Nascent DNA in Live Cells by Monitoring the Fluorescence Lifetime of DNA-Incorporated Thiazole Orange-Modified Nucleotides. Angew Chem Int Ed Engl 2023; 62:e202307548. [PMID: 37498132 DOI: 10.1002/anie.202307548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 07/20/2023] [Accepted: 07/27/2023] [Indexed: 07/28/2023]
Abstract
A modified 2'-deoxycytidine triphosphate derivative (dCTO TP) bearing a thiazole orange moiety tethered via an oligoethylene glycol linker was designed and synthesized. The nucleotide was incorporated into DNA by DNA polymerases in vitro as well as in live cells. Upon incorporation of dCTO TP into DNA, the thiazole orange moiety exhibited a fluorescence lifetime that differed significantly from the non-incorporated (i.e. free and non-covalently intercalated) forms of dCTO TP. When dCTO TP was delivered into live U-2 OS cells using a synthetic nucleoside triphosphate transporter, it allowed us to distinguish and monitor cells that were actively synthesizing DNA in real time, from the very first moments after the treatment. We anticipate that this probe could be used to study chromatin organization and dynamics.
Collapse
Affiliation(s)
- Miroslav Kuba
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nám. 2, 16000, Prague 6, Czech Republic
- Department of Organic Chemistry, Faculty of Science, Charles University, Hlavova 8, 12843, Prague 2, Czech Republic
| | - Petro Khoroshyy
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nám. 2, 16000, Prague 6, Czech Republic
| | - Martin Lepšík
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nám. 2, 16000, Prague 6, Czech Republic
| | - Erika Kužmová
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nám. 2, 16000, Prague 6, Czech Republic
| | - David Kodr
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nám. 2, 16000, Prague 6, Czech Republic
| | - Tomáš Kraus
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nám. 2, 16000, Prague 6, Czech Republic
| | - Michal Hocek
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nám. 2, 16000, Prague 6, Czech Republic
- Department of Organic Chemistry, Faculty of Science, Charles University, Hlavova 8, 12843, Prague 2, Czech Republic
| |
Collapse
|
4
|
Kostelansky F, Miletin M, Havlinova Z, Szotakova B, Libra A, Kucera R, Novakova V, Zimcik P. Thermal stabilisation of the short DNA duplexes by acridine-4-carboxamide derivatives. Nucleic Acids Res 2022; 50:10212-10229. [PMID: 36156152 PMCID: PMC9561273 DOI: 10.1093/nar/gkac777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 08/17/2022] [Accepted: 08/29/2022] [Indexed: 11/12/2022] Open
Abstract
The short oligodeoxynucleotide (ODN) probes are suitable for good discrimination of point mutations. However, the probes suffer from low melting temperatures. In this work, the strategy of using acridine-4-carboxamide intercalators to improve thermal stabilisation is investigated. The study of large series of acridines revealed that optimal stabilisation is achieved upon decoration of acridine by secondary carboxamide carrying sterically not demanding basic function bound through a two-carbon linker. Two highly active intercalators were attached to short probes (13 or 18 bases; designed as a part of HFE gene) by click chemistry into positions 7 and/or 13 and proved to increase the melting temperate (Tm) of the duplex by almost 8°C for the best combination. The acridines interact with both single- and double-stranded DNAs with substantially preferred interaction for the latter. The study of interaction suggested higher affinity of the acridines toward the GC- than AT-rich sequences. Good discrimination of two point mutations was shown in practical application with HFE gene (wild type, H63D C > G and S65C A > C mutations). Acridine itself can also serve as a fluorophore and also allows discrimination of the fully matched sequences from those with point mutations in probes labelled only with acridine.
Collapse
Affiliation(s)
| | - Miroslav Miletin
- Faculty of Pharmacy in Hradec Králové, Charles University, Ak. Heyrovskeho 1203, Hradec Kralove, 500 05, Czech Republic
| | - Zuzana Havlinova
- Generi Biotech, Machkova 587, Hradec Kralove, 500 11, Czech Republic
| | - Barbora Szotakova
- Generi Biotech, Machkova 587, Hradec Kralove, 500 11, Czech Republic
| | - Antonin Libra
- Generi Biotech, Machkova 587, Hradec Kralove, 500 11, Czech Republic
| | - Radim Kucera
- Faculty of Pharmacy in Hradec Králové, Charles University, Ak. Heyrovskeho 1203, Hradec Kralove, 500 05, Czech Republic
| | - Veronika Novakova
- Faculty of Pharmacy in Hradec Králové, Charles University, Ak. Heyrovskeho 1203, Hradec Kralove, 500 05, Czech Republic
| | - Petr Zimcik
- To whom correspondence should be addressed. Tel: +420 495067257;
| |
Collapse
|
5
|
Gebhard J, Hirsch L, Schwechheimer C, Wagenknecht HA. Hybridization-Sensitive Fluorescent Probes for DNA and RNA by a Modular "Click" Approach. Bioconjug Chem 2022; 33:1634-1642. [PMID: 35995426 PMCID: PMC9501807 DOI: 10.1021/acs.bioconjchem.2c00241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
![]()
Fluorescent DNA probes were prepared in a modular approach
using
the “click” post-synthetic modification strategy. The
new glycol-based module and DNA building block place just two carbons
between the phosphodiester bridges and anchor the dye by an additional
alkyne group. This creates a stereocenter in the middle of this artificial
nucleoside substitute. Both enantiomers and a variety of photostable
cyanine–styryl dyes as well as thiazole orange derivatives
were screened as “clicked” conjugates in different surrounding
DNA sequences. The combination of the (S)-configured
DNA anchor and the cyanylated cyanine–styryl dye shows the
highest fluorescence light-up effect of 9.2 and a brightness of approximately
11,000 M–1 cm–1. This hybridization
sensitivity and fluorescence readout were further developed utilizing
electron transfer and energy transfer processes. The combination of
the hybridization-sensitive DNA building block with the nucleotide
of 5-nitroindole as an electron acceptor and a quencher increases
the light-up effect to 20 with the DNA target and to 15 with the RNA
target. The fluorescence readout could significantly be enhanced to
values between 50 and 360 by the use of energy transfer to a second
DNA probe with commercially available dyes, like Cy3.5, Cy5, and Atto590,
as energy acceptors at the 5′-end. The latter binary probes
shift the fluorescent readout from the range of 500–550 nm
to the range of 610–670 nm. The optical properties make these
fluorescent DNA probes potentially useful for RNA imaging. Due to
the strong light-up effect, they will not require washing procedures
and will thus be suitable for live-cell imaging.
Collapse
Affiliation(s)
- Julian Gebhard
- Karlsruhe Institute of Technology (KIT), Institute of Organic Chemistry, Fritz-Haber-Weg 6, 7631 Karlsruhe, Germany
| | - Lara Hirsch
- Karlsruhe Institute of Technology (KIT), Institute of Organic Chemistry, Fritz-Haber-Weg 6, 7631 Karlsruhe, Germany
| | - Christian Schwechheimer
- Karlsruhe Institute of Technology (KIT), Institute of Organic Chemistry, Fritz-Haber-Weg 6, 7631 Karlsruhe, Germany
| | - Hans-Achim Wagenknecht
- Karlsruhe Institute of Technology (KIT), Institute of Organic Chemistry, Fritz-Haber-Weg 6, 7631 Karlsruhe, Germany
| |
Collapse
|
6
|
Falco N, Garfio CM, Spitalny L, Spitale RC. A Fluorescent Reverse-Transcription Assay to Detect Chemical Adducts on RNA. Biochemistry 2022; 61:1665-1668. [PMID: 35876726 PMCID: PMC10010264 DOI: 10.1021/acs.biochem.2c00270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Herein, we detail a novel reverse-transcription (RT) assay to directly detect chemical adducts on RNA. We optimize a fluorescence quenching assay to detect RT polymerization and employ our approach to detect N1-alkylation of inosine, an important post-transcriptional modification, using a phenylacrylamide as a model compound. We anticipate our approach can be expanded to identify novel reagents that form adducts with RNA and further explored to understand the relationship between RT processivity and natural post-transcriptional modifications in RNA.
Collapse
|
7
|
Sato Y, Miura H, Tanabe T, Okeke CU, Kikuchi A, Nishizawa S. Fluorescence Sensing of the Panhandle Structure of the Influenza A Virus RNA Promoter by Thiazole Orange Base Surrogate-Carrying Peptide Nucleic Acid Conjugated with Small Molecule. Anal Chem 2022; 94:7814-7822. [PMID: 35604144 DOI: 10.1021/acs.analchem.1c05488] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We have developed a new class of triplex-forming peptide nucleic acid (PNA)-based fluorogenic probes for sensing of the panhandle structure of the influenza A virus (IAV) RNA promoter region. Here, a small molecule (DPQ) capable of selectively binding to the internal loop structure was conjugated with triplex-forming forced intercalation of the thiazole orange (tFIT) probe with natural PNA nucleobases. The resulting conjugate, tFIT-DPQ, showed a significant light-up response (83-fold) upon strong (Kd = 107 nM) and structure-selective binding to the IAV RNA promoter region under physiological conditions (pH 7.0, 100 mM NaCl). We demonstrated the conjugation of these two units through the suitable spacer was key to show useful binding and fluorogenic signaling functions. tFIT-DPQ facilitated the sensitive and selective detection of IAV RNA based on its binding to the promoter region. Furthermore, we found that tFIT-DPQ could work as a sensitive indicator for screening of test compounds targeting the IAV RNA promoter region in the fluorescence indicator displacement assay.
Collapse
Affiliation(s)
- Yusuke Sato
- Department of Chemistry, Graduate School of Science, Tohoku University, Sendai 980-8578, Japan
| | - Hiromasa Miura
- Department of Chemistry, Graduate School of Science, Tohoku University, Sendai 980-8578, Japan
| | - Takaaki Tanabe
- Department of Chemistry, Graduate School of Science, Tohoku University, Sendai 980-8578, Japan
| | - Chioma Uche Okeke
- Department of Chemistry, Graduate School of Science, Tohoku University, Sendai 980-8578, Japan
| | - Akiko Kikuchi
- Department of Kampo and Integrative Medicine, Graduate School of Medicine, Tohoku University, Sendai 980-8575, Japan
| | - Seiichi Nishizawa
- Department of Chemistry, Graduate School of Science, Tohoku University, Sendai 980-8578, Japan
| |
Collapse
|
8
|
Abdelhady AM, Onizuka K, Ishida K, Yajima S, Mano E, Nagatsugi F. Rapid Alkene-Alkene Photo-Cross-Linking on the Base-Flipping-Out Field in Duplex DNA. J Org Chem 2022; 87:2267-2276. [PMID: 34978198 DOI: 10.1021/acs.joc.1c01498] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Specific chemical reactions by enzymes acting on a nucleobase are realized by flipping the target base out of the helix. Similarly, artificial oligodeoxynucleotides (ODNs) can also induce the base flipping and a specific chemical reaction. We now report an easily prepared and unique structure-providing photo-cross-linking reaction by taking advantage of the base-flipping-out field formed by alkene-type base-flipping-inducing artificial bases. Two 3-arylethenyl-5-methyl-2-pyridone nucleosides with the Ph or An group were synthesized and incorporated into the ODNs. We found that the two Ph derivatives provided the cross-linked product in a high yield only by a 10 s photoirradiation when their alkenes overlap each other in the duplex DNA. The highly efficient reaction enabled forming a cross-linked product even when using the duplex with a low Tm value.
Collapse
Affiliation(s)
- Ahmed Mostafa Abdelhady
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi 980-8577, Japan.,Department of Chemistry, Graduate School of Science, Tohoku University, Aoba-ku, Sendai 980-8578, Japan.,Department of Chemistry, Faculty of Science, Al-Azhar University, Nasr City, Cairo 11884, Egypt
| | - Kazumitsu Onizuka
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi 980-8577, Japan.,Department of Chemistry, Graduate School of Science, Tohoku University, Aoba-ku, Sendai 980-8578, Japan.,Division for the Establishment of Frontier Sciences of Organization for Advanced Studies, Tohoku University, Aoba-ku, Sendai, Miyagi 980-8577, Japan
| | - Kei Ishida
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi 980-8577, Japan.,Department of Chemistry, Graduate School of Science, Tohoku University, Aoba-ku, Sendai 980-8578, Japan
| | - Sayaka Yajima
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi 980-8577, Japan.,Department of Chemistry, Graduate School of Science, Tohoku University, Aoba-ku, Sendai 980-8578, Japan
| | - Eriko Mano
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi 980-8577, Japan
| | - Fumi Nagatsugi
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi 980-8577, Japan.,Department of Chemistry, Graduate School of Science, Tohoku University, Aoba-ku, Sendai 980-8578, Japan
| |
Collapse
|
9
|
Bai C, Klimkowski P, Jin C, Kuchlyan J, El-Sagheer AH, Brown T. A new phosphoramidite enables orthogonal double labelling to form combination oligonucleotide probes. Org Biomol Chem 2022; 20:8618-8622. [DOI: 10.1039/d2ob01899c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
A novel phosphoramidite (AP-C3 dT) containing an alkyne and amine has been synthesized, enabling orthogonal labelling for combination oligonucleotides probes.
Collapse
Affiliation(s)
- Chunsen Bai
- Department of Chemistry, University of Oxford, 12 Mansfield Road, Oxford, OX1 3TA, UK
| | - Piotr Klimkowski
- Department of Chemistry, University of Oxford, 12 Mansfield Road, Oxford, OX1 3TA, UK
| | - Cheng Jin
- Department of Chemistry, University of Oxford, 12 Mansfield Road, Oxford, OX1 3TA, UK
| | - Jagannath Kuchlyan
- Department of Chemistry, University of Oxford, 12 Mansfield Road, Oxford, OX1 3TA, UK
| | - Afaf H. El-Sagheer
- Department of Chemistry, University of Oxford, 12 Mansfield Road, Oxford, OX1 3TA, UK
- Chemistry Branch, Department of Science and Mathematics, Faculty of Petroleum and Mining Engineering, Suez University, Suez 43721, Egypt
| | - Tom Brown
- Department of Chemistry, University of Oxford, 12 Mansfield Road, Oxford, OX1 3TA, UK
| |
Collapse
|
10
|
Suss O, Motiei L, Margulies D. Broad Applications of Thiazole Orange in Fluorescent Sensing of Biomolecules and Ions. Molecules 2021; 26:2828. [PMID: 34068759 PMCID: PMC8126248 DOI: 10.3390/molecules26092828] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 04/26/2021] [Accepted: 04/27/2021] [Indexed: 12/13/2022] Open
Abstract
Fluorescent sensing of biomolecules has served as a revolutionary tool for studying and better understanding various biological systems. Therefore, it has become increasingly important to identify fluorescent building blocks that can be easily converted into sensing probes, which can detect specific targets with increasing sensitivity and accuracy. Over the past 30 years, thiazole orange (TO) has garnered great attention due to its low fluorescence background signal and remarkable 'turn-on' fluorescence response, being controlled only by its intramolecular torsional movement. These features have led to the development of numerous molecular probes that apply TO in order to sense a variety of biomolecules and metal ions. Here, we highlight the tremendous progress made in the field of TO-based sensors and demonstrate the different strategies that have enabled TO to evolve into a versatile dye for monitoring a collection of biomolecules.
Collapse
Affiliation(s)
| | | | - David Margulies
- Department of Chemical and Structural Biology, Weizmann Institute of Science, Rehovot 7610001, Israel; (O.S.); (L.M.)
| |
Collapse
|
11
|
Zhang A, Kondhare D, Leonard P, Seela F. 5-Aza-7-deazaguanine-Isoguanine and Guanine-Isoguanine Base Pairs in Watson-Crick DNA: The Impact of Purine Tracts, Clickable Dendritic Side Chains, and Pyrene Adducts. Chemistry 2021; 27:7453-7466. [PMID: 33443814 PMCID: PMC8251886 DOI: 10.1002/chem.202005199] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Indexed: 12/19/2022]
Abstract
The Watson-Crick coding system depends on the molecular recognition of complementary purine and pyrimidine bases. Now, the construction of hybrid DNAs with Watson-Crick and purine-purine base pairs decorated with dendritic side chains was performed. Oligonucleotides with single and multiple incorporations of 5-aza-7-deaza-2'-deoxyguanosine, its tripropargylamine derivative, and 2'-deoxyisoguanosine were synthesized. Duplex stability decreased if single modified purine-purine base pairs were inserted, but increased if pyrene residues were introduced by click chemistry. A growing number of consecutive 5-aza-7-deazaguanine-isoguanine base pairs led to strong stepwise duplex stabilization, a phenomenon not observed for the guanine-isoguanine base pair. Spacious residues are well accommodated in the large groove of purine-purine DNA tracts. Changes to the global helical structure monitored by circular dichroism spectroscopy show the impact of functionalization to the global double-helix structure. This study explores new areas of molecular recognition realized by purine base pairs that are complementary in hydrogen bonding, but not in size, relative to canonical pairs.
Collapse
Affiliation(s)
- Aigui Zhang
- Laboratory of Bioorganic Chemistry and Chemical Biology, Center for Nanotechnology, University of Münster, Heisenbergstrasse 11, 48149, Münster, Germany
| | - Dasharath Kondhare
- Laboratory of Bioorganic Chemistry and Chemical Biology, Center for Nanotechnology, University of Münster, Heisenbergstrasse 11, 48149, Münster, Germany
| | - Peter Leonard
- Laboratory of Bioorganic Chemistry and Chemical Biology, Center for Nanotechnology, University of Münster, Heisenbergstrasse 11, 48149, Münster, Germany
| | - Frank Seela
- Laboratory of Bioorganic Chemistry and Chemical Biology, Center for Nanotechnology, University of Münster, Heisenbergstrasse 11, 48149, Münster, Germany.,Laboratorium für Organische und Bioorganische Chemie, Institut für Chemie neuer Materialien, Universität Osnabrück, Barbarastrasse 7, 49069, Osnabrück, Germany
| |
Collapse
|
12
|
Rajendran VK, Bakthavathsalam P, Bergquist PL, Sunna A. Smartphone technology facilitates point-of-care nucleic acid diagnosis: a beginner's guide. Crit Rev Clin Lab Sci 2020; 58:77-100. [PMID: 32609551 DOI: 10.1080/10408363.2020.1781779] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
The reliable detection of nucleic acids at low concentrations in clinical samples like blood, urine and saliva, and in food can be achieved by nucleic acid amplification methods. Several portable and hand-held devices have been developed to translate these laboratory-based methods to point-of-care (POC) settings. POC diagnostic devices could potentially play an important role in environmental monitoring, health, and food safety. Use of a smartphone for nucleic acid testing has shown promising progress in endpoint as well as real-time analysis of various disease conditions. The emergence of smartphone-based POC devices together with paper-based sensors, microfluidic chips and digital droplet assays are used currently in many situations to provide quantitative detection of nucleic acid targets. State-of-the-art portable devices are commercially available and rapidly emerging smartphone-based POC devices that allow the performance of laboratory-quality colorimetric, fluorescent and electrochemical detection are described in this review. We present a comprehensive review of smartphone-based POC sensing applications, specifically on microbial diagnostics, assess their performance and propose recommendations for the future.
Collapse
Affiliation(s)
| | - Padmavathy Bakthavathsalam
- School of Chemistry and Australian Centre for Nanomedicine, University of New South Wales, Sydney, Australia
| | - Peter L Bergquist
- Department of Molecular Sciences, Macquarie University, Sydney, Australia.,Department of Molecular Medicine & Pathology, University of Auckland, Auckland, New Zealand.,Biomolecular Discovery Research Centre, Macquarie University, Sydney, Australia
| | - Anwar Sunna
- Department of Molecular Sciences, Macquarie University, Sydney, Australia.,Biomolecular Discovery Research Centre, Macquarie University, Sydney, Australia
| |
Collapse
|
13
|
Zimmers ZA, Adams NM, Gabella WE, Haselton FR. Fluorophore-Quencher Interactions Effect on Hybridization Characteristics of Complementary Oligonucleotides. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2019; 11:2862-2867. [PMID: 32661463 PMCID: PMC7357715 DOI: 10.1039/c9ay00584f] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Nucleic acids are often covalently modified with fluorescent reporter molecules to create a hybridization state-dependent optical signal. Designing such a nucleic acid reporter involves selecting a fluorophore, quencher, and fluorescence quenching design. This report outlines the effect that these choices have on the DNA hybridization characteristics by examining six fluorophores in four quenching schemes: a quencher molecule offset from the fluorophore by 0, 5, or 10 bases, and nucleotide quenching. The similar binding characteristics of left-handed L-DNA were evaluated in comparison with right-handed DNA to quantify the effect of each quenching scheme. These results were applied to the Adaptive PCR method, which monitors fluorescently-labeled L-DNA as a sentinel for analogous unlabeled D-DNA in the reaction. All of the tested fluorophores and quenching schemes increased the annealing temperature of the oligonucleotide pairs by values ranging from 0.5 to 8.5 °C relative to unlabeled oligonucleotides. The design with the smallest increase (0.5 °C) was a sense strand with a FAM fluorophore and an anti-sense strand with Black Hole Quencher 2 offset by 10 bases from the FAM. An identical design that did not offset the quencher molecules resulted in a shift in annealing temperature of 5 °C. PCR was performed using temperature switching based on each of these L-DNA designs, and efficiency was significantly increased for the 10-base offset design, which had the smallest shift in annealing temperature. These results highlight the importance of selecting an appropriate fluorescence quenching scheme for nucleic acid optical signals.
Collapse
Affiliation(s)
- Zackary A Zimmers
- 5932 Stevenson Center Science and Engineering, Vanderbilt University
| | - Nicholas M Adams
- 5932 Stevenson Center Science and Engineering, Vanderbilt University
| | - William E Gabella
- 5932 Stevenson Center Science and Engineering, Vanderbilt University
| | | |
Collapse
|
14
|
Klimkowski P, De Ornellas S, Singleton D, El-Sagheer AH, Brown T. Design of thiazole orange oligonucleotide probes for detection of DNA and RNA by fluorescence and duplex melting. Org Biomol Chem 2019; 17:5943-5950. [PMID: 31157811 PMCID: PMC6686645 DOI: 10.1039/c9ob00885c] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
We have synthesised a range of thiazole orange (TO) functionalised oligonucleotides for nucleic acid detection in which TO is attached to the nucleobase or sugar of thymidine. The properties of duplexes between TO-probes and their DNA and RNA targets strongly depend on the length of the linker between TO and the oligonucleotide, the position of attachment of TO to the nucleotide (major or minor groove) and the mode of attachment of thiazole orange (via benzothiazole or quinoline moiety). This information can be used to design probes for detection of target nucleic acids by fluorescence or duplex melting. With cellular imaging in mind we show that 2'-OMe RNA probes with TO at the 5-position of uracil or the 2'-position of the ribose sugar are particularly effective, exhibiting up to 44-fold fluorescence enhancement against DNA and RNA, and high duplex stability. Excellent mismatch discrimination is achieved when the mispaired base is located adjacent to the TO-modified nucleotide rather than opposite to it. The simple design, ease of synthesis and favourable properties of these TO probes suggest applications in fluorescent imaging of DNA and RNA in a cellular context.
Collapse
Affiliation(s)
- Piotr Klimkowski
- Department of Chemistry, University of Oxford, 12 Mansfield Road, Oxford, OX1 3TA, UK.
| | - Sara De Ornellas
- Department of Chemistry, University of Oxford, 12 Mansfield Road, Oxford, OX1 3TA, UK. and Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, Headley Way, Oxford, OX3 9DS, UK
| | - Daniel Singleton
- ATDBio, School of Chemistry University of Southampton, SO17 1BJ, UK
| | - Afaf H El-Sagheer
- Department of Chemistry, University of Oxford, 12 Mansfield Road, Oxford, OX1 3TA, UK. and Chemistry Branch, Department of Science and Mathematics, Faculty of Petroleum and Mining Engineering, Suez University, Suez 43721, Egypt
| | - Tom Brown
- Department of Chemistry, University of Oxford, 12 Mansfield Road, Oxford, OX1 3TA, UK.
| |
Collapse
|
15
|
Taemaitree L, Shivalingam A, El-Sagheer AH, Brown T. An artificial triazole backbone linkage provides a split-and-click strategy to bioactive chemically modified CRISPR sgRNA. Nat Commun 2019; 10:1610. [PMID: 30962447 PMCID: PMC6453947 DOI: 10.1038/s41467-019-09600-4] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Accepted: 03/18/2019] [Indexed: 12/26/2022] Open
Abstract
As the applications of CRISPR-Cas9 technology diversify and spread beyond the laboratory to diagnostic and therapeutic use, the demands of gRNA synthesis have increased and access to tailored gRNAs is now restrictive. Enzymatic routes are time-consuming, difficult to scale-up and suffer from polymerase-bias while existing chemical routes are inefficient. Here, we describe a split-and-click convergent chemical route to individual or pools of sgRNAs. The synthetic burden is reduced by splitting the sgRNA into a variable DNA/genome-targeting 20-mer, produced on-demand and in high purity, and a fixed Cas9-binding chemically-modified 79-mer, produced cost-effectively on large-scale, a strategy that provides access to site-specific modifications that enhance sgRNA activity and in vivo stability. Click ligation of the two components generates an artificial triazole linkage that is tolerated in functionally critical regions of the sgRNA and allows efficient DNA cleavage in vitro as well as gene-editing in cells with no unexpected off-target effects.
Collapse
Affiliation(s)
- Lapatrada Taemaitree
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, 12 Mansfield Road, Oxford, OX1 3TA, UK
| | - Arun Shivalingam
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, 12 Mansfield Road, Oxford, OX1 3TA, UK
| | - Afaf H El-Sagheer
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, 12 Mansfield Road, Oxford, OX1 3TA, UK
- Chemistry Branch, Department of Science and Mathematics, Faculty of Petroleum and Mining Engineering, Suez University, Suez, 43721, Egypt
| | - Tom Brown
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, 12 Mansfield Road, Oxford, OX1 3TA, UK.
| |
Collapse
|
16
|
Shahmuradyan A, Moazami-Goudarzi M, Kitazume F, Espie GS, Krull UJ. Paper-based platform for detection by hybridization using intrinsically labeled fluorescent oligonucleotide probes on quantum dots. Analyst 2018; 144:1223-1229. [PMID: 30534674 DOI: 10.1039/c8an01431k] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
A paper-based platform was investigated in which the selective detection of oligonucleotide targets by hybridization was accomplished via the enhancement of fluorescence emission from intrinsically labeled DNA probes that were immobilized on the surface of quantum dots (QDs). Multiple copies of a derivative of thiazole orange, an intercalating dye known to form non-emissive dimers, were conjugated to single-stranded oligonucleotide probes. Dimerization resulted in the formation of H-aggregates where excitonic interactions led to the suppression of fluorescence. The hybridization of the oligonucleotide probe with a complementary target resulted in the enhancement of fluorescence emission as the dimers dissociated and the dyes preferentially intercalated with the duplex. The detection of oligonucleotide targets using this configuration eliminated the need for labeling the target strands, and fluorescence intensity was proportional to the extent of hybridization. In addition, the dye molecules were excited using Foerster Resonance Energy Transfer (FRET) from QD donors, which resulted in improved selectivity and allowed for ratiometric detection. A solution-phase hybridization assay based on similar operational principles has been previously reported, and this new work investigated the advantages offered for this transduction scheme using paper-based solid-phase substrates. QD-probe conjugates were immobilized in sufficient density on the paper matrix to provide for multiple-donor-multiple-acceptor interactions that resulted in a 20-fold enhancement of acceptor emission compared to the solution-based assay, providing a limit of detection of 0.1 pmol. The paper-based assay provided for the reduction of the time needed for sample preparation and data acquisition, demonstrated that transduction was possible in a complex matrix (goat serum) without compromising on the performance observed in buffer solution, and that oligonucleotides generated from standard PCR amplification could be detected.
Collapse
Affiliation(s)
- Anna Shahmuradyan
- Chemical Sensors Group, Department of Chemical and Physical Sciences, 3359 Mississauga Road, Mississauga ON, L5L 1C6, Canada.
| | - Maryam Moazami-Goudarzi
- Department of Biology, University of Toronto Mississauga, 3359 Mississauga Road, Mississauga ON, L5L 1C6, Canada
| | - Fasika Kitazume
- Chemical Sensors Group, Department of Chemical and Physical Sciences, 3359 Mississauga Road, Mississauga ON, L5L 1C6, Canada.
| | - George S Espie
- Department of Biology, University of Toronto Mississauga, 3359 Mississauga Road, Mississauga ON, L5L 1C6, Canada
| | - Ulrich J Krull
- Chemical Sensors Group, Department of Chemical and Physical Sciences, 3359 Mississauga Road, Mississauga ON, L5L 1C6, Canada.
| |
Collapse
|
17
|
Abstract
Fluorogenic oligonucleotide probes that can produce a change in fluorescence signal upon binding to specific biomolecular targets, including nucleic acids as well as non-nucleic acid targets, such as proteins and small molecules, have applications in various important areas. These include diagnostics, drug development and as tools for studying biomolecular interactions in situ and in real time. The probes usually consist of a labeled oligonucleotide strand as a recognition element together with a mechanism for signal transduction that can translate the binding event into a measurable signal. While a number of strategies have been developed for the signal transduction, relatively little attention has been paid to the recognition element. Peptide nucleic acids (PNA) are DNA mimics with several favorable properties making them a potential alternative to natural nucleic acids for the development of fluorogenic probes, including their very strong and specific recognition and excellent chemical and biological stabilities in addition to their ability to bind to structured nucleic acid targets. In addition, the uncharged backbone of PNA allows for other unique designs that cannot be performed with oligonucleotides or analogues with negatively-charged backbones. This review aims to introduce the principle, showcase state-of-the-art technologies and update recent developments in the areas of fluorogenic PNA probes during the past 20 years.
Collapse
Affiliation(s)
- Tirayut Vilaivan
- Organic Synthesis Research Unit, Department of Chemistry, Faculty of Science, Chulalongkorn University, Phayathai Road, Patumwan, Bangkok 10330, Thailand
| |
Collapse
|