1
|
Wang L, Liu Z, Zhao S, Xu K, Aceves V, Qiu C, Feng HC, Bian F, He J, Song CJ, Troutwine B, Liu L, Ma S, Niu Y, Wang S, Yuan S, Li X, Zhao L, Liu X, Qiu G, Wu Z, Zhang TJ, Gray RS, Wu N. Variants in the SOX9 transactivation middle domain induce axial skeleton dysplasia and scoliosis. Proc Natl Acad Sci U S A 2025; 122:e2313978121. [PMID: 39854231 PMCID: PMC11789016 DOI: 10.1073/pnas.2313978121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 09/30/2024] [Indexed: 01/30/2025] Open
Abstract
SOX9 is a crucial transcriptional regulator of cartilage development and homeostasis. Dysregulation of SOX9 is associated with a wide spectrum of skeletal disorders, including campomelic dysplasia, acampomelic campomelic dysplasia, and scoliosis. Yet how SOX9 variants contribute to the spectrum of axial skeletal disorders is not well understood. Here, we report four pathogenic variants of SOX9 identified in a cohort of patients with congenital vertebral malformations. We report a pathogenic missense variant in the transactivation middle (TAM) domain of SOX9 associated with mild skeletal dysplasia and scoliosis. We isolated a Sox9 mutant mouse with an in-frame microdeletion in the TAM domain (Sox9Asp272del), which exhibits skeletal dysplasia including kinked tails, rib cage anomalies, and scoliosis in homozygous mutants. We find that both the human missense and the mouse microdeletion mutations resulted in reduced SOX9 protein stability in cell culture, while Sox9Asp272del mutant mice show decreased SOX9 expression in the growth plate and annulus fibrosus tissues of the spine. This reduction in SOX9 expression was correlated with the reduction of extracellular matrix components, such as tenascin-X and the Adhesion G-protein coupled receptor ADGRG6. In summary, our work identified and modeled a pathologic variant of SOX9 within the TAM domain and demonstrated its importance for SOX9 protein stability. Our work demonstrates that SOX9 stability is important for the regulation of ADGRG6 expression, which is a known regulator of postnatal spine homeostasis, underscoring the essential role of SOX9 dosage in a spectrum of axial skeleton dysplasia in humans.
Collapse
Affiliation(s)
- Lianlei Wang
- Department of Orthopedic Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing100730, China
- Department of Orthopedic Surgery, Qilu Hospital of Shandong University, Jinan250012, Shandong, China
- Beijing Key Laboratory of Big Data Innovation and Application for Skeletal Health Medical Care, Beijing100730, China
| | - Zhaoyang Liu
- Center for Craniofacial Molecular Biology, Herman Ostrow School of Dentistry, University of Southern California, Los Angeles, CA90033
- Department of Nutritional Sciences, Dell Pediatric Research Institute, The University of Texas at Austin, Dell Medical School, Austin, TX78723
- Department of Orthopaedic Surgery, Keck School of Medicine, University of Southern California, Los Angeles, CA90033
| | - Sen Zhao
- Department of Orthopedic Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing100730, China
- Beijing Key Laboratory of Big Data Innovation and Application for Skeletal Health Medical Care, Beijing100730, China
| | - Kexin Xu
- Department of Orthopedic Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing100730, China
- Beijing Key Laboratory of Big Data Innovation and Application for Skeletal Health Medical Care, Beijing100730, China
- Key Laboratory of Big Data for Spinal Deformities, Chinese Academy of Medical Sciences, Beijing100730, China
| | - Valeria Aceves
- Department of Nutritional Sciences, Dell Pediatric Research Institute, The University of Texas at Austin, Dell Medical School, Austin, TX78723
| | - Cheng Qiu
- Department of Orthopedic Surgery, Qilu Hospital of Shandong University, Jinan250012, Shandong, China
| | - Hong Colleen Feng
- Center for Craniofacial Molecular Biology, Herman Ostrow School of Dentistry, University of Southern California, Los Angeles, CA90033
| | - Fangzhou Bian
- Center for Craniofacial Molecular Biology, Herman Ostrow School of Dentistry, University of Southern California, Los Angeles, CA90033
| | - Jingyu He
- Center for Craniofacial Molecular Biology, Herman Ostrow School of Dentistry, University of Southern California, Los Angeles, CA90033
| | - Christina J. Song
- Department of Nutritional Sciences, Dell Pediatric Research Institute, The University of Texas at Austin, Dell Medical School, Austin, TX78723
| | - Benjamin Troutwine
- Department of Nutritional Sciences, Dell Pediatric Research Institute, The University of Texas at Austin, Dell Medical School, Austin, TX78723
| | - Lian Liu
- Department of Orthopedic Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing100730, China
- Beijing Key Laboratory of Big Data Innovation and Application for Skeletal Health Medical Care, Beijing100730, China
| | - Samuel Ma
- Department of Nutritional Sciences, Dell Pediatric Research Institute, The University of Texas at Austin, Dell Medical School, Austin, TX78723
| | - Yuchen Niu
- Beijing Key Laboratory of Big Data Innovation and Application for Skeletal Health Medical Care, Beijing100730, China
- Key Laboratory of Big Data for Spinal Deformities, Chinese Academy of Medical Sciences, Beijing100730, China
- Medical Research Center, Peking Union Medical College Hospital, Peking Union Medical College, and Chinese Academy of Medical Sciences, Beijing100730, China
| | - Shengru Wang
- Department of Orthopedic Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing100730, China
- Beijing Key Laboratory of Big Data Innovation and Application for Skeletal Health Medical Care, Beijing100730, China
- Key Laboratory of Big Data for Spinal Deformities, Chinese Academy of Medical Sciences, Beijing100730, China
| | - Suomao Yuan
- Department of Orthopedic Surgery, Qilu Hospital of Shandong University, Jinan250012, Shandong, China
| | - Xiaoxin Li
- Beijing Key Laboratory of Big Data Innovation and Application for Skeletal Health Medical Care, Beijing100730, China
- Key Laboratory of Big Data for Spinal Deformities, Chinese Academy of Medical Sciences, Beijing100730, China
- Medical Research Center, Peking Union Medical College Hospital, Peking Union Medical College, and Chinese Academy of Medical Sciences, Beijing100730, China
| | - Lina Zhao
- Beijing Key Laboratory of Big Data Innovation and Application for Skeletal Health Medical Care, Beijing100730, China
- Key Laboratory of Big Data for Spinal Deformities, Chinese Academy of Medical Sciences, Beijing100730, China
- Medical Research Center, Peking Union Medical College Hospital, Peking Union Medical College, and Chinese Academy of Medical Sciences, Beijing100730, China
| | - Xinyu Liu
- Department of Orthopedic Surgery, Qilu Hospital of Shandong University, Jinan250012, Shandong, China
| | - Guixing Qiu
- Department of Orthopedic Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing100730, China
- Beijing Key Laboratory of Big Data Innovation and Application for Skeletal Health Medical Care, Beijing100730, China
- Key Laboratory of Big Data for Spinal Deformities, Chinese Academy of Medical Sciences, Beijing100730, China
| | - Zhihong Wu
- Beijing Key Laboratory of Big Data Innovation and Application for Skeletal Health Medical Care, Beijing100730, China
- Key Laboratory of Big Data for Spinal Deformities, Chinese Academy of Medical Sciences, Beijing100730, China
- Medical Research Center, Peking Union Medical College Hospital, Peking Union Medical College, and Chinese Academy of Medical Sciences, Beijing100730, China
| | - Deciphering disorders Involving Scoliosis and COmorbidities (DISCO) study group
- Department of Orthopedic Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing100730, China
- Department of Orthopedic Surgery, Qilu Hospital of Shandong University, Jinan250012, Shandong, China
- Beijing Key Laboratory of Big Data Innovation and Application for Skeletal Health Medical Care, Beijing100730, China
- Center for Craniofacial Molecular Biology, Herman Ostrow School of Dentistry, University of Southern California, Los Angeles, CA90033
- Department of Nutritional Sciences, Dell Pediatric Research Institute, The University of Texas at Austin, Dell Medical School, Austin, TX78723
- Department of Orthopaedic Surgery, Keck School of Medicine, University of Southern California, Los Angeles, CA90033
- Key Laboratory of Big Data for Spinal Deformities, Chinese Academy of Medical Sciences, Beijing100730, China
- Medical Research Center, Peking Union Medical College Hospital, Peking Union Medical College, and Chinese Academy of Medical Sciences, Beijing100730, China
| | - Terry Jianguo Zhang
- Department of Orthopedic Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing100730, China
- Beijing Key Laboratory of Big Data Innovation and Application for Skeletal Health Medical Care, Beijing100730, China
- Key Laboratory of Big Data for Spinal Deformities, Chinese Academy of Medical Sciences, Beijing100730, China
| | - Ryan S. Gray
- Department of Nutritional Sciences, Dell Pediatric Research Institute, The University of Texas at Austin, Dell Medical School, Austin, TX78723
| | - Nan Wu
- Department of Orthopedic Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing100730, China
- Beijing Key Laboratory of Big Data Innovation and Application for Skeletal Health Medical Care, Beijing100730, China
- Key Laboratory of Big Data for Spinal Deformities, Chinese Academy of Medical Sciences, Beijing100730, China
| |
Collapse
|
2
|
Ettaki I, Haseeb A, Karvande A, Amalou G, Saih A, AitRaise I, Hamdi S, Wakrim L, Barakat A, Fellah H, El Alloussi M, Lefebvre V. Missense variants weakening a SOX9 phosphodegron linked to odontogenesis defects, scoliosis, and other skeletal features. HGG ADVANCES 2025; 6:100404. [PMID: 39797402 PMCID: PMC11834033 DOI: 10.1016/j.xhgg.2025.100404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 01/07/2025] [Accepted: 01/07/2025] [Indexed: 01/13/2025] Open
Abstract
SOX9 encodes an SRY-related transcription factor critical for chondrogenesis and sex determination among other processes. Loss-of-function variants cause campomelic dysplasia and Pierre Robin sequence, while both gain- and loss-of-function variants cause disorders of sex development. SOX9 has also been linked to scoliosis and cancers, but variants are undetermined. It is highly expressed in tooth progenitor cells, but its odontogenic roles remain elusive, and tooth defects are unreported in SOX9-related conditions. Here, we performed whole-exome sequencing for nine unrelated children with tooth eruption delay and no known syndromes and identified a 7-year-old girl heterozygous for a SOX9 p.Thr239Pro variant and a 10-year-old boy heterozygous for presumably adjacent p.Thr239Pro and p.Thr240Pro variants. These variants were de novo and rare in control populations. Both cases had primary tooth eruption delay. Additionally, the boy had mesiodens blocking permanent central upper incisor eruption, severe scoliosis, and mild craniofacial and appendicular skeleton abnormalities. p.Thr239 and p.Thr240 occupy variable and obligatory positions, respectively, in a cell division control protein 4 (Cdc4)/FBXW7-targeted phosphodegron motif (CPD) fully conserved in SOX9 vertebrate orthologs and SOX8 and SOX10 paralogs, but functionally uncharacterized in vivo. Structural modeling predicted p.Thr240Pro and p.Thr239Pro/p.Thr240Pro but not p.Thr239Pro to strongly reduce SOX9/FBXW7 interaction. Accordingly, p.Thr240Pro and p.Thr239Pro/p.Thr240Pro but not p.Thr239Pro blocked FBXW7-induced SOX9 degradation in cultured cells. All variants increased SOX9-mediated reporter activation independently of protein stabilization, suggesting that CPD may also modulate the transactivation function of SOX9. Altogether, these findings concur that CPD has critical functions, that SOX9 decisively controls odontogenesis, and that gain-of-function variants may markedly perturb both this process and skeletogenesis.
Collapse
Affiliation(s)
- Imane Ettaki
- Virology Unit, Immunovirology Laboratory, Institut Pasteur du Maroc, Casablanca 20360, Morocco; Laboratory of Cellular and Molecular Pathology, Faculty of Medicine and Pharmacy, Hassan II University of Casablanca, Casablanca 20000, Morocco
| | - Abdul Haseeb
- Department of Surgery, Division of Orthopaedics, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Anirudha Karvande
- Department of Surgery, Division of Orthopaedics, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Ghita Amalou
- Genomics and Human Genetics Laboratory, Institut Pasteur du Maroc, Casablanca 20360, Morocco
| | - Asmae Saih
- Virology Unit, Immunovirology Laboratory, Institut Pasteur du Maroc, Casablanca 20360, Morocco; Laboratory of Biology and Health, URAC 34, Faculty of Sciences Ben M'Sik, Hassan II University of Casablanca, Casablanca 20000, Morocco
| | - Imane AitRaise
- Genomics and Human Genetics Laboratory, Institut Pasteur du Maroc, Casablanca 20360, Morocco
| | - Salsabil Hamdi
- Environmental Health Laboratory, Institut Pasteur du Maroc, Casablanca 20360, Morocco
| | - Lahcen Wakrim
- Virology Unit, Immunovirology Laboratory, Institut Pasteur du Maroc, Casablanca 20360, Morocco
| | - Abdelhamid Barakat
- Genomics and Human Genetics Laboratory, Institut Pasteur du Maroc, Casablanca 20360, Morocco
| | - Hassan Fellah
- Laboratory of Cellular and Molecular Pathology, Faculty of Medicine and Pharmacy, Hassan II University of Casablanca, Casablanca 20000, Morocco
| | - Mustapha El Alloussi
- International Faculty of Dental Medicine, International University of Rabat, Sala-Al Jadida 11100, Morocco
| | - Véronique Lefebvre
- Department of Surgery, Division of Orthopaedics, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA.
| |
Collapse
|
3
|
Yang C, Li Z, Tian K, Meng X, Wang X, Song D, Wang X, Xu T, Sun P, Zhong J, Song Y, Ma W, Liu Y, Yu D, Shen R, Jiang C, Cai J. LncRNA-Mediated TPI1 and PKM2 Promote Self-Renewal and Chemoresistance in GBM. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2402600. [PMID: 39342418 PMCID: PMC11600202 DOI: 10.1002/advs.202402600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 09/15/2024] [Indexed: 10/01/2024]
Abstract
Temozolomide (TMZ) resistance is one of the major reasons for poor prognosis in patients with glioblastoma (GBM). Long noncoding RNAs (lncRNAs) are involved in multiple biological processes, including TMZ resistance. Linc00942 is a potential regulator of TMZ sensitivity in GBM cells is shown previously. However, the underlying mechanism of TMZ resistance induced by Linc00942 is unknown. In this study, the sequence of Linc00942 by rapid amplification of cDNA ends assay in TMZ-resistant GBM cells is identified and confirmed that Linc00942 contributes to self-renewal and TMZ resistance in GBM cells. Chromatin isolation by RNA purification followed by mass spectrometry (ChIRP-MS) and followed by Western blotting (ChIRP-WB) assays shows that Linc00492 interacted with TPI1 and PKM2, subsequently promoting their phosphorylation, dimerization, and nuclear translocation. The interaction of Linc00942 with TPI1 and PKM2 leads to increased acetylation of H3K4 and activation of the STAT3/P300 axis, resulting in the marked transcriptional activation of SOX9. Moreover, the knockdown of SOX9 reversed TMZ resistance induced by Linc00492 both in vitro and in vivo. In summary, Linc00942 strongly promotes SOX9 expression by interacting with TPI1 and PKM2 is found, thereby driving self-renewal and TMZ resistance in GBM cells. These findings suggest potential combined therapeutic strategies to overcome TMZ resistance in patients with GBM.
Collapse
Affiliation(s)
- Changxiao Yang
- Department of NeurosurgeryThe Second Affiliated Hospital of Harbin Medical UniversityHarbin150086China
- Future Medical LaboratoryThe Second Affiliated Hospital of Harbin Medical UniversityHarbin150086China
| | - Ziwei Li
- Department of NeurosurgeryThe Second Affiliated Hospital of Harbin Medical UniversityHarbin150086China
- Beijing Tiantan HospitalCapital Medical UniversityBeijing100070China
| | - Kaifu Tian
- Department of NeurosurgeryThe Second Affiliated Hospital of Harbin Medical UniversityHarbin150086China
| | - Xiangqi Meng
- Department of NeurosurgeryThe Second Affiliated Hospital of Harbin Medical UniversityHarbin150086China
| | - Xinyu Wang
- Department of NeurosurgeryThe Second Affiliated Hospital of Harbin Medical UniversityHarbin150086China
- Future Medical LaboratoryThe Second Affiliated Hospital of Harbin Medical UniversityHarbin150086China
| | - Dan Song
- Department of NeurosurgeryThe Second Affiliated Hospital of Harbin Medical UniversityHarbin150086China
- Future Medical LaboratoryThe Second Affiliated Hospital of Harbin Medical UniversityHarbin150086China
| | - Xuan Wang
- Department of NeurosurgeryUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanHubei430074China
| | - Tianye Xu
- Department of NeurosurgeryThe Second Affiliated Hospital of Harbin Medical UniversityHarbin150086China
- Future Medical LaboratoryThe Second Affiliated Hospital of Harbin Medical UniversityHarbin150086China
| | - Penggang Sun
- Department of NeurosurgeryThe Second Affiliated Hospital of Harbin Medical UniversityHarbin150086China
- Future Medical LaboratoryThe Second Affiliated Hospital of Harbin Medical UniversityHarbin150086China
| | - Junzhe Zhong
- Department of NeurosurgeryThe Second Affiliated Hospital of Harbin Medical UniversityHarbin150086China
- Future Medical LaboratoryThe Second Affiliated Hospital of Harbin Medical UniversityHarbin150086China
| | - Yu Song
- Department of NeurosurgeryThe Second Affiliated Hospital of Harbin Medical UniversityHarbin150086China
| | - Wenbin Ma
- Department of NeurosurgeryThe Second Affiliated Hospital of Harbin Medical UniversityHarbin150086China
| | - Yuxiang Liu
- Department of NeurosurgeryThe Second Affiliated Hospital of Harbin Medical UniversityHarbin150086China
| | - Daohan Yu
- Department of NeurosurgeryThe Second Affiliated Hospital of Harbin Medical UniversityHarbin150086China
- Future Medical LaboratoryThe Second Affiliated Hospital of Harbin Medical UniversityHarbin150086China
| | - Ruofei Shen
- Department of NeurosurgeryThe Second Affiliated Hospital of Harbin Medical UniversityHarbin150086China
| | - Chuanlu Jiang
- Department of NeurosurgeryThe Second Affiliated Hospital of Harbin Medical UniversityHarbin150086China
- The Sixth Affiliated Hospital of Harbin Medical UniversityHarbin150086China
| | - Jinquan Cai
- Department of NeurosurgeryThe Second Affiliated Hospital of Harbin Medical UniversityHarbin150086China
| |
Collapse
|
4
|
Qi Y, Rezaeian AH, Wang J, Huang D, Chen H, Inuzuka H, Wei W. Molecular insights and clinical implications for the tumor suppressor role of SCF FBXW7 E3 ubiquitin ligase. Biochim Biophys Acta Rev Cancer 2024; 1879:189140. [PMID: 38909632 PMCID: PMC11390337 DOI: 10.1016/j.bbcan.2024.189140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 06/04/2024] [Accepted: 06/17/2024] [Indexed: 06/25/2024]
Abstract
FBXW7 is one of the most well-characterized F-box proteins, serving as substrate receptor subunit of SKP1-CUL1-F-box (SCF) E3 ligase complexes. SCFFBXW7 is responsible for the degradation of various oncogenic proteins such as cyclin E, c-MYC, c-JUN, NOTCH, and MCL1. Therefore, FBXW7 functions largely as a major tumor suppressor. In keeping with this notion, FBXW7 gene mutations or downregulations have been found and reported in many types of malignant tumors, such as endometrial, colorectal, lung, and breast cancers, which facilitate the proliferation, invasion, migration, and drug resistance of cancer cells. Therefore, it is critical to review newly identified FBXW7 regulation and tumor suppressor function under physiological and pathological conditions to develop effective strategies for the treatment of FBXW7-altered cancers. Since a growing body of evidence has revealed the tumor-suppressive activity and role of FBXW7, here, we updated FBXW7 upstream and downstream signaling including FBXW7 ubiquitin substrates, the multi-level FBXW7 regulatory mechanisms, and dysregulation of FBXW7 in cancer, and discussed promising cancer therapies targeting FBXW7 regulators and downstream effectors, to provide a comprehensive picture of FBXW7 and facilitate the study in this field.
Collapse
Affiliation(s)
- Yihang Qi
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Abdol-Hossein Rezaeian
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Jingchao Wang
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Daoyuan Huang
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Hong Chen
- Vascular Biology Program, Department of Surgery, Harvard Medical School, Boston Children's Hospital, Boston, MA, USA
| | - Hiroyuki Inuzuka
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Wenyi Wei
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA.
| |
Collapse
|
5
|
O'Brien S, Ubhi T, Wolf L, Gandhi K, Lin S, Chaudary N, Dhani NC, Milosevic M, Brown GW, Angers S. FBXW7-loss Sensitizes Cells to ATR Inhibition Through Induced Mitotic Catastrophe. CANCER RESEARCH COMMUNICATIONS 2023; 3:2596-2607. [PMID: 38032106 PMCID: PMC10734389 DOI: 10.1158/2767-9764.crc-23-0306] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 09/27/2023] [Accepted: 11/28/2023] [Indexed: 12/01/2023]
Abstract
FBXW7 is a commonly mutated tumor suppressor gene that functions to regulate numerous oncogenes involved in cell-cycle regulation. Genome-wide CRISPR fitness screens identified a signature of DNA repair and DNA damage response genes as required for the growth of FBXW7-knockout cells. Guided by these findings, we show that FBXW7-mutant cells have high levels of replication stress, which results in a genotype-specific vulnerability to inhibition of the ATR signaling pathway, as these mutant cells become heavily reliant on a robust S-G2 checkpoint. ATR inhibition induces an accelerated S-phase, leading to mitotic catastrophe and cell death caused by the high replication stress present in FBXW7-/- cells. In addition, we provide evidence in cell and organoid studies, and mining of publicly available high-throughput drug screening efforts, that this genotype-specific vulnerability extends to multiple types of cancer, providing a rational means of identifying responsive patients for targeted therapy. SIGNIFICANCE We have elucidated the synthetic lethal interactions between FBXW7 mutation and DNA damage response genes, and highlighted the potential of ATR inhibitors as targeted therapies for cancers harboring FBXW7 alterations.
Collapse
Affiliation(s)
- Siobhan O'Brien
- Department of Biochemistry, University of Toronto, Ontario, Canada
- Terrence Donnelly Centre for Cellular and Biomolecular Research, Toronto, Ontario, Canada
| | - Tajinder Ubhi
- Department of Biochemistry, University of Toronto, Ontario, Canada
- Terrence Donnelly Centre for Cellular and Biomolecular Research, Toronto, Ontario, Canada
| | - Lucie Wolf
- Terrence Donnelly Centre for Cellular and Biomolecular Research, Toronto, Ontario, Canada
| | - Krishna Gandhi
- Terrence Donnelly Centre for Cellular and Biomolecular Research, Toronto, Ontario, Canada
| | - Sichun Lin
- Terrence Donnelly Centre for Cellular and Biomolecular Research, Toronto, Ontario, Canada
| | - Naz Chaudary
- Princess Margaret Cancer Centre, Toronto, Ontario, Canada
- Ontario Cancer Institute, Toronto, Ontario, Canada
| | | | - Michael Milosevic
- Princess Margaret Cancer Centre, Toronto, Ontario, Canada
- Department of Radiation Oncology, University of Toronto, Ontario, Canada
- Institute of Medical Science, University of Toronto, Ontario, Canada
| | - Grant W. Brown
- Department of Biochemistry, University of Toronto, Ontario, Canada
- Terrence Donnelly Centre for Cellular and Biomolecular Research, Toronto, Ontario, Canada
| | - Stephane Angers
- Department of Biochemistry, University of Toronto, Ontario, Canada
- Terrence Donnelly Centre for Cellular and Biomolecular Research, Toronto, Ontario, Canada
- Leslie Dan Faculty of Pharmacy, University of Toronto, Ontario, Canada
| |
Collapse
|
6
|
Cho HW, Ban HJ, Jin HS, Cha S, Eom YB. A genome-wide association scan reveals novel loci for facial traits of Koreans. Genomics 2023; 115:110710. [PMID: 37734486 DOI: 10.1016/j.ygeno.2023.110710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 09/07/2023] [Accepted: 09/18/2023] [Indexed: 09/23/2023]
Abstract
DNA-based prediction of externally visible characteristics (EVC) with SNPs is one of the research areas of interest in the forensic field. Based on a previous study performing GWAS on facial traits in a Korean population, herein, we present results stemming from GWA analysis with KoreanChip and novel genetic loci satisfying genome-wide significant level. We discovered a total of 20 signals and 12 loci were found to have novel associations with facial traits, including six loci located in intergenic regions and six loci located at UBE2O, HECTD2, CCDC108, TPK1, FCN2, and FRMPD1. Additionally, we performed a polygenic score analysis for 33 distance-related traits in facial phenotyping and determined genetic relationships between facial traits and SNPs using the GCTA program. The results of the current study offer an understanding of how facial morphology is influenced by complex genetic structures and provide insights into forensic investigation and population genetics.
Collapse
Affiliation(s)
- Hye-Won Cho
- Department of Medical Sciences, Graduate School, Soonchunhyang University, Asan, Chungnam 31538, Republic of Korea
| | - Hyo-Jeong Ban
- Korea Medicine (KM) Data Division, Korea Institute of Oriental Medicine, Daejeon 34054, Republic of Korea
| | - Hyun-Seok Jin
- Department of Biomedical Laboratory Science, College of Life and Health Sciences, Hoseo University, Asan, Chungnam 31499, Republic of Korea
| | - Seongwon Cha
- Korea Medicine (KM) Data Division, Korea Institute of Oriental Medicine, Daejeon 34054, Republic of Korea.
| | - Yong-Bin Eom
- Department of Medical Sciences, Graduate School, Soonchunhyang University, Asan, Chungnam 31538, Republic of Korea; Department of Biomedical Laboratory Science, College of Medical Sciences, Soonchunhyang University, Asan, Chungnam 31538, Republic of Korea.
| |
Collapse
|
7
|
Dong Y, Chen Y, Ma G, Cao H. The role of E3 ubiquitin ligases in bone homeostasis and related diseases. Acta Pharm Sin B 2023; 13:3963-3987. [PMID: 37799379 PMCID: PMC10547920 DOI: 10.1016/j.apsb.2023.06.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 05/16/2023] [Accepted: 05/18/2023] [Indexed: 10/07/2023] Open
Abstract
The ubiquitin-proteasome system (UPS) dedicates to degrade intracellular proteins to modulate demic homeostasis and functions of organisms. These enzymatic cascades mark and modifies target proteins diversly through covalently binding ubiquitin molecules. In the UPS, E3 ubiquitin ligases are the crucial constituents by the advantage of recognizing and presenting proteins to proteasomes for proteolysis. As the major regulators of protein homeostasis, E3 ligases are indispensable to proper cell manners in diverse systems, and they are well described in physiological bone growth and bone metabolism. Pathologically, classic bone-related diseases such as metabolic bone diseases, arthritis, bone neoplasms and bone metastasis of the tumor, etc., were also depicted in a UPS-dependent manner. Therefore, skeletal system is versatilely regulated by UPS and it is worthy to summarize the underlying mechanism. Furthermore, based on the current status of treatment, normal or pathological osteogenesis and tumorigenesis elaborated in this review highlight the clinical significance of UPS research. As a strategy possibly remedies the limitations of UPS treatment, emerging PROTAC was described comprehensively to illustrate its potential in clinical application. Altogether, the purpose of this review aims to provide more evidence for exploiting novel therapeutic strategies based on UPS for bone associated diseases.
Collapse
Affiliation(s)
| | | | - Guixing Ma
- Department of Biochemistry, School of Medicine, Southern University of Science and Technology, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Key University Laboratory of Metabolism and Health of Guangdong, Shenzhen 518055, China
| | - Huiling Cao
- Department of Biochemistry, School of Medicine, Southern University of Science and Technology, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Key University Laboratory of Metabolism and Health of Guangdong, Shenzhen 518055, China
| |
Collapse
|
8
|
Domènech Omella J, Cortesi EE, Verbinnen I, Remmerie M, Wu H, Cubero FJ, Roskams T, Janssens V. A Novel Mouse Model of Combined Hepatocellular-Cholangiocarcinoma Induced by Diethylnitrosamine and Loss of Ppp2r5d. Cancers (Basel) 2023; 15:4193. [PMID: 37627221 PMCID: PMC10453342 DOI: 10.3390/cancers15164193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 08/11/2023] [Accepted: 08/17/2023] [Indexed: 08/27/2023] Open
Abstract
Primary liver cancer (PLC) can be classified in hepatocellular (HCC), cholangiocarcinoma (CCA), and combined hepatocellular-cholangiocarcinoma (cHCC-CCA). The molecular mechanisms involved in PLC development and phenotype decision are still not well understood. Complete deletion of Ppp2r5d, encoding the B56δ subunit of Protein Phosphatase 2A (PP2A), results in spontaneous HCC development in mice via a c-MYC-dependent mechanism. In the present study, we aimed to examine the role of Ppp2r5d in an independent mouse model of diethylnitrosamine (DEN)-induced hepatocarcinogenesis. Ppp2r5d deletion (heterozygous and homozygous) accelerated HCC development, corroborating its tumor-suppressive function in liver and suggesting Ppp2r5d may be haploinsufficient. Ppp2r5d-deficient HCCs stained positively for c-MYC, consistent with increased AKT activation in pre-malignant and tumor tissues of Ppp2r5d-deficient mice. We also found increased YAP activation in Ppp2r5d-deficient tumors. Remarkably, in older mice, Ppp2r5d deletion resulted in cHCC-CCA development in this model, with the CCA component showing increased expression of progenitor markers (SOX9 and EpCAM). Finally, we observed an upregulation of Ppp2r5d in tumors from wildtype and heterozygous mice, revealing a tumor-specific control mechanism of Ppp2r5d expression, and suggestive of the involvement of Ppp2r5d in a negative feedback regulation restricting tumor growth. Our study highlights the tumor-suppressive role of mouse PP2A-B56δ in both HCC and cHCC-CCA, which may have important implications for human PLC development and targeted treatment.
Collapse
Affiliation(s)
- Judit Domènech Omella
- Laboratory of Protein Phosphorylation & Proteomics, Department of Cellular & Molecular Medicine, University of Leuven (KU Leuven), 3000 Leuven, Belgium; (J.D.O.); (I.V.); (M.R.)
| | - Emanuela E. Cortesi
- Translational Cell & Tissue Research, University of Leuven (KU Leuven), 3000 Leuven, Belgium; (E.E.C.); (T.R.)
| | - Iris Verbinnen
- Laboratory of Protein Phosphorylation & Proteomics, Department of Cellular & Molecular Medicine, University of Leuven (KU Leuven), 3000 Leuven, Belgium; (J.D.O.); (I.V.); (M.R.)
| | - Michiel Remmerie
- Laboratory of Protein Phosphorylation & Proteomics, Department of Cellular & Molecular Medicine, University of Leuven (KU Leuven), 3000 Leuven, Belgium; (J.D.O.); (I.V.); (M.R.)
| | - Hanghang Wu
- Department of Immunology, Ophthalmology & ENT, Complutense University School of Medicine, 28040 Madrid, Spain; (H.W.); (F.J.C.)
| | - Francisco J. Cubero
- Department of Immunology, Ophthalmology & ENT, Complutense University School of Medicine, 28040 Madrid, Spain; (H.W.); (F.J.C.)
- Health Research Institute Gregorio Marañón (IiSGM), 28007 Madrid, Spain
- Centre for Biomedical Research, Network on Liver and Digestive Diseases (CIBEREHD), 28029 Madrid, Spain
| | - Tania Roskams
- Translational Cell & Tissue Research, University of Leuven (KU Leuven), 3000 Leuven, Belgium; (E.E.C.); (T.R.)
- Department of Pathology, University Hospitals Leuven (UZ Leuven), 3000 Leuven, Belgium
| | - Veerle Janssens
- Laboratory of Protein Phosphorylation & Proteomics, Department of Cellular & Molecular Medicine, University of Leuven (KU Leuven), 3000 Leuven, Belgium; (J.D.O.); (I.V.); (M.R.)
- KU Leuven Cancer Institute (LKI), 3000 Leuven, Belgium
| |
Collapse
|
9
|
Sun Q, Zhuang Z, Bai R, Deng J, Xin T, Zhang Y, Li Q, Han B. Lysine 68 Methylation-Dependent SOX9 Stability Control Modulates Chondrogenic Differentiation in Dental Pulp Stem Cells. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2206757. [PMID: 37386801 PMCID: PMC10460901 DOI: 10.1002/advs.202206757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 04/07/2023] [Indexed: 07/01/2023]
Abstract
Dental pulp stem cells (DPSCs), characterized by easy availability, multi-lineage differentiation ability, and high proliferation ability, are ideal seed cells for cartilage tissue engineering. However, the epigenetic mechanism underlying chondrogenesis in DPSCs remains elusive. Herein, it is demonstrated that KDM3A and G9A, an antagonistic pair of histone-modifying enzymes, bidirectionally regulate the chondrogenic differentiation of DPSCs by controlling SOX9 (sex-determining region Y-type high-mobility group box protein 9) degradation through lysine methylation. Transcriptomics analysis reveals that KDM3A is significantly upregulated during the chondrogenic differentiation of DPSCs. In vitro and in vivo functional analyses further indicate that KDM3A promotes chondrogenesis in DPSCs by boosting the SOX9 protein level, while G9A hinders the chondrogenic differentiation of DPSCs by reducing the SOX9 protein level. Furthermore, mechanistic studies indicate that KDM3A attenuates the ubiquitination of SOX9 by demethylating lysine (K) 68 residue, which in turn enhances SOX9 stability. Reciprocally, G9A facilitates SOX9 degradation by methylating K68 residue to increase the ubiquitination of SOX9. Meanwhile, BIX-01294 as a highly specific G9A inhibitor significantly induces the chondrogenic differentiation of DPSCs. These findings provide a theoretical basis to ameliorate the clinical use of DPSCs in cartilage tissue-engineering therapies.
Collapse
Affiliation(s)
- Qiannan Sun
- Department of OrthodonticsPeking University School and Hospital of StomatologyBeijing100081China
- National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory for Digital Stomatology & Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health & NMPA Key Laboratory for Dental MaterialsBeijing100081China
| | - Zimeng Zhuang
- Department of OrthodonticsPeking University School and Hospital of StomatologyBeijing100081China
- National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory for Digital Stomatology & Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health & NMPA Key Laboratory for Dental MaterialsBeijing100081China
| | - Rushui Bai
- Department of OrthodonticsPeking University School and Hospital of StomatologyBeijing100081China
- National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory for Digital Stomatology & Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health & NMPA Key Laboratory for Dental MaterialsBeijing100081China
| | - Jie Deng
- Department of OrthodonticsPeking University School and Hospital of StomatologyBeijing100081China
- National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory for Digital Stomatology & Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health & NMPA Key Laboratory for Dental MaterialsBeijing100081China
| | - Tianyi Xin
- Department of OrthodonticsPeking University School and Hospital of StomatologyBeijing100081China
- National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory for Digital Stomatology & Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health & NMPA Key Laboratory for Dental MaterialsBeijing100081China
| | - Yunfan Zhang
- Department of OrthodonticsPeking University School and Hospital of StomatologyBeijing100081China
- National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory for Digital Stomatology & Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health & NMPA Key Laboratory for Dental MaterialsBeijing100081China
| | - Qian Li
- Department of OrthodonticsPeking University School and Hospital of StomatologyBeijing100081China
- National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory for Digital Stomatology & Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health & NMPA Key Laboratory for Dental MaterialsBeijing100081China
| | - Bing Han
- Department of OrthodonticsPeking University School and Hospital of StomatologyBeijing100081China
- National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory for Digital Stomatology & Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health & NMPA Key Laboratory for Dental MaterialsBeijing100081China
| |
Collapse
|
10
|
Zhong H, Lu W, Tang Y, Wiel C, Wei Y, Cao J, Riedlinger G, Papagiannakopoulos T, Guo JY, Bergo MO, Kang Y, Ganesan S, Sabaawy HE, Pine SR. SOX9 drives KRAS-induced lung adenocarcinoma progression and suppresses anti-tumor immunity. Oncogene 2023; 42:2183-2194. [PMID: 37258742 PMCID: PMC11809655 DOI: 10.1038/s41388-023-02715-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 04/25/2023] [Accepted: 05/04/2023] [Indexed: 06/02/2023]
Abstract
The SOX9 transcription factor ensures proper tissue development and homeostasis and has been implicated in promoting tumor progression. However, the role of SOX9 as a driver of lung adenocarcinoma (LUAD), or any cancer, remains unclear. Using CRISPR/Cas9 and Cre-LoxP gene knockout approaches in the KrasG12D-driven mouse LUAD model, we found that loss of Sox9 significantly reduces lung tumor development, burden and progression, contributing to significantly longer overall survival. SOX9 consistently drove organoid growth in vitro, but SOX9-promoted tumor growth was significantly attenuated in immunocompromised mice compared to syngeneic mice. We demonstrate that SOX9 suppresses immune cell infiltration and functionally suppresses tumor associated CD8+ T, natural killer and dendritic cells. These data were validated by flow cytometry, gene expression, RT-qPCR, and immunohistochemistry analyses in KrasG12D-driven murine LUAD, then confirmed by interrogating bulk and single-cell gene expression repertoires and immunohistochemistry in human LUAD. Notably, SOX9 significantly elevates collagen-related gene expression and substantially increases collagen fibers. We propose that SOX9 increases tumor stiffness and inhibits tumor-infiltrating dendritic cells, thereby suppressing CD8+ T cell and NK cell infiltration and activity. Thus, SOX9 drives KrasG12D-driven lung tumor progression and inhibits anti-tumor immunity at least partly by modulating the tumor microenvironment.
Collapse
Affiliation(s)
- Hua Zhong
- Rutgers Cancer Institute of New Jersey, Rutgers, The State University of New Jersey, New Brunswick, NJ, 08901, USA
- Department of Medicine, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, New Brunswick, NJ, 08901, USA
- Department of Pharmacology, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, New Brunswick, NJ, 08901, USA
| | - Wen Lu
- Howard Hughes Medical Institute, Rosalind Russell and Ephraim P. Engleman Rheumatology Research Center, Department of Medicine, Department of Microbiology and Immunology, University of California, San Francisco, CA, 94143-0795, USA
| | - Yong Tang
- Department of Molecular Biology, Princeton University, Princeton, NJ, 08544, USA
- Ludwig Institute for Cancer Research Princeton Branch, Princeton, NJ, 08544, USA
| | - Clotilde Wiel
- Sahlgrenska Center for Cancer Research, Department of Surgery, Institute of Clinical Sciences, University of Gothenburg, 405 30, Gothenburg, Sweden
- Sahlgrenska Cancer Center, Department of Molecular and Clinical Medicine, Institute of Medicine, University of Gothenburg, 405 30, Gothenburg, Sweden
| | - Yong Wei
- Department of Molecular Biology, Princeton University, Princeton, NJ, 08544, USA
- Ludwig Institute for Cancer Research Princeton Branch, Princeton, NJ, 08544, USA
| | - Jian Cao
- Rutgers Cancer Institute of New Jersey, Rutgers, The State University of New Jersey, New Brunswick, NJ, 08901, USA
- Department of Medicine, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, New Brunswick, NJ, 08901, USA
| | - Gregory Riedlinger
- Rutgers Cancer Institute of New Jersey, Rutgers, The State University of New Jersey, New Brunswick, NJ, 08901, USA
- Department of Pathology and Laboratory Medicine, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, New Brunswick, NJ, 08901, USA
| | - Thales Papagiannakopoulos
- Perlmutter NYU Cancer Center, Department of Pathology, New York University School of Medicine, New York, NY, 10016, USA
| | - Jessie Yanxiang Guo
- Rutgers Cancer Institute of New Jersey, Rutgers, The State University of New Jersey, New Brunswick, NJ, 08901, USA
- Department of Medicine, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, New Brunswick, NJ, 08901, USA
- Department of Chemical Biology, Rutgers Ernest Mario School of Pharmacy, Piscataway, NJ, 08854, USA
| | - Martin O Bergo
- Sahlgrenska Cancer Center, Department of Molecular and Clinical Medicine, Institute of Medicine, University of Gothenburg, 405 30, Gothenburg, Sweden
| | - Yibin Kang
- Department of Molecular Biology, Princeton University, Princeton, NJ, 08544, USA
- Ludwig Institute for Cancer Research Princeton Branch, Princeton, NJ, 08544, USA
| | - Shridar Ganesan
- Rutgers Cancer Institute of New Jersey, Rutgers, The State University of New Jersey, New Brunswick, NJ, 08901, USA
- Department of Medicine, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, New Brunswick, NJ, 08901, USA
| | - Hatim E Sabaawy
- Rutgers Cancer Institute of New Jersey, Rutgers, The State University of New Jersey, New Brunswick, NJ, 08901, USA
- Department of Medicine, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, New Brunswick, NJ, 08901, USA
- Department of Pathology and Laboratory Medicine, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, New Brunswick, NJ, 08901, USA
- Division of Medical Oncology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Sharon R Pine
- Rutgers Cancer Institute of New Jersey, Rutgers, The State University of New Jersey, New Brunswick, NJ, 08901, USA.
- Department of Medicine, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, New Brunswick, NJ, 08901, USA.
- Department of Pharmacology, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, New Brunswick, NJ, 08901, USA.
- Division of Medical Oncology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA.
| |
Collapse
|
11
|
Wang L, Liu Z, Zhao S, Xu K, Aceves V, Qiu C, Troutwine B, Liu L, Ma S, Niu Y, Wang S, Yuan S, Li X, Zhao L, Liu X, Wu Z, Zhang TJ, Gray RS, Wu N. Variants in the SOX9 transactivation middle domain induce axial skeleton dysplasia and scoliosis. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.05.29.23290174. [PMID: 37398377 PMCID: PMC10312849 DOI: 10.1101/2023.05.29.23290174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
SOX9 is an essential transcriptional regulator of cartilage development and homeostasis. In humans, dysregulation of SOX9 is associated with a wide spectrum of skeletal disorders, including campomelic and acampomelic dysplasia, and scoliosis. The mechanism of how SOX9 variants contribute to the spectrum of axial skeletal disorders is not well understood. Here, we report four novel pathogenic variants of SOX9 identified in a large cohort of patients with congenital vertebral malformations. Three of these heterozygous variants are in the HMG and DIM domains, and for the first time, we report a pathogenic variant within the transactivation middle (TAM) domain of SOX9 . Probands with these variants exhibit variable skeletal dysplasia, ranging from isolated vertebral malformation to acampomelic dysplasia. We also generated a Sox9 hypomorphic mutant mouse model bearing a microdeletion within the TAM domain ( Sox9 Asp272del ). We demonstrated that disturbance of the TAM domain with missense mutation or microdeletion results in reduced protein stability but does not affect the transcriptional activity of SOX9. Homozygous Sox9 Asp272del mice exhibited axial skeletal dysplasia including kinked tails, ribcage anomalies, and scoliosis, recapitulating phenotypes observed in human, while heterozygous mutants display a milder phenotype. Analysis of primary chondrocytes and the intervertebral discs in Sox9 Asp272del mutant mice revealed dysregulation of a panel of genes with major contributions of the extracellular matrix, angiogenesis, and ossification-related processes. In summary, our work identified the first pathologic variant of SOX9 within the TAM domain and demonstrated that this variant is associated with reduced SOX9 protein stability. Our finding suggests that reduced SOX9 stability caused by variants in the TAM domain may be responsible for the milder forms of axial skeleton dysplasia in humans.
Collapse
|
12
|
Koo SY, Park EJ, Noh HJ, Jo SM, Ko BK, Shin HJ, Lee CW. Ubiquitination Links DNA Damage and Repair Signaling to Cancer Metabolism. Int J Mol Sci 2023; 24:ijms24098441. [PMID: 37176148 PMCID: PMC10179089 DOI: 10.3390/ijms24098441] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 05/04/2023] [Accepted: 05/05/2023] [Indexed: 05/15/2023] Open
Abstract
Changes in the DNA damage response (DDR) and cellular metabolism are two important factors that allow cancer cells to proliferate. DDR is a set of events in which DNA damage is recognized, DNA repair factors are recruited to the site of damage, the lesion is repaired, and cellular responses associated with the damage are processed. In cancer, DDR is commonly dysregulated, and the enzymes associated with DDR are prone to changes in ubiquitination. Additionally, cellular metabolism, especially glycolysis, is upregulated in cancer cells, and enzymes in this metabolic pathway are modulated by ubiquitination. The ubiquitin-proteasome system (UPS), particularly E3 ligases, act as a bridge between cellular metabolism and DDR since they regulate the enzymes associated with the two processes. Hence, the E3 ligases with high substrate specificity are considered potential therapeutic targets for treating cancer. A number of small molecule inhibitors designed to target different components of the UPS have been developed, and several have been tested in clinical trials for human use. In this review, we discuss the role of ubiquitination on overall cellular metabolism and DDR and confirm the link between them through the E3 ligases NEDD4, APC/CCDH1, FBXW7, and Pellino1. In addition, we present an overview of the clinically important small molecule inhibitors and implications for their practical use.
Collapse
Affiliation(s)
- Seo-Young Koo
- Department of Molecular Cell Biology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Suwon 16419, Republic of Korea
| | - Eun-Ji Park
- Department of Molecular Cell Biology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Suwon 16419, Republic of Korea
| | - Hyun-Ji Noh
- Department of Molecular Cell Biology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Suwon 16419, Republic of Korea
| | - Su-Mi Jo
- Department of Molecular Cell Biology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Suwon 16419, Republic of Korea
| | - Bo-Kyoung Ko
- Department of Molecular Cell Biology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Suwon 16419, Republic of Korea
| | - Hyun-Jin Shin
- Team of Radiation Convergence Research, Korea Institute of Radiological & Medical Sciences, Seoul 01812, Republic of Korea
| | - Chang-Woo Lee
- Department of Molecular Cell Biology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Suwon 16419, Republic of Korea
- SKKU Institute for Convergence, Sungkyunkwan University, Suwon 16419, Republic of Korea
| |
Collapse
|
13
|
Gao L, Lu Y, Chen HN, Li Z, Hu M, Zhang R, Wang X, Xu Z, Gong Y, Wang R, Du D, Hai S, Li S, Su D, Li Y, Xu H, Zhou ZG, Dai L. Deciphering the Clinical Significance and Kinase Functions of GSK3α in Colon Cancer by Proteomics and Phosphoproteomics. Mol Cell Proteomics 2023; 22:100545. [PMID: 37031867 PMCID: PMC10196724 DOI: 10.1016/j.mcpro.2023.100545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 03/30/2023] [Accepted: 04/05/2023] [Indexed: 04/11/2023] Open
Abstract
GSK3α and GSK3β are two GSK3 isoforms with 84% overall identity and 98% identity in their catalytic domains. GSK3β plays important roles in the pathogenesis of cancer, while GSK3α has long been considered a functionally redundant protein of GSK3β. Few studies have specifically investigated the functions of GSK3α. In this study, unexpectedly, we found that the expression of GSK3α, but not GSK3β, was significantly correlated with the overall survival of colon cancer patients in 4 independent cohorts. To decipher the roles of GSK3α in colon cancer, we profiled the phosphorylation substrates of GSK3α and uncovered 156 phosphosites from 130 proteins specifically regulated by GSK3α. A number of these GSK3α-mediated phosphosites have never been reported before or have been incorrectly identified as substrates of GSK3β. Among them, the levels of HSF1S303p, CANXS583p, MCM2S41p, POGZS425p, SRRM2T983p, and PRPF4BS431p were significantly correlated with the overall survival of colon cancer patients. Further pull-down assays identified 23 proteins, such as THRAP3, BCLAF1, and STAU1, showing strong binding affinity to GSK3α. The interaction between THRAP3 and GSK3α was verified by biochemical experiments. Notably, among the 18 phosphosites of THRAP3, phosphorylation at S248, S253, and S682 is specifically mediated by GSK3α. Mutation of S248 to D (S248D), which mimics the effect of phosphorylation, obviously increased cancer cell migration and the binding affinity to proteins related to DNA damage repair. Collectively, this work not only discloses the specific function of GSK3α as a kinase but also suggests GSK3α as a promising therapeutic target for colon cancer.
Collapse
Affiliation(s)
- Li Gao
- National Clinical Research Center for Geriatrics and General Practice Ward/International Medical Center Ward, General Practice Medical Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Ying Lu
- National Clinical Research Center for Geriatrics and General Practice Ward/International Medical Center Ward, General Practice Medical Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Hai-Ning Chen
- Colorectal Cancer Center, Department of General Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Zhigui Li
- Department of Gastrointestinal Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Meng Hu
- National Clinical Research Center for Geriatrics and General Practice Ward/International Medical Center Ward, General Practice Medical Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Rou Zhang
- National Clinical Research Center for Geriatrics and General Practice Ward/International Medical Center Ward, General Practice Medical Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Xiuxuan Wang
- National Clinical Research Center for Geriatrics and General Practice Ward/International Medical Center Ward, General Practice Medical Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Zhiqiang Xu
- National Clinical Research Center for Geriatrics and General Practice Ward/International Medical Center Ward, General Practice Medical Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Yanqiu Gong
- National Clinical Research Center for Geriatrics and General Practice Ward/International Medical Center Ward, General Practice Medical Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Rui Wang
- Advanced Mass Spectrometry Center, Research Core Facility, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Dan Du
- Advanced Mass Spectrometry Center, Research Core Facility, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Shan Hai
- National Clinical Research Center for Geriatrics and General Practice Ward/International Medical Center Ward, General Practice Medical Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Shuangqing Li
- National Clinical Research Center for Geriatrics and General Practice Ward/International Medical Center Ward, General Practice Medical Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Dan Su
- National Clinical Research Center for Geriatrics and General Practice Ward/International Medical Center Ward, General Practice Medical Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Yuan Li
- Institute of Digestive Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Heng Xu
- National Clinical Research Center for Geriatrics and General Practice Ward/International Medical Center Ward, General Practice Medical Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Zong-Guang Zhou
- Colorectal Cancer Center, Department of General Surgery, West China Hospital, Sichuan University, Chengdu, China; Institute of Digestive Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Lunzhi Dai
- National Clinical Research Center for Geriatrics and General Practice Ward/International Medical Center Ward, General Practice Medical Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
14
|
Liu Y, Chen H, Bao H, Zhang J, Wu R, Zhu L. Comprehensive characterization of FBXW7 mutational and clinicopathological profiles in human colorectal cancers. Front Oncol 2023; 13:1154432. [PMID: 37064111 PMCID: PMC10091464 DOI: 10.3389/fonc.2023.1154432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 03/13/2023] [Indexed: 03/31/2023] Open
Abstract
BackgroundFBXW7 is recognized as a critical tumor suppressor gene and a component of the ubiquitin-proteasome system, mediating the degradation of multiple oncogenic proteins, including c-MYC, Cyclin E, c-Jun, Notch, p53. Around 16% of colorectal cancer (CRC) patients carried FBXW7 somatic mutations, while a comprehensive characterization of FBXW7 somatic mutations in CRC is still lacking.MethodsColorectal cancer patients with tumor samples and matching white blood cell samples in the past five years were screened and DNA sequenced. DNA sequencing data of MSK MetTropism cohort and RNA sequencing data of TCGA COAD cohort were analyzed.ResultsWe discovered that the FBXW7 mutations were associated with higher tumor mutation burden (TMB), higher microsatellite instability (MSI) score, and lower chromosomal instability (CIN) score. Patients with FBXW7 mutations showed better overall survival (HR: 0.67; 95%CI: 0.55-0.80, P < 0.001). However, patients with FBXW7 R465C mutation displayed worse overall survival in multi-variate cox analysis when compared with patients carrying other FBXW7 mutations (HR: 1.6; 95%CI: 1.13-3.1, P = 0.015), and with all other patients (HR: 1.87; 95%CI: 0.99-2.5, P = 0.053). Moreover, in MSI patients, the FBXW7 mutated group showed higher M1 macrophage, CD8+ T cell, and regulatory T cell (Tregs) infiltration rates, and significant enrichment of multiple immune-related gene sets, including interferon-gamma response, interferon-alpha response, IL6 JAK STAT3 signaling, p53 pathway.ConclusionThis analysis comprehensively identified FBXW7 alterations in colorectal cancer patients and uncovered the molecular, clinicopathological, and immune-related patterns of FBXW7-altered CRC patients.
Collapse
Affiliation(s)
- Yiping Liu
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, China
| | - Hanlin Chen
- Geneseeq Research Institute, Nanjing Geneseeq Technology Inc., Nanjing, China
| | - Hua Bao
- Geneseeq Research Institute, Nanjing Geneseeq Technology Inc., Nanjing, China
| | - Jinfeng Zhang
- Geneseeq Research Institute, Nanjing Geneseeq Technology Inc., Nanjing, China
| | - Runda Wu
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
- *Correspondence: Runda Wu, ; Lingjun Zhu,
| | - Lingjun Zhu
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
- *Correspondence: Runda Wu, ; Lingjun Zhu,
| |
Collapse
|
15
|
Belmonte-Fernández A, Herrero-Ruíz J, Galindo-Moreno M, Limón-Mortés MC, Mora-Santos M, Sáez C, Japón MÁ, Tortolero M, Romero F. Cisplatin-induced cell death increases the degradation of the MRE11-RAD50-NBS1 complex through the autophagy/lysosomal pathway. Cell Death Differ 2023; 30:488-499. [PMID: 36477079 PMCID: PMC9950126 DOI: 10.1038/s41418-022-01100-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 11/17/2022] [Accepted: 11/25/2022] [Indexed: 12/12/2022] Open
Abstract
Cisplatin and other platinum-based anticancer agents are among the most widely used chemotherapy drugs in the treatment of different types of cancer. However, it is common to find patients who respond well to treatment at first but later relapse due to the appearance of resistance to cisplatin. Among the mechanisms responsible for this phenomenon is the increase in DNA damage repair. Here, we elucidate the effect of cisplatin on the MRN (MRE11-RAD50-NBS1) DNA damage sensor complex. We found that the tumor suppressor FBXW7 is a key factor in controlling the turnover of the MRN complex by inducing its degradation through lysosomes. Inhibition of lysosomal enzymes allowed the detection of the association of FBXW7-dependent ubiquitylated MRN with LC3 and the autophagy adaptor p62/SQSTM1 and the localization of MRN in lysosomes. Furthermore, cisplatin-induced cell death increased MRN degradation, suggesting that this complex is one of the targets that favor cell death. These findings open the possibility of using the induction of the degradation of the MRN complex after genotoxic damage as a potential therapeutic strategy to eliminate tumor cells.
Collapse
Affiliation(s)
| | - Joaquín Herrero-Ruíz
- Departamento de Microbiología, Facultad de Biología, Universidad de Sevilla, Sevilla, E-41012, Spain
| | - María Galindo-Moreno
- Departamento de Microbiología, Facultad de Biología, Universidad de Sevilla, Sevilla, E-41012, Spain
| | - M Cristina Limón-Mortés
- Departamento de Microbiología, Facultad de Biología, Universidad de Sevilla, Sevilla, E-41012, Spain
| | - Mar Mora-Santos
- Departamento de Microbiología, Facultad de Biología, Universidad de Sevilla, Sevilla, E-41012, Spain
| | - Carmen Sáez
- Instituto de Biomedicina de Sevilla (IBiS) and Departamento de Anatomía Patológica, Hospital Universitario Virgen del Rocío, Sevilla, E-41013, Spain
| | - Miguel Á Japón
- Instituto de Biomedicina de Sevilla (IBiS) and Departamento de Anatomía Patológica, Hospital Universitario Virgen del Rocío, Sevilla, E-41013, Spain
| | - Maria Tortolero
- Departamento de Microbiología, Facultad de Biología, Universidad de Sevilla, Sevilla, E-41012, Spain
| | - Francisco Romero
- Departamento de Microbiología, Facultad de Biología, Universidad de Sevilla, Sevilla, E-41012, Spain.
| |
Collapse
|
16
|
Mutational Status of SMAD4 and FBXW7 Affects Clinical Outcome in TP53-Mutated Metastatic Colorectal Cancer. Cancers (Basel) 2022; 14:cancers14235921. [PMID: 36497403 PMCID: PMC9735648 DOI: 10.3390/cancers14235921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 10/28/2022] [Accepted: 11/21/2022] [Indexed: 12/02/2022] Open
Abstract
Next-generation sequencing (NGS) provides a molecular rationale to inform prognostic stratification and to guide personalized treatment in cancer patients. Here, we determined the prognostic and predictive value of actionable mutated genes in metastatic colorectal cancer (mCRC). Among a total of 294 mCRC tumors examined by targeted NGS, 200 of them derived from patients treated with first-line chemotherapy plus/minus monoclonal antibodies were included in prognostic analyses. Discriminative performance was assessed by time-dependent estimates of the area under the curve (AUC). The most recurrently mutated genes were TP53 (64%), KRAS or NRAS (49%), PIK3CA (15%), SMAD4 (14%), BRAF (13%), and FBXW7 (9.5%). Mutations in FBXW7 correlated with worse OS rates (p = 0.036; HR, 2.24) independently of clinical factors. Concurrent mutations in TP53 and FBXW7 were associated with increased risk of death (p = 0.02; HR, 3.31) as well as double-mutated TP53 and SMAD4 (p = 0.03; HR, 2.91). Analysis of the MSK-IMPACT mCRC cohort (N = 1095 patients) confirmed the same prognostic trend for the previously identified mutated genes. Addition of the mutational status of these genes upon clinical factors resulted in a time-dependent AUC of 87%. Gene set enrichment analysis revealed specific molecular pathways associated with SMAD4 and FBXW7 mutations in TP53-defficient tumors. Conclusively, SMAD4 and FBXW7 mutations in TP53-altered tumors were predictive of a negative prognostic outcome in mCRC patients treated with first-line regimens.
Collapse
|
17
|
Zhu H, Wang X, Zhou X, Lu S, Gu G, Liu C. E3 ubiquitin ligase FBXW7 enhances radiosensitivity of non-small cell lung cancer cells by inhibiting SOX9 regulation of CDKN1A through ubiquitination. J Transl Med 2022; 102:1203-1213. [PMID: 36775446 DOI: 10.1038/s41374-022-00812-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 06/09/2022] [Accepted: 06/09/2022] [Indexed: 11/09/2022] Open
Abstract
Non-small cell lung cancer (NSCLC) has high rates of morbidity and mortality. E3 ubiquitin ligase usually has antitumor effects. This study evaluated the mechanism of E3 ligase FBXW7 (F-box and WD repeat domain containing 7) in the radiosensitivity of NSCLC. NCI-H1299 and NCI-H1299R cells were irradiated by 0, 2, 4, and 6 Gy doses of X-ray, respectively. In addition to the measurement of cell proliferation, apoptosis, and γ-H2AX, FBXW7 expression was measured and the interaction between FBXW7 and SOX9 (SRY-box transcription factor 9) was evaluated. Ubiquitination level and protein stability of SOX9 were examined after FBXW7 overexpression. The binding relationship between SOX9 and CDKN1A (cyclin-dependent kinase inhibitor 1A) was verified. Xenograft tumor model was established to evaluate the effect of FBXW7 on radiosensitivity in vivo. FBXW7 was under-expressed in radioresistant cells. Overexpression of FBXW7 repressed NCI-H1299 and NCI-H1299R cell proliferation and colony formation and increased γ-H2AX-positive foci. Overexpression of FBXW7 increased the ubiquitination level and reduced the protein stability of SOX9. SOX9 bound to the CDKN1A promoter to inhibit CDKN1A expression. FBXW7 inhibited tumorigenesis and apoptosis and enhanced radiosensitivity of NSCLC cells in vivo via the SOX9/CDKN1A axis. Overall, FBXW7 inhibited SOX9 expression by promoting SOX9 ubiquitination and proteasome degradation, suppressing the binding of SOX9 to CDKN1A, and upregulating CDKN1A, thereby improving the radiosensitivity of NSCLC cells.
Collapse
Affiliation(s)
- Hongge Zhu
- The Affiliated Tumor Hospital of Xinjiang Medical University, Urumqi, 830000, Xinjiang Uygur Autonomous Region, China
| | - Xiuli Wang
- The Affiliated Tumor Hospital of Xinjiang Medical University, Urumqi, 830000, Xinjiang Uygur Autonomous Region, China
| | - Xin Zhou
- The Affiliated Tumor Hospital of Xinjiang Medical University, Urumqi, 830000, Xinjiang Uygur Autonomous Region, China
| | - Suqiong Lu
- The Affiliated Tumor Hospital of Xinjiang Medical University, Urumqi, 830000, Xinjiang Uygur Autonomous Region, China
| | - Guomin Gu
- The Affiliated Tumor Hospital of Xinjiang Medical University, Urumqi, 830000, Xinjiang Uygur Autonomous Region, China
| | - Chunling Liu
- The Affiliated Tumor Hospital of Xinjiang Medical University, Urumqi, 830000, Xinjiang Uygur Autonomous Region, China.
| |
Collapse
|
18
|
Castellano GM, Zeeshan S, Garbuzenko OB, Sabaawy HE, Malhotra J, Minko T, Pine SR. Inhibition of Mtorc1/2 and DNA-PK via CC-115 Synergizes with Carboplatin and Paclitaxel in Lung Squamous Cell Carcinoma. Mol Cancer Ther 2022; 21:1381-1392. [PMID: 35732569 PMCID: PMC9452486 DOI: 10.1158/1535-7163.mct-22-0053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 03/30/2022] [Accepted: 06/14/2022] [Indexed: 11/16/2022]
Abstract
Only a small percentage (<1%) of patients with late-stage lung squamous cell carcinoma (LUSC) are eligible for targeted therapy. Because PI3K/AKT/mTOR signaling, particularly Phosphatidylinositol 3-kinase CA (PIK3CA), is dysregulated in two-thirds of LUSC, and DNA damage response pathways are enriched in LUSC, we tested whether CC-115, a dual mTORC1/2 and DNA-PK inhibitor, sensitizes LUSC to chemotherapy. We demonstrate that CC-115 synergizes with carboplatin in six of 14 NSCLC cell lines, primarily PIK3CA-mutant LUSC. Synergy was more common in cell lines that had decreased basal levels of activated AKT and DNA-PK, evidenced by reduced P-S473-AKT, P-Th308-AKT, and P-S2056-DNA-PKcs. CC-115 sensitized LUSC to carboplatin by inhibiting chemotherapy-induced AKT activation and maintaining apoptosis, particularly in PIK3CA-mutant cells lacking wild-type (WT) TP53. In addition, pathway analysis revealed that enrichments in the IFNα and IFNγ pathways were significantly associated with synergy. In multiple LUSC patient-derived xenograft and cell line tumor models, CC-115 plus platinum-based doublet chemotherapy significantly inhibited tumor growth and increased overall survival as compared with either treatment alone at clinically relevant dosing schedules. IHC and immunoblot analysis of CC-115-treated tumors demonstrated decreased P-Th308-AKT, P-S473-AKT, P-S235/236-S6, and P-S2056-DNA-PKcs, showing direct pharmacodynamic evidence of inhibited PI3K/AKT/mTOR signaling cascades. Because PI3K pathway and DNA-PK inhibitors have shown toxicity in clinical trials, we assessed toxicity by examining weight and numerous organs in PRKDC-WT mice, which demonstrated that the combination treatment does not exacerbate the clinically accepted side effects of standard-of-care chemotherapy. This preclinical study provides strong support for the further investigation of CC-115 plus chemotherapy in LUSC.
Collapse
Affiliation(s)
- Gina M. Castellano
- Rutgers Cancer Institute of New Jersey, Rutgers, The State University of New Jersey, New Brunswick, New Jersey
- Rutgers Graduate Program in Cellular and Molecular Pharmacology, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, New Brunswick, New Jersey
| | - Saman Zeeshan
- Rutgers Cancer Institute of New Jersey, Rutgers, The State University of New Jersey, New Brunswick, New Jersey
- Rutgers Graduate Program in Cellular and Molecular Pharmacology, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, New Brunswick, New Jersey
| | - Olga B. Garbuzenko
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, New Jersey
| | - Hatim E. Sabaawy
- Rutgers Cancer Institute of New Jersey, Rutgers, The State University of New Jersey, New Brunswick, New Jersey
- Department of Medicine, Division of Medical Oncology, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, New Brunswick, New Jersey
- Department of Pathology and Laboratory Medicine, Robert Wood Johnson Medical School, New Brunswick, New Jersey
| | - Jyoti Malhotra
- Rutgers Cancer Institute of New Jersey, Rutgers, The State University of New Jersey, New Brunswick, New Jersey
- Department of Medicine, Division of Medical Oncology, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, New Brunswick, New Jersey
| | - Tamara Minko
- Rutgers Cancer Institute of New Jersey, Rutgers, The State University of New Jersey, New Brunswick, New Jersey
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, New Jersey
| | - Sharon R. Pine
- Rutgers Cancer Institute of New Jersey, Rutgers, The State University of New Jersey, New Brunswick, New Jersey
- Rutgers Graduate Program in Cellular and Molecular Pharmacology, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, New Brunswick, New Jersey
- Department of Medicine, Division of Medical Oncology, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, New Brunswick, New Jersey
- Department of Pharmacology, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, New Brunswick, New Jersey
| |
Collapse
|
19
|
Kim P, Park J, Lee DJ, Mizuno S, Shinohara M, Hong CP, Jeong Y, Yun R, Park H, Park S, Yang KM, Lee MJ, Jang SP, Kim HY, Lee SJ, Song SU, Park KS, Tanaka M, Ohshima H, Cho JW, Sugiyama F, Takahashi S, Jung HS, Kim SJ. Mast4 determines the cell fate of MSCs for bone and cartilage development. Nat Commun 2022; 13:3960. [PMID: 35803931 PMCID: PMC9270402 DOI: 10.1038/s41467-022-31697-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 06/28/2022] [Indexed: 11/26/2022] Open
Abstract
Mesenchymal stromal cells (MSCs) differentiation into different lineages is precisely controlled by signaling pathways. Given that protein kinases play a crucial role in signal transduction, here we show that Microtubule Associated Serine/Threonine Kinase Family Member 4 (Mast4) serves as an important mediator of TGF-β and Wnt signal transduction in regulating chondro-osteogenic differentiation of MSCs. Suppression of Mast4 by TGF-β1 led to increased Sox9 stability by blocking Mast4-induced Sox9 serine 494 phosphorylation and subsequent proteasomal degradation, ultimately enhancing chondrogenesis of MSCs. On the other hand, Mast4 protein, which stability was enhanced by Wnt-mediated inhibition of GSK-3β and subsequent Smurf1 recruitment, promoted β-catenin nuclear localization and Runx2 activity, increasing osteogenesis of MSCs. Consistently, Mast4-/- mice demonstrated excessive cartilage synthesis, while exhibiting osteoporotic phenotype. Interestingly, Mast4 depletion in MSCs facilitated cartilage formation and regeneration in vivo. Altogether, our findings uncover essential roles of Mast4 in determining the fate of MSC development into cartilage or bone.
Collapse
Affiliation(s)
- Pyunggang Kim
- GILO Institute, GILO Foundation, Seoul, 06668, Korea
- Department of Biomedical Science, College of Life Science, CHA University, Seongnam City, 463-400, Kyunggi-do, Korea
| | - Jinah Park
- GILO Institute, GILO Foundation, Seoul, 06668, Korea
- Amoris Bio Inc, Seoul, 06668, Korea
| | - Dong-Joon Lee
- Division in Anatomy and Developmental Biology, Department of Oral Biology, Taste Research Center, Oral Science Research Center, BK21 FOUR Project, Yonsei University College of Dentistry, Seoul, 03722, Korea
| | - Seiya Mizuno
- Laboratory Animal Resource Center, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
| | - Masahiro Shinohara
- Department of Rehabilitation for the Movement Functions, Research Institute, National Rehabilitation Center for Persons with Disabilities, Saitama, 359-8555, Japan
| | | | - Yealeen Jeong
- GILO Institute, GILO Foundation, Seoul, 06668, Korea
| | - Rebecca Yun
- GILO Institute, GILO Foundation, Seoul, 06668, Korea
| | - Hyeyeon Park
- GILO Institute, GILO Foundation, Seoul, 06668, Korea
| | - Sujin Park
- GILO Institute, GILO Foundation, Seoul, 06668, Korea
| | | | - Min-Jung Lee
- Division in Anatomy and Developmental Biology, Department of Oral Biology, Taste Research Center, Oral Science Research Center, BK21 FOUR Project, Yonsei University College of Dentistry, Seoul, 03722, Korea
| | | | - Hyun-Yi Kim
- Division in Anatomy and Developmental Biology, Department of Oral Biology, Taste Research Center, Oral Science Research Center, BK21 FOUR Project, Yonsei University College of Dentistry, Seoul, 03722, Korea
- NGeneS Inc., Ansan-si, 15495, Korea
| | - Seung-Jun Lee
- Division in Anatomy and Developmental Biology, Department of Oral Biology, Taste Research Center, Oral Science Research Center, BK21 FOUR Project, Yonsei University College of Dentistry, Seoul, 03722, Korea
| | - Sun U Song
- Research Institute, SCM Lifescience Inc., Incheon, Korea
- Department of Biomedical Sciences, Inha University College of Medicine, Incheon, Korea
| | - Kyung-Soon Park
- Department of Biomedical Science, College of Life Science, CHA University, Seongnam City, 463-400, Kyunggi-do, Korea
| | - Mikako Tanaka
- Division of Anatomy and Cell Biology of the Hard Tissue, Department of Tissue Regeneration and Reconstruction, Niigata University Graduate School of Medical and Dental Sciences, Niigata, 951-8514, Japan
- Division of Dental Laboratory Technology, Meirin College, Niigata, 950-2086, Japan
| | - Hayato Ohshima
- Division of Anatomy and Cell Biology of the Hard Tissue, Department of Tissue Regeneration and Reconstruction, Niigata University Graduate School of Medical and Dental Sciences, Niigata, 951-8514, Japan
| | - Jin Won Cho
- Department of Systems Biology and Glycosylation Network Research Center, Yonsei University, Seoul, Korea
| | - Fumihiro Sugiyama
- Laboratory Animal Resource Center, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
| | - Satoru Takahashi
- Laboratory Animal Resource Center, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
| | - Han-Sung Jung
- Division in Anatomy and Developmental Biology, Department of Oral Biology, Taste Research Center, Oral Science Research Center, BK21 FOUR Project, Yonsei University College of Dentistry, Seoul, 03722, Korea
| | - Seong-Jin Kim
- GILO Institute, GILO Foundation, Seoul, 06668, Korea.
- Medpacto Inc., Seoul, 06668, Korea.
- TheragenEtex Co., Gyeonggi-do, Korea.
| |
Collapse
|
20
|
Zeng CY, Wang XF, Hua FZ. HIF-1α in Osteoarthritis: From Pathogenesis to Therapeutic Implications. Front Pharmacol 2022; 13:927126. [PMID: 35865944 PMCID: PMC9294386 DOI: 10.3389/fphar.2022.927126] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Accepted: 06/10/2022] [Indexed: 11/13/2022] Open
Abstract
Osteoarthritis is a common age-related joint degenerative disease. Pain, swelling, brief morning stiffness, and functional limitations are its main characteristics. There are still no well-established strategies to cure osteoarthritis. Therefore, better clarification of mechanisms associated with the onset and progression of osteoarthritis is critical to provide a theoretical basis for the establishment of novel preventive and therapeutic strategies. Chondrocytes exist in a hypoxic environment, and HIF-1α plays a vital role in regulating hypoxic response. HIF-1α responds to cellular oxygenation decreases in tissue regulating survival and growth arrest of chondrocytes. The activation of HIF-1α could regulate autophagy and apoptosis of chondrocytes, decrease inflammatory cytokine synthesis, and regulate the chondrocyte extracellular matrix environment. Moreover, it could maintain the chondrogenic phenotype that regulates glycolysis and the mitochondrial function of osteoarthritis, resulting in a denser collagen matrix that delays cartilage degradation. Thus, HIF-1α is likely to be a crucial therapeutic target for osteoarthritis via regulating chondrocyte inflammation and metabolism. In this review, we summarize the mechanism of hypoxia in the pathogenic mechanisms of osteoarthritis, and focus on a series of therapeutic treatments targeting HIF-1α for osteoarthritis. Further clarification of the regulatory mechanisms of HIF-1α in osteoarthritis may provide more useful clues to developing novel osteoarthritis treatment strategies.
Collapse
Affiliation(s)
- Chu-Yang Zeng
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
- Department of Rehabilitation Medicine, The Third Hospital of Hebei Medical University, Shijiazhuang, China
| | - Xi-Feng Wang
- Department of Anesthesiology, The First Affiliated Hospital of Nanchang University, Nanchang, China
- *Correspondence: Xi-Feng Wang, ; Fu-Zhou Hua,
| | - Fu-Zhou Hua
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
- *Correspondence: Xi-Feng Wang, ; Fu-Zhou Hua,
| |
Collapse
|
21
|
Fan J, Bellon M, Ju M, Zhao L, Wei M, Fu L, Nicot C. Clinical significance of FBXW7 loss of function in human cancers. Mol Cancer 2022; 21:87. [PMID: 35346215 PMCID: PMC8962602 DOI: 10.1186/s12943-022-01548-2] [Citation(s) in RCA: 62] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 02/22/2022] [Indexed: 12/13/2022] Open
Abstract
FBXW7 (F-Box and WD Repeat Domain Containing 7) (also referred to as FBW7 or hCDC4) is a component of the Skp1-Cdc53 / Cullin-F-box-protein complex (SCF/β-TrCP). As a member of the F-box protein family, FBXW7 serves a role in phosphorylation-dependent ubiquitination and proteasome degradation of oncoproteins that play critical role(s) in oncogenesis. FBXW7 affects many regulatory functions involved in cell survival, cell proliferation, tumor invasion, DNA damage repair, genomic instability and telomere biology. This thorough review of current literature details how FBXW7 expression and functions are regulated through multiple mechanisms and how that ultimately drives tumorigenesis in a wide array of cell types. The clinical significance of FBXW7 is highlighted by the fact that FBXW7 is frequently inactivated in human lung, colon, and hematopoietic cancers. The loss of FBXW7 can serve as an independent prognostic marker and is significantly correlated with the resistance of tumor cells to chemotherapeutic agents and poorer disease outcomes. Recent evidence shows that genetic mutation of FBXW7 differentially affects the degradation of specific cellular targets resulting in a distinct and specific pattern of activation/inactivation of cell signaling pathways. The clinical significance of FBXW7 mutations in the context of tumor development, progression, and resistance to therapies as well as opportunities for targeted therapies is discussed.
Collapse
Affiliation(s)
- Jingyi Fan
- State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine, Guangdong Esophageal Cancer Institute; Sun Yat-sen University Cancer Center, Guangzhou, 510060, Guangdong Province, China.,Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, 110122, China.,Liaoning Province, China Liaoning Key Laboratory of Molecular Targeted Anti-Tumor Drug Development and Evaluation, Liaoning Cancer Immune Peptide Drug Engineering Technology Research Center, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, China Medical University, Shenyang, 110122, Liaoning Province, China
| | - Marcia Bellon
- Department of Pathology and Laboratory Medicine, Center for Viral Pathogenesis, University of Kansas Medical Center, 3901 Rainbow Boulevard, Kansas City, KS, 66160, USA
| | - Mingyi Ju
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, 110122, China.,Liaoning Province, China Liaoning Key Laboratory of Molecular Targeted Anti-Tumor Drug Development and Evaluation, Liaoning Cancer Immune Peptide Drug Engineering Technology Research Center, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, China Medical University, Shenyang, 110122, Liaoning Province, China
| | - Lin Zhao
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, 110122, China.,Liaoning Province, China Liaoning Key Laboratory of Molecular Targeted Anti-Tumor Drug Development and Evaluation, Liaoning Cancer Immune Peptide Drug Engineering Technology Research Center, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, China Medical University, Shenyang, 110122, Liaoning Province, China
| | - Minjie Wei
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, 110122, China.,Liaoning Province, China Liaoning Key Laboratory of Molecular Targeted Anti-Tumor Drug Development and Evaluation, Liaoning Cancer Immune Peptide Drug Engineering Technology Research Center, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, China Medical University, Shenyang, 110122, Liaoning Province, China
| | - Liwu Fu
- State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine, Guangdong Esophageal Cancer Institute; Sun Yat-sen University Cancer Center, Guangzhou, 510060, Guangdong Province, China.
| | - Christophe Nicot
- Department of Pathology and Laboratory Medicine, Center for Viral Pathogenesis, University of Kansas Medical Center, 3901 Rainbow Boulevard, Kansas City, KS, 66160, USA.
| |
Collapse
|
22
|
Systematic Discovery of FBXW7-Binding Phosphodegrons Highlights Mitogen-Activated Protein Kinases as Important Regulators of Intracellular Protein Levels. Int J Mol Sci 2022; 23:ijms23063320. [PMID: 35328741 PMCID: PMC8955265 DOI: 10.3390/ijms23063320] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 03/16/2022] [Accepted: 03/17/2022] [Indexed: 02/01/2023] Open
Abstract
A FBXW7 is an F-box E3 ubiquitin-ligase affecting cell growth by controlling protein degradation. Mechanistically, its effect on its substrates depends on the phosphorylation of degron motifs, but the abundance of these phosphodegrons has not been systematically explored. We used a ratiometric protein degradation assay geared towards the identification of FBXW7-binding degron motifs phosphorylated by mitogen-activated protein kinases (MAPKs). Most of the known FBXW7 targets are localized in the nucleus and function as transcription factors. Here, in addition to more transcription affecting factors (ETV5, KLF4, SP5, JAZF1, and ZMIZ1 CAMTA2), we identified phosphodegrons located in proteins involved in chromatin regulation (ARID4B, KMT2E, KMT2D, and KAT6B) or cytoskeletal regulation (MAP2, Myozenin-2, SMTL2, and AKAP11), and some other proteins with miscellaneous functions (EIF4G3, CDT1, and CCAR2). We show that the protein level of full-length ARID4B, ETV5, JAZF1, and ZMIZ1 are affected by different MAPKs since their FBXW7-mediated degradation was diminished in the presence of MAPK-specific inhibitors. Our results suggest that MAPK and FBXW7 partnership plays an important cellular role by directly affecting the level of key regulatory proteins. The data also suggest that the p38α-controlled phosphodegron in JAZF1 may be responsible for the pathological regulation of the cancer-related JAZF1-SUZ12 fusion construct implicated in endometrial stromal sarcoma.
Collapse
|
23
|
Lan H, Sun Y. Tumor Suppressor FBXW7 and Its Regulation of DNA Damage Response and Repair. Front Cell Dev Biol 2021; 9:751574. [PMID: 34760892 PMCID: PMC8573206 DOI: 10.3389/fcell.2021.751574] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Accepted: 10/05/2021] [Indexed: 12/21/2022] Open
Abstract
The proper DNA damage response (DDR) and repair are the central molecular mechanisms for the maintenance of cellular homeostasis and genomic integrity. The abnormality in this process is frequently observed in human cancers, and is an important contributing factor to cancer development. FBXW7 is an F-box protein serving as the substrate recognition component of SCF (SKP1-CUL1-F-box protein) E3 ubiquitin ligase. By selectively targeting many oncoproteins for proteasome-mediated degradation, FBXW7 acts as a typical tumor suppressor. Recent studies have demonstrated that FBXW7 also plays critical roles in the process of DDR and repair. In this review, we first briefly introduce the processes of protein ubiquitylation by SCFFBXW7 and DDR/repair, then provide an overview of the molecular characteristics of FBXW7. We next discuss how FBXW7 regulates the process of DDR and repair, and its translational implication. Finally, we propose few future perspectives to further elucidate the role of FBXW7 in regulation of a variety of biological processes and tumorigenesis, and to design a number of approaches for FBXW7 reactivation in a subset of human cancers for potential anticancer therapy.
Collapse
Affiliation(s)
- Huiyin Lan
- Department of Thoracic Radiation Oncology, Zhejiang Cancer Hospital, Cancer Hospital of University of Chinese Academy of Sciences, Hangzhou, China.,Institute of Cancer and Basic Medicine, Chinese Academy of Sciences, Hangzhou, China
| | - Yi Sun
- Cancer Institute of the Second Affiliated Hospital, Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, China.,Cancer Center, Zhejiang University, Hangzhou, China
| |
Collapse
|
24
|
Oncogenic role of SOX9-DHCR24-cholesterol biosynthesis axis in IGH-BCL2 positive diffuse large B-cell lymphomas. Blood 2021; 139:73-86. [PMID: 34624089 PMCID: PMC8740888 DOI: 10.1182/blood.2021012327] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 09/29/2021] [Indexed: 11/21/2022] Open
Abstract
SOX9 plays an oncogenic role in germinal center B-cell type, IGH-BCL2+ DLBCL, by promoting cell proliferation and inhibiting apoptosis. SOX9 drives lymphomagenesis through upregulation of DHCR24, the key final enzyme in the cholesterol biosynthesis pathway.
Although oncogenicity of the stem cell regulator SOX9 has been implicated in many solid tumors, its role in lymphomagenesis remains largely unknown. In this study, SOX9 was overexpressed preferentially in a subset of diffuse large B-cell lymphomas (DLBCLs) that harbor IGH-BCL2 translocations. SOX9 positivity in DLBCL correlated with an advanced stage of disease. Silencing of SOX9 decreased cell proliferation, induced G1/S arrest, and increased apoptosis of DLBCL cells, both in vitro and in vivo. Whole-transcriptome analysis and chromatin immunoprecipitation–sequencing assays identified DHCR24, a terminal enzyme in cholesterol biosynthesis, as a direct target of SOX9, which promotes cholesterol synthesis by increasing DHCR24 expression. Enforced expression of DHCR24 was capable of rescuing the phenotypes associated with SOX9 knockdown in DLBCL cells. In models of DLBCL cell line xenografts, SOX9 knockdown resulted in a lower DHCR24 level, reduced cholesterol content, and decreased tumor load. Pharmacological inhibition of cholesterol synthesis also inhibited DLBCL xenograft tumorigenesis, the reduction of which is more pronounced in DLBCL cell lines with higher SOX9 expression, suggesting that it may be addicted to cholesterol. In summary, our study demonstrated that SOX9 can drive lymphomagenesis through DHCR24 and the cholesterol biosynthesis pathway. This SOX9-DHCR24-cholesterol biosynthesis axis may serve as a novel treatment target for DLBCLs.
Collapse
|
25
|
Liu W, Ge X, Zhou Z, Jiang D, Rong Y, Wang J, Ji C, Fan J, Yin G, Cai W. Deubiquitinase USP18 regulates reactive astrogliosis by stabilizing SOX9. Glia 2021; 69:1782-1798. [PMID: 33694203 DOI: 10.1002/glia.23992] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 02/24/2021] [Accepted: 03/02/2021] [Indexed: 12/11/2022]
Abstract
Reactive astrogliosis is a pathological feature of spinal cord injury (SCI). The ubiquitin-proteasome system plays a crucial role in maintaining protein homeostasis and has been widely studied in neuroscience. Little, however, is known about the underlying function of deubiquitinating enzymes in reactive astrogliosis following SCI. Here, we found that ubiquitin-specific protease 18 (USP18) was significantly upregulated in astrocytes following scratch injury, and in the injured spinal cord in mice. Knockdown of USP18 in vitro and conditional knockout of USP18 in astrocytes (USP18 CKO) in vivo significantly attenuated reactive astrogliosis. In mice, this led to widespread inflammation and poor functional recovery following SCI. In contrast, overexpression of USP18 in mice injected with adeno-associated virus (AAV)-USP18 had beneficial effects following SCI. We showed that USP18 binds, deubiquitinates, and thus, stabilizes SRY-box transcription factor 9 (SOX9), thereby regulating reactive astrogliosis. We also showed that the Hedgehog (Hh) signaling pathway induces expression of USP18 through Gli2-mediated transcriptional activation after SCI. Administration of the Hh pathway activator SAG significantly increased reactive astrogliosis, reduced lesion area and promoted functional recovery in mice following SCI. Our results demonstrate that USP18 positively regulates reactive astrogliosis by stabilizing SOX9 and identify USP18 as a promising target for the treatment of SCI.
Collapse
Affiliation(s)
- Wei Liu
- Department of Orthopaedics, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xuhui Ge
- Department of Orthopaedics, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Zheng Zhou
- Department of Orthopaedics, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Dongdong Jiang
- Department of Orthopaedics, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yuluo Rong
- Department of Orthopaedics, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Jiaxing Wang
- Department of Orthopaedics, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Chengyue Ji
- Department of Orthopaedics, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Jin Fan
- Department of Orthopaedics, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Guoyong Yin
- Department of Orthopaedics, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Weihua Cai
- Department of Orthopaedics, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| |
Collapse
|
26
|
Panda M, Tripathi SK, Biswal BK. SOX9: An emerging driving factor from cancer progression to drug resistance. Biochim Biophys Acta Rev Cancer 2021; 1875:188517. [PMID: 33524528 DOI: 10.1016/j.bbcan.2021.188517] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 01/20/2021] [Accepted: 01/25/2021] [Indexed: 02/06/2023]
Abstract
Dysregulation of transcription factors is one of the common problems in the pathogenesis of human cancer. Among them, SOX9 is one of the critical transcription factors involved in various diseases, including cancer. The expression of SOX9 is regulated by microRNAs (miRNAs), methylation, phosphorylation, and acetylation. Interestingly, SOX9 acts as a proto-oncogene or tumor suppressor gene, relying upon kinds of cancer. Recent studies have reported the critical role of SOX9 in the regulation of the tumor microenvironment (TME). Additionally, activation of SOX9 signaling or SOX9 regulated signaling pathways play a crucial role in cancer development and progression. Accumulating evidence also suggests that SOX9 acquires stem cell features to induce epithelial-mesenchymal transition (EMT). Moreover, SOX9 has been broadly studied in the field of cancer stem cell (CSC) and EMT in the last decades. However, the link between SOX9 and cancer drug resistance has only recently been discovered. Furthermore, its differential expression could be a potential biomarker for tumor prognosis and progression. This review outlined the various biological implications of SOX9 in cancer progression and cancer drug resistance and elucidated its signaling network, which could be a potential target for designing novel anticancer drugs.
Collapse
Affiliation(s)
- Munmun Panda
- Cancer Drug Resistance Laboratory, Department of Life Science, National Institute of Technology Rourkela, Odisha 769008, India
| | - Surya Kant Tripathi
- Cancer Drug Resistance Laboratory, Department of Life Science, National Institute of Technology Rourkela, Odisha 769008, India
| | - Bijesh K Biswal
- Cancer Drug Resistance Laboratory, Department of Life Science, National Institute of Technology Rourkela, Odisha 769008, India.
| |
Collapse
|
27
|
Maki K, Nava MM, Villeneuve C, Chang M, Furukawa KS, Ushida T, Wickström SA. Hydrostatic pressure prevents chondrocyte differentiation through heterochromatin remodeling. J Cell Sci 2021; 134:224090. [PMID: 33310912 PMCID: PMC7860130 DOI: 10.1242/jcs.247643] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 12/01/2020] [Indexed: 01/03/2023] Open
Abstract
Articular cartilage protects and lubricates joints for smooth motion and transmission of loads. Owing to its high water content, chondrocytes within the cartilage are exposed to high levels of hydrostatic pressure, which has been shown to promote chondrocyte identity through unknown mechanisms. Here, we investigate the effects of hydrostatic pressure on chondrocyte state and behavior, and discover that application of hydrostatic pressure promotes chondrocyte quiescence and prevents maturation towards the hypertrophic state. Mechanistically, hydrostatic pressure reduces the amount of trimethylated H3K9 (K3K9me3)-marked constitutive heterochromatin and concomitantly increases H3K27me3-marked facultative heterochromatin. Reduced levels of H3K9me3 attenuates expression of pre-hypertrophic genes, replication and transcription, thereby reducing replicative stress. Conversely, promoting replicative stress by inhibition of topoisomerase II decreases Sox9 expression, suggesting that it enhances chondrocyte maturation. Our results reveal how hydrostatic pressure triggers chromatin remodeling to impact cell fate and function. This article has an associated First Person interview with the first author of the paper. Highlighted Article: Hydrostatic pressure promotes chondrocyte quiescence and immature chondrocyte state through reducing the amount of H3K9me3-marked heterochromatin.
Collapse
Affiliation(s)
- Koichiro Maki
- Helsinki Institute of Life Science, Biomedicum, University of Helsinki, 00290 Helsinki, Finland.,Wihuri Research Institute, Biomedicum, University of Helsinki, 00290 Helsinki, Finland.,Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, 00290 Helsinki, Finland.,Department of Mechanical Engineering, The University of Tokyo, Tokyo 113-0033, Japan
| | - Michele M Nava
- Helsinki Institute of Life Science, Biomedicum, University of Helsinki, 00290 Helsinki, Finland.,Wihuri Research Institute, Biomedicum, University of Helsinki, 00290 Helsinki, Finland.,Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, 00290 Helsinki, Finland.,Max Planck Institute for Biology of Ageing, 50931 Cologne, Germany
| | - Clémentine Villeneuve
- Helsinki Institute of Life Science, Biomedicum, University of Helsinki, 00290 Helsinki, Finland.,Wihuri Research Institute, Biomedicum, University of Helsinki, 00290 Helsinki, Finland.,Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, 00290 Helsinki, Finland
| | - Minki Chang
- Department of Mechanical Engineering, The University of Tokyo, Tokyo 113-0033, Japan
| | - Katsuko S Furukawa
- Department of Mechanical Engineering, The University of Tokyo, Tokyo 113-0033, Japan
| | - Takashi Ushida
- Department of Mechanical Engineering, The University of Tokyo, Tokyo 113-0033, Japan
| | - Sara A Wickström
- Helsinki Institute of Life Science, Biomedicum, University of Helsinki, 00290 Helsinki, Finland .,Wihuri Research Institute, Biomedicum, University of Helsinki, 00290 Helsinki, Finland.,Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, 00290 Helsinki, Finland.,Max Planck Institute for Biology of Ageing, 50931 Cologne, Germany.,Cologne Excellence Cluster for Stress Responses in Ageing-associated diseases (CECAD), University of Cologne, 50931 Cologne, Germany
| |
Collapse
|
28
|
Shao N, Huang H, Idris M, Peng X, Xu F, Dong S, Liu C. KEAP1 Mutations Drive Tumorigenesis by Suppressing SOX9 Ubiquitination and Degradation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2020; 7:2001018. [PMID: 33173725 PMCID: PMC7610265 DOI: 10.1002/advs.202001018] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 05/01/2020] [Indexed: 05/09/2023]
Abstract
The transcription factor SOX9 is frequently amplified in diverse advanced-stage human tumors. Its stability has been shown to be tightly controlled by ubiquitination-dependent proteasome degradation. However, the exact underlying molecular mechanisms remain unclear. This work reports that SOX9 protein abundance is regulated by the Cullin 3-based ubiquitin ligase KEAP1 via proteasome-mediated degradation. Loss-of-function mutations in KEAP1 compromise polyubiquitination-mediated SOX9 degradation, leading to increased protein levels, which facilitate tumorigenesis. Moreover, the loss of critical ubiquitination residues in SOX9, by either a SOX9 (ΔK2) truncation or K249R mutation, leads to elevated protein stability. Furthermore, it is shown that the KEAP1/SOX9 interaction is modulated by CKIγ-mediated phosphorylation. Importantly, it is demonstrated that DNA damage drugs, topoisomerase inhibitors, can trigger CKI activation to restore the KEAP1/SOX9 interaction and its consequent degradation. Collectively, herein the findings uncover a novel molecular mechanism through which SOX9 protein stability is negatively regulated by KEAP1 to control tumorigenesis. Thus, these results suggest that mitigating SOX9 resistance to KEAP1-mediated degradation can represent a novel therapeutic strategy for cancers with KEAP1 mutations.
Collapse
Affiliation(s)
- Na Shao
- Department of Biomedical Materials ScienceSchool of Biomedical EngineeringArmy Medical UniversityChongqing400038P.R. China
| | - Hong Huang
- Center of Biological TherapySouthwest HospitalArmy Medical UniversityChongqing400038P.R. China
| | - Muhammad Idris
- Institute of Molecular and Cell BiologyAgency for ScienceTechnology and Research (A:STAR)SingaporeSingapore
| | - Xu Peng
- Institute of Molecular and Cell BiologyAgency for ScienceTechnology and Research (A:STAR)SingaporeSingapore
| | - Feng Xu
- Institute of Molecular and Cell BiologyAgency for ScienceTechnology and Research (A:STAR)SingaporeSingapore
| | - Shiwu Dong
- Department of Biomedical Materials ScienceSchool of Biomedical EngineeringArmy Medical UniversityChongqing400038P.R. China
| | - Chungang Liu
- Center of Biological TherapySouthwest HospitalArmy Medical UniversityChongqing400038P.R. China
- Institute of Molecular and Cell BiologyAgency for ScienceTechnology and Research (A:STAR)SingaporeSingapore
| |
Collapse
|
29
|
Hong Z, Zhang W, Ding D, Huang Z, Yan Y, Cao W, Pan Y, Hou X, Weroha SJ, Karnes RJ, Wang D, Wu Q, Wu D, Huang H. DNA Damage Promotes TMPRSS2-ERG Oncoprotein Destruction and Prostate Cancer Suppression via Signaling Converged by GSK3β and WEE1. Mol Cell 2020; 79:1008-1023.e4. [PMID: 32871104 DOI: 10.1016/j.molcel.2020.07.028] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 07/02/2020] [Accepted: 07/29/2020] [Indexed: 11/27/2022]
Abstract
TMPRSS2-ERG gene fusion occurs in approximately 50% of cases of prostate cancer (PCa), and the fusion product is a key driver of prostate oncogenesis. However, how to leverage cellular signaling to ablate TMPRSS2-ERG oncoprotein for PCa treatment remains elusive. Here, we demonstrate that DNA damage induces proteasomal degradation of wild-type ERG and TMPRSS2-ERG oncoprotein through ERG threonine-187 and tyrosine-190 phosphorylation mediated by GSK3β and WEE1, respectively. The dual phosphorylation triggers ERG recognition and degradation by the E3 ubiquitin ligase FBW7 in a manner independent of a canonical degron. DNA damage-induced TMPRSS2-ERG degradation was abolished by cancer-associated PTEN deletion or GSK3β inactivation. Blockade of DNA damage-induced TMPRSS2-ERG oncoprotein degradation causes chemotherapy-resistant growth of fusion-positive PCa cells in culture and in mice. Our findings uncover a previously unrecognized TMPRSS2-ERG protein destruction mechanism and demonstrate that intact PTEN and GSK3β signaling are essential for effective targeting of ERG protein by genotoxic therapeutics in fusion-positive PCa.
Collapse
Affiliation(s)
- Zhe Hong
- Department of Urology, Tongji Hospital, Tongji University School of Medicine, Shanghai 200065, China; Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine and Science, Rochester, MN 55905, USA
| | - Wei Zhang
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine and Science, Rochester, MN 55905, USA; Basic Medical College, Jilin Medical University, Jilin, Jilin 132013, China
| | - Donglin Ding
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine and Science, Rochester, MN 55905, USA
| | - Zhenlin Huang
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine and Science, Rochester, MN 55905, USA
| | - Yuqian Yan
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine and Science, Rochester, MN 55905, USA
| | - William Cao
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine and Science, Rochester, MN 55905, USA
| | - Yunqian Pan
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine and Science, Rochester, MN 55905, USA
| | - Xiaonan Hou
- Department of Oncology, Mayo Clinic College of Medicine, Rochester, MN 55905, USA
| | - Saravut J Weroha
- Department of Oncology, Mayo Clinic College of Medicine, Rochester, MN 55905, USA
| | - R Jeffrey Karnes
- Department of Urology, Mayo Clinic College of Medicine and Science, Rochester, MN 55905, USA; Mayo Clinic Cancer Center, Mayo Clinic College of Medicine and Science, Rochester, MN 55905, USA
| | - Dejie Wang
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine and Science, Rochester, MN 55905, USA
| | - Qiang Wu
- Department of Urology, Tongji Hospital, Tongji University School of Medicine, Shanghai 200065, China; Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine and Science, Rochester, MN 55905, USA.
| | - Denglong Wu
- Department of Urology, Tongji Hospital, Tongji University School of Medicine, Shanghai 200065, China.
| | - Haojie Huang
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine and Science, Rochester, MN 55905, USA; Department of Urology, Mayo Clinic College of Medicine and Science, Rochester, MN 55905, USA; Mayo Clinic Cancer Center, Mayo Clinic College of Medicine and Science, Rochester, MN 55905, USA.
| |
Collapse
|
30
|
Deng X, Li Y, Gu S, Chen Y, Yu B, Su J, Sun L, Liu Y. p53 Affects PGC1α Stability Through AKT/GSK-3β to Enhance Cisplatin Sensitivity in Non-Small Cell Lung Cancer. Front Oncol 2020; 10:1252. [PMID: 32974127 PMCID: PMC7471661 DOI: 10.3389/fonc.2020.01252] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 06/17/2020] [Indexed: 12/12/2022] Open
Abstract
Drug resistance greatly limits the therapeutic efficacy of treatment of non-small cell lung cancer (NSCLC). One of the important factors is the dysfunction of tumor suppressor p53. Recent studies have suggested that p53 suppresses tumors by regulating number of mitochondrial proteins, including peroxisome proliferator-activated receptor coactivator (PGC1α). Although several studies have confirmed the interaction between p53 and PGC1α, the precise mechanism has not been completely determined in NSCLC. In this study, we investigated the specific signaling between p53 and PGC1α to improve anti-tumor drug effects on NSCLC. We found that low expression of p53 and high expression of PGC1α correlated with shorter survival time of NSCLC patients. In vitro experiments confirmed that NCI-H1299 (p53-null) cells had high levels of PGC1α and were insensitive to cisplatin (CDDP). When PGC1α was knocked down, the sensitivity to cisplatin was increased. Notably, the stability of PGC1α is an important mechanism in its activity regulation. We demonstrated that p53 decreased the stability of PGC1α via the ubiquitin proteasome pathway, which was mediated by protein kinase B (AKT) inhibition and glycogen synthase kinase (GSK-3β) activation. Therefore, p53 may regulate the stability of PGC1α through the AKT/GSK-3β pathway, thus affect the chemosensitivity of NSCLC.
Collapse
Affiliation(s)
- Xinyue Deng
- Key Laboratory of Pathobiology, Ministry of Education, Department of Pathophysiology, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Yang Li
- Key Laboratory of Pathobiology, Ministry of Education, Department of Pathophysiology, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Shuang Gu
- Department of Thoracic Surgery, Jilin Provincial People's Hospital, Changchun, China
| | - Yingying Chen
- Key Laboratory of Pathobiology, Ministry of Education, Department of Pathophysiology, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Bingbing Yu
- Key Laboratory of Pathobiology, Ministry of Education, Department of Pathophysiology, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Jing Su
- Key Laboratory of Pathobiology, Ministry of Education, Department of Pathophysiology, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Liankun Sun
- Key Laboratory of Pathobiology, Ministry of Education, Department of Pathophysiology, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Yanan Liu
- Key Laboratory of Pathobiology, Ministry of Education, Department of Pathophysiology, College of Basic Medical Sciences, Jilin University, Changchun, China
| |
Collapse
|
31
|
aarF domain containing kinase 5 gene promotes invasion and migration of lung cancer cells through ADCK5-SOX9-PTTG1 pathway. Exp Cell Res 2020; 392:112002. [PMID: 32277958 DOI: 10.1016/j.yexcr.2020.112002] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 04/03/2020] [Accepted: 04/04/2020] [Indexed: 02/08/2023]
Abstract
AarF domain containing kinase 5 (ADCK5) is a member of an atypical kinase family and overexpressed in many carcinomas including lung cancer, while the function of this protein has not been elucidated. Here we investigated the mechanism of ADCK5 involved in regulating invasion and migration of lung cancer cells, and showed that ADCK5 might regulate the expression of tumor oncogene human pituitary tumor transforming gene-1 (PTTG1) by phosphorylating transcription factor SOX9, therefore enhancing the migration and invasion capabilities of lung cancer cells. Mutagenesis of potential serine phosphorylation sites on SOX9 indicated that serine 181 might be required to maintain transcription activation of SOX9 as well as increase PTTG1 levels. The serine 181 site of SOX9 is in a motif that is targeted by ADCK5. The ADCK5-SOX9-PTTG1 pathway might be a potential therapeutic target for lung cancer.
Collapse
|
32
|
Yumimoto K, Nakayama KI. Recent insight into the role of FBXW7 as a tumor suppressor. Semin Cancer Biol 2020; 67:1-15. [PMID: 32113998 DOI: 10.1016/j.semcancer.2020.02.017] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 02/15/2020] [Accepted: 02/26/2020] [Indexed: 12/12/2022]
Abstract
FBXW7 (also known as Fbw7, Sel10, hCDC4, or hAgo) is a tumor suppressor and the most frequently mutated member of the F-box protein family in human cancers. FBXW7 functions as the substrate recognition component of an SCF-type E3 ubiquitin ligase. It specifically controls the proteasome-mediated degradation of many oncoproteins such as c-MYC, NOTCH, KLF5, cyclin E, c-JUN, and MCL1. In this review, we summarize the molecular and biological features of FBXW7 and its substrates as well as the impact of mutations of FBXW7 on cancer development. We also address the clinical potential of anticancer therapy targeting FBXW7.
Collapse
Affiliation(s)
- Kanae Yumimoto
- Department of Molecular and Cellular Biology, Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, Fukuoka, 812-8582, Japan
| | - Keiichi I Nakayama
- Department of Molecular and Cellular Biology, Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, Fukuoka, 812-8582, Japan.
| |
Collapse
|
33
|
The SOX9-Aldehyde Dehydrogenase Axis Determines Resistance to Chemotherapy in Non-Small-Cell Lung Cancer. Mol Cell Biol 2020; 40:MCB.00307-19. [PMID: 31658996 DOI: 10.1128/mcb.00307-19] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Accepted: 10/22/2019] [Indexed: 12/12/2022] Open
Abstract
Chemotherapy resistance and tumor relapse are the major contributors to low patient survival, and both have been largely attributed to cancer stem-like cells (CSCs) or tumor-initiating cells (TICs). Moreover, most conventional therapies are not effective against CSCs, which necessitates the discovery of CSC-specific biomarkers and drug targets. Here, we demonstrated that the embryonic transcription factor SOX9 is an important regulator of acquired chemoresistance in non-small-cell lung cancer (NSCLC). Our results show that SOX9 expression is elevated in NSCLC cells after treatment with the chemotherapeutic cisplatin and that overexpression of SOX9 correlates with worse overall survival in lung cancer patients. We further demonstrated that SOX9 knockdown increases cellular sensitivity to cisplatin, whereas its overexpression promotes drug resistance. Moreover, this transcription factor promotes the stem-like properties of NSCLC cells and increases their aldehyde dehydrogenase (ALDH) activity, which was identified to be the key mechanism of SOX9-induced chemoresistance. Finally, we showed that ALDH1A1 is a direct transcriptional target of SOX9, based on chromatin immunoprecipitation and luciferase reporter assays. Taken together, our novel findings on the role of the SOX9-ALDH axis support the use of this CSC regulator as a prognostic marker of cancer chemoresistance and as a potential drug target for CSC therapy.
Collapse
|
34
|
Regulation of Stem Cells by Cullin-RING Ligase. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1217:79-98. [PMID: 31898223 DOI: 10.1007/978-981-15-1025-0_6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Stem cells can remain quiescent, self-renewal, and differentiate into many types of cells and even cancer stem cells. The coordination of these complex processes maintains the homeostasis of the organism. Ubiquitination is an important posttranslational modification process that regulates protein stability and activity. The ubiquitination levels of stem cell-associated proteins are closely related with stem cell characteristics. Cullin-RING Ligases (CRLs) are the largest family of E3 ubiquitin ligases, accounting for approximately 20% of proteins degraded by proteasome. In this review, we discuss the role of CRLs in stem cell homeostasis, self-renewal, and differentiation and expound their ubiquitination substrates. In addition, we also discuss the effect of CRLs on the formation of cancer stem cells that may provide promising therapy strategies for cancer.
Collapse
|
35
|
Yan L, Lin M, Pan S, Assaraf YG, Wang ZW, Zhu X. Emerging roles of F-box proteins in cancer drug resistance. Drug Resist Updat 2019; 49:100673. [PMID: 31877405 DOI: 10.1016/j.drup.2019.100673] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 12/02/2019] [Accepted: 12/04/2019] [Indexed: 12/24/2022]
Abstract
Chemotherapy continues to be a major treatment strategy for various human malignancies. However, the frequent emergence of chemoresistance compromises chemotherapy efficacy leading to poor prognosis. Thus, overcoming drug resistance is pivotal to achieve enhanced therapy efficacy in various cancers. Although increased evidence has revealed that reduced drug uptake, increased drug efflux, drug target protein alterations, drug sequestration in organelles, enhanced drug metabolism, impaired DNA repair systems, and anti-apoptotic mechanisms, are critically involved in drug resistance, the detailed resistance mechanisms have not been fully elucidated in distinct cancers. Recently, F-box protein (FBPs), key subunits in Skp1-Cullin1-F-box protein (SCF) E3 ligase complexes, have been found to play critical roles in carcinogenesis, tumor progression, and drug resistance through degradation of their downstream substrates. Therefore, in this review, we describe the functions of FBPs that are involved in drug resistance and discuss how FBPs contribute to the development of cancer drug resistance. Furthermore, we propose that targeting FBPs might be a promising strategy to overcome drug resistance and achieve better treatment outcome in cancer patients. Lastly, we state the limitations and challenges of using FBPs to overcome chemotherapeutic drug resistance in various cancers.
Collapse
Affiliation(s)
- Linzhi Yan
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China
| | - Min Lin
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China
| | - Shuya Pan
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China
| | - Yehuda G Assaraf
- The Fred Wyszkowski Cancer Research Lab, Faculty of Biology, Technion-Israel Institute of Technology, Haifa, 3200003, Israel.
| | - Zhi-Wei Wang
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China; Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA.
| | - Xueqiong Zhu
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China.
| |
Collapse
|
36
|
Zhang Q, Mady ASA, Ma Y, Ryan C, Lawrence TS, Nikolovska-Coleska Z, Sun Y, Morgan MA. The WD40 domain of FBXW7 is a poly(ADP-ribose)-binding domain that mediates the early DNA damage response. Nucleic Acids Res 2019; 47:4039-4053. [PMID: 30722038 PMCID: PMC6486556 DOI: 10.1093/nar/gkz058] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 01/03/2019] [Accepted: 01/24/2019] [Indexed: 12/15/2022] Open
Abstract
FBXW7, a classic tumor suppressor, is a substrate recognition subunit of the Skp1-cullin-F-box (SCF) ubiquitin ligase that targets oncoproteins for ubiquitination and degradation. We recently found that FBXW7 is recruited to DNA damage sites to facilitate nonhomologous end-joining (NHEJ). The detailed underlying molecular mechanism, however, remains elusive. Here we report that the WD40 domain of FBXW7, which is responsible for substrate binding and frequently mutated in human cancers, binds to poly(ADP-ribose) (PAR) immediately following DNA damage and mediates rapid recruitment of FBXW7 to DNA damage sites, whereas ATM-mediated FBXW7 phosphorylation promotes its retention at DNA damage sites. Cancer-associated arginine mutations in the WD40 domain (R465H, R479Q and R505C) abolish both FBXW7 interaction with PAR and recruitment to DNA damage sites, causing inhibition of XRCC4 polyubiquitination and NHEJ. Furthermore, inhibition or silencing of poly(ADP-ribose) polymerase 1 (PARP1) inhibits PAR-mediated recruitment of FBXW7 to the DNA damage sites. Taken together, our study demonstrates that the WD40 domain of FBXW7 is a novel PAR-binding motif that facilitates early recruitment of FBXW7 to DNA damage sites for subsequent NHEJ repair. Abrogation of this ability seen in cancer-derived FBXW7 mutations provides a molecular mechanism for defective DNA repair, eventually leading to genome instability.
Collapse
Affiliation(s)
- Qiang Zhang
- Department of Radiation Oncology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Ahmed S A Mady
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Yuanyuan Ma
- Shanghai Institute of Precision Medicine, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Caila Ryan
- Department of Radiation Oncology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Theodore S Lawrence
- Department of Radiation Oncology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | | | - Yi Sun
- Department of Radiation Oncology, University of Michigan Medical School, Ann Arbor, MI 48109, USA.,Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou 310029, Zhejiang, China
| | - Meredith A Morgan
- Department of Radiation Oncology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| |
Collapse
|
37
|
Hong SH, You JS. SOX9 is controlled by the BRD4 inhibitor JQ1 via multiple regulation mechanisms. Biochem Biophys Res Commun 2019; 511:746-752. [PMID: 30833074 DOI: 10.1016/j.bbrc.2019.02.135] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Accepted: 02/25/2019] [Indexed: 01/10/2023]
Abstract
SOX9 is a key transcription factor during cell differentiation, sex determination, and tumorigenesis. However, the detailed mechanisms of its targeting strategy remain elusive. To investigate possibilities of targeting SOX9 with epigenetic drugs and the precise underlying mechanisms, two human cancer cell lines were chosen as model systems, which showed high SOX9 expression and anti-tumorigenic effects upon loss of SOX9. Histone acetylation-related screening of a small panel of epigenetic drugs revealed that the bromodomain reader inhibitor JQ1 dramatically downregulated SOX9 through multiple regulation steps, namely, transcription, BRD4-SOX9 protein-protein interaction, and further protein stability. These findings suggest that BRD4 inhibition is a novel therapeutic strategy for diseases characterized by SOX9 overexpression.
Collapse
Affiliation(s)
- Seong Hwi Hong
- Department of Biochemistry, School of Medicine, Konkuk University, Seoul, 05029, South Korea
| | - Jueng Soo You
- Department of Biochemistry, School of Medicine, Konkuk University, Seoul, 05029, South Korea; Research Institute of Medical Science, Konkuk University School of Medicine, South Korea.
| |
Collapse
|
38
|
Jiao Y, Zhao J, Zhang Z, Li M, Yu X, Yang Y, Liu J, Liao S, Li D, Wang Y, Zhang D, Chen Y, Shi G, Liu B, Lu Y, Li X. SRY-Box Containing Gene 4 Promotes Liver Steatosis by Upregulation of SREBP-1c. Diabetes 2018; 67:2227-2238. [PMID: 30181160 DOI: 10.2337/db18-0184] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2018] [Accepted: 08/27/2018] [Indexed: 11/13/2022]
Abstract
Obesity is usually associated with an increased risk of nonalcoholic fatty liver disease that is characterized by accumulation of excessive triglyceride (TG) in hepatocytes. However, the factors involved in the obesity-induced hepatosteatosis are poorly defined. Here, we report that SRY-box containing gene 4 (Sox4), a transcription factor that regulates cell proliferation and differentiation, plays an important role in hepatic TG metabolism. Sox4 expression levels are markedly upregulated in livers of obese rodents and humans. Adenovirus-medicated overexpression of Sox4 in the livers of lean mice promotes liver steatosis, whereas liver-specific knockdown of Sox4 ameliorates TG accumulation and improves insulin resistance in obese mice. At the molecular level, we show that Sox4 could directly control the transcription of SREBP-1c gene through binding to its proximal promoter region. Thus, we have identified Sox4 as an important component of hepatic TG metabolism.
Collapse
Affiliation(s)
- Yang Jiao
- Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, and Department of Endocrinology and Metabolism, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jiejie Zhao
- Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, and Department of Endocrinology and Metabolism, Zhongshan Hospital, Fudan University, Shanghai, China
- Department of Endocrinology and Metabolism, Shanghai Institute of Endocrinology and Metabolism, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhijian Zhang
- Department of Endocrinology and Metabolism, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Min Li
- Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, and Department of Endocrinology and Metabolism, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Xi Yu
- Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, and Department of Endocrinology and Metabolism, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yanying Yang
- Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, and Department of Endocrinology and Metabolism, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jie Liu
- Hubei Key Laboratory for Kidney Disease Pathogenesis and Intervention, Hubei Polytechnic University School of Medicine, Huangshi, Hubei, China
| | - Shengjie Liao
- Hubei Key Laboratory for Kidney Disease Pathogenesis and Intervention, Hubei Polytechnic University School of Medicine, Huangshi, Hubei, China
| | - Duanzhuo Li
- Hubei Key Laboratory for Kidney Disease Pathogenesis and Intervention, Hubei Polytechnic University School of Medicine, Huangshi, Hubei, China
| | - Yuxing Wang
- Hubei Key Laboratory for Kidney Disease Pathogenesis and Intervention, Hubei Polytechnic University School of Medicine, Huangshi, Hubei, China
| | - Die Zhang
- Hubei Key Laboratory for Kidney Disease Pathogenesis and Intervention, Hubei Polytechnic University School of Medicine, Huangshi, Hubei, China
| | - Yulu Chen
- Hubei Key Laboratory for Kidney Disease Pathogenesis and Intervention, Hubei Polytechnic University School of Medicine, Huangshi, Hubei, China
| | - Guojun Shi
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI
| | - Bin Liu
- Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, and Department of Endocrinology and Metabolism, Zhongshan Hospital, Fudan University, Shanghai, China
- Hubei Key Laboratory for Kidney Disease Pathogenesis and Intervention, Hubei Polytechnic University School of Medicine, Huangshi, Hubei, China
| | - Yan Lu
- Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, and Department of Endocrinology and Metabolism, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Xiaoying Li
- Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, and Department of Endocrinology and Metabolism, Zhongshan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
39
|
Yusenko M, Jakobs A, Klempnauer KH. A novel cell-based screening assay for small-molecule MYB inhibitors identifies podophyllotoxins teniposide and etoposide as inhibitors of MYB activity. Sci Rep 2018; 8:13159. [PMID: 30177851 PMCID: PMC6120916 DOI: 10.1038/s41598-018-31620-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Accepted: 07/03/2018] [Indexed: 12/15/2022] Open
Abstract
The transcription factor MYB plays key roles in hematopoietic cells and has been implicated the development of leukemia. MYB has therefore emerged as an attractive target for drug development. Recent work has suggested that targeting MYB by small-molecule inhibitors is feasible and that inhibition of MYB has potential as a therapeutic approach against acute myeloid leukemia. To facilitate the identification of small-molecule MYB inhibitors we have re-designed and improved a previously established cell-based screening assay and have employed it to screen a natural product library for potential inhibitors. Our work shows that teniposide and etoposide, chemotherapeutic agents causing DNA-damage by inhibiting topoisomerase II, potently inhibit MYB activity and induce degradation of MYB in AML cell lines. MYB inhibition is suppressed by caffeine, suggesting that MYB is inhibited indirectly via DNA-damage signalling. Importantly, ectopic expression of an activated version of MYB in pro-myelocytic NB4 cells diminished the anti-proliferative effects of teniposide, suggesting that podophyllotoxins disrupt the proliferation of leukemia cells not simply by inducing general DNA-damage but that their anti-proliferative effects are boosted by inhibition of MYB. Teniposide and etoposide therefore act like double-edged swords that might be particularly effective to inhibit tumor cells with deregulated MYB.
Collapse
Affiliation(s)
- Maria Yusenko
- Institute for Biochemistry, Westfälische-Wilhelms-Universität, D-48149, Münster, Germany
| | - Anke Jakobs
- Institute for Biochemistry, Westfälische-Wilhelms-Universität, D-48149, Münster, Germany
| | - Karl-Heinz Klempnauer
- Institute for Biochemistry, Westfälische-Wilhelms-Universität, D-48149, Münster, Germany.
| |
Collapse
|
40
|
Onofrillo C, Duchi S, O'Connell CD, Blanchard R, O'Connor AJ, Scott M, Wallace GG, Choong PFM, Di Bella C. Biofabrication of human articular cartilage: a path towards the development of a clinical treatment. Biofabrication 2018; 10:045006. [PMID: 30088479 DOI: 10.1088/1758-5090/aad8d9] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Cartilage injuries cause pain and loss of function, and if severe may result in osteoarthritis (OA). 3D bioprinting is now a tangible option for the delivery of bioscaffolds capable of regenerating the deficient cartilage tissue. Our team has developed a handheld device, the Biopen, to allow in situ additive manufacturing during surgery. Given its ability to extrude in a core/shell manner, the Biopen can preserve cell viability during the biofabrication process, and it is currently the only biofabrication tool tested as a surgical instrument in a sheep model using homologous stem cells. As a necessary step toward the development of a clinically relevant protocol, we aimed to demonstrate that our handheld extrusion device can successfully be used for the biofabrication of human cartilage. Therefore, this study is a required step for the development of a surgical treatment in human patients. In this work we specifically used human adipose derived mesenchymal stem cells (hADSCs), harvested from the infra-patellar fat pad of donor patients affected by OA, to also prove that they can be utilized as the source of cells for the future clinical application. With the Biopen, we generated bioscaffolds made of hADSCs laden in gelatin methacrylate, hyaluronic acid methacrylate and cultured in the presence of chondrogenic stimuli for eight weeks in vitro. A comprehensive characterisation including gene and protein expression analyses, immunohistology, confocal microscopy, second harmonic generation, light sheet imaging, atomic force mycroscopy and mechanical unconfined compression demonstrated that our strategy resulted in human hyaline-like cartilage formation. Our in situ biofabrication approach represents an innovation with important implications for customizing cartilage repair in patients with cartilage injuries and OA.
Collapse
Affiliation(s)
- Carmine Onofrillo
- Department of Surgery, St Vincent's Hospital, University of Melbourne, Clinical Sciences Building, 29 Regent Street, 3065 Fitzroy, VIC, Australia. ARC Centre of Excellence for Electromaterials Science, Intelligent Polymer Research Institute, Innovation Campus, University of Wollongong, NSW, Australia. BioFab3D, Aikenhead Centre for Medical Discovery, St Vincent's Hospital, Melbourne, Australia
| | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Physiological functions of FBW7 in cancer and metabolism. Cell Signal 2018; 46:15-22. [PMID: 29474981 DOI: 10.1016/j.cellsig.2018.02.009] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2017] [Revised: 02/16/2018] [Accepted: 02/18/2018] [Indexed: 12/11/2022]
Abstract
FBW7 is one of the most well characterized F-box proteins that serve as substrate recognition subunits of SCF (Skp1-Cullin 1-F-box proteins) E3 ubiquitin ligase complexes. SCFFBW7 plays key roles in regulating cell cycle progression, differentiation, and stem cell maintenance largely through targeting a broad range of oncogenic substrates for proteasome-dependent degradation. The identification of an increasing number of FBW7 substrates for ubiquitination, and intensive in vitro and in vivo studies have revealed a network of signaling components controlled by FBW7 that contributes to metabolic regulation as well as its tumor suppressor role. Here we mainly focus on recent findings that highlight a critical role for FBW7 in cancer and metabolism.
Collapse
|
42
|
NGF protects corneal, retinal, and cutaneous tissues/cells from phototoxic effect of UV exposure. Graefes Arch Clin Exp Ophthalmol 2018; 256:729-738. [DOI: 10.1007/s00417-018-3931-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Revised: 12/30/2017] [Accepted: 02/02/2018] [Indexed: 01/25/2023] Open
|
43
|
Chakraborty A, Dorsett KA, Trummell HQ, Yang ES, Oliver PG, Bonner JA, Buchsbaum DJ, Bellis SL. ST6Gal-I sialyltransferase promotes chemoresistance in pancreatic ductal adenocarcinoma by abrogating gemcitabine-mediated DNA damage. J Biol Chem 2018; 293:984-994. [PMID: 29191829 PMCID: PMC5777269 DOI: 10.1074/jbc.m117.808584] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Revised: 11/14/2017] [Indexed: 12/19/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is an aggressive malignancy with a poor prognosis. Gemcitabine, as a single agent or in combination therapy, remains the frontline chemotherapy despite its limited efficacy due to de novo or acquired chemoresistance. There is an acute need to decipher mechanisms underlying chemoresistance and identify new targets to improve patient outcomes. Here, we report a novel role for the ST6Gal-I sialyltransferase in gemcitabine resistance. Utilizing MiaPaCa-2 and BxPC-3 PDAC cells, we found that knockdown (KD) of ST6Gal-I expression, as well as removal of surface α2-6 sialic acids by neuraminidase, enhances gemcitabine-mediated cell death assessed via clonogenic assays and cleaved caspase 3 expression. Additionally, KD of ST6Gal-I potentiates gemcitabine-induced DNA damage as measured by comet assays and quantification of γH2AX foci. ST6Gal-I KD also alters mRNA expression of key gemcitabine metabolic genes, RRM1, RRM2, hENT1, and DCK, leading to an increased gemcitabine sensitivity ratio, an indicator of gemcitabine toxicity. Gemcitabine-resistant MiaPaCa-2 cells display higher ST6Gal-I levels than treatment-naïve cells along with a reduced gemcitabine sensitivity ratio, suggesting that chronic chemotherapy selects for clonal variants with more abundant ST6Gal-I. Finally, we examined Suit2 PDAC cells and Suit2 derivatives with enhanced metastatic potential. Intriguingly, three metastatic and chemoresistant subclones, S2-CP9, S2-LM7AA, and S2-013, exhibit up-regulated ST6Gal-I relative to parental Suit2 cells. ST6Gal-I KD in S2-013 cells increases gemcitabine-mediated DNA damage, indicating that suppressing ST6Gal-I activity sensitizes inherently resistant cells to gemcitabine. Together, these findings place ST6Gal-I as a critical player in imparting gemcitabine resistance and as a potential target to restore PDAC chemoresponse.
Collapse
Affiliation(s)
- Asmi Chakraborty
- From the Departments of Cell Developmental and Integrative Biology and
| | - Kaitlyn A Dorsett
- From the Departments of Cell Developmental and Integrative Biology and
| | - Hoa Q Trummell
- Radiation Oncology, University of Alabama, Birmingham, Alabama 35294
| | - Eddy S Yang
- Radiation Oncology, University of Alabama, Birmingham, Alabama 35294
| | - Patsy G Oliver
- Radiation Oncology, University of Alabama, Birmingham, Alabama 35294
| | - James A Bonner
- Radiation Oncology, University of Alabama, Birmingham, Alabama 35294
| | | | - Susan L Bellis
- From the Departments of Cell Developmental and Integrative Biology and
| |
Collapse
|
44
|
Kobayashi T, Fujita K, Kamatani T, Matsuda S, Tsumaki N. A-674563 increases chondrocyte marker expression in cultured chondrocytes by inhibiting Sox9 degradation. Biochem Biophys Res Commun 2018; 495:1468-1475. [PMID: 29196261 DOI: 10.1016/j.bbrc.2017.11.180] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Accepted: 11/28/2017] [Indexed: 10/18/2022]
Abstract
The implantation of autologous chondrocytes is a therapeutic treatment for articular cartilage damage. However, the benefits are limited due to the expansion of chondrocytes in monolayer culture, which causes loss of chondrocytic characters. Therefore, culture conditions that enhance chondrocytic characters are needed. We screened 5822 compounds and found that A-674563 enhanced the transcription of several chondrocyte marker genes, including Col2a1, Acan and Col11a2, in mouse primary chondrocytes. Experiments using cycloheximide, MG132 and bafilomycin A1 have revealed that Sox9 is degraded through the ubiquitin-proteasome pathway and that A-674563 inhibits this degradation, resulting in larger amount of Sox9 protein. RNA sequencing transcriptome analysis showed that A-674563 increases the expression of the gene that encodes ubiquitin-specific peptidase 29, which is known to induce the deubiquitination of proteins. Although the precise mechanism remains to be determined, our findings indicated that A-674563 could contribute to culture conditions that expand chondrocytes without losing chondrocytic characters.
Collapse
Affiliation(s)
- Tomohito Kobayashi
- Cell Induction and Regulation Field, Department of Cell Growth and Differentiation, Center for iPS Cell Research and Application, Kyoto University, Japan; Department of Orthopaedic Surgery, Graduate School of Medicine, Kyoto University, Japan
| | - Kaori Fujita
- Cell Induction and Regulation Field, Department of Cell Growth and Differentiation, Center for iPS Cell Research and Application, Kyoto University, Japan
| | - Takashi Kamatani
- Cell Induction and Regulation Field, Department of Cell Growth and Differentiation, Center for iPS Cell Research and Application, Kyoto University, Japan
| | - Shuichi Matsuda
- Department of Orthopaedic Surgery, Graduate School of Medicine, Kyoto University, Japan
| | - Noriyuki Tsumaki
- Cell Induction and Regulation Field, Department of Cell Growth and Differentiation, Center for iPS Cell Research and Application, Kyoto University, Japan.
| |
Collapse
|
45
|
Morgan KM, Fischer BS, Lee FY, Shah JJ, Bertino JR, Rosenfeld J, Singh A, Khiabanian H, Pine SR. Gamma Secretase Inhibition by BMS-906024 Enhances Efficacy of Paclitaxel in Lung Adenocarcinoma. Mol Cancer Ther 2017; 16:2759-2769. [PMID: 28978720 DOI: 10.1158/1535-7163.mct-17-0439] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2017] [Revised: 09/15/2017] [Accepted: 09/25/2017] [Indexed: 02/07/2023]
Abstract
Notch signaling is aberrantly activated in approximately one third of non-small cell lung cancers (NSCLC). We characterized the interaction between BMS-906024, a clinically relevant Notch gamma secretase inhibitor, and front-line chemotherapy in preclinical models of NSCLC. Chemosensitivity assays were performed on 14 human NSCLC cell lines. There was significantly greater synergy between BMS-906024 and paclitaxel than BMS-906024 and cisplatin [mean combination index (CI) value, 0.54 and 0.85, respectively, P = 0.01]. On an extended panel of 31 NSCLC cell lines, 25 of which were adenocarcinoma, the synergy between BMS-906024 and paclitaxel was significantly greater in KRAS- and BRAF-wildtype than KRAS- or BRAF-mutant cells (mean CI, 0.43 vs. 0.90, respectively; P = 0.003). Paclitaxel-induced Notch1 activation was associated with synergy between BMS-906024 and paclitaxel in the KRAS- or BRAF-mutant group. Knockdown of mutant KRAS increased the synergy between BMS-906024 and paclitaxel in heterozygous KRAS-mutant cell lines. Among KRAS- or BRAF-mutant NSCLC, there was a significant correlation between synergy and mutant or null TP53 status, as well as between synergy and a low H2O2 pathway signature. Exogenous overexpression of activated Notch1 or Notch3 had no effect on the enhanced sensitivity of NSCLC to paclitaxel by BMS-906024. In vivo studies with cell line- and patient-derived lung adenocarcinoma xenografts confirmed enhanced antitumor activity for BMS-906024 plus paclitaxel versus either drug alone via decreased cell proliferation and increased apoptosis. These results show that BMS-906024 sensitizes NSCLC to paclitaxel and that wild-type KRAS and BRAF status may predict better patient response to the combination therapy. Mol Cancer Ther; 16(12); 2759-69. ©2017 AACR.
Collapse
Affiliation(s)
- Katherine M Morgan
- Rutgers Cancer Institute of New Jersey, Rutgers, The State University of New Jersey, New Brunswick, New Jersey.,Department of Pharmacology, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, New Brunswick, New Jersey
| | - Bruce S Fischer
- Bristol-Myers Squibb Research and Development, Princeton, New Jersey
| | - Francis Y Lee
- Bristol-Myers Squibb Research and Development, Princeton, New Jersey
| | - Jamie J Shah
- Rutgers Cancer Institute of New Jersey, Rutgers, The State University of New Jersey, New Brunswick, New Jersey
| | - Joseph R Bertino
- Rutgers Cancer Institute of New Jersey, Rutgers, The State University of New Jersey, New Brunswick, New Jersey.,Department of Pharmacology, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, New Brunswick, New Jersey.,Department of Medicine, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, New Brunswick, New Jersey
| | - Jeffrey Rosenfeld
- Rutgers Cancer Institute of New Jersey, Rutgers, The State University of New Jersey, New Brunswick, New Jersey.,Department of Pathology and Laboratory Medicine, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, New Brunswick, New Jersey
| | - Amartya Singh
- Rutgers Cancer Institute of New Jersey, Rutgers, The State University of New Jersey, New Brunswick, New Jersey.,Department of Physics and Astronomy, Rutgers, The State University of New Jersey, Piscataway, New Jersey
| | - Hossein Khiabanian
- Rutgers Cancer Institute of New Jersey, Rutgers, The State University of New Jersey, New Brunswick, New Jersey.,Department of Pathology and Laboratory Medicine, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, New Brunswick, New Jersey
| | - Sharon R Pine
- Rutgers Cancer Institute of New Jersey, Rutgers, The State University of New Jersey, New Brunswick, New Jersey. .,Department of Pharmacology, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, New Brunswick, New Jersey.,Department of Medicine, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, New Brunswick, New Jersey
| |
Collapse
|
46
|
Zhang H, Yang J, Liang G, Gao X, Sang Y, Gui T, Liang Z, Tam M, Zha Z. Andrographolide Induces Cell Cycle Arrest and Apoptosis of Chondrosarcoma by Targeting TCF‐1/SOX9 Axis. J Cell Biochem 2017; 118:4575-4586. [PMID: 28485543 DOI: 10.1002/jcb.26122] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Accepted: 05/08/2017] [Indexed: 12/20/2022]
Affiliation(s)
- Huan‐Tian Zhang
- Institute of Orthopedic Diseases and Center for Joint Surgery and Sports Medicinethe First Affiliated Hospital, Jinan UniversityGuangzhouPR China
- Key Laboratory of Functional Protein Research of Guangdong Higher Education InstitutesCollege of Life Science and Technology, Jinan UniversityGuangzhouPR China
| | - Jie Yang
- Institute of Orthopedic Diseases and Center for Joint Surgery and Sports Medicinethe First Affiliated Hospital, Jinan UniversityGuangzhouPR China
| | - Gui‐Hong Liang
- Department of Orthopedics, the Third Affiliated HospitalGuangzhou University of Chinese MedicineGuangzhouPR China
| | - Xue‐Juan Gao
- Key Laboratory of Functional Protein Research of Guangdong Higher Education InstitutesCollege of Life Science and Technology, Jinan UniversityGuangzhouPR China
| | - Yuan Sang
- Institute of Orthopedic Diseases and Center for Joint Surgery and Sports Medicinethe First Affiliated Hospital, Jinan UniversityGuangzhouPR China
| | - Tao Gui
- Institute of Orthopedic Diseases and Center for Joint Surgery and Sports Medicinethe First Affiliated Hospital, Jinan UniversityGuangzhouPR China
| | - Zu‐Jian Liang
- Department of Orthopedics, the Third Affiliated HospitalGuangzhou University of Chinese MedicineGuangzhouPR China
| | - Man‐Seng Tam
- Macau Medical Science and Technology AssociationMacao Special Administrative RegionPR China
- IAN WO Medical CenterMacao Special Administrative RegionPR China
| | - Zhen‐Gang Zha
- Institute of Orthopedic Diseases and Center for Joint Surgery and Sports Medicinethe First Affiliated Hospital, Jinan UniversityGuangzhouPR China
| |
Collapse
|
47
|
Upadhyay A, Joshi V, Amanullah A, Mishra R, Arora N, Prasad A, Mishra A. E3 Ubiquitin Ligases Neurobiological Mechanisms: Development to Degeneration. Front Mol Neurosci 2017; 10:151. [PMID: 28579943 PMCID: PMC5437216 DOI: 10.3389/fnmol.2017.00151] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Accepted: 05/04/2017] [Indexed: 01/08/2023] Open
Abstract
Cells regularly synthesize new proteins to replace old or damaged proteins. Deposition of various aberrant proteins in specific brain regions leads to neurodegeneration and aging. The cellular protein quality control system develop various defense mechanisms against the accumulation of misfolded and aggregated proteins. The mechanisms underlying the selective recognition of specific crucial protein or misfolded proteins are majorly governed by quality control E3 ubiquitin ligases mediated through ubiquitin-proteasome system. Few known E3 ubiquitin ligases have shown prominent neurodevelopmental functions, but their interactions with different developmental proteins play critical roles in neurodevelopmental disorders. Several questions are yet to be understood properly. How E3 ubiquitin ligases determine the specificity and regulate degradation of a particular substrate involved in neuronal proliferation and differentiation is certainly the one, which needs detailed investigations. Another important question is how neurodevelopmental E3 ubiquitin ligases specifically differentiate between their versatile range of substrates and timing of their functional modulations during different phases of development. The premise of this article is to understand how few E3 ubiquitin ligases sense major molecular events, which are crucial for human brain development from its early embryonic stages to throughout adolescence period. A better understanding of these few E3 ubiquitin ligases and their interactions with other potential proteins will provide invaluable insight into disease mechanisms to approach toward therapeutic interventions.
Collapse
Affiliation(s)
- Arun Upadhyay
- Cellular and Molecular Neurobiology Unit, Indian Institute of Technology JodhpurJodhpur, India
| | - Vibhuti Joshi
- Cellular and Molecular Neurobiology Unit, Indian Institute of Technology JodhpurJodhpur, India
| | - Ayeman Amanullah
- Cellular and Molecular Neurobiology Unit, Indian Institute of Technology JodhpurJodhpur, India
| | - Ribhav Mishra
- Cellular and Molecular Neurobiology Unit, Indian Institute of Technology JodhpurJodhpur, India
| | - Naina Arora
- School of Basic Sciences, Indian Institute of Technology MandiMandi, India
| | - Amit Prasad
- School of Basic Sciences, Indian Institute of Technology MandiMandi, India
| | - Amit Mishra
- Cellular and Molecular Neurobiology Unit, Indian Institute of Technology JodhpurJodhpur, India
| |
Collapse
|
48
|
Suryo Rahmanto A, Swartling FJ, Sangfelt O. Targeting SOX9 for degradation to inhibit chemoresistance, metastatic spread, and recurrence. Mol Cell Oncol 2016; 4:e1252871. [PMID: 28197531 DOI: 10.1080/23723556.2016.1252871] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Revised: 10/20/2016] [Accepted: 10/20/2016] [Indexed: 10/20/2022]
Abstract
Cancer cells with stem-like properties are believed to contribute to treatment resistance, dissemination, and recurrence. SOX9 controls stem cell plasticity and its deregulation may provide a basis for tumor progression. Here, we summarize our findings of targeted SOX9 destruction by SCFFBW7 (Skp1/Cul1/F-box) in medulloblastoma and its potential for therapeutic intervention.
Collapse
Affiliation(s)
| | - Fredrik J Swartling
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Rudbeck Laboratory, Uppsala University , Uppsala, Sweden
| | - Olle Sangfelt
- Department of Cell and Molecular Biology, Karolinska Institute , Stockholm, Sweden
| |
Collapse
|
49
|
Suryo Rahmanto A, Savov V, Brunner A, Bolin S, Weishaupt H, Malyukova A, Rosén G, Čančer M, Hutter S, Sundström A, Kawauchi D, Jones DT, Spruck C, Taylor MD, Cho YJ, Pfister SM, Kool M, Korshunov A, Swartling FJ, Sangfelt O. FBW7 suppression leads to SOX9 stabilization and increased malignancy in medulloblastoma. EMBO J 2016; 35:2192-2212. [PMID: 27625374 PMCID: PMC5069553 DOI: 10.15252/embj.201693889] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2016] [Accepted: 08/18/2016] [Indexed: 12/02/2022] Open
Abstract
SOX9 is a master transcription factor that regulates development and stem cell programs. However, its potential oncogenic activity and regulatory mechanisms that control SOX9 protein stability are poorly understood. Here, we show that SOX9 is a substrate of FBW7, a tumor suppressor, and a SCF (SKP1/CUL1/F‐box)‐type ubiquitin ligase. FBW7 recognizes a conserved degron surrounding threonine 236 (T236) in SOX9 that is phosphorylated by GSK3 kinase and consequently degraded by SCFFBW7α. Failure to degrade SOX9 promotes migration, metastasis, and treatment resistance in medulloblastoma, one of the most common childhood brain tumors. FBW7 is either mutated or downregulated in medulloblastoma, and in cases where FBW7 mRNA levels are low, SOX9 protein is significantly elevated and this phenotype is associated with metastasis at diagnosis and poor patient outcome. Transcriptional profiling of medulloblastoma cells expressing a degradation‐resistant SOX9 mutant reveals activation of pro‐metastatic genes and genes linked to cisplatin resistance. Finally, we show that pharmacological inhibition of PI3K/AKT/mTOR pathway activity destabilizes SOX9 in a GSK3/FBW7‐dependent manner, rendering medulloblastoma cells sensitive to cytostatic treatment.
Collapse
Affiliation(s)
| | - Vasil Savov
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
| | - Andrä Brunner
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Sara Bolin
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
| | - Holger Weishaupt
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
| | - Alena Malyukova
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Gabriela Rosén
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
| | - Matko Čančer
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
| | - Sonja Hutter
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden.,German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Anders Sundström
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
| | - Daisuke Kawauchi
- German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - David Tw Jones
- German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Charles Spruck
- Tumor Initiation and Maintenance Program, Cancer Center, Sanford-Burnham-Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Michael D Taylor
- The Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON, Canada
| | - Yoon-Jae Cho
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - Stefan M Pfister
- German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), Heidelberg, Germany.,Department of Pediatric Hematology and Oncology, University Hospital, Heidelberg, Germany
| | - Marcel Kool
- German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Andrey Korshunov
- German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), Heidelberg, Germany.,Department of Neuropathology, University Hospital, Heidelberg, Germany
| | - Fredrik J Swartling
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
| | - Olle Sangfelt
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|