1
|
Huang S, Reed C, Ilsley M, Magor G, Tallack M, Landsberg M, Mitchell H, Gillinder K, Perkins A. Mutations in linker-2 of KLF1 impair expression of membrane transporters and cytoskeletal proteins causing hemolysis. Nat Commun 2024; 15:7019. [PMID: 39147774 PMCID: PMC11327367 DOI: 10.1038/s41467-024-50579-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 07/09/2024] [Indexed: 08/17/2024] Open
Abstract
The SP/KLF family of transcription factors harbour three C-terminal C2H2 zinc fingers interspersed by two linkers which confers DNA-binding to a 9-10 bp motif. Mutations in KLF1, the founding member of the family, are common. Missense mutations in linker two result in a mild phenotype. However, when co-inherited with loss-of-function mutations, they result in severe non-spherocytic hemolytic anemia. We generate a mouse model of this disease by crossing Klf1+/- mice with Klf1H350R/+ mice that harbour a missense mutation in linker-2. Klf1H350R/- mice exhibit severe hemolysis without thalassemia. RNA-seq demonstrate loss of expression of genes encoding transmembrane and cytoskeletal proteins, but not globins. ChIP-seq show no change in DNA-binding specificity, but a global reduction in affinity, which is confirmed using recombinant proteins and in vitro binding assays. This study provides new insights into how linker mutations in zinc finger transcription factors result in different phenotypes to those caused by loss-of-function mutations.
Collapse
Affiliation(s)
- Stephen Huang
- Mater Research Institute - UQ, The University of Queensland, St Lucia, Australia
- School of Biomedical Sciences, The University of Queensland, St Lucia, Australia
| | - Casie Reed
- Australian Centre for Blood Diseases, Monash University, Clayton, Australia
| | - Melissa Ilsley
- Mater Research Institute - UQ, The University of Queensland, St Lucia, Australia
- School of Biomedical Sciences, The University of Queensland, St Lucia, Australia
| | - Graham Magor
- Mater Research Institute - UQ, The University of Queensland, St Lucia, Australia
- Australian Centre for Blood Diseases, Monash University, Clayton, Australia
| | - Michael Tallack
- Mater Research Institute - UQ, The University of Queensland, St Lucia, Australia
| | - Michael Landsberg
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Australia
| | - Helen Mitchell
- Australian Centre for Blood Diseases, Monash University, Clayton, Australia
| | - Kevin Gillinder
- Mater Research Institute - UQ, The University of Queensland, St Lucia, Australia
- Australian Centre for Blood Diseases, Monash University, Clayton, Australia
| | - Andrew Perkins
- Mater Research Institute - UQ, The University of Queensland, St Lucia, Australia.
- School of Biomedical Sciences, The University of Queensland, St Lucia, Australia.
- Australian Centre for Blood Diseases, Monash University, Clayton, Australia.
- Department of Haematology, The Alfred Hospital, Melbourne, Australia.
- Biodiscovery Institute, Monash University, Clayton, Australia.
| |
Collapse
|
2
|
Zhao Y, Yang M, Wang S, Abbas SJ, Zhang J, Li Y, Shao R, Liu Y. An Overview of Epigenetic Methylation in Pancreatic Cancer Progression. Front Oncol 2022; 12:854773. [PMID: 35296007 PMCID: PMC8918690 DOI: 10.3389/fonc.2022.854773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 02/07/2022] [Indexed: 11/13/2022] Open
Abstract
Over the past decades, the aberrant epigenetic modification, apart from genetic alteration, has emerged as dispensable events mediating the transformation of pancreatic cancer (PC). However, the understanding of molecular mechanisms of methylation modifications, the most abundant epigenetic modifications, remains superficial. In this review, we focused on the mechanistic insights of DNA, histone, and RNA methylation that regulate the progression of PC. The methylation regulators including writer, eraser and reader participate in the modification of gene expression associated with cell proliferation, invasion and apoptosis. Some of recent clinical trials on methylation drug targeting were also discussed. Understanding the novel regulatory mechanisms in the methylation modification may offer alternative opportunities to improve therapeutic efficacy to fight against this dismal disease.
Collapse
Affiliation(s)
- Yuhao Zhao
- Department of Biliary-Pancreatic Surgery, Renji Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Shanghai, China
- Shanghai Key Laboratory of Biliary Tract Disease Research, Shanghai, China
| | - Mao Yang
- Department of Biliary-Pancreatic Surgery, Renji Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Shanghai, China
- Shanghai Key Laboratory of Biliary Tract Disease Research, Shanghai, China
| | - Shijia Wang
- Department of Biliary-Pancreatic Surgery, Renji Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Shanghai, China
- Shanghai Key Laboratory of Biliary Tract Disease Research, Shanghai, China
| | - Sk Jahir Abbas
- Department of Biliary-Pancreatic Surgery, Renji Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Shanghai, China
| | - Junzhe Zhang
- Department of Biliary-Pancreatic Surgery, Renji Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Shanghai, China
- Shanghai Key Laboratory of Biliary Tract Disease Research, Shanghai, China
| | - Yongsheng Li
- Department of Biliary-Pancreatic Surgery, Renji Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Shanghai, China
- Shanghai Key Laboratory of Biliary Tract Disease Research, Shanghai, China
| | - Rong Shao
- Department of Pharmacology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- *Correspondence: Yingbin Liu, ; Rong Shao,
| | - Yingbin Liu
- Department of Biliary-Pancreatic Surgery, Renji Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Shanghai, China
- Shanghai Key Laboratory of Biliary Tract Disease Research, Shanghai, China
- *Correspondence: Yingbin Liu, ; Rong Shao,
| |
Collapse
|
3
|
Borisova E, Nishimura K, An Y, Takami M, Li J, Song D, Matsuo-Takasaki M, Luijkx D, Aizawa S, Kuno A, Sugihara E, Sato TA, Yumoto F, Terada T, Hisatake K, Hayashi Y. Structurally-discovered KLF4 variants accelerate and stabilize reprogramming to pluripotency. iScience 2022; 25:103525. [PMID: 35106457 PMCID: PMC8786646 DOI: 10.1016/j.isci.2021.103525] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 09/14/2021] [Accepted: 11/23/2021] [Indexed: 02/07/2023] Open
Abstract
Non-genetically modified somatic cells can only be inefficiently and stochastically reprogrammed to pluripotency by exogenous expression of reprogramming factors. Low competence of natural reprogramming factors may prevent the majority of cells to successfully and synchronously reprogram. Here we screened DNA-interacting amino acid residues in the zinc-finger domain of KLF4 for enhanced reprogramming efficiency using alanine-substitution scanning methods. Identified KLF4 L507A mutant accelerated and stabilized reprogramming to pluripotency in both mouse and human somatic cells. By testing all the variants of L507 position, variants with smaller amino acid residues in the KLF4 L507 position showed higher reprogramming efficiency. L507A bound more to promoters or enhancers of pluripotency genes, such as KLF5, and drove gene expression of these genes during reprogramming. Molecular dynamics simulations predicted that L507A formed additional interactions with DNA. Our study demonstrates how modifications in amino acid residues of DNA-binding domains enable next-generation reprogramming technology with engineered reprogramming factors. KLF4 L507A variant accelerates and stabilizes reprogramming to pluripotency KLF4 L507A has distinctive features of transcriptional binding and activation KLF4 L507A may acquire a unique conformation with additional DNA interaction Smaller amino acid residues in L507 position cause higher reprogramming efficiency
Collapse
Affiliation(s)
- Evgeniia Borisova
- iPS Cell Advanced Characterization and Development Team, BioResource Research Center, RIKEN, 3-1-1 Koyadai, Tsukuba, Ibaraki 305-0074, Japan.,Laboratory of Gene Regulation, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
| | - Ken Nishimura
- Laboratory of Gene Regulation, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
| | - Yuri An
- iPS Cell Advanced Characterization and Development Team, BioResource Research Center, RIKEN, 3-1-1 Koyadai, Tsukuba, Ibaraki 305-0074, Japan
| | - Miho Takami
- iPS Cell Advanced Characterization and Development Team, BioResource Research Center, RIKEN, 3-1-1 Koyadai, Tsukuba, Ibaraki 305-0074, Japan.,Laboratory of Gene Regulation, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
| | - Jingyue Li
- iPS Cell Advanced Characterization and Development Team, BioResource Research Center, RIKEN, 3-1-1 Koyadai, Tsukuba, Ibaraki 305-0074, Japan.,Laboratory of Gene Regulation, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
| | - Dan Song
- iPS Cell Advanced Characterization and Development Team, BioResource Research Center, RIKEN, 3-1-1 Koyadai, Tsukuba, Ibaraki 305-0074, Japan
| | - Mami Matsuo-Takasaki
- iPS Cell Advanced Characterization and Development Team, BioResource Research Center, RIKEN, 3-1-1 Koyadai, Tsukuba, Ibaraki 305-0074, Japan
| | - Dorian Luijkx
- iPS Cell Advanced Characterization and Development Team, BioResource Research Center, RIKEN, 3-1-1 Koyadai, Tsukuba, Ibaraki 305-0074, Japan
| | - Shiho Aizawa
- Laboratory of Gene Regulation, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
| | - Akihiro Kuno
- Laboratory of Animal Resource Center, Department of Anatomy and Embryology, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan.,Ph.D. Program in Human Biology, School of Integrative and Global Majors, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
| | - Eiji Sugihara
- Research and Development Center for Precision Medicine, University of Tsukuba, 1-2 Kasuga, Tsukuba, Ibaraki 305-8550, Japan.,The Center for Joint Research Facilities Support, Research Promotion and Support Headquarters, Fujita Health University School of Medicine, Toyoake, Aichi 470-1192, Japan
| | - Taka-Aki Sato
- Research and Development Center for Precision Medicine, University of Tsukuba, 1-2 Kasuga, Tsukuba, Ibaraki 305-8550, Japan
| | - Fumiaki Yumoto
- Institute of Materials Structure Science, High Energy Accelerator Research Organization in Tsukuba, 1-1 Oho, Tsukuba, Ibaraki 305-0801, Japan
| | - Tohru Terada
- Department of Biotechnology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Koji Hisatake
- Laboratory of Gene Regulation, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
| | - Yohei Hayashi
- iPS Cell Advanced Characterization and Development Team, BioResource Research Center, RIKEN, 3-1-1 Koyadai, Tsukuba, Ibaraki 305-0074, Japan
| |
Collapse
|
4
|
Proteins That Read DNA Methylation. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1389:269-293. [DOI: 10.1007/978-3-031-11454-0_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
5
|
Yang Y, Ren R, Ly LC, Horton JR, Li F, Quinlan KGR, Crossley M, Shi Y, Cheng X. Structural basis for human ZBTB7A action at the fetal globin promoter. Cell Rep 2021; 36:109759. [PMID: 34592153 PMCID: PMC8553545 DOI: 10.1016/j.celrep.2021.109759] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 08/09/2021] [Accepted: 09/02/2021] [Indexed: 12/02/2022] Open
Abstract
Elevated levels of fetal globin protect against β-hemoglobinopathies, such as sickle cell disease and β-thalassemia. Two zinc-finger (ZF) repressors, BCL11A and ZBTB7A/LRF, bind directly to the fetal globin promoter elements positioned at −115 and −200, respectively. Here, we describe X-ray structures of the ZBTB7A DNA-binding domain, consisting of four adjacent ZFs, in complex with the −200 sequence element, which contains two copies of four consecutive C:G base pairs. ZF1 and ZF2 recognize the 5′ C:G quadruple, and ZF4 contacts the 3′ C:G quadruple. Natural non-coding DNA mutations associated with hereditary persistence of fetal hemoglobin (HPFH) impair ZBTB7A DNA binding, with the most severe disruptions resulting from mutations in the base pairs recognized by ZF1 and ZF2. Our results firmly establish ZBTB7A/LRF as a key molecular regulator of fetal globin expression and inform genome-editing strategies that inhibit repressor binding and boost fetal globin expression to treat hemoglobinopathies. Yang et al. show that the transcription factor ZBTB7A has features that deviate from conventional one finger-three bases recognition. Among the four fingers, ZF1 and ZF2 each contact two DNA bases. ZF3 does not make base-specific contacts but serves as a spacer to position ZF4 into the right location.
Collapse
Affiliation(s)
- Yang Yang
- Hefei National Laboratory for Physical Sciences at Microscale, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230026, China; Ministry of Education Key Laboratory for Membraneless Organelles and Cellular Dynamics, University of Science and Technology of China, Hefei, China
| | - Ren Ren
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Lana C Ly
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney 2052, Australia
| | - John R Horton
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Fudong Li
- Ministry of Education Key Laboratory for Membraneless Organelles and Cellular Dynamics, University of Science and Technology of China, Hefei, China
| | - Kate G R Quinlan
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney 2052, Australia
| | - Merlin Crossley
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney 2052, Australia.
| | - Yunyu Shi
- Hefei National Laboratory for Physical Sciences at Microscale, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230026, China; Ministry of Education Key Laboratory for Membraneless Organelles and Cellular Dynamics, University of Science and Technology of China, Hefei, China.
| | - Xiaodong Cheng
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
| |
Collapse
|
6
|
Liquid condensation of reprogramming factor KLF4 with DNA provides a mechanism for chromatin organization. Nat Commun 2021; 12:5579. [PMID: 34552088 PMCID: PMC8458463 DOI: 10.1038/s41467-021-25761-7] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 08/31/2021] [Indexed: 12/29/2022] Open
Abstract
Expression of a few master transcription factors can reprogram the epigenetic landscape and three-dimensional chromatin topology of differentiated cells and achieve pluripotency. During reprogramming, thousands of long-range chromatin contacts are altered, and changes in promoter association with enhancers dramatically influence transcription. Molecular participants at these sites have been identified, but how this re-organization might be orchestrated is not known. Biomolecular condensation is implicated in subcellular organization, including the recruitment of RNA polymerase in transcriptional activation. Here, we show that reprogramming factor KLF4 undergoes biomolecular condensation even in the absence of its intrinsically disordered region. Liquid–liquid condensation of the isolated KLF4 DNA binding domain with a DNA fragment from the NANOG proximal promoter is enhanced by CpG methylation of a KLF4 cognate binding site. We propose KLF4-mediated condensation as one mechanism for selectively organizing and re-organizing the genome based on the local sequence and epigenetic state. KLF4, OCT4, SOX2 and MYC cooperate to reorganize chromatin during somatic cell reprogramming. Here the authors show that KLF4 forms a liquid-like biomolecular condensate that recruits OCT4 and SOX2, and that condensation of the isolated KLF4 DNA binding domain with DNA is enhanced by CpG methylation
Collapse
|
7
|
Zhang X, Jeong M, Huang X, Wang XQ, Wang X, Zhou W, Shamim MS, Gore H, Himadewi P, Liu Y, Bochkov ID, Reyes J, Doty M, Huang YH, Jung H, Heikamp E, Aiden AP, Li W, Su J, Aiden EL, Goodell MA. Large DNA Methylation Nadirs Anchor Chromatin Loops Maintaining Hematopoietic Stem Cell Identity. Mol Cell 2020; 78:506-521.e6. [PMID: 32386543 DOI: 10.1016/j.molcel.2020.04.018] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2019] [Revised: 01/06/2020] [Accepted: 04/15/2020] [Indexed: 12/22/2022]
Abstract
Higher-order chromatin structure and DNA methylation are implicated in multiple developmental processes, but their relationship to cell state is unknown. Here, we find that large (>7.3 kb) DNA methylation nadirs (termed "grand canyons") can form long loops connecting anchor loci that may be dozens of megabases (Mb) apart, as well as inter-chromosomal links. The interacting loci cover a total of ∼3.5 Mb of the human genome. The strongest interactions are associated with repressive marks made by the Polycomb complex and are diminished upon EZH2 inhibitor treatment. The data are suggestive of the formation of these loops by interactions between repressive elements in the loci, forming a genomic subcompartment, rather than by cohesion/CTCF-mediated extrusion. Interestingly, unlike previously characterized subcompartments, these interactions are present only in particular cell types, such as stem and progenitor cells. Our work reveals that H3K27me3-marked large DNA methylation grand canyons represent a set of very-long-range loops associated with cellular identity.
Collapse
Affiliation(s)
- Xiaotian Zhang
- Stem Cells and Regenerative Medicine Center, Baylor College of Medicine, Houston, TX, USA; Center for Epigenetics, Van Andel Institute, Grand Rapids, MI, USA.
| | - Mira Jeong
- Stem Cells and Regenerative Medicine Center, Baylor College of Medicine, Houston, TX, USA; Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX, USA
| | - Xingfan Huang
- The Center for Genome Architecture, Baylor College of Medicine, Houston, TX, USA; Center for Theoretical Biological Physics & Department of Computer Science, Rice University, Houston, TX, USA
| | - Xue Qing Wang
- Center for Epigenetics, Van Andel Institute, Grand Rapids, MI, USA
| | - Xinyu Wang
- Institute of Biomedical Big Data, Wenzhou Medical University, Wenzhou, China
| | - Wanding Zhou
- Center for Epigenetics, Van Andel Institute, Grand Rapids, MI, USA
| | - Muhammad S Shamim
- The Center for Genome Architecture, Baylor College of Medicine, Houston, TX, USA; Medical Student Training Program, Baylor College of Medicine, Houston, TX, USA; Center for Theoretical Biological Physics & Department of Computer Science, Rice University, Houston, TX, USA
| | - Haley Gore
- Center for Epigenetics, Van Andel Institute, Grand Rapids, MI, USA
| | - Pamela Himadewi
- Center for Epigenetics, Van Andel Institute, Grand Rapids, MI, USA
| | - Yushuai Liu
- Center for Epigenetics, Van Andel Institute, Grand Rapids, MI, USA
| | - Ivan D Bochkov
- The Center for Genome Architecture, Baylor College of Medicine, Houston, TX, USA; Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Jaime Reyes
- Stem Cells and Regenerative Medicine Center, Baylor College of Medicine, Houston, TX, USA; Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX, USA; Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Madison Doty
- Molecular Genetic Technology Program, School of Health Professions, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Yung-Hsin Huang
- Stem Cells and Regenerative Medicine Center, Baylor College of Medicine, Houston, TX, USA; Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX, USA; Developmental Biology Program, Baylor College of Medicine, Houston, TX, USA
| | - Haiyoung Jung
- Stem Cells and Regenerative Medicine Center, Baylor College of Medicine, Houston, TX, USA; Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX, USA; Immunotherapy Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology, Yuseong-gu, Daejeon, Korea, USA
| | - Emily Heikamp
- Stem Cells and Regenerative Medicine Center, Baylor College of Medicine, Houston, TX, USA; Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX, USA; Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Aviva Presser Aiden
- The Center for Genome Architecture, Baylor College of Medicine, Houston, TX, USA; Developmental Biology Program, Baylor College of Medicine, Houston, TX, USA; Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Wei Li
- Department of Bioinformatics, Biological Chemistry, University of California, Irvine CA, USA; Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| | - Jianzhong Su
- Institute of Biomedical Big Data, Wenzhou Medical University, Wenzhou, China
| | - Erez Lieberman Aiden
- The Center for Genome Architecture, Baylor College of Medicine, Houston, TX, USA; Center for Theoretical Biological Physics & Department of Computer Science, Rice University, Houston, TX, USA; Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA; Shanghai Institute for Advanced Immunochemical Studies, Shanghai Tech University, Shanghai, China.
| | - Margaret A Goodell
- Stem Cells and Regenerative Medicine Center, Baylor College of Medicine, Houston, TX, USA; Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX, USA; Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA; Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA; Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA.
| |
Collapse
|
8
|
Jiang Z, Zhang Y, Chen X, Wu P, Chen D. Long non-coding RNA LINC00673 silencing inhibits proliferation and drug resistance of prostate cancer cells via decreasing KLF4 promoter methylation. J Cell Mol Med 2019; 24:1878-1892. [PMID: 31881124 PMCID: PMC6991650 DOI: 10.1111/jcmm.14883] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 10/13/2019] [Accepted: 11/21/2019] [Indexed: 12/31/2022] Open
Abstract
Prostate cancer is one of the major causes of cancer‐related mortality in men across the world. Recently, long non‐coding RNAs (lncRNAs) and Kruppel‐like factor 4 (KLF4) have been reported to participate in the biology of multiple cancers including prostate cancer. Here, this study aimed to explore the possible role of LINC00673 in prostate cancer via KLF4 gene promoter methylation. Microarray‐based gene expression profiling of prostate cancer was employed to identify differentially expressed lncRNAs and genes, after which the expression of LINC00673 and KLF4 in prostate cancer tissues was determined using RT‐qPCR. Next, the relationship between LINC00673 and KLF4 was evaluated using in silico analysis. Further, the effect of LINC00673 and KLF4 on cell proliferation and drug resistance of transfected cells was examined with gain‐ and loss‐of‐function experimentation. It was found that LINC00673 was highly expressed, while KLF4 was poorly expressed in prostate cancer tissues. Additionally, LINC00673 could bind to KLF4 gene promoter region and recruit methyltransferase to the KLF4 gene promoter region. Moreover, LINC00673 silencing was demonstrated to reduce methylation of the KLF4 gene promoter to elevate the expression of KLF4, thus suppressing the proliferation and drug resistance of prostate cancer cells. In summary, LINC00673 silencing could drive demethylation of the KLF4 gene promoter and thus inhibit the proliferation and drug resistance of prostate cancer cells, suggesting that silencing of LINC00673 and elevation of KLF4 could serve as tumour suppressors in prostate cancer.
Collapse
Affiliation(s)
- Zhenming Jiang
- Department of Urology, The First Hospital of China Medical University, Shenyang, China
| | - Yuxi Zhang
- Department of Urology, The First Hospital of China Medical University, Shenyang, China.,Department of Urology, People's Hospital of Datong Hui and Tu Autonomous County, Xining, China
| | - Xi Chen
- Department of Pharmacy, The First Hospital of China Medical University, Shenyang, China
| | - Pingeng Wu
- Department of Urology, The First Hospital of China Medical University, Shenyang, China
| | - Dong Chen
- Central Lab, The First Hospital of China Medical University, Shenyang, China
| |
Collapse
|
9
|
Mahmood N, Rabbani SA. DNA Methylation Readers and Cancer: Mechanistic and Therapeutic Applications. Front Oncol 2019; 9:489. [PMID: 31245293 PMCID: PMC6579900 DOI: 10.3389/fonc.2019.00489] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Accepted: 05/23/2019] [Indexed: 12/14/2022] Open
Abstract
DNA methylation is a major epigenetic process that regulates chromatin structure which causes transcriptional activation or repression of genes in a context-dependent manner. In general, DNA methylation takes place when methyl groups are added to the appropriate bases on the genome by the action of "writer" molecules known as DNA methyltransferases. How these methylation marks are read and interpreted into different functionalities represents one of the main mechanisms through which the genes are switched "ON" or "OFF" and typically involves different types of "reader" proteins that can recognize and bind to the methylated regions. A tightly balanced regulation exists between the "writers" and "readers" in order to mediate normal cellular functions. However, alterations in normal methylation pattern is a typical hallmark of cancer which alters the way methylation marks are written, read and interpreted in different disease states. This unique characteristic of DNA methylation "readers" has identified them as attractive therapeutic targets. In this review, we describe the current state of knowledge on the different classes of DNA methylation "readers" identified thus far along with their normal biological functions, describe how they are dysregulated in cancer, and discuss the various anti-cancer therapies that are currently being developed and evaluated for targeting these proteins.
Collapse
Affiliation(s)
- Niaz Mahmood
- Department of Medicine, McGill University Health Centre, Montréal, QC, Canada
| | - Shafaat A Rabbani
- Department of Medicine, McGill University Health Centre, Montréal, QC, Canada
| |
Collapse
|
10
|
Ilsley MD, Huang S, Magor GW, Landsberg MJ, Gillinder KR, Perkins AC. Corrupted DNA-binding specificity and ectopic transcription underpin dominant neomorphic mutations in KLF/SP transcription factors. BMC Genomics 2019; 20:417. [PMID: 31126231 PMCID: PMC6534859 DOI: 10.1186/s12864-019-5805-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2018] [Accepted: 05/17/2019] [Indexed: 02/07/2023] Open
Abstract
Background Mutations in the transcription factor, KLF1, are common within certain populations of the world. Heterozygous missense mutations in KLF1 mostly lead to benign phenotypes, but a heterozygous mutation in a DNA-binding residue (E325K in human) results in severe Congenital Dyserythropoietic Anemia type IV (CDA IV); i.e. an autosomal-dominant disorder characterized by neonatal hemolysis. Results To investigate the biochemical and genetic mechanism of CDA IV, we generated murine erythroid cell lines that harbor tamoxifen-inducible (ER™) versions of wild type and mutant KLF1 on a Klf1−/− genetic background. Nuclear translocation of wild type KLF1 results in terminal erythroid differentiation, whereas mutant KLF1 results in hemolysis without differentiation. The E to K variant binds poorly to the canonical 9 bp recognition motif (NGG-GYG-KGG) genome-wide but binds at high affinity to a corrupted motif (NGG-GRG-KGG). We confirmed altered DNA-binding specificity by quantitative in vitro binding assays of recombinant zinc-finger domains. Our results are consistent with previously reported structural data of KLF-DNA interactions. We employed 4sU-RNA-seq to show that a corrupted transcriptome is a direct consequence of aberrant DNA binding. Conclusions Since all KLF/SP family proteins bind DNA in an identical fashion, these results are likely to be generally applicable to mutations in all family members. Importantly, they explain how certain mutations in the DNA-binding domain of transcription factors can generate neomorphic functions that result in autosomal dominant disease. Electronic supplementary material The online version of this article (10.1186/s12864-019-5805-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Melissa D Ilsley
- Mater Research, Translational Research Institute, University of Queensland, Brisbane, QLD, Australia.,School of Biomedical Sciences, University of Queensland, Brisbane, QLD, Australia
| | - Stephen Huang
- Mater Research, Translational Research Institute, University of Queensland, Brisbane, QLD, Australia.,School of Biomedical Sciences, University of Queensland, Brisbane, QLD, Australia
| | - Graham W Magor
- Mater Research, Translational Research Institute, University of Queensland, Brisbane, QLD, Australia.,Australian Centre for Blood Diseases, Monash University, Melbourne, VIC, Australia
| | - Michael J Landsberg
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, QLD, Australia
| | - Kevin R Gillinder
- Mater Research, Translational Research Institute, University of Queensland, Brisbane, QLD, Australia. .,Australian Centre for Blood Diseases, Monash University, Melbourne, VIC, Australia.
| | - Andrew C Perkins
- Mater Research, Translational Research Institute, University of Queensland, Brisbane, QLD, Australia.,Australian Centre for Blood Diseases, Monash University, Melbourne, VIC, Australia
| |
Collapse
|
11
|
DNA methylation in mice is influenced by genetics as well as sex and life experience. Nat Commun 2019; 10:305. [PMID: 30659182 PMCID: PMC6338756 DOI: 10.1038/s41467-018-08067-z] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Accepted: 11/15/2018] [Indexed: 12/31/2022] Open
Abstract
DNA methylation is an essential epigenetic process in mammals, intimately involved in gene regulation. Here we address the extent to which genetics, sex, and pregnancy influence genomic DNA methylation by intercrossing 2 inbred mouse strains, C57BL/6N and C3H/HeN, and analyzing DNA methylation in parents and offspring using whole-genome bisulfite sequencing. Differential methylation across genotype is detected at thousands of loci and is preserved on parental alleles in offspring. In comparison of autosomal DNA methylation patterns across sex, hundreds of differentially methylated regions are detected. Comparison of animals with different histories of pregnancy within our study reveals a CpG methylation pattern that is restricted to female animals that had borne offspring. Collectively, our results demonstrate the stability of CpG methylation across generations, clarify the interplay of epigenetics with genetics and sex, and suggest that CpG methylation may serve as an epigenetic record of life events in somatic tissues at loci whose expression is linked to the relevant biology. DNA methylation is an epigenetic mark involved in gene regulation. Here the authors investigate the extent to which genetics, sex and pregnancy influence genomic DNA methylation in mice, providing evidence of the stability of CpG methylation across generation and suggest that CpG methylation may serve as an epigenetic record of life events in somatic tissues at loci whose expression is linked to the relevant biology.
Collapse
|
12
|
Hudson NO, Buck-Koehntop BA. Zinc Finger Readers of Methylated DNA. Molecules 2018; 23:E2555. [PMID: 30301273 PMCID: PMC6222495 DOI: 10.3390/molecules23102555] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Revised: 10/03/2018] [Accepted: 10/05/2018] [Indexed: 01/07/2023] Open
Abstract
DNA methylation is a prevalent epigenetic modification involved in regulating a number of essential cellular processes, including genomic accessibility and transcriptional outcomes. As such, aberrant alterations in global DNA methylation patterns have been associated with a growing number of disease conditions. Nevertheless, the full mechanisms by which DNA methylation information is interpreted and translated into genomic responses is not yet fully understood. Methyl-CpG binding proteins (MBPs) function as important mediators of this essential process by selectively reading DNA methylation signals and translating this information into down-stream cellular outcomes. The Cys₂His₂ zinc finger scaffold is one of the most abundant DNA binding motifs found within human transcription factors, yet only a few zinc finger containing proteins capable of conferring selectivity for mCpG over CpG sites have been characterized. This review summarizes our current structural understanding for the mechanisms by which the zinc finger MBPs evaluated to date read this essential epigenetic mark. Further, some of the biological implications for mCpG readout elicited by this family of MBPs are discussed.
Collapse
Affiliation(s)
- Nicholas O Hudson
- Department of Chemistry, University of Utah, Salt Lake City, UT 84112-0850, USA.
| | | |
Collapse
|
13
|
Ren R, Horton JR, Zhang X, Blumenthal RM, Cheng X. Detecting and interpreting DNA methylation marks. Curr Opin Struct Biol 2018; 53:88-99. [PMID: 30031306 DOI: 10.1016/j.sbi.2018.06.004] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Accepted: 06/19/2018] [Indexed: 12/22/2022]
Abstract
The generation, alteration, recognition, and erasure of epigenetic modifications of DNA are fundamental to controlling gene expression in mammals. These covalent DNA modifications include cytosine methylation by AdoMet-dependent methyltransferases and 5-methylcytosine oxidation by Fe(II)-dependent and α-ketoglutarate-dependent dioxygenases. Sequence-specific transcription factors are responsible for interpreting the modification status of specific regions of chromatin. This review focuses on recent developments in characterizing the functional and structural links between the modification status of two DNA bases: 5-methylcytosine and 5-methyluracil (thymine).
Collapse
Affiliation(s)
- Ren Ren
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - John R Horton
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Xing Zhang
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Robert M Blumenthal
- Department of Medical Microbiology and Immunology, and Program in Bioinformatics, The University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, USA
| | - Xiaodong Cheng
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
| |
Collapse
|
14
|
Yamane M, Ohtsuka S, Matsuura K, Nakamura A, Niwa H. Overlapping functions of Krüppel-like factor family members: targeting multiple transcription factors to maintain the naïve pluripotency of mouse embryonic stem cells. Development 2018; 145:dev.162404. [PMID: 29739838 DOI: 10.1242/dev.162404] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2017] [Accepted: 04/30/2018] [Indexed: 01/02/2023]
Abstract
Krüppel-like factors (Klfs) have a pivotal role in maintaining self-renewal of mouse embryonic stem cells (mESCs). The functions of three Klf family members (Klf2, Klf4 and Klf5) have been identified, and are suggested to largely overlap. For further dissection of their functions, we applied an inducible knockout system for these Klf family members and assessed the effects of combinatorial loss of function. As a result, we confirmed that any one of Klf2, Klf4 and Klf5 was sufficient to support self-renewal, whereas the removal of all three compromised it. The activity of any single transcription factor, except for a Klf family member, was not sufficient to restore self-renewal of triple-knockout mESCs. However, some particular combinations of transcription factors were capable of the restoration. The triple-knockout mESCs were successfully captured at primed state. These data indicate that the pivotal function of a Klf family member is transduced into the activation of multiple transcription factors in a naïve-state-specific manner.
Collapse
Affiliation(s)
- Mariko Yamane
- Laboratory for Pluripotent Stem Cell Studies, RIKEN Center for Developmental Biology (CDB), 2-2-3 Minatojima-minamimachi, Chuo-ku, Kobe 650-0047, Japan.,Department of Pluripotent Stem Cell Biology, Institute of Molecular Embryology and Genetics, Kumamoto University, 2-2-1 Honjo, Chuo-ku, Kumamoto 860-0811, Japan
| | - Satoshi Ohtsuka
- Laboratory for Pluripotent Stem Cell Studies, RIKEN Center for Developmental Biology (CDB), 2-2-3 Minatojima-minamimachi, Chuo-ku, Kobe 650-0047, Japan.,Department of Life Science, Medical Research Institute, Kanazawa Medical University, 1-1 Daigaku, Uchinada kahoku, Ishikawa 920-0293, Japan
| | - Kumi Matsuura
- Laboratory for Pluripotent Stem Cell Studies, RIKEN Center for Developmental Biology (CDB), 2-2-3 Minatojima-minamimachi, Chuo-ku, Kobe 650-0047, Japan.,Department of Pluripotent Stem Cell Biology, Institute of Molecular Embryology and Genetics, Kumamoto University, 2-2-1 Honjo, Chuo-ku, Kumamoto 860-0811, Japan
| | - Akira Nakamura
- Department of Germline Development, Institute of Molecular Embryology and Genetics, Kumamoto University, 2-2-1 Honjo, Chuo-ku, Kumamoto 860-0811, Japan
| | - Hitoshi Niwa
- Laboratory for Pluripotent Stem Cell Studies, RIKEN Center for Developmental Biology (CDB), 2-2-3 Minatojima-minamimachi, Chuo-ku, Kobe 650-0047, Japan .,Department of Pluripotent Stem Cell Biology, Institute of Molecular Embryology and Genetics, Kumamoto University, 2-2-1 Honjo, Chuo-ku, Kumamoto 860-0811, Japan.,JST, CREST, Sanbancho, Chiyoda-ku, Tokyo 1020075, Japan
| |
Collapse
|
15
|
Patel A, Zhang X, Blumenthal RM, Cheng X. Structural basis of human PR/SET domain 9 (PRDM9) allele C-specific recognition of its cognate DNA sequence. J Biol Chem 2017; 292:15994-16002. [PMID: 28801461 DOI: 10.1074/jbc.m117.805754] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Revised: 07/31/2017] [Indexed: 11/06/2022] Open
Abstract
PRDM9 is the only mammalian gene that has been associated with speciation. The PR/SET domain 9 (PRDM9) protein is a major determinant of meiotic recombination hot spots and acts through sequence-specific DNA binding via its C2H2 zinc finger (ZF) tandem array, which is highly polymorphic within and between species. The most common human variant, PRDM9 allele A (PRDM9a), contains 13 fingers (ZF1-13). Allele C (PRDM9c) is the second-most common among African populations and differs from PRDM9a by an arginine-to-serine change (R764S) in ZF9 and by replacement of ZF11 with two other fingers, yielding 14 fingers in PRDM9c. Here we co-crystallized the six-finger fragment ZF8-13 of PRDM9c, in complex with an oligonucleotide representing a known PRDM9c-specific hot spot sequence, and compared the structure with that of a characterized PRDM9a-specific complex. There are three major differences. First, Ser764 in ZF9 allows PRDM9c to accommodate a variable base, whereas PRDM9a Arg764 recognizes a conserved guanine. Second, the two-finger expansion of ZF11 allows PRDM9c to recognize three-base-pair-longer sequences. A tryptophan in the additional ZF interacts with a conserved thymine methyl group. Third, an Arg-Asp dipeptide immediately preceding the ZF helix, conserved in two PRDM9a fingers and three PRDM9c fingers, permits adaptability to variations from a C:G base pair (G-Arg interaction) to a G:C base pair (C-Asp interaction). This Arg-Asp conformational switch allows identical ZF modules to recognize different sequences. Our findings illuminate the molecular mechanisms for flexible and conserved binding of human PRDM9 alleles to their cognate DNA sequences.
Collapse
Affiliation(s)
- Anamika Patel
- From the Department of Biochemistry, Emory University School of Medicine, Atlanta, Georgia 30322
| | - Xing Zhang
- From the Department of Biochemistry, Emory University School of Medicine, Atlanta, Georgia 30322.,the Department of Molecular and Cellular Oncology, University of Texas M.D. Anderson Cancer Center, Houston, Texas 77030, and
| | - Robert M Blumenthal
- the Department of Medical Microbiology and Immunology and Program in Bioinformatics, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio 43614
| | - Xiaodong Cheng
- From the Department of Biochemistry, Emory University School of Medicine, Atlanta, Georgia 30322, .,the Department of Molecular and Cellular Oncology, University of Texas M.D. Anderson Cancer Center, Houston, Texas 77030, and
| |
Collapse
|
16
|
Hashimoto H, Wang D, Horton JR, Zhang X, Corces VG, Cheng X. Structural Basis for the Versatile and Methylation-Dependent Binding of CTCF to DNA. Mol Cell 2017; 66:711-720.e3. [PMID: 28529057 DOI: 10.1016/j.molcel.2017.05.004] [Citation(s) in RCA: 178] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Revised: 04/12/2017] [Accepted: 05/03/2017] [Indexed: 12/25/2022]
Abstract
The multidomain CCCTC-binding factor (CTCF), containing a tandem array of 11 zinc fingers (ZFs), modulates the three-dimensional organization of chromatin. We crystallized the human CTCF DNA-binding domain in complex with a known CTCF-binding site. While ZF2 does not make sequence-specific contacts, each finger of ZF3-7 contacts three bases of the 15-bp consensus sequence. Each conserved nucleotide makes base-specific hydrogen bonds with a particular residue. Most of the variable base pairs within the core sequence also engage in interactions with the protein. These interactions compensate for deviations from the consensus sequence, allowing CTCF to adapt to sequence variations. CTCF is sensitive to cytosine methylation at position 2, but insensitive at position 12 of the 15-bp core sequence. These differences can be rationalized structurally. Although included in crystallizations, ZF10 and ZF11 are not visible, while ZF8 and ZF9 span the backbone of the DNA duplex, conferring no sequence specificity but adding to overall binding stability.
Collapse
Affiliation(s)
- Hideharu Hashimoto
- Department of Biochemistry, Emory University School of Medicine, 1510 Clifton Road NE, Atlanta, GA 30322, USA
| | - Dongxue Wang
- Department of Biochemistry, Emory University School of Medicine, 1510 Clifton Road NE, Atlanta, GA 30322, USA
| | - John R Horton
- Department of Biochemistry, Emory University School of Medicine, 1510 Clifton Road NE, Atlanta, GA 30322, USA; Department of Molecular and Cellular Oncology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Xing Zhang
- Department of Biochemistry, Emory University School of Medicine, 1510 Clifton Road NE, Atlanta, GA 30322, USA; Department of Molecular and Cellular Oncology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Victor G Corces
- Department of Biology, Emory University, 1510 Clifton Road NE, Atlanta, GA 30322, USA
| | - Xiaodong Cheng
- Department of Biochemistry, Emory University School of Medicine, 1510 Clifton Road NE, Atlanta, GA 30322, USA; Department of Molecular and Cellular Oncology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
| |
Collapse
|