1
|
Admoni Y, Fridrich A, Weavers PK, Aharoni R, Razin T, Salinas-Saavedra M, Rabani M, Frank U, Moran Y. miRNA-target complementarity in cnidarians resembles its counterpart in plants. EMBO Rep 2025:10.1038/s44319-024-00350-z. [PMID: 39747665 DOI: 10.1038/s44319-024-00350-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 10/30/2023] [Accepted: 12/04/2024] [Indexed: 01/04/2025] Open
Abstract
microRNAs (miRNAs) are important post-transcriptional regulators that activate silencing mechanisms by annealing to mRNA transcripts. While plant miRNAs match their targets with nearly-full complementarity leading to mRNA cleavage, miRNAs in most animals require only a short sequence called 'seed' to inhibit target translation. Recent findings showed that miRNAs in cnidarians, early-branching metazoans, act similarly to plant miRNAs, by exhibiting full complementarity and target cleavage; however, it remained unknown if seed-based regulation was possible in cnidarians. Here, we investigate the miRNA-target complementarity requirements for miRNA activity in the cnidarian Nematostella vectensis. We show that bilaterian-like complementarity of seed-only or seed and supplementary 3' matches are insufficient for miRNA-mediated knockdown. Furthermore, miRNA-target mismatches in the cleavage site decrease knockdown efficiency. Finally, miRNA silencing of a target with three seed binding sites in the 3' untranslated region that mimics typical miRNA targeting was repressed in zebrafish but not in Nematostella and another cnidarian, Hydractinia symbiolongicarpus. Altogether, these results unravel striking similarities between plant and cnidarian miRNAs supporting a possible common evolutionary origin of miRNAs in plants and animals.
Collapse
Affiliation(s)
- Yael Admoni
- Department of Ecology, Evolution and Behavior, Alexander Silberman Institute of Life Sciences, Faculty of Science, Hebrew University of Jerusalem, Jerusalem, 9190401, Israel.
| | - Arie Fridrich
- Department of Ecology, Evolution and Behavior, Alexander Silberman Institute of Life Sciences, Faculty of Science, Hebrew University of Jerusalem, Jerusalem, 9190401, Israel
| | - Paris K Weavers
- Center for Chromosome Biology, School of Biological and Chemical Sciences, University of Galway, Galway, Ireland
| | - Reuven Aharoni
- Department of Ecology, Evolution and Behavior, Alexander Silberman Institute of Life Sciences, Faculty of Science, Hebrew University of Jerusalem, Jerusalem, 9190401, Israel
| | - Talya Razin
- Department of Genetics, Alexander Silberman Institute of Life Sciences, Faculty of Science, Hebrew University of Jerusalem, Jerusalem, 9190401, Israel
| | - Miguel Salinas-Saavedra
- Center for Chromosome Biology, School of Biological and Chemical Sciences, University of Galway, Galway, Ireland
| | - Michal Rabani
- Department of Genetics, Alexander Silberman Institute of Life Sciences, Faculty of Science, Hebrew University of Jerusalem, Jerusalem, 9190401, Israel
| | - Uri Frank
- Center for Chromosome Biology, School of Biological and Chemical Sciences, University of Galway, Galway, Ireland
| | - Yehu Moran
- Department of Ecology, Evolution and Behavior, Alexander Silberman Institute of Life Sciences, Faculty of Science, Hebrew University of Jerusalem, Jerusalem, 9190401, Israel.
| |
Collapse
|
2
|
Bauer AN, Majumdar N, Williams F, Rajput S, Pokhrel LR, Cook PP, Akula SM. MicroRNAs: Small but Key Players in Viral Infections and Immune Responses to Viral Pathogens. BIOLOGY 2023; 12:1334. [PMID: 37887044 PMCID: PMC10604607 DOI: 10.3390/biology12101334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 09/21/2023] [Accepted: 10/11/2023] [Indexed: 10/28/2023]
Abstract
Since the discovery of microRNAs (miRNAs) in C. elegans in 1993, the field of miRNA research has grown steeply. These single-stranded non-coding RNA molecules canonically work at the post-transcriptional phase to regulate protein expression. miRNAs are known to regulate viral infection and the ensuing host immune response. Evolving research suggests miRNAs are assets in the discovery and investigation of therapeutics and diagnostics. In this review, we succinctly summarize the latest findings in (i) mechanisms underpinning miRNA regulation of viral infection, (ii) miRNA regulation of host immune response to viral pathogens, (iii) miRNA-based diagnostics and therapeutics targeting viral pathogens and challenges, and (iv) miRNA patents and the market landscape. Our findings show the differential expression of miRNA may serve as a prognostic biomarker for viral infections in regard to predicting the severity or adverse health effects associated with viral diseases. While there is huge market potential for miRNA technology, the novel approach of using miRNA mimics to enhance antiviral activity or antagonists to inhibit pro-viral miRNAs has been an ongoing research endeavor. Significant hurdles remain in terms of miRNA delivery, stability, efficacy, safety/tolerability, and specificity. Addressing these challenges may pave a path for harnessing the full potential of miRNAs in modern medicine.
Collapse
Affiliation(s)
- Anais N. Bauer
- Department of Microbiology & Immunology, Brody School of Medicine, East Carolina University, Greenville, NC 27834, USA; (A.N.B.); (N.M.); (F.W.)
| | - Niska Majumdar
- Department of Microbiology & Immunology, Brody School of Medicine, East Carolina University, Greenville, NC 27834, USA; (A.N.B.); (N.M.); (F.W.)
| | - Frank Williams
- Department of Microbiology & Immunology, Brody School of Medicine, East Carolina University, Greenville, NC 27834, USA; (A.N.B.); (N.M.); (F.W.)
| | - Smit Rajput
- Department of Internal Medicine, Brody School of Medicine, East Carolina University, Greenville, NC 27834, USA;
| | - Lok R. Pokhrel
- Department of Public Health, Brody School of Medicine, East Carolina University, Greenville, NC 27834, USA;
| | - Paul P. Cook
- Department of Internal Medicine, Brody School of Medicine, East Carolina University, Greenville, NC 27834, USA;
| | - Shaw M. Akula
- Department of Microbiology & Immunology, Brody School of Medicine, East Carolina University, Greenville, NC 27834, USA; (A.N.B.); (N.M.); (F.W.)
- Department of Internal Medicine, Brody School of Medicine, East Carolina University, Greenville, NC 27834, USA;
| |
Collapse
|
3
|
Massively parallel identification of mRNA localization elements in primary cortical neurons. Nat Neurosci 2023; 26:394-405. [PMID: 36646877 PMCID: PMC9991926 DOI: 10.1038/s41593-022-01243-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 12/01/2022] [Indexed: 01/18/2023]
Abstract
Cells adopt highly polarized shapes and form distinct subcellular compartments in many cases due to the localization of many mRNAs to specific areas, where they are translated into proteins with local functions. This mRNA localization is mediated by specific cis-regulatory elements in mRNAs, commonly called 'zipcodes'. Although there are hundreds of localized mRNAs, only a few zipcodes have been characterized. Here we describe a novel neuronal zipcode identification protocol (N-zip) that can identify zipcodes across hundreds of 3' untranslated regions. This approach combines a method of separating the principal subcellular compartments of neurons-cell bodies and neurites-with a massively parallel reporter assay. N-zip identifies the let-7 binding site and (AU)n motif as de novo zipcodes in mouse primary cortical neurons. Our analysis also provides, to our knowledge, the first demonstration of an miRNA affecting mRNA localization and suggests a strategy for detecting many more zipcodes.
Collapse
|
4
|
Li Y, Hui JHL. Small RNAs in Cnidaria: A review. Evol Appl 2023; 16:354-364. [PMID: 36793685 PMCID: PMC9923473 DOI: 10.1111/eva.13445] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 05/18/2022] [Accepted: 06/17/2022] [Indexed: 11/30/2022] Open
Abstract
As fundamental components of RNA silencing, small RNA (sRNA) molecules ranging from 20 to 32 nucleotides in length have been found as potent regulators of gene expression and genome stability in many biological processes of eukaryotes. Three major small RNAs are active in animals, including the microRNA (miRNA), short interfering RNA (siRNA), and PIWI-interacting RNA (piRNA). Cnidarians, the sister group to bilaterians, are at a critical phylogenetic node to better model eukaryotic small RNA pathway evolution. To date, most of our understanding of sRNA regulation and its potential contribution to evolution has been limited to a few triploblastic bilaterian and plant models. The diploblastic nonbilaterians, including the cnidarians, are understudied in this regard. Therefore, this review will present the current-known small RNA information in cnidarians to enhance our understanding of the development of the small RNA pathways in early branch animals.
Collapse
Affiliation(s)
- Yiqian Li
- Simon F.S. Li Marine Science Laboratory, State Key Laboratory of Agrobiotechnology, School of Life SciencesThe Chinese University of Hong KongHong Kong CityHong Kong
| | - Jerome H. L. Hui
- Simon F.S. Li Marine Science Laboratory, State Key Laboratory of Agrobiotechnology, School of Life SciencesThe Chinese University of Hong KongHong Kong CityHong Kong
| |
Collapse
|
5
|
Kitai H, Kato N, Ogami K, Komatsu S, Watanabe Y, Yoshino S, Koshi E, Tsubota S, Funahashi Y, Maeda T, Furuhashi K, Ishimoto T, Kosugi T, Maruyama S, Kadomatsu K, Suzuki HI. Systematic characterization of seed overlap microRNA cotargeting associated with lupus pathogenesis. BMC Biol 2022; 20:248. [PMID: 36357926 PMCID: PMC9650897 DOI: 10.1186/s12915-022-01447-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 10/21/2022] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND Combinatorial gene regulation by multiple microRNAs (miRNAs) is widespread and closely spaced target sites often act cooperatively to achieve stronger repression ("neighborhood" miRNA cotargeting). While miRNA cotarget sites are suggested to be more conserved and implicated in developmental control, the pathological significance of miRNA cotargeting remains elusive. RESULTS Here, we report the pathogenic impacts of combinatorial miRNA regulation on inflammation in systemic lupus erythematosus (SLE). In the SLE mouse model, we identified the downregulation of two miRNAs, miR-128 and miR-148a, by TLR7 stimulation in plasmacytoid dendritic cells. Functional analyses using human cell lines demonstrated that miR-128 and miR-148a additively target KLF4 via extensively overlapping target sites ("seed overlap" miRNA cotargeting) and suppress the inflammatory responses. At the transcriptome level, "seed overlap" miRNA cotargeting increases susceptibility to downregulation by two miRNAs, consistent with additive but not cooperative recruitment of two miRNAs. Systematic characterization further revealed that extensive "seed overlap" is a prevalent feature among broadly conserved miRNAs. Highly conserved target sites of broadly conserved miRNAs are largely divided into two classes-those conserved among eutherian mammals and from human to Coelacanth, and the latter, including KLF4-cotargeting sites, has a stronger association with both "seed overlap" and "neighborhood" miRNA cotargeting. Furthermore, a deeply conserved miRNA target class has a higher probability of haplo-insufficient genes. CONCLUSIONS Our study collectively suggests the complexity of distinct modes of miRNA cotargeting and the importance of their perturbations in human diseases.
Collapse
Affiliation(s)
- Hiroki Kitai
- Department of Nephrology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi 466-8550 Japan
| | - Noritoshi Kato
- Department of Nephrology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi 466-8550 Japan
| | - Koichi Ogami
- Division of Molecular Oncology, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi 466-8550 Japan
| | - Shintaro Komatsu
- Department of Nephrology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi 466-8550 Japan
- Division of Molecular Oncology, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi 466-8550 Japan
| | - Yu Watanabe
- Department of Nephrology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi 466-8550 Japan
- Division of Molecular Oncology, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi 466-8550 Japan
| | - Seiko Yoshino
- Division of Molecular Oncology, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi 466-8550 Japan
| | - Eri Koshi
- Department of Nephrology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi 466-8550 Japan
- Division of Molecular Oncology, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi 466-8550 Japan
| | - Shoma Tsubota
- Department of Biochemistry, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi 466-8550 Japan
| | - Yoshio Funahashi
- Department of Nephrology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi 466-8550 Japan
- Present Address: Yoshio Funahashi, Department of Anesthesiology and Perioperative Medicine, Oregon Health and Science University, 3181 S.W. Sam Jackson Park Road, Portland, OR 97239 USA
| | - Takahiro Maeda
- Department of General Medicine, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki, Nagasaki 852-8501 Japan
| | - Kazuhiro Furuhashi
- Department of Nephrology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi 466-8550 Japan
| | - Takuji Ishimoto
- Department of Nephrology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi 466-8550 Japan
- Present Address: Takuji Ishimoto, Department of Nephrology and Rheumatology, Aichi Medical University, 1-1 Yazakokarimata, Nagakute, Aichi 480-1195 Japan
| | - Tomoki Kosugi
- Department of Nephrology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi 466-8550 Japan
| | - Shoichi Maruyama
- Department of Nephrology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi 466-8550 Japan
| | - Kenji Kadomatsu
- Department of Biochemistry, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi 466-8550 Japan
- Institute for Glyco-core Research (iGCORE), Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8601 Japan
| | - Hiroshi I. Suzuki
- Division of Molecular Oncology, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi 466-8550 Japan
- Institute for Glyco-core Research (iGCORE), Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8601 Japan
| |
Collapse
|
6
|
Bujanic L, Shevchuk O, von Kügelgen N, Kalinina A, Ludwik K, Koppstein D, Zerna N, Sickmann A, Chekulaeva M. The key features of SARS-CoV-2 leader and NSP1 required for viral escape of NSP1-mediated repression. RNA (NEW YORK, N.Y.) 2022; 28:766-779. [PMID: 35232816 PMCID: PMC9014875 DOI: 10.1261/rna.079086.121] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 02/09/2022] [Indexed: 06/14/2023]
Abstract
SARS-CoV-2, responsible for the ongoing global pandemic, must overcome a conundrum faced by all viruses. To achieve its own replication and spread, it simultaneously depends on and subverts cellular mechanisms. At the early stage of infection, SARS-CoV-2 expresses the viral nonstructural protein 1 (NSP1), which inhibits host translation by blocking the mRNA entry tunnel on the ribosome; this interferes with the binding of cellular mRNAs to the ribosome. Viral mRNAs, on the other hand, overcome this blockade. We show that NSP1 enhances expression of mRNAs containing the SARS-CoV-2 leader. The first stem-loop (SL1) in the viral leader is both necessary and sufficient for this enhancement mechanism. Our analysis pinpoints specific residues within SL1 (three cytosine residues at the positions 15, 19, and 20) and another within NSP1 (R124), which are required for viral evasion, and thus might present promising drug targets. We target SL1 with the antisense oligo (ASO) to efficiently and specifically down-regulate SARS-CoV-2 mRNA. Additionally, we carried out analysis of a functional interactome of NSP1 using BioID and identified components of antiviral defense pathways. Our analysis therefore suggests a mechanism by which NSP1 inhibits the expression of host genes while enhancing that of viral RNA. This analysis helps reconcile conflicting reports in the literature regarding the mechanisms by which the virus avoids NSP1 silencing.
Collapse
Affiliation(s)
- Lucija Bujanic
- Non-coding RNAs and mechanisms of cytoplasmic gene regulation, Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine, 10115 Berlin, Germany
| | - Olga Shevchuk
- Leibniz-Institut für Analytische Wissenschaften-ISAS, 44139 Dortmund, Germany
| | - Nicolai von Kügelgen
- Non-coding RNAs and mechanisms of cytoplasmic gene regulation, Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine, 10115 Berlin, Germany
| | - Anna Kalinina
- Non-coding RNAs and mechanisms of cytoplasmic gene regulation, Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine, 10115 Berlin, Germany
| | - Katarzyna Ludwik
- Non-coding RNAs and mechanisms of cytoplasmic gene regulation, Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine, 10115 Berlin, Germany
| | - David Koppstein
- Systems Biology of Gene Regulatory Elements, Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine, 10115 Berlin, Germany
| | - Nadja Zerna
- Non-coding RNAs and mechanisms of cytoplasmic gene regulation, Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine, 10115 Berlin, Germany
| | - Albert Sickmann
- Leibniz-Institut für Analytische Wissenschaften-ISAS, 44139 Dortmund, Germany
| | - Marina Chekulaeva
- Non-coding RNAs and mechanisms of cytoplasmic gene regulation, Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine, 10115 Berlin, Germany
| |
Collapse
|
7
|
Mendonsa S, von Kuegelgen N, Bujanic L, Chekulaeva M. Charcot-Marie-Tooth mutation in glycyl-tRNA synthetase stalls ribosomes in a pre-accommodation state and activates integrated stress response. Nucleic Acids Res 2021; 49:10007-10017. [PMID: 34403468 PMCID: PMC8464049 DOI: 10.1093/nar/gkab730] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 08/12/2021] [Indexed: 11/14/2022] Open
Abstract
Toxic gain-of-function mutations in aminoacyl-tRNA synthetases cause a degeneration of peripheral motor and sensory axons, known as Charcot-Marie-Tooth (CMT) disease. While these mutations do not disrupt overall aminoacylation activity, they interfere with translation via an unknown mechanism. Here, we dissect the mechanism of function of CMT mutant glycyl-tRNA synthetase (CMT-GARS), using high-resolution ribosome profiling and reporter assays. We find that CMT-GARS mutants deplete the pool of glycyl-tRNAGly available for translation and inhibit the first stage of elongation, the accommodation of glycyl-tRNA into the ribosomal A-site, which causes ribosomes to pause at glycine codons. Moreover, ribosome pausing activates a secondary repression mechanism at the level of translation initiation, by inducing the phosphorylation of the alpha subunit of eIF2 and the integrated stress response. Thus, CMT-GARS mutant triggers translational repression via two interconnected mechanisms, affecting both elongation and initiation of translation.
Collapse
Affiliation(s)
- Samantha Mendonsa
- Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
- Free University, Berlin, Germany
| | - Nicolai von Kuegelgen
- Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
- Free University, Berlin, Germany
| | - Lucija Bujanic
- Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Marina Chekulaeva
- Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| |
Collapse
|
8
|
Praher D, Zimmermann B, Dnyansagar R, Miller DJ, Moya A, Modepalli V, Fridrich A, Sher D, Friis-Møller L, Sundberg P, Fôret S, Ashby R, Moran Y, Technau U. Conservation and turnover of miRNAs and their highly complementary targets in early branching animals. Proc Biol Sci 2021; 288:20203169. [PMID: 33622129 PMCID: PMC7935066 DOI: 10.1098/rspb.2020.3169] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 01/25/2021] [Indexed: 12/16/2022] Open
Abstract
MicroRNAs (miRNAs) are crucial post-transcriptional regulators that have been extensively studied in Bilateria, a group comprising the majority of extant animals, where more than 30 conserved miRNA families have been identified. By contrast, bilaterian miRNA targets are largely not conserved. Cnidaria is the sister group to Bilateria and thus provides a unique opportunity for comparative studies. Strikingly, like their plant counterparts, cnidarian miRNAs have been shown to predominantly have highly complementary targets leading to transcript cleavage by Argonaute proteins. Here, we assess the conservation of miRNAs and their targets by small RNA sequencing followed by miRNA target prediction in eight species of Anthozoa (sea anemones and corals), the earliest-branching cnidarian class. We uncover dozens of novel miRNAs but only a few conserved ones. Further, given their high complementarity, we were able to computationally identify miRNA targets in each species. Besides evidence for conservation of specific miRNA target sites, which are maintained between sea anemones and stony corals across 500 Myr of evolution, we also find indications for convergent evolution of target regulation by different miRNAs. Our data indicate that cnidarians have only few conserved miRNAs and corresponding targets, despite their high complementarity, suggesting a high evolutionary turnover.
Collapse
Affiliation(s)
- Daniela Praher
- Department of Neurosciences and Developmental Biology; Faculty of Life Sciences, University of Vienna, Vienna, Austria
| | - Bob Zimmermann
- Department of Neurosciences and Developmental Biology; Faculty of Life Sciences, University of Vienna, Vienna, Austria
| | - Rohit Dnyansagar
- Department of Neurosciences and Developmental Biology; Faculty of Life Sciences, University of Vienna, Vienna, Austria
| | - David J. Miller
- Department of Molecular and Cell Biology, Comparative Genomics Centre, James Cook University, Townsville, Queensland, Australia
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, Queensland, Australia
| | - Aurelie Moya
- Department of Molecular and Cell Biology, Comparative Genomics Centre, James Cook University, Townsville, Queensland, Australia
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, Queensland, Australia
| | - Vengamanaidu Modepalli
- Department of Ecology, Evolution and Behavior; Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
- The Marine Biological Association of the United Kingdom, Citadel Hill, Plymouth, UK
| | - Arie Fridrich
- Department of Ecology, Evolution and Behavior; Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Daniel Sher
- Department of Marine Biology, Leon H. Charney School of Marine Sciences, University of Haifa, Haifa, Israel
| | - Lene Friis-Møller
- Danish Shellfish Centre, DTU Aqua, Technical University of Denmark, Lyngby, Denmark
| | - Per Sundberg
- Department of Zoology, University of Gothenburg, Gothenburg, Sweden
| | - Sylvain Fôret
- Health Research Institute, Faculty of Education, Science, Technology and Mathematics, University of Canberra, Canberra, Australia
| | - Regan Ashby
- Division of Ecology and Evolution, Research School of Biology, Australian National University, Canberra, Australia
| | - Yehu Moran
- Department of Ecology, Evolution and Behavior; Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Ulrich Technau
- Department of Neurosciences and Developmental Biology; Faculty of Life Sciences, University of Vienna, Vienna, Austria
| |
Collapse
|
9
|
Dexheimer PJ, Cochella L. MicroRNAs: From Mechanism to Organism. Front Cell Dev Biol 2020; 8:409. [PMID: 32582699 PMCID: PMC7283388 DOI: 10.3389/fcell.2020.00409] [Citation(s) in RCA: 215] [Impact Index Per Article: 43.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 05/04/2020] [Indexed: 12/12/2022] Open
Abstract
MicroRNAs (miRNAs) are short, regulatory RNAs that act as post-transcriptional repressors of gene expression in diverse biological contexts. The emergence of small RNA-mediated gene silencing preceded the onset of multicellularity and was followed by a drastic expansion of the miRNA repertoire in conjunction with the evolution of complexity in the plant and animal kingdoms. Along this process, miRNAs became an essential feature of animal development, as no higher metazoan lineage tolerated loss of miRNAs or their associated protein machinery. In fact, ablation of the miRNA biogenesis machinery or the effector silencing factors results in severe embryogenesis defects in every animal studied. In this review, we summarize recent mechanistic insight into miRNA biogenesis and function, while emphasizing features that have enabled multicellular organisms to harness the potential of this broad class of repressors. We first discuss how different mechanisms of regulation of miRNA biogenesis are used, not only to generate spatio-temporal specificity of miRNA production within an animal, but also to achieve the necessary levels and dynamics of expression. We then explore how evolution of the mechanism for small RNA-mediated repression resulted in a diversity of silencing complexes that cause different molecular effects on their targets. Multicellular organisms have taken advantage of this variability in the outcome of miRNA-mediated repression, with differential use in particular cell types or even distinct subcellular compartments. Finally, we present an overview of how the animal miRNA repertoire has evolved and diversified, emphasizing the emergence of miRNA families and the biological implications of miRNA sequence diversification. Overall, focusing on selected animal models and through the lens of evolution, we highlight canonical mechanisms in miRNA biology and their variations, providing updated insight that will ultimately help us understand the contribution of miRNAs to the development and physiology of multicellular organisms.
Collapse
Affiliation(s)
| | - Luisa Cochella
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), Vienna, Austria
| |
Collapse
|
10
|
Ledda B, Ottaggio L, Izzotti A, Sukkar SG, Miele M. Small RNAs in eucaryotes: new clues for amplifying microRNA benefits. Cell Biosci 2020; 10:1. [PMID: 31911829 PMCID: PMC6942390 DOI: 10.1186/s13578-019-0370-3] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Accepted: 12/23/2019] [Indexed: 12/31/2022] Open
Abstract
miRNAs, the smallest nucleotide molecules able to regulate gene expression at post transcriptional level, are found in both animals and plants being involved in fundamental processes for growth and development of living organisms. The number of miRNAs has been hypothesized to increase when some organisms specialized the process of mastication and grinding of food. Further to the vertical transmission, miRNAs can undergo horizontal transmission among different species, in particular between plants and animals. In the last years, an increasing number of studies reported that miRNA passage occurs through feeding, and that in animals, plant miRNAs can survive the gastro intestinal digestion and transferred by blood into host cells, where they can exert their functions modulating gene expression. The present review reports studies on miRNAs during evolution, with particular focus on biogenesis and mechanisms regulating their stability in plants and animals. The different biogenesis and post biogenesis modifications allow to discriminate miRNAs of plant origin from those of animal origin, and make it possible to better clarify the controversial question on whether a possible cross-kingdom miRNA transfer through food does exist. The majority of human medicines and supplements derive from plants and a regular consumption of plant food is suggested for their beneficial effects in the prevention of metabolic diseases, cancers, and dietary related disorders. So far, these beneficial effects have been generally attributed to the content of secondary metabolites, whereas mechanisms regarding other components remain unclear. Therefore, in light of the above reported studies miRNAs could result another component for the medical properties of plants. miRNAs have been mainly studied in mammals characterizing their sequences and molecular targets as available in public databases. The herein presented studies provide evidences that miRNA situation is much more complex than the static situation reported in databases. Indeed, miRNAs may have redundant activities, variable sequences, different methods of biogenesis, and may be differently influenced by external and environmental factors. In-depth knowledge of mechanisms of synthesis, regulation and transfer of plant miRNAs to other species can open new frontiers in the therapy of many human diseases, including cancer.
Collapse
Affiliation(s)
- Bernardetta Ledda
- 1Department of Health Sciences, University of Genoa, Via A. Pastore 1, 16132 Genoa, Italy
| | - Laura Ottaggio
- Mutagenesis and Cancer Prevention Unit, IRCCS Ospedale Policlinico San Martino, L.Go R. Benzi, 10, Genoa, Italy
| | - Alberto Izzotti
- 1Department of Health Sciences, University of Genoa, Via A. Pastore 1, 16132 Genoa, Italy.,Mutagenesis and Cancer Prevention Unit, IRCCS Ospedale Policlinico San Martino, L.Go R. Benzi, 10, Genoa, Italy
| | - Samir G Sukkar
- UOD Dietetic and Clinical Nutrition, IRCCS Ospedale Policlinico San Martino, L.Go R. Benzi, 10, Genoa, Italy
| | - Mariangela Miele
- Mutagenesis and Cancer Prevention Unit, IRCCS Ospedale Policlinico San Martino, L.Go R. Benzi, 10, Genoa, Italy
| |
Collapse
|
11
|
Atherton LJ, Jorquera PA, Bakre AA, Tripp RA. Determining Immune and miRNA Biomarkers Related to Respiratory Syncytial Virus (RSV) Vaccine Types. Front Immunol 2019; 10:2323. [PMID: 31649663 PMCID: PMC6794384 DOI: 10.3389/fimmu.2019.02323] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2018] [Accepted: 09/13/2019] [Indexed: 12/19/2022] Open
Abstract
Respiratory Syncytial Virus (RSV) causes serious respiratory tract illness and substantial morbidity and some mortality in populations at the extremes of age, i.e., infants, young children, and the elderly. To date, RSV vaccine development has been unsuccessful, a feature linked to the lack of biomarkers available to assess the safety and efficacy of RSV vaccine candidates. We examined microRNAs (miR) as potential biomarkers for different types of RSV vaccine candidates. In this study, mice were vaccinated with a live attenuated RSV candidate that lacks the small hydrophobic (SH) and attachment (G) proteins (CP52), an RSV G protein microparticle (GA2-MP) vaccine, a formalin-inactivated RSV (FI-RSV) vaccine or were mock-treated. Several immunological endpoints and miR expression profiles were determined in mouse serum and bronchoalveolar lavage (BAL) following vaccine priming, boost, and RSV challenge. We identified miRs that were linked with immunological parameters of disease and protection. We show that miRs are potential biomarkers providing valuable insights for vaccine development.
Collapse
Affiliation(s)
- Lydia J Atherton
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA, United States
| | - Patricia A Jorquera
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA, United States
| | - Abhijeet A Bakre
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA, United States
| | - Ralph A Tripp
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA, United States
| |
Collapse
|
12
|
Duchaine TF, Fabian MR. Mechanistic Insights into MicroRNA-Mediated Gene Silencing. Cold Spring Harb Perspect Biol 2019; 11:cshperspect.a032771. [PMID: 29959194 DOI: 10.1101/cshperspect.a032771] [Citation(s) in RCA: 104] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
MicroRNAs (miRNAs) posttranscriptionally regulate gene expression by repressing protein synthesis and exert a broad influence over development, physiology, adaptation, and disease. Over the past two decades, great strides have been made toward elucidating how miRNAs go about shutting down messenger RNA (mRNA) translation and promoting mRNA decay.
Collapse
Affiliation(s)
- Thomas F Duchaine
- Department of Biochemistry & Goodman Cancer Research Centre, McGill University, Montreal, Quebec H3G 1Y6, Canada
| | - Marc R Fabian
- Department of Oncology, McGill University, Montreal, Quebec H3G 1Y6, Canada.,Lady Davis Institute, Jewish General Hospital, Montreal, Quebec H3T 1E2, Canada
| |
Collapse
|
13
|
Biogenesis, Stabilization, and Transport of microRNAs in Kidney Health and Disease. Noncoding RNA 2018; 4:ncrna4040030. [PMID: 30400314 PMCID: PMC6315559 DOI: 10.3390/ncrna4040030] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 10/23/2018] [Accepted: 10/25/2018] [Indexed: 01/04/2023] Open
Abstract
The kidneys play key roles in the maintenance of homeostasis, including fluid balance, blood filtration, erythropoiesis and hormone production. Disease-driven perturbation of renal function therefore has profound pathological effects, and chronic kidney disease is a leading cause of morbidity and mortality worldwide. Successive annual increases in global chronic kidney disease patient numbers in part reflect upward trends for predisposing factors, including diabetes, obesity, hypertension, cardiovascular disease and population age. Each kidney typically possesses more than one million functional units called nephrons, and each nephron is divided into several discrete domains with distinct cellular and functional characteristics. A number of recent analyses have suggested that signaling between these nephron regions may be mediated by microRNAs. For this to be the case, several conditions must be fulfilled: (i) microRNAs must be released by upstream cells into the ultrafiltrate; (ii) these microRNAs must be packaged protectively to reach downstream cells intact; (iii) these packaged microRNAs must be taken up by downstream recipient cells without functional inhibition. This review will examine the evidence for each of these hypotheses and discuss the possibility that this signaling process might mediate pathological effects.
Collapse
|
14
|
Calcino AD, Fernandez-Valverde SL, Taft RJ, Degnan BM. Diverse RNA interference strategies in early-branching metazoans. BMC Evol Biol 2018; 18:160. [PMID: 30382896 PMCID: PMC6211395 DOI: 10.1186/s12862-018-1274-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Accepted: 10/08/2018] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Micro RNAs (miRNAs) and piwi interacting RNAs (piRNAs), along with the more ancient eukaryotic endogenous small interfering RNAs (endo-siRNAs) constitute the principal components of the RNA interference (RNAi) repertoire of most animals. RNAi in non-bilaterians - sponges, ctenophores, placozoans and cnidarians - appears to be more diverse than that of bilaterians, and includes structurally variable miRNAs in sponges, an enormous number of piRNAs in cnidarians and the absence of miRNAs in ctenophores and placozoans. RESULTS Here we identify thousands of endo-siRNAs and piRNAs from the sponge Amphimedon queenslandica, the ctenophore Mnemiopsis leidyi and the cnidarian Nematostella vectensis using a computational approach that clusters mapped small RNA sequences and annotates each cluster based on the read length and relative abundance of the constituent reads. This approach was validated on 11 small RNA libraries in Drosophila melanogaster, demonstrating the successful annotation of RNAi-associated loci with properties consistent with previous reports. In the non-bilaterians we uncover seven new miRNAs from Amphimedon and four from Nematostella as well as sub-populations of candidate cis-natural antisense transcript (cis-NAT) endo-siRNAs. We confirmed the absence of miRNAs in Mnemiopsis but detected an abundance of endo-siRNAs in this ctenophore. Analysis of putative piRNA structure suggests that conserved localised secondary structures in primary transcripts may be important for the production of mature piRNAs in Amphimedon and Nematostella, as is also the case for endo-siRNAs. CONCLUSION Together, these findings suggest that the last common ancestor of extant animals did not have the entrained RNAi system that typifies bilaterians. Instead it appears that bilaterians, cnidarians, ctenophores and sponges express unique repertoires and combinations of miRNAs, piRNAs and endo-siRNAs.
Collapse
Affiliation(s)
- Andrew D Calcino
- School of Biological Sciences, University of Queensland, Brisbane, QLD, 4072, Australia.,Present address: Department of Integrative Zoology, University of Vienna, Althanstraße 1, 4A-1090, Vienna, Austria
| | - Selene L Fernandez-Valverde
- School of Biological Sciences, University of Queensland, Brisbane, QLD, 4072, Australia.,Present address: CONACYT, Laboratorio Nacional de Genómica para la Biodiversidad (Langebio). CINVESTAV, Irapuato, Guanajuato, Mexico
| | - Ryan J Taft
- Institute for Molecular Bioscience, University of Queensland, Brisbane, QLD, 4072, Australia.,Illumina Inc, San Diego, California, 92122, USA
| | - Bernard M Degnan
- School of Biological Sciences, University of Queensland, Brisbane, QLD, 4072, Australia.
| |
Collapse
|
15
|
Durban J, Sasa M, Calvete JJ. Venom gland transcriptomics and microRNA profiling of juvenile and adult yellow-bellied sea snake, Hydrophis platurus, from Playa del Coco (Guanacaste, Costa Rica). Toxicon 2018; 153:96-105. [DOI: 10.1016/j.toxicon.2018.08.016] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 08/13/2018] [Accepted: 08/29/2018] [Indexed: 02/08/2023]
|
16
|
Baumgarten S, Cziesielski MJ, Thomas L, Michell CT, Esherick LY, Pringle JR, Aranda M, Voolstra CR. Evidence for miRNA-mediated modulation of the host transcriptome in cnidarian-dinoflagellate symbiosis. Mol Ecol 2017; 27:403-418. [DOI: 10.1111/mec.14452] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Revised: 11/19/2017] [Accepted: 11/21/2017] [Indexed: 12/21/2022]
Affiliation(s)
- Sebastian Baumgarten
- Division of Biological and Environmental Science and Engineering; Red Sea Research Center; King Abdullah University of Science and Technology; Thuwal Saudi Arabia
| | - Maha J. Cziesielski
- Division of Biological and Environmental Science and Engineering; Red Sea Research Center; King Abdullah University of Science and Technology; Thuwal Saudi Arabia
| | - Ludivine Thomas
- Bioscience Core Laboratory; King Abdullah University of Science and Technology; Thuwal Saudi Arabia
| | - Craig T. Michell
- Division of Biological and Environmental Science and Engineering; Red Sea Research Center; King Abdullah University of Science and Technology; Thuwal Saudi Arabia
| | - Lisl Y. Esherick
- Department of Genetics; Stanford University School of Medicine; Stanford CA USA
| | - John R. Pringle
- Department of Genetics; Stanford University School of Medicine; Stanford CA USA
| | - Manuel Aranda
- Division of Biological and Environmental Science and Engineering; Red Sea Research Center; King Abdullah University of Science and Technology; Thuwal Saudi Arabia
| | - Christian R. Voolstra
- Division of Biological and Environmental Science and Engineering; Red Sea Research Center; King Abdullah University of Science and Technology; Thuwal Saudi Arabia
| |
Collapse
|
17
|
Jimenez R, Ikonomopoulou MP, Lopez JA, Miles JJ. Immune drug discovery from venoms. Toxicon 2017; 141:18-24. [PMID: 29170055 DOI: 10.1016/j.toxicon.2017.11.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Revised: 11/14/2017] [Accepted: 11/18/2017] [Indexed: 01/22/2023]
Abstract
This review catalogues recent advances in knowledge on venoms as standalone therapeutic agents or as blueprints for drug design, with an emphasis on venom-derived compounds that affects the immune system. We discuss venoms and venom-derived compounds that affect total immune cell numbers, immune cell proliferation, immune cell migration, immune cell phenotype and cytokine secretion. Identifying novel compounds that 'tune' the system, up-regulating the immune response during infectious disease and cancer and down-regulating the immune response during autoimmunity, will greatly expand the tool kit of human immunotherapeutics. Targeting these pathways may also open therapeutic options that alleviate symptoms of envenomation. Finally, combining recent advances in venomics with progress in low cost, high-throughput screening platforms will no doubt yield hundreds of prototype immune modulating compounds in the coming years.
Collapse
Affiliation(s)
- Rocio Jimenez
- Griffith University, School of Natural Sciences, Brisbane, Queensland, Australia; QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Maria P Ikonomopoulou
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia; School of Medicine, The University of Queensland, Brisbane, Australia; Madrid Institute for Advanced Studies (IMDEA) in Food, CEI UAM+CSIC, Madrid, Spain
| | - J Alejandro Lopez
- Griffith University, School of Natural Sciences, Brisbane, Queensland, Australia; QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - John J Miles
- Griffith University, School of Natural Sciences, Brisbane, Queensland, Australia; QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia; School of Medicine, The University of Queensland, Brisbane, Australia; Centre for Biodiscovery and Molecular Development of Therapeutics, AITHM, James Cook University, Cairns, Queensland, Australia; Institute of Infection and Immunity, Cardiff University School of Medicine, Heath Park, Cardiff, United Kingdom.
| |
Collapse
|
18
|
Durban J, Sanz L, Trevisan-Silva D, Neri-Castro E, Alagón A, Calvete JJ. Integrated Venomics and Venom Gland Transcriptome Analysis of Juvenile and Adult Mexican Rattlesnakes Crotalus simus, C. tzabcan, and C. culminatus Revealed miRNA-modulated Ontogenetic Shifts. J Proteome Res 2017; 16:3370-3390. [PMID: 28731347 DOI: 10.1021/acs.jproteome.7b00414] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Adult rattlesnakes within genus Crotalus express one of two distinct venom phenotypes, type I (hemorrhagic) and type II (neurotoxic). In Costa Rican Central American rattlesnake, ontogenetic changes in the concentration of miRNAs modulate venom type II to type I transition. Venomics and venom gland transcriptome analyses showed that adult C. simus and C. tzabcan expressed intermediate patterns between type II and type I venoms, whereas C. culminatus had a canonical type I venom. Neonate/juvenile and adult Mexican rattlesnakes showed notable inter- and intraspecific variability in the number, type, abundance and ontogenetic shifts of the transcriptional and translational venom gland activities. These results support a role for miRNAs in the ontogenetic venom compositional changes in the three congeneric Mexican rattlesnakes. It is worth noting the finding of dual-action miRNAs, which silence the translation of neurotoxic heterodimeric PLA2 crotoxin and acidic PLA2 mRNAs while simultaneously up-regulating SVMP-targeting mRNAs. Dual transcriptional regulation potentially explains the existence of mutually exclusive crotoxin-rich (type-II) and SVMP-rich (type-I) venom phenotypic dichotomy among rattlesnakes. Our results support the hypothesis that alterations of the distribution of miRNAs, modulating the translational activity of venom gland toxin-encoding mRNAs in response to an external cue, may contribute to the mechanism generating adaptive venom variability.
Collapse
Affiliation(s)
- Jordi Durban
- Instituto de Biomedicina de Valencia , Consejo Superior de Investigaciones Científicas, Jaime Roig 11, 46010 Valencia, Spain
| | - Libia Sanz
- Instituto de Biomedicina de Valencia , Consejo Superior de Investigaciones Científicas, Jaime Roig 11, 46010 Valencia, Spain
| | - Dilza Trevisan-Silva
- Instituto de Biomedicina de Valencia , Consejo Superior de Investigaciones Científicas, Jaime Roig 11, 46010 Valencia, Spain.,Department of Cell Biology, Federal University of Paraná , Jardim das Américas, Curitiba, Paraná, Brazil
| | - Edgar Neri-Castro
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México , Cuernavaca, Morelos, México
| | - Alejandro Alagón
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México , Cuernavaca, Morelos, México
| | - Juan J Calvete
- Instituto de Biomedicina de Valencia , Consejo Superior de Investigaciones Científicas, Jaime Roig 11, 46010 Valencia, Spain
| |
Collapse
|
19
|
Split-BioID a conditional proteomics approach to monitor the composition of spatiotemporally defined protein complexes. Nat Commun 2017; 8:15690. [PMID: 28585547 PMCID: PMC5467174 DOI: 10.1038/ncomms15690] [Citation(s) in RCA: 125] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Accepted: 04/19/2017] [Indexed: 02/06/2023] Open
Abstract
Understanding the function of the thousands of cellular proteins is a central question in molecular cell biology. As proteins are typically part of multiple dynamic and often overlapping macromolecular complexes exerting distinct functions, the identification of protein–protein interactions (PPI) and their assignment to specific complexes is a crucial but challenging task. We present a protein fragments complementation assay integrated with the proximity-dependent biotinylation technique BioID. Activated on the interaction of two proteins, split-BioID is a conditional proteomics approach that allows in a single and simple assay to both experimentally validate binary PPI and to unbiasedly identify additional interacting factors. Applying our method to the miRNA-mediated silencing pathway, we can probe the proteomes of two distinct functional complexes containing the Ago2 protein and uncover the protein GIGYF2 as a regulator of miRNA-mediated translation repression. Hence, we provide a novel tool to study dynamic spatiotemporally defined protein complexes in their native cellular environment. The BioID approaches takes advantage of the promiscuous biotinylation enzyme (BirA*) to identify proteins that closely interact. Here the authors improve the resolution of BioID using a protein fragment complementation approach that allows the assignment of protein-protein interactions to specific complexes within a common interactome.
Collapse
|