1
|
Katoh T, Suga H. Reprogramming the genetic code with flexizymes. Nat Rev Chem 2024:10.1038/s41570-024-00656-5. [PMID: 39433956 DOI: 10.1038/s41570-024-00656-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/11/2024] [Indexed: 10/23/2024]
Abstract
In the canonical genetic code, the 61 sense codons are assigned to the 20 proteinogenic amino acids. Advancements in genetic code manipulation techniques have enabled the ribosomal incorporation of nonproteinogenic amino acids (npAAs). The critical molecule for translating messenger RNA (mRNA) into peptide sequences is aminoacyl-transfer RNA (tRNA), which recognizes the mRNA codon through its anticodon. Because aminoacyl-tRNA synthetases (ARSs) are highly specific for their respective amino acid-tRNA pairs, it is not feasible to use natural ARSs to prepare npAA-tRNAs. However, flexizymes are adaptable aminoacylation ribozymes that can be used to prepare diverse aminoacyl-tRNAs at will using amino acids activated with suitable leaving groups. Regarding recognition elements, flexizymes require only an aromatic ring in either the leaving group or side chain of the activated amino acid, and the conserved 3'-end CCA of the tRNA. Therefore, flexizymes allow virtually any amino acid to be charged onto any tRNA. The flexizyme system can handle not only L-α-amino acids with side chain modifications but also various backbone-modified npAAs. This Review describes the development of flexizyme variants and discusses their structure and mechanism and their applications in genetic code reprogramming for the synthesis of unique peptides and proteins.
Collapse
Affiliation(s)
- Takayuki Katoh
- Department of Chemistry, Graduate School of Science, University of Tokyo, Tokyo, Japan.
| | - Hiroaki Suga
- Department of Chemistry, Graduate School of Science, University of Tokyo, Tokyo, Japan.
| |
Collapse
|
2
|
Jann C, Giofré S, Bhattacharjee R, Lemke EA. Cracking the Code: Reprogramming the Genetic Script in Prokaryotes and Eukaryotes to Harness the Power of Noncanonical Amino Acids. Chem Rev 2024; 124:10281-10362. [PMID: 39120726 PMCID: PMC11441406 DOI: 10.1021/acs.chemrev.3c00878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 06/10/2024] [Accepted: 06/27/2024] [Indexed: 08/10/2024]
Abstract
Over 500 natural and synthetic amino acids have been genetically encoded in the last two decades. Incorporating these noncanonical amino acids into proteins enables many powerful applications, ranging from basic research to biotechnology, materials science, and medicine. However, major challenges remain to unleash the full potential of genetic code expansion across disciplines. Here, we provide an overview of diverse genetic code expansion methodologies and systems and their final applications in prokaryotes and eukaryotes, represented by Escherichia coli and mammalian cells as the main workhorse model systems. We highlight the power of how new technologies can be first established in simple and then transferred to more complex systems. For example, whole-genome engineering provides an excellent platform in bacteria for enabling transcript-specific genetic code expansion without off-targets in the transcriptome. In contrast, the complexity of a eukaryotic cell poses challenges that require entirely new approaches, such as striving toward establishing novel base pairs or generating orthogonally translating organelles within living cells. We connect the milestones in expanding the genetic code of living cells for encoding novel chemical functionalities to the most recent scientific discoveries, from optimizing the physicochemical properties of noncanonical amino acids to the technological advancements for their in vivo incorporation. This journey offers a glimpse into the promising developments in the years to come.
Collapse
Affiliation(s)
- Cosimo Jann
- Biocenter, Johannes Gutenberg University Mainz, 55128 Mainz, Germany
- IMB
Postdoc Programme (IPPro), 55128 Mainz, Germany
| | - Sabrina Giofré
- Biocenter, Johannes Gutenberg University Mainz, 55128 Mainz, Germany
- IMB
Postdoc Programme (IPPro), 55128 Mainz, Germany
| | - Rajanya Bhattacharjee
- Biocenter, Johannes Gutenberg University Mainz, 55128 Mainz, Germany
- IMB
International PhD Programme (IPP), 55128 Mainz, Germany
| | - Edward A. Lemke
- Biocenter, Johannes Gutenberg University Mainz, 55128 Mainz, Germany
- Institute
of Molecular Biology (IMB), 55128 Mainz, Germany
| |
Collapse
|
3
|
Inoue S, Thanh Nguyen D, Hamada K, Okuma R, Okada C, Okada M, Abe I, Sengoku T, Goto Y, Suga H. De Novo Discovery of Pseudo-Natural Prenylated Macrocyclic Peptide Ligands. Angew Chem Int Ed Engl 2024; 63:e202409973. [PMID: 38837490 DOI: 10.1002/anie.202409973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 06/03/2024] [Indexed: 06/07/2024]
Abstract
Prenylation of peptides is widely observed in the secondary metabolites of diverse organisms, granting peptides unique chemical properties distinct from proteinogenic amino acids. Discovery of prenylated peptide agents has largely relied on isolation or genome mining of naturally occurring molecules. To devise a platform technology for de novo discovery of artificial prenylated peptides targeting a protein of choice, here we have integrated the thioether-macrocyclic peptide (teMP) library construction/selection technology, so-called RaPID (Random nonstandard Peptides Integrated Discovery) system, with a Trp-C3-prenyltransferase KgpF involved in the biosynthesis of a prenylated natural product. This unique enzyme exhibited remarkably broad substrate tolerance, capable of modifying various Trp-containing teMPs to install a prenylated residue with tricyclic constrained structure. We constructed a vast library of prenylated teMPs and subjected it to in vitro selection against a phosphoglycerate mutase. This selection platform has led to the identification of a pseudo-natural prenylated teMP inhibiting the target enzyme with an IC50 of 30 nM. Importantly, the prenylation was essential for the inhibitory activity, enhanced serum stability, and cellular uptake of the peptide, highlighting the benefits of peptide prenylation. This work showcases the de novo discovery platform for pseudo-natural prenylated peptides, which is readily applicable to other drug targets.
Collapse
Affiliation(s)
- Sumika Inoue
- Department of Chemistry, Graduate School of Science, The University of Tokyo, Bunkyo, 113-0033, Tokyo, Japan
| | - Dinh Thanh Nguyen
- Department of Chemistry, Graduate School of Science, The University of Tokyo, Bunkyo, 113-0033, Tokyo, Japan
| | - Keisuke Hamada
- Department of Biochemistry, Graduate School of Medicine, Yokohama City University, Kanazawa-ku, 236-0004, Yokohama, Japan
| | - Rika Okuma
- Department of Chemistry, Graduate School of Science, The University of Tokyo, Bunkyo, 113-0033, Tokyo, Japan
| | - Chikako Okada
- Department of Biochemistry, Graduate School of Medicine, Yokohama City University, Kanazawa-ku, 236-0004, Yokohama, Japan
| | - Masahiro Okada
- Department of Material and Life Chemistry, Kanagawa University, Kanagawa-ku, 221-8686, Yokohama, Japan
| | - Ikuro Abe
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo, 113-0033, Tokyo, Japan
| | - Toru Sengoku
- Department of Biochemistry, Graduate School of Medicine, Yokohama City University, Kanazawa-ku, 236-0004, Yokohama, Japan
| | - Yuki Goto
- Department of Chemistry, Graduate School of Science, The University of Tokyo, Bunkyo, 113-0033, Tokyo, Japan
- Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo, 606-8502, Kyoto, Japan
- Toyota Riken Rising Fellow, Toyota Physical and Chemical Research Institute, Sakyo, 606-8502, Kyoto, Japan
| | - Hiroaki Suga
- Department of Chemistry, Graduate School of Science, The University of Tokyo, Bunkyo, 113-0033, Tokyo, Japan
| |
Collapse
|
4
|
Miura T, Lee KJ, Katoh T, Suga H. In Vitro Selection of Macrocyclic l-α/d-α/β/γ-Hybrid Peptides Targeting IFN-γ/IFNGR1 Protein-Protein Interaction. J Am Chem Soc 2024; 146:17691-17699. [PMID: 38888290 PMCID: PMC11229689 DOI: 10.1021/jacs.4c01979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 05/30/2024] [Accepted: 05/31/2024] [Indexed: 06/20/2024]
Abstract
Nonproteinogenic amino acids, including d-α-, β-, and γ-amino acids, present in bioactive peptides play pivotal roles in their biochemical activities and proteolytic stabilities. d-α-Amino acids (dαAA) are widely used building blocks that can enhance the proteolytic stability. Cyclic β2,3-amino acids (cβAA), for instance, can fold peptides into rigid secondary structures, improving the binding affinity and proteolytic stability. Cyclic γ2,4-amino acids (cγAA) are recently highlighted as rigid residues capable of preventing the proteolysis of flanking residues. Simultaneous incorporation of all dαAA, cβAA, and cγAA into a peptide is expected to yield l-α/d-α/β/γ-hybrid peptides with improved stability and potency. Despite challenges in the ribosomal incorporation of multiple nonproteinogenic amino acids, our engineered tRNAPro1E2 successfully reaches such a difficulty. Here, we report the ribosomal synthesis of macrocyclic l-α/d-α/β/γ-hybrid peptide libraries and their application to in vitro selection against interferon gamma receptor 1 (IFNGR1). One of the resulting l-α/d-α/β/γ-hybrid peptides, IB1, exhibited remarkable inhibitory activity against the IFN-γ/IFNGR1 protein-protein interaction (PPI) (IC50 = 12 nM), primarily attributed to the presence of a cβAA in the sequence. Additionally, cγAAs and dαAAs in the resulting peptides contributed to their serum stability. Furthermore, our peptides effectively inhibit IFN-γ/IFNGR1 PPI at the cellular level (best IC50 = 0.75 μM). Altogether, our platform expands the chemical space available for exploring peptides with high activity and stability, thereby enhancing their potential for drug discovery.
Collapse
Affiliation(s)
- Takashi Miura
- Department of Chemistry,
Graduate School of Science, The University
of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Kang Ju Lee
- Department of Chemistry,
Graduate School of Science, The University
of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Takayuki Katoh
- Department of Chemistry,
Graduate School of Science, The University
of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Hiroaki Suga
- Department of Chemistry,
Graduate School of Science, The University
of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
5
|
Ishida S, Ngo PHT, Gundlach A, Ellington A. Engineering Ribosomal Machinery for Noncanonical Amino Acid Incorporation. Chem Rev 2024; 124:7712-7730. [PMID: 38829723 DOI: 10.1021/acs.chemrev.3c00912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2024]
Abstract
The introduction of noncanonical amino acids into proteins has enabled researchers to modify fundamental physicochemical and functional properties of proteins. While the alteration of the genetic code, via the introduction of orthogonal aminoacyl-tRNA synthetase:tRNA pairs, has driven many of these efforts, the various components involved in the process of translation are important for the development of new genetic codes. In this review, we will focus on recent advances in engineering ribosomal machinery for noncanonical amino acid incorporation and genetic code modification. The engineering of the ribosome itself will be considered, as well as the many factors that interact closely with the ribosome, including both tRNAs and accessory factors, such as the all-important EF-Tu. Given the success of genome re-engineering efforts, future paths for radical alterations of the genetic code will require more expansive alterations in the translation machinery.
Collapse
Affiliation(s)
- Satoshi Ishida
- Department of Molecular Biosciences, University of Texas at Austin, Austin, Texas 78712, United States
| | - Phuoc H T Ngo
- Department of Molecular Biosciences, University of Texas at Austin, Austin, Texas 78712, United States
| | - Arno Gundlach
- Department of Molecular Biosciences, University of Texas at Austin, Austin, Texas 78712, United States
| | - Andrew Ellington
- Department of Molecular Biosciences, University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
6
|
Soni C, Prywes N, Hall M, Nair MA, Savage DF, Schepartz A, Chatterjee A. A Translation-Independent Directed Evolution Strategy to Engineer Aminoacyl-tRNA Synthetases. ACS CENTRAL SCIENCE 2024; 10:1211-1220. [PMID: 38947215 PMCID: PMC11212135 DOI: 10.1021/acscentsci.3c01557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 05/07/2024] [Accepted: 05/08/2024] [Indexed: 07/02/2024]
Abstract
Using directed evolution, aminoacyl-tRNA synthetases (aaRSs) have been engineered to incorporate numerous noncanonical amino acids (ncAAs). Until now, the selection of such novel aaRS mutants has relied on the expression of a selectable reporter protein. However, such translation-dependent selections are incompatible with exotic monomers that are suboptimal substrates for the ribosome. A two-step solution is needed to overcome this limitation: (A) engineering an aaRS to charge the exotic monomer, without ribosomal translation; (B) subsequent engineering of the ribosome to accept the resulting acyl-tRNA for translation. Here, we report a platform for aaRS engineering that directly selects tRNA-acylation without ribosomal translation (START). In START, each distinct aaRS mutant is correlated to a cognate tRNA containing a unique sequence barcode. Acylation by an active aaRS mutant protects the corresponding barcode-containing tRNAs from oxidative treatment designed to damage the 3'-terminus of the uncharged tRNAs. Sequencing of these surviving barcode-containing tRNAs is then used to reveal the identity of the aaRS mutants that acylated the correlated tRNA sequences. The efficacy of START was demonstrated by identifying novel mutants of the Methanomethylophilus alvus pyrrolysyl-tRNA synthetase from a naïve library that enables incorporation of ncAAs into proteins in living cells.
Collapse
Affiliation(s)
- Chintan Soni
- Department
of Chemistry, Boston College, Chestnut Hill, Massachusetts 02467, United States
| | - Noam Prywes
- Innovative
Genomics Institute, University of California, Berkeley, California 94720, United States
- Howard
Hughes Medical Institute, University of
California, Berkeley, California 94720, United States
| | - Matthew Hall
- Department
of Biology, Boston College, Chestnut Hill, Massachusetts 02467, United States
| | - Malavika A. Nair
- Department
of Chemistry, Boston College, Chestnut Hill, Massachusetts 02467, United States
| | - David F. Savage
- Innovative
Genomics Institute, University of California, Berkeley, California 94720, United States
- Howard
Hughes Medical Institute, University of
California, Berkeley, California 94720, United States
- Department
of Molecular and Cellular Biology, University
of California, Berkeley, California 94720 United States
| | - Alanna Schepartz
- Department
of Molecular and Cellular Biology, University
of California, Berkeley, California 94720 United States
- Department
of Chemistry, University of California, Berkeley, California 94720, United States
- California
Institute for Quantitative Biosciences, University of California, Berkeley, California 94720, United States
- Chan Zuckerberg
Biohub, San Francisco, California 94158, United States
- ARC Institute, Palo Alto, California 94304, United States
| | - Abhishek Chatterjee
- Department
of Chemistry, Boston College, Chestnut Hill, Massachusetts 02467, United States
| |
Collapse
|
7
|
Weiss JL, Decker JC, Bolano A, Krahn N. Tuning tRNAs for improved translation. Front Genet 2024; 15:1436860. [PMID: 38983271 PMCID: PMC11231383 DOI: 10.3389/fgene.2024.1436860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 06/06/2024] [Indexed: 07/11/2024] Open
Abstract
Transfer RNAs have been extensively explored as the molecules that translate the genetic code into proteins. At this interface of genetics and biochemistry, tRNAs direct the efficiency of every major step of translation by interacting with a multitude of binding partners. However, due to the variability of tRNA sequences and the abundance of diverse post-transcriptional modifications, a guidebook linking tRNA sequences to specific translational outcomes has yet to be elucidated. Here, we review substantial efforts that have collectively uncovered tRNA engineering principles that can be used as a guide for the tuning of translation fidelity. These principles have allowed for the development of basic research, expansion of the genetic code with non-canonical amino acids, and tRNA therapeutics.
Collapse
Affiliation(s)
- Joshua L Weiss
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, United States
| | - J C Decker
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, United States
| | - Ariadna Bolano
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, United States
| | - Natalie Krahn
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, United States
| |
Collapse
|
8
|
Katoh T, Suga H. Fine-tuning the tRNA anticodon arm for multiple/consecutive incorporations of β-amino acids and analogs. Nucleic Acids Res 2024; 52:6586-6595. [PMID: 38572748 PMCID: PMC11194099 DOI: 10.1093/nar/gkae219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 02/27/2024] [Accepted: 03/17/2024] [Indexed: 04/05/2024] Open
Abstract
Ribosomal incorporation of β-amino acids into nascent peptides is much less efficient than that of the canonical α-amino acids. To overcome this, we have engineered a tRNA chimera bearing T-stem of tRNAGlu and D-arm of tRNAPro1, referred to as tRNAPro1E2, which efficiently recruits EF-Tu and EF-P. Using tRNAPro1E2 indeed improved β-amino acid incorporation. However, multiple/consecutive incorporations of β-amino acids are still detrimentally poor. Here, we attempted fine-tuning of the anticodon arm of tRNAPro1E2 aiming at further enhancement of β-amino acid incorporation. By screening various mutations introduced into tRNAPro1E2, C31G39/C28G42 mutation showed an approximately 3-fold enhancement of two consecutive incorporation of β-homophenylglycine (βPhg) at CCG codons. The use of this tRNA made it possible for the first time to elongate up to ten consecutive βPhg's. Since the enhancement effect of anticodon arm mutations differs depending on the codon used for β-amino acid incorporation, we optimized anticodon arm sequences for five codons (CCG, CAU, CAG, ACU and UGG). Combination of the five optimal tRNAs for these codons made it possible to introduce five different kinds of β-amino acids and analogs simultaneously into model peptides, including a macrocyclic scaffold. This strategy would enable ribosomal synthesis of libraries of macrocyclic peptides containing multiple β-amino acids.
Collapse
Affiliation(s)
- Takayuki Katoh
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Hiroaki Suga
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
9
|
Sigal M, Matsumoto S, Beattie A, Katoh T, Suga H. Engineering tRNAs for the Ribosomal Translation of Non-proteinogenic Monomers. Chem Rev 2024; 124:6444-6500. [PMID: 38688034 PMCID: PMC11122139 DOI: 10.1021/acs.chemrev.3c00894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 02/21/2024] [Accepted: 04/10/2024] [Indexed: 05/02/2024]
Abstract
Ribosome-dependent protein biosynthesis is an essential cellular process mediated by transfer RNAs (tRNAs). Generally, ribosomally synthesized proteins are limited to the 22 proteinogenic amino acids (pAAs: 20 l-α-amino acids present in the standard genetic code, selenocysteine, and pyrrolysine). However, engineering tRNAs for the ribosomal incorporation of non-proteinogenic monomers (npMs) as building blocks has led to the creation of unique polypeptides with broad applications in cellular biology, material science, spectroscopy, and pharmaceuticals. Ribosomal polymerization of these engineered polypeptides presents a variety of challenges for biochemists, as translation efficiency and fidelity is often insufficient when employing npMs. In this Review, we will focus on the methodologies for engineering tRNAs to overcome these issues and explore recent advances both in vitro and in vivo. These efforts include increasing orthogonality, recruiting essential translation factors, and creation of expanded genetic codes. After our review on the biochemical optimizations of tRNAs, we provide examples of their use in genetic code manipulation, with a focus on the in vitro discovery of bioactive macrocyclic peptides containing npMs. Finally, an analysis of the current state of tRNA engineering is presented, along with existing challenges and future perspectives for the field.
Collapse
Affiliation(s)
- Maxwell Sigal
- Department of Chemistry,
Graduate School of Science, The University
of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Satomi Matsumoto
- Department of Chemistry,
Graduate School of Science, The University
of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Adam Beattie
- Department of Chemistry,
Graduate School of Science, The University
of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Takayuki Katoh
- Department of Chemistry,
Graduate School of Science, The University
of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Hiroaki Suga
- Department of Chemistry,
Graduate School of Science, The University
of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
10
|
Miura T, Malla TR, Brewitz L, Tumber A, Salah E, Lee KJ, Terasaka N, Owen CD, Strain-Damerell C, Lukacik P, Walsh MA, Kawamura A, Schofield CJ, Katoh T, Suga H. Cyclic β 2,3-amino acids improve the serum stability of macrocyclic peptide inhibitors targeting the SARS-CoV-2 main protease. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2024; 97:uoae018. [PMID: 38828441 PMCID: PMC11141402 DOI: 10.1093/bulcsj/uoae018] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 02/10/2024] [Accepted: 02/10/2024] [Indexed: 06/05/2024]
Abstract
Due to their constrained conformations, cyclic β2,3-amino acids (cβAA) are key building blocks that can fold peptides into compact and rigid structures, improving peptidase resistance and binding affinity to target proteins, due to their constrained conformations. Although the translation efficiency of cβAAs is generally low, our engineered tRNA, referred to as tRNAPro1E2, enabled efficient incorporation of cβAAs into peptide libraries using the flexible in vitro translation (FIT) system. Here we report on the design and application of a macrocyclic peptide library incorporating 3 kinds of cβAAs: (1R,2S)-2-aminocyclopentane carboxylic acid (β1), (1S,2S)-2-aminocyclohexane carboxylic acid (β2), and (1R,2R)-2-aminocyclopentane carboxylic acid. This library was applied to an in vitro selection against the SARS-CoV-2 main protease (Mpro). The resultant peptides, BM3 and BM7, bearing one β2 and two β1, exhibited potent inhibitory activities with IC50 values of 40 and 20 nM, respectively. BM3 and BM7 also showed remarkable serum stability with half-lives of 48 and >168 h, respectively. Notably, BM3A and BM7A, wherein the cβAAs were substituted with alanine, lost their inhibitory activities against Mpro and displayed substantially shorter serum half-lives. This observation underscores the significant contribution of cβAA to the activity and stability of peptides. Overall, our results highlight the potential of cβAA in generating potent and highly stable macrocyclic peptides with drug-like properties.
Collapse
Affiliation(s)
- Takashi Miura
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Tika R Malla
- Department of Chemistry and the Ineos Oxford Institute for Antimicrobial Research, Chemistry Research Laboratory, University of Oxford, 12 Mansfield Road, Oxford, OX1 3TA, United Kingdom
| | - Lennart Brewitz
- Department of Chemistry and the Ineos Oxford Institute for Antimicrobial Research, Chemistry Research Laboratory, University of Oxford, 12 Mansfield Road, Oxford, OX1 3TA, United Kingdom
| | - Anthony Tumber
- Department of Chemistry and the Ineos Oxford Institute for Antimicrobial Research, Chemistry Research Laboratory, University of Oxford, 12 Mansfield Road, Oxford, OX1 3TA, United Kingdom
| | - Eidarus Salah
- Department of Chemistry and the Ineos Oxford Institute for Antimicrobial Research, Chemistry Research Laboratory, University of Oxford, 12 Mansfield Road, Oxford, OX1 3TA, United Kingdom
| | - Kang Ju Lee
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Naohiro Terasaka
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - C David Owen
- Harwell Science & Innovation Campus, Diamond Light Source, Didcot, Oxfordshire, OX11 0DE, United Kingdom
- Harwell Science & Innovation Campus, Research Complex at Harwell, Didcot, OX11 0FA, United Kingdom
| | - Claire Strain-Damerell
- Harwell Science & Innovation Campus, Diamond Light Source, Didcot, Oxfordshire, OX11 0DE, United Kingdom
- Harwell Science & Innovation Campus, Research Complex at Harwell, Didcot, OX11 0FA, United Kingdom
| | - Petra Lukacik
- Harwell Science & Innovation Campus, Diamond Light Source, Didcot, Oxfordshire, OX11 0DE, United Kingdom
- Harwell Science & Innovation Campus, Research Complex at Harwell, Didcot, OX11 0FA, United Kingdom
| | - Martin A Walsh
- Harwell Science & Innovation Campus, Diamond Light Source, Didcot, Oxfordshire, OX11 0DE, United Kingdom
- Harwell Science & Innovation Campus, Research Complex at Harwell, Didcot, OX11 0FA, United Kingdom
| | - Akane Kawamura
- Department of Chemistry and the Ineos Oxford Institute for Antimicrobial Research, Chemistry Research Laboratory, University of Oxford, 12 Mansfield Road, Oxford, OX1 3TA, United Kingdom
- Chemistry—School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne, NE1 7RU, United Kingdom
| | - Christopher J Schofield
- Department of Chemistry and the Ineos Oxford Institute for Antimicrobial Research, Chemistry Research Laboratory, University of Oxford, 12 Mansfield Road, Oxford, OX1 3TA, United Kingdom
| | - Takayuki Katoh
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Hiroaki Suga
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
11
|
Vinogradov AA, Zhang Y, Hamada K, Kobayashi S, Ogata K, Sengoku T, Goto Y, Suga H. A Compact Reprogrammed Genetic Code for De Novo Discovery of Proteolytically Stable Thiopeptides. J Am Chem Soc 2024; 146:8058-8070. [PMID: 38491946 PMCID: PMC10979747 DOI: 10.1021/jacs.3c12037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 02/25/2024] [Accepted: 02/27/2024] [Indexed: 03/18/2024]
Abstract
Thiopeptides make up a group of structurally complex peptidic natural products holding promise in bioengineering applications. The previously established thiopeptide/mRNA display platform enables de novo discovery of natural product-like thiopeptides with designed bioactivities. However, in contrast to natural thiopeptides, the discovered structures are composed predominantly of proteinogenic amino acids, which results in low metabolic stability in many cases. Here, we redevelop the platform and demonstrate that the utilization of compact reprogrammed genetic codes in mRNA display libraries can lead to the discovery of thiopeptides predominantly composed of nonproteinogenic structural elements. We demonstrate the feasibility of our designs by conducting affinity selections against Traf2- and NCK-interacting kinase (TNIK). The experiment identified a series of thiopeptides with high affinity to the target protein (the best KD = 2.1 nM) and kinase inhibitory activity (the best IC50 = 0.15 μM). The discovered compounds, which bore as many as 15 nonproteinogenic amino acids in an 18-residue macrocycle, demonstrated high metabolic stability in human serum with a half-life of up to 99 h. An X-ray cocrystal structure of TNIK in complex with a discovered thiopeptide revealed how nonproteinogenic building blocks facilitate the target engagement and orchestrate the folding of the thiopeptide into a noncanonical conformation. Altogether, the established platform takes a step toward the discovery of thiopeptides with high metabolic stability for early drug discovery applications.
Collapse
Affiliation(s)
- Alexander A. Vinogradov
- Department
of Chemistry, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Yue Zhang
- Department
of Chemistry, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Keisuke Hamada
- Department
of Biochemistry, Graduate School of Medicine, Yokohama City University, Kanazawa-ku, Yokohama 236-0004, Japan
| | - Shunsuke Kobayashi
- Department
of Biochemistry, Graduate School of Medicine, Yokohama City University, Kanazawa-ku, Yokohama 236-0004, Japan
| | - Kazuhiro Ogata
- Department
of Biochemistry, Graduate School of Medicine, Yokohama City University, Kanazawa-ku, Yokohama 236-0004, Japan
| | - Toru Sengoku
- Department
of Biochemistry, Graduate School of Medicine, Yokohama City University, Kanazawa-ku, Yokohama 236-0004, Japan
| | - Yuki Goto
- Department
of Chemistry, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Hiroaki Suga
- Department
of Chemistry, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
12
|
Pelton JM, Hochuli JE, Sadecki PW, Katoh T, Suga H, Hicks LM, Muratov EN, Tropsha A, Bowers AA. Cheminformatics-Guided Cell-Free Exploration of Peptide Natural Products. J Am Chem Soc 2024; 146:8016-8030. [PMID: 38470819 PMCID: PMC11151186 DOI: 10.1021/jacs.3c11306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2024]
Abstract
There have been significant advances in the flexibility and power of in vitro cell-free translation systems. The increasing ability to incorporate noncanonical amino acids and complement translation with recombinant enzymes has enabled cell-free production of peptide-based natural products (NPs) and NP-like molecules. We anticipate that many more such compounds and analogs might be accessed in this way. To assess the peptide NP space that is directly accessible to current cell-free technologies, we developed a peptide parsing algorithm that breaks down peptide NPs into building blocks based on ribosomal translation logic. Using the resultant data set, we broadly analyze the biophysical properties of these privileged compounds and perform a retrobiosynthetic analysis to predict which peptide NPs could be directly synthesized in augmented cell-free translation reactions. We then tested these predictions by preparing a library of highly modified peptide NPs. Two macrocyclases, PatG and PCY1, were used to effect the head-to-tail macrocyclization of candidate NPs. This retrobiosynthetic analysis identified a collection of high-priority building blocks that are enriched throughout peptide NPs, yet they had not previously been tested in cell-free translation. To expand the cell-free toolbox into this space, we established, optimized, and characterized the flexizyme-enabled ribosomal incorporation of piperazic acids. Overall, these results demonstrate the feasibility of cell-free translation for peptide NP total synthesis while expanding the limits of the technology. This work provides a novel computational tool for exploration of peptide NP chemical space, that could be expanded in the future to allow design of ribosomal biosynthetic pathways for NPs and NP-like molecules.
Collapse
Affiliation(s)
- Jarrett M. Pelton
- Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Joshua E. Hochuli
- Curriculum in Bioinformatics and Computational Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Patric W. Sadecki
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Takayuki Katoh
- Department of Chemistry, Graduate School of Science, The University of Tokyo, Tokyo, 113-0033, Japan
| | - Hiroaki Suga
- Department of Chemistry, Graduate School of Science, The University of Tokyo, Tokyo, 113-0033, Japan
| | - Leslie M. Hicks
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, NC, 27599, USA
| | - Eugene N. Muratov
- Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Alexander Tropsha
- Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Albert A. Bowers
- Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, NC, 27599, USA
| |
Collapse
|
13
|
Coller J, Ignatova Z. tRNA therapeutics for genetic diseases. Nat Rev Drug Discov 2024; 23:108-125. [PMID: 38049504 DOI: 10.1038/s41573-023-00829-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/11/2023] [Indexed: 12/06/2023]
Abstract
Transfer RNAs (tRNAs) have a crucial role in protein synthesis, and in recent years, their therapeutic potential for the treatment of genetic diseases - primarily those associated with a mutation altering mRNA translation - has gained significant attention. Engineering tRNAs to readthrough nonsense mutation-associated premature termination of mRNA translation can restore protein synthesis and function. In addition, supplementation of natural tRNAs can counteract effects of missense mutations in proteins crucial for tRNA biogenesis and function in translation. This Review will present advances in the development of tRNA therapeutics with high activity and safety in vivo and discuss different formulation approaches for single or chronic treatment modalities. The field of tRNA therapeutics is still in its early stages, and a series of challenges related to tRNA efficacy and stability in vivo, delivery systems with tissue-specific tropism, and safe and efficient manufacturing need to be addressed.
Collapse
Affiliation(s)
- Jeff Coller
- Department of Molecular Biology and Genetics, School of Medicine, Johns Hopkins University, Baltimore, MD, USA.
| | - Zoya Ignatova
- Institute of Biochemistry and Molecular Biology, University of Hamburg, Hamburg, Germany.
| |
Collapse
|
14
|
Kerestesy GN, Dods KK, McFeely CAL, Hartman MCT. Continuous Fluorescence Assay for In Vitro Translation Compatible with Noncanonical Amino Acids. ACS Synth Biol 2024; 13:119-128. [PMID: 38194520 PMCID: PMC11165968 DOI: 10.1021/acssynbio.3c00353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2024]
Abstract
The tolerance of the translation apparatus toward noncanonical amino acids (ncAAs) has enabled the creation of diverse natural-product-like peptide libraries using mRNA display for use in drug discovery. Typical experiments testing for ribosomal ncAA incorporation involve radioactive end point assays to measure yield alongside mass spectrometry experiments to validate incorporation. These end point assays require significant postexperimental manipulation for analysis and prevent higher throughput analysis and optimization experiments. Continuous assays for in vitro translation involve the synthesis of fluorescent proteins which require the full complement of canonical AAs for function and are therefore of limited utility for testing of ncAAs. Here, we describe a new, continuous fluorescence assay for in vitro translation based on detection of a short peptide tag using an affinity clamp protein, which exhibits changes in its fluorescent properties upon binding. Using this assay in a 384-well format, we were able to validate the incorporation of a variety of ncAAs and also quickly test for the codon reading specificities of a variety of Escherichia coli tRNAs. This assay enables rapid assessment of ncAAs and optimization of translation components and is therefore expected to advance the engineering of the translation apparatus for drug discovery and synthetic biology.
Collapse
Affiliation(s)
- Gianna N Kerestesy
- Chemistry, Virginia Commonwealth University, 1001 W Main Street, Richmond, 23220 Virginia, United States
- Massey Cancer Center, Virginia Commonwealth University, 401 College Street, Richmond, 23298-0037 Virginia, United States
| | - Kara K Dods
- Chemistry, Virginia Commonwealth University, 1001 W Main Street, Richmond, 23220 Virginia, United States
- Massey Cancer Center, Virginia Commonwealth University, 401 College Street, Richmond, 23298-0037 Virginia, United States
| | - Clinton A L McFeely
- Chemistry, Virginia Commonwealth University, 1001 W Main Street, Richmond, 23220 Virginia, United States
- Massey Cancer Center, Virginia Commonwealth University, 401 College Street, Richmond, 23298-0037 Virginia, United States
| | - Matthew C T Hartman
- Chemistry, Virginia Commonwealth University, 1001 W Main Street, Richmond, 23220 Virginia, United States
- Massey Cancer Center, Virginia Commonwealth University, 401 College Street, Richmond, 23298-0037 Virginia, United States
| |
Collapse
|
15
|
Dengler S, Howard RT, Morozov V, Tsiamantas C, Huang WE, Liu Z, Dobrzanski C, Pophristic V, Brameyer S, Douat C, Suga H, Huc I. Display Selection of a Hybrid Foldamer-Peptide Macrocycle. Angew Chem Int Ed Engl 2023; 62:e202308408. [PMID: 37707879 DOI: 10.1002/anie.202308408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 09/11/2023] [Accepted: 09/14/2023] [Indexed: 09/15/2023]
Abstract
Expanding the chemical diversity of peptide macrocycle libraries for display selection is desirable to improve their potential to bind biomolecular targets. We now have implemented a considerable expansion through a large aromatic helical foldamer inclusion. A foldamer was first identified that undergoes flexizyme-mediated tRNA acylation and that is capable of initiating ribosomal translation with yields sufficiently high to perform an mRNA display selection of macrocyclic foldamer-peptide hybrids. A hybrid macrocyclic nanomolar binder to the C-lobe of the E6AP HECT domain was selected that showed a highly converged peptide sequence. A crystal structure and molecular dynamics simulations revealed that both the peptide and foldamer are helical in an intriguing reciprocal stapling fashion. The strong residue convergence could be rationalized based on their involvement in specific interactions with the target protein. The foldamer stabilizes the peptide helix through stapling and through contacts with key residues. These results altogether represent a significant extension of the chemical space amenable to display selection and highlight possible benefits of inserting an aromatic foldamer into a peptide macrocycle for the purpose of protein recognition.
Collapse
Affiliation(s)
- Sebastian Dengler
- Department of Pharmacy and Center for Integrated Protein Science, Ludwig-Maximilians-Universität, Butenandtstr. 5-13, 81377, München, Germany
| | - Ryan T Howard
- Department of Pharmacy and Center for Integrated Protein Science, Ludwig-Maximilians-Universität, Butenandtstr. 5-13, 81377, München, Germany
| | - Vasily Morozov
- Department of Pharmacy and Center for Integrated Protein Science, Ludwig-Maximilians-Universität, Butenandtstr. 5-13, 81377, München, Germany
| | - Christos Tsiamantas
- Department of Chemistry, School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo, 113-0033, Tokyo, Japan
| | - Wei-En Huang
- Department of Chemistry, School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo, 113-0033, Tokyo, Japan
| | - Zhiwei Liu
- Department of Chemistry & Biochemistry, Rowan University, 201 Mullica Hill Road, 08028, Glassboro, New Jersey, USA
| | - Christopher Dobrzanski
- Department of Chemistry & Biochemistry, Rowan University, 201 Mullica Hill Road, 08028, Glassboro, New Jersey, USA
| | - Vojislava Pophristic
- Department of Chemistry & Biochemistry, Rowan University, 201 Mullica Hill Road, 08028, Glassboro, New Jersey, USA
| | - Sophie Brameyer
- Biozentrum, Microbiology, Ludwig-Maximilians-Universität, Großhaderner Str. 2-4, 82152, Martinsried, Germany
| | - Céline Douat
- Department of Pharmacy and Center for Integrated Protein Science, Ludwig-Maximilians-Universität, Butenandtstr. 5-13, 81377, München, Germany
| | - Hiroaki Suga
- Department of Chemistry, School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo, 113-0033, Tokyo, Japan
| | - Ivan Huc
- Department of Pharmacy and Center for Integrated Protein Science, Ludwig-Maximilians-Universität, Butenandtstr. 5-13, 81377, München, Germany
| |
Collapse
|
16
|
Daskalova SM, Dedkova LM, Maini R, Talukder P, Bai X, Chowdhury SR, Zhang C, Nangreave RC, Hecht SM. Elongation Factor P Modulates the Incorporation of Structurally Diverse Noncanonical Amino Acids into Escherichia coli Dihydrofolate Reductase. J Am Chem Soc 2023; 145:23600-23608. [PMID: 37871253 PMCID: PMC10762953 DOI: 10.1021/jacs.3c07524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
The introduction of noncanonical amino acids into proteins and peptides has been of great interest for many years and has facilitated the detailed study of peptide/protein structure and mechanism. In addition to numerous nonproteinogenic α-l-amino acids, bacterial ribosome modification has provided the wherewithal to enable the synthesis of peptides and proteins with a much greater range of structural diversity, as has the use of endogenous bacterial proteins in reconstituted protein synthesizing systems. In a recent report, elongation factor P (EF-P), putatively essential for enabling the incorporation of contiguous proline residues into proteins, was shown to facilitate the introduction of an N-methylated amino acid in addition to proline. This finding prompted us to investigate the properties of this protein factor with a broad variety of structurally diverse amino acid analogues using an optimized suppressor tRNAPro that we designed. While these analogues can generally be incorporated into proteins only in systems containing modified ribosomes specifically selected for their incorporation, we found that EF-P could significantly enhance their incorporation into model protein dihydrofolate reductase using wild-type ribosomes. Plausibly, the increased yields observed in the presence of structurally diverse amino acid analogues may result from the formation of a stabilized ribosomal complex in the presence of EF-P that provides more favorable conditions for peptide bond formation. This finding should enable the facile incorporation of a much broader structural variety of amino acid analogues into proteins and peptides using native ribosomes.
Collapse
Affiliation(s)
- Sasha M Daskalova
- Biodesign Center for Bioenergetics, and School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287, United States
| | - Larisa M Dedkova
- Biodesign Center for Bioenergetics, and School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287, United States
| | - Rumit Maini
- Biodesign Center for Bioenergetics, and School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287, United States
| | - Poulami Talukder
- Biodesign Center for Bioenergetics, and School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287, United States
| | - Xiaoguang Bai
- Biodesign Center for Bioenergetics, and School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287, United States
| | - Sandipan Roy Chowdhury
- Biodesign Center for Bioenergetics, and School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287, United States
| | - Chao Zhang
- Biodesign Center for Bioenergetics, and School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287, United States
| | - Ryan C Nangreave
- Biodesign Center for Bioenergetics, and School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287, United States
| | - Sidney M Hecht
- Biodesign Center for Bioenergetics, and School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287, United States
| |
Collapse
|
17
|
Jiang HK, Weng JH, Wang YH, Tsou JC, Chen PJ, Ko ALA, Söll D, Tsai MD, Wang YS. Rational design of the genetic code expansion toolkit for in vivo encoding of D-amino acids. Front Genet 2023; 14:1277489. [PMID: 37904728 PMCID: PMC10613524 DOI: 10.3389/fgene.2023.1277489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 09/18/2023] [Indexed: 11/01/2023] Open
Abstract
Once thought to be non-naturally occurring, D-amino acids (DAAs) have in recent years been revealed to play a wide range of physiological roles across the tree of life, including in human systems. Synthetic biologists have since exploited DAAs' unique biophysical properties to generate peptides and proteins with novel or enhanced functions. However, while peptides and small proteins containing DAAs can be efficiently prepared in vitro, producing large-sized heterochiral proteins poses as a major challenge mainly due to absence of pre-existing DAA translational machinery and presence of endogenous chiral discriminators. Based on our previous work demonstrating pyrrolysyl-tRNA synthetase's (PylRS') remarkable substrate polyspecificity, this work attempts to increase PylRS' ability in directly charging tRNAPyl with D-phenylalanine analogs (DFAs). We here report a novel, polyspecific Methanosarcina mazei PylRS mutant, DFRS2, capable of incorporating DFAs into proteins via ribosomal synthesis in vivo. To validate its utility, in vivo translational DAA substitution were performed in superfolder green fluorescent protein and human heavy chain ferritin, successfully altering both proteins' physiochemical properties. Furthermore, aminoacylation kinetic assays further demonstrated aminoacylation of DFAs by DFRS2 in vitro.
Collapse
Affiliation(s)
- Han-Kai Jiang
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan
- Taiwan International Graduate Program Chemical Biology and Molecular Biophysics, Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan
- Department of Chemistry, National Tsing Hua University, Hsinchu, Taiwan
| | - Jui-Hung Weng
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan
| | - Yi-Hui Wang
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan
- Institute of Biochemical Sciences, National Taiwan University, Taipei, Taiwan
| | - Jo-Chu Tsou
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan
| | - Pei-Jung Chen
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan
- Institute of Biochemical Sciences, National Taiwan University, Taipei, Taiwan
| | - An-Li Andrea Ko
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan
| | - Dieter Söll
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, United States
- Department of Chemistry, Yale University, New Haven, CT, United States
| | - Ming-Daw Tsai
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan
| | - Yane-Shih Wang
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan
- Taiwan International Graduate Program Chemical Biology and Molecular Biophysics, Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan
- Institute of Biochemical Sciences, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
18
|
Katoh T, Suga H. Translation initiation with exotic amino acids using EF-P-responsive artificial initiator tRNA. Nucleic Acids Res 2023; 51:8169-8180. [PMID: 37334856 PMCID: PMC10450175 DOI: 10.1093/nar/gkad496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 05/10/2023] [Accepted: 06/17/2023] [Indexed: 06/21/2023] Open
Abstract
Translation initiation using noncanonical initiator substrates with poor peptidyl donor activities, such as N-acetyl-l-proline (AcPro), induces the N-terminal drop-off-reinitiation event. Thereby, the initiator tRNA drops-off from the ribosome and the translation reinitiates from the second amino acid to yield a truncated peptide lacking the N-terminal initiator substrate. In order to suppress this event for the synthesis of full-length peptides, here we have devised a chimeric initiator tRNA, referred to as tRNAiniP, whose D-arm comprises a recognition motif for EF-P, an elongation factor that accelerates peptide bond formation. We have shown that the use of tRNAiniP and EF-P enhances the incorporation of not only AcPro but also d-amino, β-amino and γ-amino acids at the N-terminus. By optimizing the translation conditions, e.g. concentrations of translation factors, codon sequence and Shine-Dalgarno sequence, we could achieve complete suppression of the N-terminal drop-off-reinitiation for the exotic amino acids and enhance the expression level of full-length peptide up to 1000-fold compared with the use of the ordinary translation conditions.
Collapse
Affiliation(s)
- Takayuki Katoh
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Hiroaki Suga
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
19
|
Fricke R, Swenson CV, Roe LT, Hamlish NX, Shah B, Zhang Z, Ficaretta E, Ad O, Smaga S, Gee CL, Chatterjee A, Schepartz A. Expanding the substrate scope of pyrrolysyl-transfer RNA synthetase enzymes to include non-α-amino acids in vitro and in vivo. Nat Chem 2023; 15:960-971. [PMID: 37264106 PMCID: PMC10322718 DOI: 10.1038/s41557-023-01224-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 04/28/2023] [Indexed: 06/03/2023]
Abstract
The absence of orthogonal aminoacyl-transfer RNA (tRNA) synthetases that accept non-L-α-amino acids is a primary bottleneck hindering the in vivo translation of sequence-defined hetero-oligomers and biomaterials. Here we report that pyrrolysyl-tRNA synthetase (PylRS) and certain PylRS variants accept α-hydroxy, α-thio and N-formyl-L-α-amino acids, as well as α-carboxy acid monomers that are precursors to polyketide natural products. These monomers are accommodated and accepted by the translation apparatus in vitro; those with reactive nucleophiles are incorporated into proteins in vivo. High-resolution structural analysis of the complex formed between one PylRS enzyme and a m-substituted 2-benzylmalonic acid derivative revealed an active site that discriminates prochiral carboxylates and accommodates the large size and distinct electrostatics of an α-carboxy substituent. This work emphasizes the potential of PylRS-derived enzymes for acylating tRNA with monomers whose α-substituent diverges substantially from the α-amine of proteinogenic amino acids. These enzymes or derivatives thereof could synergize with natural or evolved ribosomes and/or translation factors to generate diverse sequence-defined non-protein heteropolymers.
Collapse
Affiliation(s)
- Riley Fricke
- Department of Chemistry, University of California, Berkeley, CA, USA
- Center for Genetically Encoded Materials, University of California, Berkeley, CA, USA
| | - Cameron V Swenson
- Department of Chemistry, University of California, Berkeley, CA, USA
- Center for Genetically Encoded Materials, University of California, Berkeley, CA, USA
| | - Leah Tang Roe
- Department of Chemistry, University of California, Berkeley, CA, USA
- Center for Genetically Encoded Materials, University of California, Berkeley, CA, USA
| | - Noah Xue Hamlish
- Center for Genetically Encoded Materials, University of California, Berkeley, CA, USA
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
| | - Bhavana Shah
- Process Development, Amgen, Thousand Oaks, CA, USA
| | | | - Elise Ficaretta
- Center for Genetically Encoded Materials, University of California, Berkeley, CA, USA
- Department of Chemistry, Boston College, Chestnut Hill, MA, USA
| | - Omer Ad
- Department of Chemistry, Yale University, New Haven, CT, USA
| | - Sarah Smaga
- Department of Chemistry, University of California, Berkeley, CA, USA
- Center for Genetically Encoded Materials, University of California, Berkeley, CA, USA
| | - Christine L Gee
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
- Howard Hughes Medical Institute, University of California, Berkeley, CA, USA
- California Institute for Quantitative Biosciences (QB3), University of California, Berkeley, CA, USA
| | - Abhishek Chatterjee
- Center for Genetically Encoded Materials, University of California, Berkeley, CA, USA
- Department of Chemistry, Boston College, Chestnut Hill, MA, USA
| | - Alanna Schepartz
- Department of Chemistry, University of California, Berkeley, CA, USA.
- Center for Genetically Encoded Materials, University of California, Berkeley, CA, USA.
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA.
- California Institute for Quantitative Biosciences (QB3), University of California, Berkeley, CA, USA.
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.
- Chan Zuckerberg Biohub-San Francisco, San Francisco, CA, USA.
| |
Collapse
|
20
|
Miura T, Malla TR, Owen CD, Tumber A, Brewitz L, McDonough MA, Salah E, Terasaka N, Katoh T, Lukacik P, Strain-Damerell C, Mikolajek H, Walsh MA, Kawamura A, Schofield CJ, Suga H. In vitro selection of macrocyclic peptide inhibitors containing cyclic γ 2,4-amino acids targeting the SARS-CoV-2 main protease. Nat Chem 2023; 15:998-1005. [PMID: 37217786 PMCID: PMC10322702 DOI: 10.1038/s41557-023-01205-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 04/14/2023] [Indexed: 05/24/2023]
Abstract
γ-Amino acids can play important roles in the biological activities of natural products; however, the ribosomal incorporation of γ-amino acids into peptides is challenging. Here we report how a selection campaign employing a non-canonical peptide library containing cyclic γ2,4-amino acids resulted in the discovery of very potent inhibitors of the SARS-CoV-2 main protease (Mpro). Two kinds of cyclic γ2,4-amino acids, cis-3-aminocyclobutane carboxylic acid (γ1) and (1R,3S)-3-aminocyclopentane carboxylic acid (γ2), were ribosomally introduced into a library of thioether-macrocyclic peptides. One resultant potent Mpro inhibitor (half-maximal inhibitory concentration = 50 nM), GM4, comprising 13 residues with γ1 at the fourth position, manifests a 5.2 nM dissociation constant. An Mpro:GM4 complex crystal structure reveals the intact inhibitor spans the substrate binding cleft. The γ1 interacts with the S1' catalytic subsite and contributes to a 12-fold increase in proteolytic stability compared to its alanine-substituted variant. Knowledge of interactions between GM4 and Mpro enabled production of a variant with a 5-fold increase in potency.
Collapse
Affiliation(s)
- Takashi Miura
- Department of Chemistry, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Tika R Malla
- Department of Chemistry and the Ineos Oxford Institute for Antimicrobial Research, Chemistry Research Laboratory, University of Oxford, Oxford, UK
| | - C David Owen
- Diamond Light Source, Harwell Science & Innovation Campus, Didcot, UK
- Research Complex at Harwell, Harwell Science & Innovation Campus, Didcot, UK
| | - Anthony Tumber
- Department of Chemistry and the Ineos Oxford Institute for Antimicrobial Research, Chemistry Research Laboratory, University of Oxford, Oxford, UK
| | - Lennart Brewitz
- Department of Chemistry and the Ineos Oxford Institute for Antimicrobial Research, Chemistry Research Laboratory, University of Oxford, Oxford, UK
| | - Michael A McDonough
- Department of Chemistry and the Ineos Oxford Institute for Antimicrobial Research, Chemistry Research Laboratory, University of Oxford, Oxford, UK
| | - Eidarus Salah
- Department of Chemistry and the Ineos Oxford Institute for Antimicrobial Research, Chemistry Research Laboratory, University of Oxford, Oxford, UK
| | - Naohiro Terasaka
- Department of Chemistry, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Takayuki Katoh
- Department of Chemistry, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Petra Lukacik
- Diamond Light Source, Harwell Science & Innovation Campus, Didcot, UK
- Research Complex at Harwell, Harwell Science & Innovation Campus, Didcot, UK
| | - Claire Strain-Damerell
- Diamond Light Source, Harwell Science & Innovation Campus, Didcot, UK
- Research Complex at Harwell, Harwell Science & Innovation Campus, Didcot, UK
| | - Halina Mikolajek
- Diamond Light Source, Harwell Science & Innovation Campus, Didcot, UK
- Research Complex at Harwell, Harwell Science & Innovation Campus, Didcot, UK
| | - Martin A Walsh
- Diamond Light Source, Harwell Science & Innovation Campus, Didcot, UK
- Research Complex at Harwell, Harwell Science & Innovation Campus, Didcot, UK
| | - Akane Kawamura
- Department of Chemistry and the Ineos Oxford Institute for Antimicrobial Research, Chemistry Research Laboratory, University of Oxford, Oxford, UK
- Chemistry - School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Christopher J Schofield
- Department of Chemistry and the Ineos Oxford Institute for Antimicrobial Research, Chemistry Research Laboratory, University of Oxford, Oxford, UK
| | - Hiroaki Suga
- Department of Chemistry, Graduate School of Science, The University of Tokyo, Tokyo, Japan.
| |
Collapse
|
21
|
Katoh T, Suga H. Ribosomal incorporation of negatively charged d-α- and N-methyl-l-α-amino acids enhanced by EF-Sep. Philos Trans R Soc Lond B Biol Sci 2023; 378:20220038. [PMID: 36633283 PMCID: PMC9835608 DOI: 10.1098/rstb.2022.0038] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Accepted: 08/10/2022] [Indexed: 01/13/2023] Open
Abstract
Ribosomal incorporation of d-α-amino acids (dAA) and N-methyl-l-α-amino acids (MeAA) with negatively charged sidechains, such as d-Asp, d-Glu, MeAsp and MeGlu, into nascent peptides is far more inefficient compared to those with neutral or positively charged ones. This is because of low binding affinity of their aminoacyl-transfer RNA (tRNA) to elongation factor-thermo unstable (EF-Tu), a translation factor responsible for accommodation of aminoacyl-tRNA onto ribosome. It is well known that EF-Tu binds to two parts of aminoacyl-tRNA, the amino acid moiety and the T-stem; however, the amino acid binding pocket of EF-Tu bearing Glu and Asp causes electric repulsion against the negatively charged amino acid charged on tRNA. To circumvent this issue, here we adopted two strategies: (i) use of an EF-Tu variant, called EF-Sep, in which the Glu216 and Asp217 residues in EF-Tu are substituted with Asn216 and Gly217, respectively; and (ii) reinforcement of the T-stem affinity using an artificially developed chimeric tRNA, tRNAPro1E2, whose T-stem is derived from Escherichia coli tRNAGlu that has high affinity to EF-Tu. Consequently, we could successfully enhance the incorporation efficiencies of d-Asp, d-Glu, MeAsp and MeGlu and demonstrated for the first time, to our knowledge, ribosomal synthesis of macrocyclic peptides containing multiple d-Asp or MeAsp. This article is part of the theme issue 'Reactivity and mechanism in chemical and synthetic biology'.
Collapse
Affiliation(s)
- Takayuki Katoh
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Hiroaki Suga
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
22
|
Chan AI, Sawant MS, Burdick DJ, Tom J, Song A, Cunningham CN. Evaluating Translational Efficiency of Noncanonical Amino Acids to Inform the Design of Druglike Peptide Libraries. ACS Chem Biol 2023; 18:81-90. [PMID: 36607609 PMCID: PMC9872084 DOI: 10.1021/acschembio.2c00712] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Advances in genetic code reprogramming have allowed the site-specific incorporation of noncanonical functionalities into polypeptides and proteins, providing access to wide swaths of chemical space via in vitro translation techniques like mRNA display. Prior efforts have established that the translation machinery can tolerate amino acids with modifications to both the peptide backbone and side chains, greatly broadening the chemical space that can be interrogated in ligand discovery efforts. However, existing methods for confirming the translation yield of new amino acid building blocks for these technologies necessitate multistep workups and, more importantly, are not relevant for measuring translation within the context of a combinatorial library consisting of multiple noncanonical amino acids. In this study, we developed a luminescence-based assay to rapidly assess the relative translation yield of any noncanonical amino acid in real time. Among the 59 amino acids tested here, we found that many translate with high efficiency, but translational yield is not necessarily correlated to whether the amino acid is proteinogenic or has high tRNA acylation efficiency. Interestingly, we found that single-template translation data can inform the library-scale translation yield and that shorter peptide libraries are more tolerant of lower-efficiency amino acid monomers. Together our data show that the luminescence-based assay described herein is an essential tool in evaluating new building blocks and codon table designs within mRNA display toward the goal of developing druglike peptide-based libraries for drug discovery campaigns.
Collapse
Affiliation(s)
- Alix I Chan
- Department
of Peptide Therapeutics, Genentech, South San Francisco, California 94080, United States
| | - Manali S. Sawant
- Department
of Peptide Therapeutics, Genentech, South San Francisco, California 94080, United States
| | - Daniel J. Burdick
- Department
of Discovery Chemistry, Genentech, South San Francisco, California 94080, United States
| | - Jeffrey Tom
- Department
of Peptide Therapeutics, Genentech, South San Francisco, California 94080, United States
| | - Aimin Song
- Department
of Peptide Therapeutics, Genentech, South San Francisco, California 94080, United States
| | - Christian N. Cunningham
- Department
of Peptide Therapeutics, Genentech, South San Francisco, California 94080, United States,
| |
Collapse
|
23
|
Goto Y, Suga H. Ribosomal Synthesis of Peptides Bearing Noncanonical Backbone Structures via Chemical Posttranslational Modifications. Methods Mol Biol 2023; 2670:255-266. [PMID: 37184709 DOI: 10.1007/978-1-0716-3214-7_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Noncanonical peptide backbone structures, such as heterocycles and non-α-amino acids, are characteristic building blocks present in peptidic natural products. To achieve ribosomal synthesis of designer peptides bearing such noncanonical backbone structures, we have devised translation-compatible precursor residues and their chemical posttranslational modification processes. In this chapter, we describe the detailed procedures for the in vitro translation of peptides containing the precursor residues by means of genetic code reprogramming technology and posttranslational generation of objective noncanonical backbone structures.
Collapse
Affiliation(s)
- Yuki Goto
- Department of Chemistry, Graduate School of Science, The University of Tokyo, Tokyo, Japan.
| | - Hiroaki Suga
- Department of Chemistry, Graduate School of Science, The University of Tokyo, Tokyo, Japan.
| |
Collapse
|
24
|
Insights into the ribosome function from the structures of non-arrested ribosome-nascent chain complexes. Nat Chem 2023; 15:143-153. [PMID: 36316410 PMCID: PMC9840698 DOI: 10.1038/s41557-022-01073-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 09/23/2022] [Indexed: 12/24/2022]
Abstract
During protein synthesis, the growing polypeptide threads through the ribosomal exit tunnel and modulates ribosomal activity by itself or by sensing various small molecules, such as metabolites or antibiotics, appearing in the tunnel. While arrested ribosome-nascent chain complexes (RNCCs) have been extensively studied structurally, the lack of a simple procedure for the large-scale preparation of peptidyl-tRNAs, intermediates in polypeptide synthesis that carry the growing chain, means that little attention has been given to RNCCs representing functionally active states of the ribosome. Here we report the facile synthesis of stably linked peptidyl-tRNAs through a chemoenzymatic approach based on native chemical ligation and use them to determine several structures of RNCCs in the functional pre-attack state of the peptidyl transferase centre. These structures reveal that C-terminal parts of the growing peptides adopt the same uniform β-strand conformation stabilized by an intricate network of hydrogen bonds with the universally conserved 23S rRNA nucleotides, and explain how the ribosome synthesizes growing peptides containing various sequences with comparable efficiencies.
Collapse
|
25
|
Lee J, Coronado JN, Cho N, Lim J, Hosford BM, Seo S, Kim DS, Kofman C, Moore JS, Ellington AD, Anslyn EV, Jewett MC. Ribosome-mediated biosynthesis of pyridazinone oligomers in vitro. Nat Commun 2022; 13:6322. [PMID: 36280685 PMCID: PMC9592601 DOI: 10.1038/s41467-022-33701-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Accepted: 09/28/2022] [Indexed: 12/25/2022] Open
Abstract
The ribosome is a macromolecular machine that catalyzes the sequence-defined polymerization of L-α-amino acids into polypeptides. The catalysis of peptide bond formation between amino acid substrates is based on entropy trapping, wherein the adjacency of transfer RNA (tRNA)-coupled acyl bonds in the P-site and the α-amino groups in the A-site aligns the substrates for coupling. The plasticity of this catalytic mechanism has been observed in both remnants of the evolution of the genetic code and modern efforts to reprogram the genetic code (e.g., ribosomal incorporation of non-canonical amino acids, ribosomal ester formation). However, the limits of ribosome-mediated polymerization are underexplored. Here, rather than peptide bonds, we demonstrate ribosome-mediated polymerization of pyridazinone bonds via a cyclocondensation reaction between activated γ-keto and α-hydrazino ester monomers. In addition, we demonstrate the ribosome-catalyzed synthesis of peptide-hybrid oligomers composed of multiple sequence-defined alternating pyridazinone linkages. Our results highlight the plasticity of the ribosome's ancient bond-formation mechanism, expand the range of non-canonical polymeric backbones that can be synthesized by the ribosome, and open the door to new applications in synthetic biology.
Collapse
Affiliation(s)
- Joongoo Lee
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL, 60208, USA.
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea.
| | - Jaime N Coronado
- Department of Chemistry, University of Texas at Austin, Austin, TX, 78712, USA
| | - Namjin Cho
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Jongdoo Lim
- Department of Chemistry, University of Texas at Austin, Austin, TX, 78712, USA
| | - Brandon M Hosford
- Department of Chemistry, University of Texas at Austin, Austin, TX, 78712, USA
| | - Sangwon Seo
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon, 34141, Republic of Korea
| | - Do Soon Kim
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL, 60208, USA
| | - Camila Kofman
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL, 60208, USA
| | - Jeffrey S Moore
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Andrew D Ellington
- Department of Chemistry and Biochemistry, Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, TX, 78712, USA
| | - Eric V Anslyn
- Department of Chemistry, University of Texas at Austin, Austin, TX, 78712, USA.
| | - Michael C Jewett
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL, 60208, USA.
- Interdisplinary Biological Sciences Graduate Program, Evanston, IL, 60208, USA.
- Chemistry of Life Processes Institute, Evanston, IL, 60208, USA.
- Robert H. Lurie Comprehensive Cancer Center, Evanston, IL, 60208, USA.
- Simpson Querrey Institute, Evanston, IL, 60208, USA.
- Center for Synthetic Biology, Northwestern University and Biological Engineering, 2145 Sheridan Road, Evanston, IL, 60208, USA.
| |
Collapse
|
26
|
Wakabayashi R, Kawai M, Katoh T, Suga H. In Vitro Selection of Macrocyclic α/β 3-Peptides against Human EGFR. J Am Chem Soc 2022; 144:18504-18510. [PMID: 36173923 PMCID: PMC9563295 DOI: 10.1021/jacs.2c07624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Indexed: 11/30/2022]
Abstract
Here, we report ribosomal construction of thioether-macrocyclic α/β3-peptide libraries in which β-homoglycine, β-homoalanine, β-homophenylglycine, and β-homoglutamine are introduced by genetic code reprogramming. The libraries were applied to the RaPID (Random nonstandard Peptides Integrated Discovery) selection against human EGFR to obtain PPI (protein-protein interaction) inhibitors. The resulting peptides contained up to five β3-amino acid (β3AA) residues and exhibited outstanding binding affinity, PPI inhibitory activity, and proteolytic stability, which were attributed to the β3AAs included in the peptides. This showcase work has demonstrated that the use of such β3AAs enhances the drug-like properties of peptides, providing a unique platform for the discovery of de novo macrocycles against a protein of interest.
Collapse
Affiliation(s)
- Risa Wakabayashi
- Department of Chemistry,
Graduate School of Science, The University
of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Marina Kawai
- Department of Chemistry,
Graduate School of Science, The University
of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Takayuki Katoh
- Department of Chemistry,
Graduate School of Science, The University
of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Hiroaki Suga
- Department of Chemistry,
Graduate School of Science, The University
of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
27
|
Katoh T, Suga H. In Vitro Genetic Code Reprogramming for the Expansion of Usable Noncanonical Amino Acids. Annu Rev Biochem 2022; 91:221-243. [PMID: 35729073 DOI: 10.1146/annurev-biochem-040320-103817] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Genetic code reprogramming has enabled us to ribosomally incorporate various nonproteinogenic amino acids (npAAs) into peptides in vitro. The repertoire of usable npAAs has been expanded to include not only l-α-amino acids with noncanonical sidechains but also those with noncanonical backbones. Despite successful single incorporation of npAAs, multiple and consecutive incorporations often suffer from low efficiency or are even unsuccessful. To overcome this stumbling block, engineering approaches have been used to modify ribosomes, EF-Tu, and tRNAs. Here, we provide an overview of these in vitro methods that are aimed at optimal expansion of the npAA repertoire and their applications for the development of de novo bioactive peptides containing various npAAs.
Collapse
Affiliation(s)
- Takayuki Katoh
- Department of Chemistry, Graduate School of Science, The University of Tokyo, Tokyo, Japan; ,
| | - Hiroaki Suga
- Department of Chemistry, Graduate School of Science, The University of Tokyo, Tokyo, Japan; ,
| |
Collapse
|
28
|
Shakya B, Joyner OG, Hartman MCT. Hyperaccurate Ribosomes for Improved Genetic Code Reprogramming. ACS Synth Biol 2022; 11:2193-2201. [PMID: 35549158 PMCID: PMC10100576 DOI: 10.1021/acssynbio.2c00150] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The reprogramming of the genetic code through the introduction of noncanonical amino acids (ncAAs) has enabled exciting advances in synthetic biology and peptide drug discovery. Ribosomes that function with high efficiency and fidelity are necessary for all of these efforts, but for challenging ncAAs, the competing processes of near-cognate readthrough and peptidyl-tRNA dropoff can be issues. Here we uncover the surprising extent of these competing pathways in the PURE translation system using mRNAs encoding peptides with affinity tags at the N- and C-termini. We also show that hyperaccurate or error restrictive ribosomes with mutations in ribosomal protein S12 lead to significant improvements in yield and fidelity in the context of both canonical AAs and a challenging α,α-disubstituted ncAA. Hyperaccurate ribosomes also improve yields for quadruplet codon readthrough for a tRNA containing an expanded anticodon stem-loop, although they are not able to eliminate triplet codon reading by this tRNA. The impressive improvements in fidelity and the simplicity of introducing this mutation alongside other efforts to engineer the translation apparatus make hyperaccurate ribosomes an important advance for synthetic biology.
Collapse
Affiliation(s)
- Bipasana Shakya
- Department of Chemistry, Virginia Commonwealth University, Richmond, Virginia 23220, United States
- Massey Cancer Center, Virginia Commonwealth University, Richmond, Virginia 23220, United States
| | - Olivia G. Joyner
- Department of Chemistry, Virginia Commonwealth University, Richmond, Virginia 23220, United States
- Massey Cancer Center, Virginia Commonwealth University, Richmond, Virginia 23220, United States
| | - Matthew C. T. Hartman
- Department of Chemistry, Virginia Commonwealth University, Richmond, Virginia 23220, United States
- Massey Cancer Center, Virginia Commonwealth University, Richmond, Virginia 23220, United States
| |
Collapse
|
29
|
Katoh T, Suga H. In Vitro Selection of Foldamer-Like Macrocyclic Peptides Containing 2-Aminobenzoic Acid and 3-Aminothiophene-2-Carboxylic Acid. J Am Chem Soc 2022; 144:2069-2072. [PMID: 35099961 DOI: 10.1021/jacs.1c12133] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Aromatic cyclic β2,3-amino acids (cβAAs), such as 2-aminobenzoic acid and 3-aminothiophene-2-carboxylic acid, are building blocks that can induce unique folding propensities of peptides. Although their ribosomal elongation had been a formidable task due to the low nucleophilicity of their amino groups, we have recently overcome this issue by means of an engineered tRNAPro1E2 that enhances their incorporation efficiency into nascent peptide chains. Here we report ribosomal synthesis of a random macrocyclic peptide library containing aromatic and aliphatic cβAAs, and its application to de novo discovery of binders against human IFNGR1 and FXIIa as model targets. The potent binding peptides showed not only high inhibitory activity but also high protease resistance in human serum. Moreover, these cβAAs play a critical role in exhibiting their properties, establishing a discovery platform for de novo foldamer-like macrocycles containing such unique building blocks.
Collapse
Affiliation(s)
- Takayuki Katoh
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Hiroaki Suga
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
30
|
McDonnell CM, Ghanim M, Mike Southern J, Kelly VP, Connon SJ. De-novo designed β-lysine derivatives can both augment and diminish the proliferation rates of E. coli through the action of Elongation Factor P. Bioorg Med Chem Lett 2022; 59:128545. [PMID: 35032607 DOI: 10.1016/j.bmcl.2022.128545] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 01/06/2022] [Accepted: 01/09/2022] [Indexed: 12/20/2022]
Abstract
An investigation into the effect of modified β -lysines on the growth rates of eubacterial cells is reported. It is shown that the effects observed are due to the post translational modification of Elongation Factor P (EFP) with these compounds catalysed by PoxA. PoxA was found to be remarkably promiscuous, which allowed the activity of a wide range of exogenous β -lysines to be examined. Two chain-elongated β -lysine derivatives which differ in aminoalkyl chain length by only 2 carbon units exhibited opposing biological activities - one promoting growth and the other retarding it. Both compounds were shown to operate through modification of EFP.
Collapse
Affiliation(s)
- Ciara M McDonnell
- School of Chemistry, Trinity Biomedical Sciences Institute, Trinity College Dublin 152-160 Pearse Street, Dublin 2, Ireland
| | - Magda Ghanim
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin 152-160 Pearse Street, Dublin 2, Ireland
| | - J Mike Southern
- School of Chemistry, Trinity Biomedical Sciences Institute, Trinity College Dublin 152-160 Pearse Street, Dublin 2, Ireland.
| | - Vincent P Kelly
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin 152-160 Pearse Street, Dublin 2, Ireland.
| | - Stephen J Connon
- School of Chemistry, Trinity Biomedical Sciences Institute, Trinity College Dublin 152-160 Pearse Street, Dublin 2, Ireland.
| |
Collapse
|
31
|
Nagano M, Ishida S, Suga H. Inner residues of macrothiolactone in autoinducer peptides-I/IV circumvents S-to-O acyl transfer to the upstream serine residue. RSC Chem Biol 2022; 3:295-300. [PMID: 35359496 PMCID: PMC8905530 DOI: 10.1039/d1cb00225b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 01/23/2022] [Indexed: 11/21/2022] Open
Abstract
Autoinducing peptides I and IV (AIP-I/IV) are naturally occurring cyclic thiodepsipeptides (CTPs) bearing a Ser–Thr–Cys–Asp/Tyr (STC[D/Y]) tetrapeptide motif, where the Cys thiol (HSC) in the side-chain is linked to the Met C-terminal carboxylic acid (MCOOH) to form 5-residue macrothiolactones,−SC(D/Y)FIMCO−. We have recently reported that CTPs containing SX1CX2 motifs spontaneously undergo macrolactonization to yield cyclic depsipeptides (CDPs) by an unprecedented rapid S-to-O acyl transfer to the upstream Ser hydroxyl group. Interestingly, even though the STC[D/Y] motif in AIP-I/IV is a member of the SX1CX2 motif family, it maintains the CTP form. This suggests that AIP-I/IV have a structural or chemical motive for avoiding such an S-to-O acyl transfer, thus retaining the CTP form intact. Here we have used genetic code reprogramming to ribosomally synthesize various AIP-I analogs and studied what the determinant is to control the formation of CTP vs. CDP products. The study revealed that a Gly substitution of the inner Asp/Tyr or Met residues in the thiolactone drastically alters the resistance to the promotion of the S-to-O acyl transfer, giving the corresponding CDP product. This suggests that the steric hindrances originating from the α-substituted sidechain in these two amino acids in the AIP-I/IV thiolactone likely play a critical role in controlling the resistance against macrolactone rearrangement to the upstream Ser residue. In AIP-I/IV, single Gly mutation at the thiolactone induces S-to-O acyl shift to yield a corresponding ring-expanded lactone form.![]()
Collapse
Affiliation(s)
- Masanobu Nagano
- Graduate School of Science, The University of Tokyo 113-0033 Japan
| | - Satoshi Ishida
- Graduate School of Science, The University of Tokyo 113-0033 Japan
| | - Hiroaki Suga
- Graduate School of Science, The University of Tokyo 113-0033 Japan
| |
Collapse
|
32
|
Katoh T, Suga H. Consecutive Ribosomal Incorporation of α-Aminoxy/α-Hydrazino Acids with l/d-Configurations into Nascent Peptide Chains. J Am Chem Soc 2021; 143:18844-18848. [PMID: 34731572 DOI: 10.1021/jacs.1c09270] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
α-Aminoxy and α-hydrazino acids are β-amino acid analogs with β-carbons replaced by oxygen and nitrogen, respectively. Such heteroatoms dictate the folding of peptides into specific secondary structures called pseudo-γ-turns. Achiral α-aminoxyacetic acid (NOGly) and l-α-hydrazinophenylalanine (l-NNPhe) have been shown to be suitable for single incorporation during ribosomal translation, but whether ribosomes tolerate other types of α-aminoxy/α-hydrazino acids with l/d-configurations is unknown. Moreover, whether multiple or consecutive incorporations are possible remains unclear. We show, for the first time, multiple and consecutive incorporations of α-aminoxy/α-hydrazino acids with l/d-configurations into various model peptides, including macrocyclic peptide scaffolds.
Collapse
Affiliation(s)
- Takayuki Katoh
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Hiroaki Suga
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
33
|
In Vitro Selection of Thioether-Closed Macrocyclic Peptide Ligands by Means of the RaPID System. Methods Mol Biol 2021. [PMID: 34596852 DOI: 10.1007/978-1-0716-1689-5_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
The Random nonstandard Peptides Integrated Discovery (RaPID) system enables efficient screening of macrocyclic peptides with high affinities against target molecules. Random peptide libraries are prepared by in vitro translation using the Flexible In vitro Translation (FIT) system, which allows for incorporation of diverse nonproteinogenic amino acids into peptides by genetic code reprogramming. By introducing an N-chloroacetyl amino acid at the N-terminus and a Cys at the downstream, macrocyclic peptide libraries can be readily generated via posttranslational thioether formation. Here, we describe how to prepare a thioether-closed macrocyclic peptide library, and its application to the RaPID screening.
Collapse
|
34
|
Goto Y, Suga H. The RaPID Platform for the Discovery of Pseudo-Natural Macrocyclic Peptides. Acc Chem Res 2021; 54:3604-3617. [PMID: 34505781 DOI: 10.1021/acs.accounts.1c00391] [Citation(s) in RCA: 75] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Although macrocyclic peptides bearing exotic building blocks have proven their utility as pharmaceuticals, the sources of macrocyclic peptide drugs have been largely limited to mimetics of native peptides or natural product peptides. However, the recent emergence of technologies for discovering de novo bioactive peptides has led to their reconceptualization as a promising therapeutic modality. For the construction and screening of libraries of such macrocyclic peptides, our group has devised a platform to conduct affinity-based selection of massive libraries (>1012 unique sequences) of in vitro expressed macrocyclic peptides, which is referred to as the random nonstandard peptides integrated discovery (RaPID) system. The RaPID system integrates genetic code reprogramming using the FIT (flexible in vitro translation) system, which is largely facilitated by flexizymes (flexible tRNA-aminoacylating ribozymes), with mRNA display technology.We have demonstrated that the RaPID system enables rapid discovery of various de novo pseudo-natural peptide ligands for protein targets of interest. Many examples discussed in this Account prove that thioether-closed macrocyclic peptides (teMPs) obtained by the RaPID system generally exhibit remarkably high affinity and specificity, thereby potently inhibiting or activating a specific function(s) of the target. Moreover, such teMPs are used for a wide range of biochemical applications, for example, as crystallization chaperones for intractable transmembrane proteins and for in vivo recognition of specific cell types. Furthermore, recent studies demonstrate that some teMPs exhibit pharmacological activities in animal models and that even intracellular proteins can be inhibited by teMPs, illustrating the potential of this class of peptides as drug leads.Besides the ring-closing thioether linkage in the teMPs, genetic code reprogramming by the FIT system allows for incorporation of a variety of other exotic building blocks. For instance, diverse nonproteinogenic amino acids, hydroxy acids (ester linkage), amino carbothioic acid (thioamide linkage), and abiotic foldamer units have been successfully incorporated into ribosomally synthesized peptides. Despite such enormous successes in the conventional FIT system, multiple or consecutive incorporation of highly exotic amino acids, such as d- and β-amino acids, is yet challenging, and particularly the synthesis of peptides bearing non-carbonyl backbone structures remains a demanding task. To upgrade the RaPID system to the next generation, we have engaged in intensive manipulation of the FIT system to expand the structural diversity of peptides accessible by our in vitro biosynthesis strategy. Semilogical engineering of tRNA body sequences led to a new suppressor tRNA (tRNAPro1E2) capable of effectively recruiting translation factors, particularly EF-Tu and EF-P. The use of tRNAPro1E2 in the FIT system allows for not only single but also consecutive and multiple elongation of exotic amino acids, such as d-, β-, and γ-amino acids as well as aminobenzoic acids. Moreover, the integration of the FIT system with various chemical or enzymatic posttranslational modifications enables us to expand the range of accessible backbone structures to non-carbonyl moieties prominent in natural products and peptidomimetics. In such systems, FIT-expressed peptides undergo multistep backbone conversions in a one-pot manner to yield designer peptides composed of modified backbones such as azolines, azoles, and ring-closing pyridines. Our current research endeavors focus on applying such in vitro biosynthesis systems for the discovery of bioactive de novo pseudo-natural products.
Collapse
Affiliation(s)
- Yuki Goto
- Department of Chemistry, Graduate School of Science, The University of Tokyo, Bunkyo, Tokyo 113-0033, Japan
| | - Hiroaki Suga
- Department of Chemistry, Graduate School of Science, The University of Tokyo, Bunkyo, Tokyo 113-0033, Japan
| |
Collapse
|
35
|
Adaligil E, Song A, Cunningham CN, Fairbrother WJ. Ribosomal Synthesis of Macrocyclic Peptides with Linear γ 4- and β-Hydroxy-γ 4-amino Acids. ACS Chem Biol 2021; 16:1325-1331. [PMID: 34270222 DOI: 10.1021/acschembio.1c00292] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Herein, we report the ribosomal elongation of linear γ4- and β-hydroxy-γ4-amino acids (statines) to expand the nonproteinogenic amino acid repertoire of natural product-like combinatorial peptide libraries. First, we demonstrated the successful ribosomal incorporation of four linear γ4-amino acids (γ4Gly, (S)-γ4Ala, (S)-γ4Nva, and (R)-γ4Leu) into a 10-mer macrocyclic peptide scaffold. Given the promising effects reported for statines on the cell permeability of macrocyclic peptides, we also designed and tested the ribosomal incorporation of six statines derived from Ala and d-val. Four Ala-derived statines were successfully incorporated into peptides, and γ4SAla3R-OH (GP2) showed a similar efficiency of incorporation to that of (S)-β2hAla and l-Ala. These new building blocks might confer the important pharmacological properties of protease resistance and membrane permeability to macrocyclic peptides and expand the diversity of future combinatorial peptide libraries that can be translated by the ribosome.
Collapse
Affiliation(s)
- Emel Adaligil
- Department of Early Discovery Biochemistry, Genentech, 1 DNA Way, South San Francisco, 94080 California, United States
| | - Aimin Song
- Department of Early Discovery Biochemistry, Genentech, 1 DNA Way, South San Francisco, 94080 California, United States
| | - Christian N. Cunningham
- Department of Early Discovery Biochemistry, Genentech, 1 DNA Way, South San Francisco, 94080 California, United States
| | - Wayne J. Fairbrother
- Department of Early Discovery Biochemistry, Genentech, 1 DNA Way, South San Francisco, 94080 California, United States
| |
Collapse
|
36
|
Incorporation of backbone modifications in mRNA-displayable peptides. Methods Enzymol 2021; 656:521-544. [PMID: 34325797 DOI: 10.1016/bs.mie.2021.05.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Here we comprehensively summarize the most recent efforts in our research team, aiming at installing N-methyl and azole backbones into peptides expressed in translation. The genetic code reprogramming using the Flexible In-vitro Translation system (FIT system) has proven to be the most reliable and versatile approach for ribosomally installing various exotic amino acids. However, it had been yet difficult in translating diverse kinds of multiple and consecutive sequences of N-methyl amino acids (MeAAs). We have recently reported that a semi-rational fine tuning of MeAA-tRNA affinities for EF-Tu by altering tRNA T-stem sequence achieves efficient delivery of MeAA-tRNAs to the ribosome. Indeed, this approach has made it possible to express N-methyl-peptides containing multiple MeAAs with a remarkably high fidelity. Another interesting backbone modification in peptides is azole moieties often found in natural products, but they are explicitly installed by post-translational modifying enzymes. We have recently devised a method to bypass such enzymatic processes where a bromovinyl group-containing amino acid is incorporated into the peptide by genetic code reprogramming and then chemically converted to an azole group via an intramolecular heterocyclization reaction. These methods will grant more drug-like properties to peptides than ordinary peptides in terms of protease resistance and cell membrane permeability. Particularly when they can be integrated with in vitro mRNA display, such as the RaPID system, the discovery of de novo bioactive peptides can be realized.
Collapse
|
37
|
Abstract
Over the past decade, harnessing the cellular protein synthesis machinery to incorporate non-canonical amino acids (ncAAs) into tailor-made peptides has significantly advanced many aspects of molecular science. More recently, groundbreaking progress in our ability to engineer this machinery for improved ncAA incorporation has led to significant enhancements of this powerful tool for biology and chemistry. By revealing the molecular basis for the poor or improved incorporation of ncAAs, mechanistic studies of ncAA incorporation by the protein synthesis machinery have tremendous potential for informing and directing such engineering efforts. In this chapter, we describe a set of complementary biochemical and single-molecule fluorescence assays that we have adapted for mechanistic studies of ncAA incorporation. Collectively, these assays provide data that can guide engineering of the protein synthesis machinery to expand the range of ncAAs that can be incorporated into peptides and increase the efficiency with which they can be incorporated, thereby enabling the full potential of ncAA mutagenesis technology to be realized.
Collapse
|
38
|
Albers S, Beckert B, Matthies MC, Mandava CS, Schuster R, Seuring C, Riedner M, Sanyal S, Torda AE, Wilson DN, Ignatova Z. Repurposing tRNAs for nonsense suppression. Nat Commun 2021; 12:3850. [PMID: 34158503 PMCID: PMC8219837 DOI: 10.1038/s41467-021-24076-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 06/01/2021] [Indexed: 02/06/2023] Open
Abstract
Three stop codons (UAA, UAG and UGA) terminate protein synthesis and are almost exclusively recognized by release factors. Here, we design de novo transfer RNAs (tRNAs) that efficiently decode UGA stop codons in Escherichia coli. The tRNA designs harness various functionally conserved aspects of sense-codon decoding tRNAs. Optimization within the TΨC-stem to stabilize binding to the elongation factor, displays the most potent effect in enhancing suppression activity. We determine the structure of the ribosome in a complex with the designed tRNA bound to a UGA stop codon in the A site at 2.9 Å resolution. In the context of the suppressor tRNA, the conformation of the UGA codon resembles that of a sense-codon rather than when canonical translation termination release factors are bound, suggesting conformational flexibility of the stop codons dependent on the nature of the A-site ligand. The systematic analysis, combined with structural insights, provides a rationale for targeted repurposing of tRNAs to correct devastating nonsense mutations that introduce a premature stop codon.
Collapse
Affiliation(s)
- Suki Albers
- grid.9026.d0000 0001 2287 2617Institute of Biochemistry and Molecular Biology, University of Hamburg, Hamburg, Germany
| | - Bertrand Beckert
- grid.9026.d0000 0001 2287 2617Institute of Biochemistry and Molecular Biology, University of Hamburg, Hamburg, Germany
| | - Marco C. Matthies
- grid.9026.d0000 0001 2287 2617Center for Bioinformatics, University of Hamburg, Hamburg, Germany
| | - Chandra Sekhar Mandava
- grid.8993.b0000 0004 1936 9457Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden
| | - Raphael Schuster
- grid.9026.d0000 0001 2287 2617Institute of Organic Chemistry, University of Hamburg, Hamburg, Germany
| | | | - Maria Riedner
- grid.9026.d0000 0001 2287 2617Institute of Organic Chemistry, University of Hamburg, Hamburg, Germany
| | - Suparna Sanyal
- grid.8993.b0000 0004 1936 9457Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden
| | - Andrew E. Torda
- grid.9026.d0000 0001 2287 2617Center for Bioinformatics, University of Hamburg, Hamburg, Germany
| | - Daniel N. Wilson
- grid.9026.d0000 0001 2287 2617Institute of Biochemistry and Molecular Biology, University of Hamburg, Hamburg, Germany
| | - Zoya Ignatova
- grid.9026.d0000 0001 2287 2617Institute of Biochemistry and Molecular Biology, University of Hamburg, Hamburg, Germany
| |
Collapse
|
39
|
Adaligil E, Song A, Hallenbeck KK, Cunningham CN, Fairbrother WJ. Ribosomal Synthesis of Macrocyclic Peptides with β 2- and β 2,3-Homo-Amino Acids for the Development of Natural Product-Like Combinatorial Libraries. ACS Chem Biol 2021; 16:1011-1018. [PMID: 34008946 DOI: 10.1021/acschembio.1c00062] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The development of large, natural-product-like, combinatorial macrocyclic peptide libraries is essential in the quest to develop therapeutics for "undruggable" cellular targets. Herein we report the ribosomal synthesis of macrocyclic peptides containing one or more β2-homo-amino acids (β2haa) to enable their incorporation into mRNA display-based selection libraries. We confirmed the compatibility of 14 β2-homo-amino acids, (S)- and (R)-stereochemistry, for single incorporation into a macrocyclic peptide with low to high translation efficiency. Interestingly, N-methylation of the backbone amide of β2haa prevented the incorporation of this amino acid subclass by the ribosome. Additionally, we designed and incorporated several α,β-disubstituted β2,3-homo-amino acids (β2,3haa) with different R-groups on the α- and β-carbons of the same amino acid. Incorporation of these β2,3haa enables increased diversity in a single position of a macrocyclic peptide without significantly increasing the overall molecular weight, which is an important consideration for passive cell permeability. We also successfully incorporated multiple (S)-β2hAla into a single macrocycle with other non-proteinogenic amino acids, confirming that this class of β-amino acid is suitable for development of large scale macrocyclic peptide libraries.
Collapse
Affiliation(s)
- Emel Adaligil
- Department of Early Discovery Biochemistry, Genentech, 1 DNA Way, South San Francisco, California 94080, United States
| | - Aimin Song
- Department of Early Discovery Biochemistry, Genentech, 1 DNA Way, South San Francisco, California 94080, United States
| | - Kenneth K. Hallenbeck
- Department of Early Discovery Biochemistry, Genentech, 1 DNA Way, South San Francisco, California 94080, United States
| | - Christian N. Cunningham
- Department of Early Discovery Biochemistry, Genentech, 1 DNA Way, South San Francisco, California 94080, United States
| | - Wayne J. Fairbrother
- Department of Early Discovery Biochemistry, Genentech, 1 DNA Way, South San Francisco, California 94080, United States
| |
Collapse
|
40
|
Iwane Y, Kimura H, Katoh T, Suga H. Uniform affinity-tuning of N-methyl-aminoacyl-tRNAs to EF-Tu enhances their multiple incorporation. Nucleic Acids Res 2021; 49:10807-10817. [PMID: 33997906 PMCID: PMC8565323 DOI: 10.1093/nar/gkab288] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Revised: 04/05/2021] [Accepted: 05/12/2021] [Indexed: 01/13/2023] Open
Abstract
In ribosomal translation, the accommodation of aminoacyl-tRNAs into the ribosome is mediated by elongation factor thermo unstable (EF-Tu). The structures of proteinogenic aminoacyl-tRNAs (pAA-tRNAs) are fine-tuned to have uniform binding affinities to EF-Tu in order that all proteinogenic amino acids can be incorporated into the nascent peptide chain with similar efficiencies. Although genetic code reprogramming has enabled the incorporation of non-proteinogenic amino acids (npAAs) into the nascent peptide chain, the incorporation of some npAAs, such as N-methyl-amino acids (MeAAs), is less efficient, especially when MeAAs frequently and/or consecutively appear in a peptide sequence. Such poor incorporation efficiencies can be attributed to inadequate affinities of MeAA-tRNAs to EF-Tu. Taking advantage of flexizymes, here we have experimentally verified that the affinities of MeAA-tRNAs to EF-Tu are indeed weaker than those of pAA-tRNAs. Since the T-stem of tRNA plays a major role in interacting with EF-Tu, we have engineered the T-stem sequence to tune the affinity of MeAA-tRNAs to EF-Tu. The uniform affinity-tuning of the individual pairs has successfully enhanced the incorporation of MeAAs, achieving the incorporation of nine distinct MeAAs into both linear and thioether-macrocyclic peptide scaffolds.
Collapse
Affiliation(s)
- Yoshihiko Iwane
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Hiroyuki Kimura
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Takayuki Katoh
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Hiroaki Suga
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
41
|
Imanishi S, Katoh T, Yin Y, Yamada M, Kawai M, Suga H. In Vitro Selection of Macrocyclic d/l-Hybrid Peptides against Human EGFR. J Am Chem Soc 2021; 143:5680-5684. [PMID: 33822597 DOI: 10.1021/jacs.1c02593] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
d/l-Hybrid peptides are an attractive class of molecular modality because they are able to exhibit high proteolytic stability and unique structural diversity which cannot be accessed by those consisting of only proteinogenic l-amino acids. Despite such an expectation, it has not been possible to devise de novo d/l-hybrid peptides capable of disrupting the function of a protein target(s) due to the lack of an effective method that reliably constructs a highly diverse library and screens active species. Here we report for the first time construction of a library consisting of 1012 members of macrocyclic d/l-hybrid peptides containing five kinds of d-amino acids and performance of the RaPID selection against human EGFR as a showcase to uncover PPI (protein-protein interaction) inhibitors.
Collapse
Affiliation(s)
- Sayaka Imanishi
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Takayuki Katoh
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Yizhen Yin
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Mituhiro Yamada
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Marina Kawai
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Hiroaki Suga
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
42
|
Katoh T, Suga H. Development of Bioactive Foldamers Using Ribosomally Synthesized Nonstandard Peptide Libraries. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2021. [DOI: 10.1246/bcsj.20200326] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Takayuki Katoh
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Hiroaki Suga
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
43
|
Hummels KR, Kearns DB. Translation elongation factor P (EF-P). FEMS Microbiol Rev 2020; 44:208-218. [PMID: 32011712 DOI: 10.1093/femsre/fuaa003] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Accepted: 01/30/2020] [Indexed: 01/01/2023] Open
Abstract
Translation elongation factor P (EF-P) is conserved in all three domains of life (called eIF5A and aIF5A in eukaryotes and archaea, respectively) and functions to alleviate ribosome pausing during the translation of specific sequences, including consecutive proline residues. EF-P was identified in 1975 as a factor that stimulated the peptidyltransferase reaction in vitro but its involvement in the translation of tandem proline residues was not uncovered until 2013. Throughout the four decades of EF-P research, perceptions of EF-P function have changed dramatically. In particular, while EF-P was thought to potentiate the formation of the first peptide bond in a protein, it is now broadly accepted to act throughout translation elongation. Further, EF-P was initially reported to be essential, but recent work has shown that the requirement of EF-P for growth is conditional. Finally, it is thought that post-translational modification of EF-P is strictly required for its function but recent studies suggest that EF-P modification may play a more nuanced role in EF-P activity. Here, we review the history of EF-P research, with an emphasis on its initial isolation and characterization as well as the discoveries that altered our perceptions of its function.
Collapse
Affiliation(s)
| | - Daniel B Kearns
- Department of Biology, Indiana University, Bloomington, IN USA
| |
Collapse
|
44
|
Rogers JM, Nawatha M, Lemma B, Vamisetti GB, Livneh I, Barash U, Vlodavsky I, Ciechanover A, Fushman D, Suga H, Brik A. In vivo modulation of ubiquitin chains by N-methylated non-proteinogenic cyclic peptides. RSC Chem Biol 2020; 2:513-522. [PMID: 34179781 PMCID: PMC8232551 DOI: 10.1039/d0cb00179a] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Cancer and other disease states can change the landscape of proteins post-translationally tagged with ubiquitin (Ub) chains. Molecules capable of modulating Ub chains are potential therapeutic agents, but their discovery represents a significant challenge. Recently, it was shown that de novo cyclic peptides, selected from trillion-member random libraries, are capable of binding particular Ub chains. However, these peptides were overwhelmingly proteinogenic, so the prospect of in vivo activity was uncertain. Here, we report the discovery of small, non-proteinogenic cyclic peptides, rich in non-canonical features like N-methylation, which can tightly and specifically bind Lys48-linked Ub chains. These peptides engage three Lys48-linked Ub units simultaneously, block the action of deubiquitinases and the proteasome, induce apoptosis in vitro, and attenuate tumor growth in vivo. This highlights the potential of non-proteinogenic cyclic peptide screening to rapidly find in vivo-active leads, and the targeting of ubiquitin chains as a promising anti-cancer mechanism of action.
Collapse
Affiliation(s)
- Joseph M Rogers
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.,Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen 2100, Denmark
| | - Mickal Nawatha
- Schulich Faculty of Chemistry, Technion-Israel Institute of Technology, Haifa 3200008, Israel
| | - Betsegaw Lemma
- Department of Chemistry and Biochemistry, Center for Biomolecular Structure and Organization, University of Maryland, College Park, MD 20742, USA
| | - Ganga B Vamisetti
- Schulich Faculty of Chemistry, Technion-Israel Institute of Technology, Haifa 3200008, Israel
| | - Ido Livneh
- The Rappaport Faculty of Medicine and Research Institute, Technion-Israel Institute of Technology, Haifa 31096, Israel
| | - Uri Barash
- The Rappaport Faculty of Medicine and Research Institute, Technion-Israel Institute of Technology, Haifa 31096, Israel
| | - Israel Vlodavsky
- The Rappaport Faculty of Medicine and Research Institute, Technion-Israel Institute of Technology, Haifa 31096, Israel
| | - Aaron Ciechanover
- The Rappaport Faculty of Medicine and Research Institute, Technion-Israel Institute of Technology, Haifa 31096, Israel
| | - David Fushman
- Department of Chemistry and Biochemistry, Center for Biomolecular Structure and Organization, University of Maryland, College Park, MD 20742, USA
| | - Hiroaki Suga
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Ashraf Brik
- Schulich Faculty of Chemistry, Technion-Israel Institute of Technology, Haifa 3200008, Israel
| |
Collapse
|
45
|
Iskandar SE, Haberman VA, Bowers AA. Expanding the Chemical Diversity of Genetically Encoded Libraries. ACS COMBINATORIAL SCIENCE 2020; 22:712-733. [PMID: 33167616 PMCID: PMC8284915 DOI: 10.1021/acscombsci.0c00179] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The power of ribosomes has increasingly been harnessed for the synthesis and selection of molecular libraries. Technologies, such as phage display, yeast display, and mRNA display, effectively couple genotype to phenotype for the molecular evolution of high affinity epitopes for many therapeutic targets. Genetic code expansion is central to the success of these technologies, allowing researchers to surpass the intrinsic capabilities of the ribosome and access new, genetically encoded materials for these selections. Here, we review techniques for the chemical expansion of genetically encoded libraries, their abilities and limits, and opportunities for further development. Importantly, we also discuss methods and metrics used to assess the efficiency of modification and library diversity with these new techniques.
Collapse
Affiliation(s)
- Sabrina E Iskandar
- Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina 27599, United States
| | - Victoria A Haberman
- Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina 27599, United States
| | - Albert A Bowers
- Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina 27599, United States
- Department of Chemistry, University of North Carolina, Chapel Hill, North Carolina 27599, United States
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| |
Collapse
|
46
|
Cui Z, Johnston WA, Alexandrov K. Cell-Free Approach for Non-canonical Amino Acids Incorporation Into Polypeptides. Front Bioeng Biotechnol 2020; 8:1031. [PMID: 33117774 PMCID: PMC7550873 DOI: 10.3389/fbioe.2020.01031] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 08/07/2020] [Indexed: 12/12/2022] Open
Abstract
Synthetic biology holds promise to revolutionize the life sciences and biomedicine via expansion of macromolecular diversity outside the natural chemical space. Use of non-canonical amino acids (ncAAs) via codon reassignment has found diverse applications in protein structure and interaction analysis, introduction of post-translational modifications, production of constrained peptides, antibody-drug conjugates, and novel enzymes. However, simultaneously encoding multiple ncAAs in vivo requires complex engineering and is sometimes restricted by the cell's poor uptake of ncAAs. In contrast the open nature of cell-free protein synthesis systems offers much greater freedom for manipulation and repurposing of the biosynthetic machinery by controlling the level and identity of translational components and reagents, and allows simultaneous incorporation of multiple ncAAs with non-canonical side chains and even backbones (N-methyl, D-, β-amino acids, α-hydroxy acids etc.). This review focuses on the two most used Escherichia coli-based cell-free protein synthesis systems; cell extract- and PURE-based systems. The former is a biological mixture with >500 proteins, while the latter consists of 38 individually purified biomolecules. We delineate compositions of these two systems and discuss their respective advantages and applications. Also, we dissect the translational components required for ncAA incorporation and compile lists of ncAAs that can be incorporated into polypeptides via different acylation approaches. We highlight the recent progress in using unnatural nucleobase pairs to increase the repertoire of orthogonal codons, as well as using tRNA-specific ribozymes for in situ acylation. We summarize advances in engineering of translational machinery such as tRNAs, aminoacyl-tRNA synthetases, elongation factors, and ribosomes to achieve efficient incorporation of structurally challenging ncAAs. We note that, many engineered components of biosynthetic machinery are developed for the use in vivo but are equally applicable to the in vitro systems. These are included in the review to provide a comprehensive overview for ncAA incorporation and offer new insights for the future development in cell-free systems. Finally, we highlight the exciting progress in the genomic engineering, resulting in E. coli strains free of amber and some redundant sense codons. These strains can be used for preparation of cell extracts offering multiple reassignment options.
Collapse
Affiliation(s)
- Zhenling Cui
- Synthetic Biology Laboratory, School of Biology and Environmental Science, Queensland University of Technology, Brisbane, QLD, Australia
| | - Wayne A Johnston
- Synthetic Biology Laboratory, School of Biology and Environmental Science, Queensland University of Technology, Brisbane, QLD, Australia
| | - Kirill Alexandrov
- Synthetic Biology Laboratory, School of Biology and Environmental Science, Queensland University of Technology, Brisbane, QLD, Australia
| |
Collapse
|
47
|
Katoh T, Suga H. Ribosomal Elongation of Aminobenzoic Acid Derivatives. J Am Chem Soc 2020; 142:16518-16522. [DOI: 10.1021/jacs.0c05765] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Takayuki Katoh
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Hiroaki Suga
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
48
|
Lee J, Schwarz KJ, Kim DS, Moore JS, Jewett MC. Ribosome-mediated polymerization of long chain carbon and cyclic amino acids into peptides in vitro. Nat Commun 2020; 11:4304. [PMID: 32855412 PMCID: PMC7452890 DOI: 10.1038/s41467-020-18001-x] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 07/28/2020] [Indexed: 11/29/2022] Open
Abstract
Ribosome-mediated polymerization of backbone-extended monomers into polypeptides is challenging due to their poor compatibility with the translation apparatus, which evolved to use α-L-amino acids. Moreover, mechanisms to acylate (or charge) these monomers to transfer RNAs (tRNAs) to make aminoacyl-tRNA substrates is a bottleneck. Here, we rationally design non-canonical amino acid analogs with extended carbon chains (γ-, δ-, ε-, and ζ-) or cyclic structures (cyclobutane, cyclopentane, and cyclohexane) to improve tRNA charging. We then demonstrate site-specific incorporation of these non-canonical, backbone-extended monomers at the N- and C- terminus of peptides using wild-type and engineered ribosomes. This work expands the scope of ribosome-mediated polymerization, setting the stage for new medicines and materials. Backbone extended monomers are poorly compatible with the natural ribosomes, impeding their polymerization into polypeptides. Here the authors design non-canonical amino acid analogs with cyclic structures or extended carbon chains and used an engineered ribosome to improve tRNA-charging and incorporation into peptides.
Collapse
Affiliation(s)
- Joongoo Lee
- Department of Chemical and Biological Engineering and Center for Synthetic Biology, Northwestern University, Evanston, IL, 60208, USA
| | - Kevin J Schwarz
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Do Soon Kim
- Department of Chemical and Biological Engineering and Center for Synthetic Biology, Northwestern University, Evanston, IL, 60208, USA
| | - Jeffrey S Moore
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA. .,The Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.
| | - Michael C Jewett
- Department of Chemical and Biological Engineering and Center for Synthetic Biology, Northwestern University, Evanston, IL, 60208, USA.
| |
Collapse
|
49
|
Ribosomal synthesis and de novo discovery of bioactive foldamer peptides containing cyclic β-amino acids. Nat Chem 2020; 12:1081-1088. [PMID: 32839601 DOI: 10.1038/s41557-020-0525-1] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 07/15/2020] [Indexed: 02/05/2023]
Abstract
Peptides that contain β-amino acids display stable secondary structures, such as helices and sheets, and are often referred to as foldamers. Cyclic β2,3-amino acids (cβAAs), such as 2-aminocyclohexanecarboxylic acid (2-ACHC), are strong helix/turn inducers due to their restricted conformations. Here we report the ribosomal synthesis of foldamer peptides that contain multiple, up to ten, consecutive cβAAs via genetic code reprogramming. We also report the de novo discovery of macrocyclic cβAA-containing peptides capable of binding to a protein target. As a demonstration, potent binders with low-to-subnanomolar KD values were identified for human factor XIIa (hFXIIa) and interferon-gamma receptor 1, from a library of their 1012 members. One of the anti-hFXIIa macrocyclic peptides that exhibited a high inhibitory activity and serum stability was co-crystallized with hFXIIa. The X-ray structure revealed that it adopts an antiparallel β-sheet structure induced by a (1S,2S)-2-ACHC residue via the formation of two γ-turns. This work demonstrates the potential of this platform to explore the previously inaccessible sequence space of cβAA-containing peptides.
Collapse
|
50
|
Wu Y, Wang Z, Qiao X, Li J, Shu X, Qi H. Emerging Methods for Efficient and Extensive Incorporation of Non-canonical Amino Acids Using Cell-Free Systems. Front Bioeng Biotechnol 2020; 8:863. [PMID: 32793583 PMCID: PMC7387428 DOI: 10.3389/fbioe.2020.00863] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 07/06/2020] [Indexed: 12/17/2022] Open
Abstract
Cell-free protein synthesis (CFPS) has emerged as a novel protein expression platform. Especially the incorporation of non-canonical amino acids (ncAAs) has led to the development of numerous flexible methods for efficient and extensive expression of artificial proteins. Approaches were developed to eliminate the endogenous competition for ncAAs and engineer translation factors, which significantly enhanced the incorporation efficiency. Furthermore, in vitro aminoacylation methods can be conveniently combined with cell-free systems, extensively expanding the available ncAAs with novel and unique moieties. In this review, we summarize the recent progresses on the efficient and extensive incorporation of ncAAs by different strategies based on the elimination of competition by endogenous factors, translation factors engineering and extensive incorporation of novel ncAAs coupled with in vitro aminoacylation methods in CFPS. We also aim to offer new ideas to researchers working on ncAA incorporation techniques in CFPS and applications in various emerging fields.
Collapse
Affiliation(s)
- Yang Wu
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, China.,Key Laboratory of Systems Bioengineering, Ministry of Education, Tianjin University, Tianjin, China
| | - Zhaoguan Wang
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, China.,Key Laboratory of Systems Bioengineering, Ministry of Education, Tianjin University, Tianjin, China
| | - Xin Qiao
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, China.,Key Laboratory of Systems Bioengineering, Ministry of Education, Tianjin University, Tianjin, China
| | - Jiaojiao Li
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, China.,Key Laboratory of Systems Bioengineering, Ministry of Education, Tianjin University, Tianjin, China
| | - Xiangrong Shu
- Department of Pharmacy, Tianjin Huanhu Hospital, Tianjin, China
| | - Hao Qi
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, China.,Key Laboratory of Systems Bioengineering, Ministry of Education, Tianjin University, Tianjin, China
| |
Collapse
|