1
|
Vujovic F, Simonian M, Hughes WE, Shepherd CE, Hunter N, Farahani RM. Mitochondria facilitate neuronal differentiation by metabolising nuclear-encoded RNA. Cell Commun Signal 2024; 22:450. [PMID: 39327600 PMCID: PMC11425920 DOI: 10.1186/s12964-024-01825-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Accepted: 09/11/2024] [Indexed: 09/28/2024] Open
Abstract
Mitochondrial activity directs neuronal differentiation dynamics during brain development. In this context, the long-established metabolic coupling of mitochondria and the eukaryotic host falls short of a satisfactory mechanistic explanation, hinting at an undisclosed facet of mitochondrial function. Here, we reveal an RNA-based inter-organellar communication mode that complements metabolic coupling of host-mitochondria and underpins neuronal differentiation. We show that within minutes of exposure to differentiation cues and activation of the electron transport chain, the mitochondrial outer membrane transiently fuses with the nuclear membrane of neural progenitors, leading to efflux of nuclear-encoded RNAs (neRNA) into the positively charged mitochondrial intermembrane space. Subsequent degradation of mitochondrial neRNAs by Polynucleotide phosphorylase 1 (PNPase) located in the intermembrane space curbs the transcriptomic memory of progenitor cells. Further, acquisition of neRNA by mitochondria leads to a collapse of proton motive force, suppression of ATP production, and a resultant amplification of autophagic flux that attenuates proteomic memory. Collectively, these events force the progenitor cells towards a "tipping point" characterised by emergence of a competing neuronal differentiation program. It appears that neuronal differentiation is a consequence of reprogrammed coupling of metabolomic and transcriptomic landscapes of progenitor cells, with mitochondria emerging as key "reprogrammers" that operate by acquiring and metabolising neRNAs. However, the documented role of mitochondria as "reprogrammers" of differentiation remains to be validated in other neuronal lineages and in vivo.
Collapse
Affiliation(s)
- Filip Vujovic
- IDR/WSLHD Research and Education Network, Sydney, NSW, 2145, Australia
- School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, 2006, Australia
| | - Mary Simonian
- IDR/WSLHD Research and Education Network, Sydney, NSW, 2145, Australia
| | - William E Hughes
- Children's Medical Research Institute, Sydney, NSW, 2145, Australia
| | | | - Neil Hunter
- IDR/WSLHD Research and Education Network, Sydney, NSW, 2145, Australia
| | - Ramin M Farahani
- IDR/WSLHD Research and Education Network, Sydney, NSW, 2145, Australia.
- School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, 2006, Australia.
| |
Collapse
|
2
|
Taylor AD, Hathaway QA, Kunovac A, Pinti MV, Newman MS, Cook CC, Cramer ER, Starcovic SA, Winters MT, Westemeier-Rice ES, Fink GK, Durr AJ, Rizwan S, Shepherd DL, Robart AR, Martinez I, Hollander JM. Mitochondrial sequencing identifies long noncoding RNA features that promote binding to PNPase. Am J Physiol Cell Physiol 2024; 327:C221-C236. [PMID: 38826135 PMCID: PMC11427107 DOI: 10.1152/ajpcell.00648.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 05/24/2024] [Accepted: 05/24/2024] [Indexed: 06/04/2024]
Abstract
Extranuclear localization of long noncoding RNAs (lncRNAs) is poorly understood. Based on machine learning evaluations, we propose a lncRNA-mitochondrial interaction pathway where polynucleotide phosphorylase (PNPase), through domains that provide specificity for primary sequence and secondary structure, binds nuclear-encoded lncRNAs to facilitate mitochondrial import. Using FVB/NJ mouse and human cardiac tissues, RNA from isolated subcellular compartments (cytoplasmic and mitochondrial) and cross-linked immunoprecipitate (CLIP) with PNPase within the mitochondrion were sequenced on the Illumina HiSeq and MiSeq, respectively. lncRNA sequence and structure were evaluated through supervised [classification and regression trees (CART) and support vector machines (SVM)] machine learning algorithms. In HL-1 cells, quantitative PCR of PNPase CLIP knockout mutants (KH and S1) was performed. In vitro fluorescence assays assessed PNPase RNA binding capacity and verified with PNPase CLIP. One hundred twelve (mouse) and 1,548 (human) lncRNAs were identified in the mitochondrion with Malat1 being the most abundant. Most noncoding RNAs binding PNPase were lncRNAs, including Malat1. lncRNA fragments bound to PNPase compared against randomly generated sequences of similar length showed stratification with SVM and CART algorithms. The lncRNAs bound to PNPase were used to create a criterion for binding, with experimental validation revealing increased binding affinity of RNA designed to bind PNPase compared to control RNA. The binding of lncRNAs to PNPase was decreased through the knockout of RNA binding domains KH and S1. In conclusion, sequence and secondary structural features identified by machine learning enhance the likelihood of nuclear-encoded lncRNAs binding to PNPase and undergoing import into the mitochondrion.NEW & NOTEWORTHY Long noncoding RNAs (lncRNAs) are relatively novel RNAs with increasingly prominent roles in regulating genetic expression, mainly in the nucleus but more recently in regions such as the mitochondrion. This study explores how lncRNAs interact with polynucleotide phosphorylase (PNPase), a protein that regulates RNA import into the mitochondrion. Machine learning identified several RNA structural features that improved lncRNA binding to PNPase, which may be useful in targeting RNA therapeutics to the mitochondrion.
Collapse
Affiliation(s)
- Andrew D Taylor
- Division of Exercise Physiology, West Virginia University School of Medicine, Morgantown, West Virginia, United States
- Mitochondria, Metabolism, and Bioenergetics Working Group, West Virginia University School of Medicine, Morgantown, West Virginia, United States
| | - Quincy A Hathaway
- Division of Exercise Physiology, West Virginia University School of Medicine, Morgantown, West Virginia, United States
- Heart and Vascular Institute, West Virginia University, Morgantown, West Virginia, United States
- Department of Medical Education, West Virginia University School of Medicine, Morgantown, West Virginia, United States
| | - Amina Kunovac
- Division of Exercise Physiology, West Virginia University School of Medicine, Morgantown, West Virginia, United States
- Mitochondria, Metabolism, and Bioenergetics Working Group, West Virginia University School of Medicine, Morgantown, West Virginia, United States
| | - Mark V Pinti
- Mitochondria, Metabolism, and Bioenergetics Working Group, West Virginia University School of Medicine, Morgantown, West Virginia, United States
- West Virginia University School of Pharmacy, Morgantown, West Virginia, United States
| | - Mackenzie S Newman
- Department of Physiology and Pharmacology, West Virginia University School of Medicine, Morgantown, West Virginia, United States
| | - Chris C Cook
- Cardiovascular and Thoracic Surgery, West Virginia University School of Medicine, Morgantown, West Virginia, United States
| | - Evan R Cramer
- Department of Biochemistry, West Virginia University School of Medicine, Morgantown, West Virginia, United States
| | - Sarah A Starcovic
- Department of Biochemistry, West Virginia University School of Medicine, Morgantown, West Virginia, United States
| | - Michael T Winters
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University Cancer Institute, School of Medicine, Morgantown, West Virginia, United States
| | - Emily S Westemeier-Rice
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University Cancer Institute, School of Medicine, Morgantown, West Virginia, United States
| | - Garrett K Fink
- Division of Exercise Physiology, West Virginia University School of Medicine, Morgantown, West Virginia, United States
| | - Andrya J Durr
- Division of Exercise Physiology, West Virginia University School of Medicine, Morgantown, West Virginia, United States
- Mitochondria, Metabolism, and Bioenergetics Working Group, West Virginia University School of Medicine, Morgantown, West Virginia, United States
| | - Saira Rizwan
- Division of Exercise Physiology, West Virginia University School of Medicine, Morgantown, West Virginia, United States
- Mitochondria, Metabolism, and Bioenergetics Working Group, West Virginia University School of Medicine, Morgantown, West Virginia, United States
| | - Danielle L Shepherd
- Division of Exercise Physiology, West Virginia University School of Medicine, Morgantown, West Virginia, United States
- Mitochondria, Metabolism, and Bioenergetics Working Group, West Virginia University School of Medicine, Morgantown, West Virginia, United States
| | - Aaron R Robart
- Department of Biochemistry, West Virginia University School of Medicine, Morgantown, West Virginia, United States
| | - Ivan Martinez
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University Cancer Institute, School of Medicine, Morgantown, West Virginia, United States
| | - John M Hollander
- Division of Exercise Physiology, West Virginia University School of Medicine, Morgantown, West Virginia, United States
- Mitochondria, Metabolism, and Bioenergetics Working Group, West Virginia University School of Medicine, Morgantown, West Virginia, United States
| |
Collapse
|
3
|
Lämmerhirt L, Kappelmann-Fenzl M, Fischer S, Meier P, Staebler S, Kuphal S, Bosserhoff AK. Loss of miR-101-3p in melanoma stabilizes genomic integrity, leading to cell death prevention. Cell Mol Biol Lett 2024; 29:29. [PMID: 38431560 PMCID: PMC10909299 DOI: 10.1186/s11658-024-00552-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Accepted: 02/21/2024] [Indexed: 03/05/2024] Open
Abstract
Malignant melanoma remains the most lethal form of skin cancer, exhibiting poor prognosis after forming distant metastasis. Owing to their potential tumor-suppressive properties by regulating oncogenes and tumor suppressor genes, microRNAs are important player in melanoma development and progression. We defined the loss of miR-101-3p expression in melanoma cells compared with melanocytes and melanoblast-related cells as an early event in tumor development and aimed to understand the tumor suppressive role of miR-101-3p and its regulation of important cellular processes. Reexpression of miR-101-3p resulted in inhibition of proliferation, increase in DNA damage, and induction of apoptosis. We further determined the nuclear structure protein Lamin B1, which influences nuclear processes and heterochromatin structure, ATRX, CASP3, and PARP as an important direct target of miR-101-3p. RNA sequencing and differential gene expression analysis after miR-101-3p reexpression supported our findings and the importance of loss of mir-101-3p for melanoma progression. The validated functional effects are related to genomic instability, as recent studies suggest miRNAs plays a key role in mediating this cellular process. Therefore, we concluded that miR-101-3p reexpression increases the genomic instability, leading to irreversible DNA damage, which leads to apoptosis induction. Our findings suggest that the loss of miR-101-3p in melanoma serves as an early event in melanoma progression by influencing the genomic integrity to maintain the increased bioenergetic demand.
Collapse
Affiliation(s)
- Lisa Lämmerhirt
- Institute of Biochemistry, Friedrich-Alexander University Erlangen-Nürnberg (FAU), Fahrstraße 17, 91054, Erlangen, Germany
| | - Melanie Kappelmann-Fenzl
- Faculty of Computer Science, Deggendorf Institute of Technology, Dieter-Görlitz-Platz 1, 94469, Deggendorf, Germany
| | - Stefan Fischer
- Faculty of Computer Science, Deggendorf Institute of Technology, Dieter-Görlitz-Platz 1, 94469, Deggendorf, Germany
| | - Paula Meier
- Institute of Biochemistry, Friedrich-Alexander University Erlangen-Nürnberg (FAU), Fahrstraße 17, 91054, Erlangen, Germany
- Julius-Maximilians-University Würzburg (JMU), Sanderring 2, 97070, Würzburg, Germany
| | - Sebastian Staebler
- Institute of Biochemistry, Friedrich-Alexander University Erlangen-Nürnberg (FAU), Fahrstraße 17, 91054, Erlangen, Germany
| | - Silke Kuphal
- Institute of Biochemistry, Friedrich-Alexander University Erlangen-Nürnberg (FAU), Fahrstraße 17, 91054, Erlangen, Germany
| | - Anja-Katrin Bosserhoff
- Institute of Biochemistry, Friedrich-Alexander University Erlangen-Nürnberg (FAU), Fahrstraße 17, 91054, Erlangen, Germany.
| |
Collapse
|
4
|
Falchi FA, Forti F, Carnelli C, Genco A, Pizzoccheri R, Manzari C, Pavesi G, Briani F. Human PNPase causes RNA stabilization and accumulation of R-loops in the Escherichia coli model system. Sci Rep 2023; 13:11771. [PMID: 37479726 PMCID: PMC10362022 DOI: 10.1038/s41598-023-38924-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 07/17/2023] [Indexed: 07/23/2023] Open
Abstract
Polyribonucleotide phosphorylase (PNPase) is a phosphorolytic RNA exonuclease highly conserved throughout evolution. In Escherichia coli, PNPase controls complex phenotypic traits like biofilm formation and growth at low temperature. In human cells, PNPase is located in mitochondria, where it is implicated in the RNA import from the cytoplasm, the mitochondrial RNA degradation and the processing of R-loops, namely stable RNA-DNA hybrids displacing a DNA strand. In this work, we show that the human PNPase (hPNPase) expressed in E. coli causes oxidative stress, SOS response activation and R-loops accumulation. Hundreds of E. coli RNAs are stabilized in presence of hPNPase, whereas only few transcripts are destabilized. Moreover, phenotypic traits typical of E. coli strains lacking PNPase are strengthened in presence of the human enzyme. We discuss the hypothesis that hPNPase expressed in E. coli may bind, but not degrade, the RNA, in agreement with previous in vitro data showing that phosphate concentrations in the range of those found in the bacterial cytoplasm and, more relevant, in the mitochondria, inhibit its activity.
Collapse
Affiliation(s)
- Federica A Falchi
- Dipartimento di Bioscienze, Università degli Studi di Milano, 20133, Milan, Italy
| | - Francesca Forti
- Dipartimento di Bioscienze, Università degli Studi di Milano, 20133, Milan, Italy
| | - Cristina Carnelli
- Dipartimento di Bioscienze, Università degli Studi di Milano, 20133, Milan, Italy
| | - Aurelia Genco
- Dipartimento di Bioscienze, Università degli Studi di Milano, 20133, Milan, Italy
| | - Roberto Pizzoccheri
- Dipartimento di Bioscienze, Università degli Studi di Milano, 20133, Milan, Italy
| | - Caterina Manzari
- Dipartimento di Bioscienze, Biotecnologie e Biofarmaceutica, Università degli Studi di Bari "Aldo Moro", 70121, Bari, Italy
| | - Giulio Pavesi
- Dipartimento di Bioscienze, Università degli Studi di Milano, 20133, Milan, Italy.
| | - Federica Briani
- Dipartimento di Bioscienze, Università degli Studi di Milano, 20133, Milan, Italy.
| |
Collapse
|
5
|
Single-exonuclease nanocircuits reveal the RNA degradation dynamics of PNPase and demonstrate potential for RNA sequencing. Nat Commun 2023; 14:552. [PMID: 36725855 PMCID: PMC9892577 DOI: 10.1038/s41467-023-36278-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 01/23/2023] [Indexed: 02/03/2023] Open
Abstract
The degradation process of RNA is decisive in guaranteeing high-fidelity translation of genetic information in living organisms. However, visualizing the single-base degradation process in real time and deciphering the degradation mechanism at the single-enzyme level remain formidable challenges. Here, we present a reliable in-situ single-PNPase-molecule dynamic electrical detector based on silicon nanowire field-effect transistors with ultra-high temporal resolution. These devices are capable of realizing real-time and label-free monitoring of RNA analog degradation with single-base resolution, including RNA analog binding, single-nucleotide hydrolysis, and single-base movement. We discover a binding event of the enzyme (near the active site) with the nucleoside, offering a further understanding of the RNA degradation mechanism. Relying on systematic analyses of independent reads, approximately 80% accuracy in RNA nucleoside sequencing is achieved in a single testing process. This proof-of-concept sets up a Complementary Metal Oxide Semiconductor (CMOS)-compatible playground for the development of high-throughput detection technologies toward mechanistic exploration and single-molecule sequencing.
Collapse
|
6
|
Yang HH, Jiang HL, Tao JH, Zhang CY, Xiong JB, Yang JT, Liu YB, Zhong WJ, Guan XX, Duan JX, Zhang YF, Liu SK, Jiang JX, Zhou Y, Guan CX. Mitochondrial citrate accumulation drives alveolar epithelial cell necroptosis in lipopolysaccharide-induced acute lung injury. Exp Mol Med 2022; 54:2077-2091. [PMID: 36443565 PMCID: PMC9722936 DOI: 10.1038/s12276-022-00889-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 09/09/2022] [Accepted: 09/14/2022] [Indexed: 11/29/2022] Open
Abstract
Necroptosis is the major cause of death in alveolar epithelial cells (AECs) during acute lung injury (ALI). Here, we report a previously unrecognized mechanism for necroptosis. We found an accumulation of mitochondrial citrate (citratemt) in lipopolysaccharide (LPS)-treated AECs because of the downregulation of Idh3α and citrate carrier (CIC, also known as Slc25a1). shRNA- or inhibitor-mediated inhibition of Idh3α and Slc25a1 induced citratemt accumulation and necroptosis in vitro. Mice with AEC-specific Idh3α and Slc25a1 deficiency exhibited exacerbated lung injury and AEC necroptosis. Interestingly, the overexpression of Idh3α and Slc25a1 decreased citratemt levels and rescued AECs from necroptosis. Mechanistically, citratemt accumulation induced mitochondrial fission and excessive mitophagy in AECs. Furthermore, citratemt directly interacted with FUN14 domain-containing protein 1 (FUNDC1) and promoted the interaction of FUNDC1 with dynamin-related protein 1 (DRP1), leading to excessive mitophagy-mediated necroptosis and thereby initiating and promoting ALI. Importantly, necroptosis induced by citratemt accumulation was inhibited in FUNDC1-knockout AECs. We show that citratemt accumulation is a novel target for protection against ALI involving necroptosis.
Collapse
Affiliation(s)
- Hui-Hui Yang
- grid.216417.70000 0001 0379 7164Department of Physiology, School of Basic Medical Science, Central South University, Changsha, Hunan China
| | - Hui-Ling Jiang
- grid.216417.70000 0001 0379 7164Department of Physiology, School of Basic Medical Science, Central South University, Changsha, Hunan China
| | - Jia-Hao Tao
- grid.216417.70000 0001 0379 7164Department of Physiology, School of Basic Medical Science, Central South University, Changsha, Hunan China
| | - Chen-Yu Zhang
- grid.216417.70000 0001 0379 7164Department of Physiology, School of Basic Medical Science, Central South University, Changsha, Hunan China
| | - Jian-Bing Xiong
- grid.216417.70000 0001 0379 7164Department of Physiology, School of Basic Medical Science, Central South University, Changsha, Hunan China
| | - Jin-Tong Yang
- grid.216417.70000 0001 0379 7164Department of Physiology, School of Basic Medical Science, Central South University, Changsha, Hunan China
| | - Yu-Biao Liu
- grid.216417.70000 0001 0379 7164Department of Physiology, School of Basic Medical Science, Central South University, Changsha, Hunan China
| | - Wen-Jing Zhong
- grid.216417.70000 0001 0379 7164Department of Physiology, School of Basic Medical Science, Central South University, Changsha, Hunan China
| | - Xin-Xin Guan
- grid.216417.70000 0001 0379 7164Department of Physiology, School of Basic Medical Science, Central South University, Changsha, Hunan China
| | - Jia-Xi Duan
- grid.216417.70000 0001 0379 7164Department of Geriatrics, Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, Hunan China
| | - Yan-Feng Zhang
- grid.216417.70000 0001 0379 7164Department of Cardiovascular Surgery, Xiangya Hospital, Central South University, Changsha, Hunan China
| | - Shao-Kun Liu
- grid.216417.70000 0001 0379 7164Department of Pulmonary and Critical Care Medicine, the Second Xiangya Hospital, Central South University, Changsha, Hunan China
| | - Jian-Xin Jiang
- grid.410570.70000 0004 1760 6682State Key Laboratory of Trauma, Burns, and Combined Injury, Department of Trauma Medical Center, Daping Hospital, Army Medical University, Chongqing, China
| | - Yong Zhou
- grid.216417.70000 0001 0379 7164Department of Physiology, School of Basic Medical Science, Central South University, Changsha, Hunan China
| | - Cha-Xiang Guan
- grid.216417.70000 0001 0379 7164Department of Physiology, School of Basic Medical Science, Central South University, Changsha, Hunan China
| |
Collapse
|
7
|
Falchi FA, Pizzoccheri R, Briani F. Activity and Function in Human Cells of the Evolutionary Conserved Exonuclease Polynucleotide Phosphorylase. Int J Mol Sci 2022; 23:ijms23031652. [PMID: 35163574 PMCID: PMC8836086 DOI: 10.3390/ijms23031652] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Revised: 01/28/2022] [Accepted: 01/28/2022] [Indexed: 02/04/2023] Open
Abstract
Polynucleotide phosphorylase (PNPase) is a phosphorolytic RNA exonuclease highly conserved throughout evolution. Human PNPase (hPNPase) is located in mitochondria and is essential for mitochondrial function and homeostasis. Not surprisingly, mutations in the PNPT1 gene, encoding hPNPase, cause serious diseases. hPNPase has been implicated in a plethora of processes taking place in different cell compartments and involving other proteins, some of which physically interact with hPNPase. This paper reviews hPNPase RNA binding and catalytic activity in relation with the protein structure and in comparison, with the activity of bacterial PNPases. The functions ascribed to hPNPase in different cell compartments are discussed, highlighting the gaps that still need to be filled to understand the physiological role of this ancient protein in human cells.
Collapse
|
8
|
Roux C, Etienne TA, Hajnsdorf E, Ropers D, Carpousis AJ, Cocaign-Bousquet M, Girbal L. The essential role of mRNA degradation in understanding and engineering E. coli metabolism. Biotechnol Adv 2021; 54:107805. [PMID: 34302931 DOI: 10.1016/j.biotechadv.2021.107805] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 06/28/2021] [Accepted: 07/14/2021] [Indexed: 11/17/2022]
Abstract
Metabolic engineering strategies are crucial for the development of bacterial cell factories with improved performance. Until now, optimal metabolic networks have been designed based on systems biology approaches integrating large-scale data on the steady-state concentrations of mRNA, protein and metabolites, sometimes with dynamic data on fluxes, but rarely with any information on mRNA degradation. In this review, we compile growing evidence that mRNA degradation is a key regulatory level in E. coli that metabolic engineering strategies should take into account. We first discuss how mRNA degradation interacts with transcription and translation, two other gene expression processes, to balance transcription regulation and remove poorly translated mRNAs. The many reciprocal interactions between mRNA degradation and metabolism are also highlighted: metabolic activity can be controlled by changes in mRNA degradation and in return, the activity of the mRNA degradation machinery is controlled by metabolic factors. The mathematical models of the crosstalk between mRNA degradation dynamics and other cellular processes are presented and discussed with a view towards novel mRNA degradation-based metabolic engineering strategies. We show finally that mRNA degradation-based strategies have already successfully been applied to improve heterologous protein synthesis. Overall, this review underlines how important mRNA degradation is in regulating E. coli metabolism and identifies mRNA degradation as a key target for innovative metabolic engineering strategies in biotechnology.
Collapse
Affiliation(s)
- Charlotte Roux
- TBI, Université de Toulouse, CNRS, INRAE, INSA, 31077 Toulouse, France; UMR8261, CNRS, Université de Paris, Institut de Biologie Physico-Chimique, 13 rue Pierre et Marie Curie, 75005 Paris, France.
| | - Thibault A Etienne
- TBI, Université de Toulouse, CNRS, INRAE, INSA, 31077 Toulouse, France; Univ. Grenoble Alpes, Inria, 38000 Grenoble, France.
| | - Eliane Hajnsdorf
- UMR8261, CNRS, Université de Paris, Institut de Biologie Physico-Chimique, 13 rue Pierre et Marie Curie, 75005 Paris, France.
| | | | - A J Carpousis
- TBI, Université de Toulouse, CNRS, INRAE, INSA, 31077 Toulouse, France; LMGM, Université de Toulouse, CNRS, UPS, CBI, 31062 Toulouse, France.
| | | | - Laurence Girbal
- TBI, Université de Toulouse, CNRS, INRAE, INSA, 31077 Toulouse, France.
| |
Collapse
|
9
|
Dendooven T, Sinha D, Roeselová A, Cameron TA, De Lay NR, Luisi BF, Bandyra KJ. A cooperative PNPase-Hfq-RNA carrier complex facilitates bacterial riboregulation. Mol Cell 2021; 81:2901-2913.e5. [PMID: 34157309 PMCID: PMC8294330 DOI: 10.1016/j.molcel.2021.05.032] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 04/06/2021] [Accepted: 05/26/2021] [Indexed: 02/06/2023]
Abstract
Polynucleotide phosphorylase (PNPase) is an ancient exoribonuclease conserved in the course of evolution and is found in species as diverse as bacteria and humans. Paradoxically, Escherichia coli PNPase can act not only as an RNA degrading enzyme but also by an unknown mechanism as a chaperone for small regulatory RNAs (sRNAs), with pleiotropic consequences for gene regulation. We present structures of the ternary assembly formed by PNPase, the RNA chaperone Hfq, and sRNA and show that this complex boosts sRNA stability in vitro. Comparison of structures for PNPase in RNA carrier and degradation modes reveals how the RNA is rerouted away from the active site through interactions with Hfq and the KH and S1 domains. Together, these data explain how PNPase is repurposed to protect sRNAs from cellular ribonucleases such as RNase E and could aid RNA presentation to facilitate regulatory actions on target genes.
Collapse
Affiliation(s)
- Tom Dendooven
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge CB2 1GA, UK
| | - Dhriti Sinha
- Department of Microbiology & Molecular Genetics, University of Texas Health Science Center, 6431 Fannin Street, MSE R266, Houston, TX 77030, USA
| | - Alzbeta Roeselová
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge CB2 1GA, UK
| | - Todd A. Cameron
- Department of Microbiology & Molecular Genetics, University of Texas Health Science Center, 6431 Fannin Street, MSE R266, Houston, TX 77030, USA
| | - Nicholas R. De Lay
- Department of Microbiology & Molecular Genetics, University of Texas Health Science Center, 6431 Fannin Street, MSE R266, Houston, TX 77030, USA
| | - Ben F. Luisi
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge CB2 1GA, UK,Corresponding author
| | - Katarzyna J. Bandyra
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge CB2 1GA, UK,Corresponding author
| |
Collapse
|
10
|
Abstract
Ribonucleases (RNases) are essential for almost every aspect of RNA metabolism. However, despite their important metabolic roles, RNases can also be destructive enzymes. As a consequence, cells must carefully regulate the amount, the activity, and the localization of RNases to avoid the inappropriate degradation of essential RNA molecules. In addition, bacterial cells often must adjust RNase levels as environmental situations demand, also requiring careful regulation of these critical enzymes. As the need for strict control of RNases has become more evident, multiple mechanisms for this regulation have been identified and studied, and these are described in this review. The major conclusion that emerges is that no common regulatory mechanism applies to all RNases, or even to a family of RNases; rather, a wide variety of processes have evolved that act on these enzymes, and in some cases, multiple regulatory mechanisms can even act on a single RNase. Expected final online publication date for the Annual Review of Microbiology, Volume 75 is October 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Murray P Deutscher
- Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, Miami, Florida 33101, USA;
| |
Collapse
|
11
|
Alomari A, Gowland R, Southwood C, Barrow J, Bentley Z, Calvin-Nelson J, Kaminski A, LeFevre M, Callaghan AJ, Vincent HA, Gowers DM. Identification of Novel Inhibitors of Escherichia coli DNA Ligase (LigA). Molecules 2021; 26:molecules26092508. [PMID: 33923034 PMCID: PMC8123306 DOI: 10.3390/molecules26092508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 04/20/2021] [Accepted: 04/21/2021] [Indexed: 11/16/2022] Open
Abstract
Present in all organisms, DNA ligases catalyse the formation of a phosphodiester bond between a 3' hydroxyl and a 5' phosphate, a reaction that is essential for maintaining genome integrity during replication and repair. Eubacterial DNA ligases use NAD+ as a cofactor and possess low sequence and structural homology relative to eukaryotic DNA ligases which use ATP as a cofactor. These key differences enable specific targeting of bacterial DNA ligases as an antibacterial strategy. In this study, four small molecule accessible sites within functionally important regions of Escherichia coli ligase (EC-LigA) were identified using in silico methods. Molecular docking was then used to screen for small molecules predicted to bind to these sites. Eight candidate inhibitors were then screened for inhibitory activity in an in vitro ligase assay. Five of these (geneticin, chlorhexidine, glutathione (reduced), imidazolidinyl urea and 2-(aminomethyl)imidazole) showed dose-dependent inhibition of EC-LigA with half maximal inhibitory concentrations (IC50) in the micromolar to millimolar range (11-2600 µM). Two (geneticin and chlorhexidine) were predicted to bind to a region of EC-LigA that has not been directly investigated previously, raising the possibility that there may be amino acids within this region that are important for EC-LigA activity or that the function of essential residues proximal to this region are impacted by inhibitor interactions with this region. We anticipate that the identified small molecule binding sites and inhibitors could be pursued as part of an antibacterial strategy targeting bacterial DNA ligases.
Collapse
Affiliation(s)
- Arqam Alomari
- School of Biological Sciences and Institute of Biological and Biomedical Sciences, University of Portsmouth, Portsmouth PO1 2DY, UK or (A.A.); (R.G.); (C.S.); (J.B.); (Z.B.); (J.C.-N.); (A.K.); (M.L.); (A.J.C.); (H.A.V.)
- Department of Basic Sciences, College of Agriculture and Forestry, University of Mosul, Mosul 41002, Iraq
| | - Robert Gowland
- School of Biological Sciences and Institute of Biological and Biomedical Sciences, University of Portsmouth, Portsmouth PO1 2DY, UK or (A.A.); (R.G.); (C.S.); (J.B.); (Z.B.); (J.C.-N.); (A.K.); (M.L.); (A.J.C.); (H.A.V.)
| | - Callum Southwood
- School of Biological Sciences and Institute of Biological and Biomedical Sciences, University of Portsmouth, Portsmouth PO1 2DY, UK or (A.A.); (R.G.); (C.S.); (J.B.); (Z.B.); (J.C.-N.); (A.K.); (M.L.); (A.J.C.); (H.A.V.)
| | - Jak Barrow
- School of Biological Sciences and Institute of Biological and Biomedical Sciences, University of Portsmouth, Portsmouth PO1 2DY, UK or (A.A.); (R.G.); (C.S.); (J.B.); (Z.B.); (J.C.-N.); (A.K.); (M.L.); (A.J.C.); (H.A.V.)
| | - Zoe Bentley
- School of Biological Sciences and Institute of Biological and Biomedical Sciences, University of Portsmouth, Portsmouth PO1 2DY, UK or (A.A.); (R.G.); (C.S.); (J.B.); (Z.B.); (J.C.-N.); (A.K.); (M.L.); (A.J.C.); (H.A.V.)
| | - Jashel Calvin-Nelson
- School of Biological Sciences and Institute of Biological and Biomedical Sciences, University of Portsmouth, Portsmouth PO1 2DY, UK or (A.A.); (R.G.); (C.S.); (J.B.); (Z.B.); (J.C.-N.); (A.K.); (M.L.); (A.J.C.); (H.A.V.)
| | - Alice Kaminski
- School of Biological Sciences and Institute of Biological and Biomedical Sciences, University of Portsmouth, Portsmouth PO1 2DY, UK or (A.A.); (R.G.); (C.S.); (J.B.); (Z.B.); (J.C.-N.); (A.K.); (M.L.); (A.J.C.); (H.A.V.)
| | - Matthew LeFevre
- School of Biological Sciences and Institute of Biological and Biomedical Sciences, University of Portsmouth, Portsmouth PO1 2DY, UK or (A.A.); (R.G.); (C.S.); (J.B.); (Z.B.); (J.C.-N.); (A.K.); (M.L.); (A.J.C.); (H.A.V.)
| | - Anastasia J. Callaghan
- School of Biological Sciences and Institute of Biological and Biomedical Sciences, University of Portsmouth, Portsmouth PO1 2DY, UK or (A.A.); (R.G.); (C.S.); (J.B.); (Z.B.); (J.C.-N.); (A.K.); (M.L.); (A.J.C.); (H.A.V.)
| | - Helen A. Vincent
- School of Biological Sciences and Institute of Biological and Biomedical Sciences, University of Portsmouth, Portsmouth PO1 2DY, UK or (A.A.); (R.G.); (C.S.); (J.B.); (Z.B.); (J.C.-N.); (A.K.); (M.L.); (A.J.C.); (H.A.V.)
| | - Darren M. Gowers
- School of Biological Sciences and Institute of Biological and Biomedical Sciences, University of Portsmouth, Portsmouth PO1 2DY, UK or (A.A.); (R.G.); (C.S.); (J.B.); (Z.B.); (J.C.-N.); (A.K.); (M.L.); (A.J.C.); (H.A.V.)
- Correspondence:
| |
Collapse
|
12
|
Deschepper CF. Regulatory effects of the Uty/Ddx3y locus on neighboring chromosome Y genes and autosomal mRNA transcripts in adult mouse non-reproductive cells. Sci Rep 2020; 10:14900. [PMID: 32913328 PMCID: PMC7484786 DOI: 10.1038/s41598-020-71447-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Accepted: 08/13/2020] [Indexed: 12/22/2022] Open
Abstract
In addition to sperm-related genes, the male-specific chromosome Y (chrY) contains a class of ubiquitously expressed and evolutionary conserved dosage-sensitive regulator genes that include the neighboring Uty, Ddx3y and (in mice) Eif2s3y genes. However, no study to date has investigated the functional impact of targeted mutations of any of these genes within adult non-reproductive somatic cells. We thus compared adult male mice carrying a gene trap within their Uty gene (UtyGT) to their wild-type (WT) isogenic controls, and performed deep sequencing of RNA and genome-wide profiling of chromatin features in extracts from either cardiac tissue, cardiomyocyte-specific nuclei or purified cardiomyocytes. The apparent impact of UtyGT on gene transcription concentrated mostly on chrY genes surrounding the locus of insertion, i.e. Uty, Ddx3y, long non-coding RNAs (lncRNAs) contained within their introns and Eif2s3y, in addition to possible effects on the autosomal Malat1 lncRNA. Notwithstanding, UtyGT also caused coordinate changes in the abundance of hundreds of mRNA transcripts related to coherent cell functions, including RNA processing and translation. The results altogether indicated that tightly co-regulated chrY genes had nonetheless more widespread effects on the autosomal transcriptome in adult somatic cells, most likely due to mechanisms other than just transcriptional regulation of corresponding protein-coding genes.
Collapse
Affiliation(s)
- Christian F Deschepper
- Cardiovascular Biology Research Unit, Institut de Recherches Cliniques de Montréal (IRCM) and Université de Montréal, 100 Pine Ave West, Montréal, QC, H2W 1R7, Canada.
| |
Collapse
|
13
|
Current perspectives on the clinical implications of oxidative RNA damage in aging research: challenges and opportunities. GeroScience 2020; 43:487-505. [PMID: 32529593 PMCID: PMC8110629 DOI: 10.1007/s11357-020-00209-w] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 05/28/2020] [Indexed: 02/05/2023] Open
Abstract
Ribonucleic acid (RNA) molecules can be easily attacked by reactive oxygen species (ROS), which are produced during normal cellular metabolism and under various oxidative stress conditions. Numerous findings report that the amount of cellular 8-oxoG, the most abundant RNA damage biomarker, is a promising target for the sensitive measurement of oxidative stress and aging-associated diseases, including neuropsychiatric disorders. Most importantly, available data suggest that RNA oxidation has important implications for various signaling pathways and gene expression regulation in aging-related diseases, highlighting the necessity of using combinations of RNA oxidation adducts in both experimental studies and clinical trials. In this review, we primarily describe evidence for the effect of oxidative stress on RNA integrity modulation and possible quality control systems. Additionally, we discuss the profiles and clinical implications of RNA oxidation products that have been under intensive investigation in several aging-associated medical disorders.
Collapse
|
14
|
Mardle CE, Goddard LR, Spelman BC, Atkins HS, Butt LE, Cox PA, Gowers DM, Vincent HA, Callaghan AJ. Identification and analysis of novel small molecule inhibitors of RNase E: Implications for antibacterial targeting and regulation of RNase E. Biochem Biophys Rep 2020; 23:100773. [PMID: 32548313 PMCID: PMC7284133 DOI: 10.1016/j.bbrep.2020.100773] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 05/20/2020] [Accepted: 05/30/2020] [Indexed: 11/13/2022] Open
Abstract
Increasing resistance of bacteria to antibiotics is a serious global challenge and there is a need to unlock the potential of novel antibacterial targets. One such target is the essential prokaryotic endoribonuclease RNase E. Using a combination of in silico high-throughput screening and in vitro validation we have identified three novel small molecule inhibitors of RNase E that are active against RNase E from Escherichia coli, Francisella tularensis and Acinetobacter baumannii. Two of the inhibitors are non-natural small molecules that could be suitable as lead compounds for the development of broad-spectrum antibiotics targeting RNase E. The third small molecule inhibitor is glucosamine-6-phosphate, a precursor of bacterial cell envelope peptidoglycans and lipopolysaccharides, hinting at a novel metabolite-mediated mechanism of regulation of RNase E. RNase E, an essential bacterial endoribonuclease, is a potential antibacterial target. Three novel small molecule inhibitors of RNase E are identified. Each inhibitor is active against RNase E from E. coli, F. tularensis and A. baumannii. Two, as non-natural compounds, are suitable lead compounds for antibiotic development. One, a metabolite, is a potential novel regulator of RNase E.
Collapse
Affiliation(s)
- Charlotte E Mardle
- School of Biological Sciences and Institute of Biological and Biomedical Sciences, University of Portsmouth, Portsmouth, PO1 2DY, United Kingdom
| | - Layla R Goddard
- School of Biological Sciences and Institute of Biological and Biomedical Sciences, University of Portsmouth, Portsmouth, PO1 2DY, United Kingdom
| | - Bailei C Spelman
- School of Biological Sciences and Institute of Biological and Biomedical Sciences, University of Portsmouth, Portsmouth, PO1 2DY, United Kingdom
| | - Helen S Atkins
- Defence Science and Technology Laboratory, Porton Down, Salisbury, United Kingdom.,University of Exeter, Exeter, United Kingdom.,London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Louise E Butt
- School of Biological Sciences and Institute of Biological and Biomedical Sciences, University of Portsmouth, Portsmouth, PO1 2DY, United Kingdom
| | - Paul A Cox
- School of Pharmacy and Biomedical Sciences and Institute of Biological and Biomedical Sciences, University of Portsmouth, Portsmouth, PO1 2DT, United Kingdom
| | - Darren M Gowers
- School of Biological Sciences and Institute of Biological and Biomedical Sciences, University of Portsmouth, Portsmouth, PO1 2DY, United Kingdom
| | - Helen A Vincent
- School of Biological Sciences and Institute of Biological and Biomedical Sciences, University of Portsmouth, Portsmouth, PO1 2DY, United Kingdom
| | - Anastasia J Callaghan
- School of Biological Sciences and Institute of Biological and Biomedical Sciences, University of Portsmouth, Portsmouth, PO1 2DY, United Kingdom
| |
Collapse
|
15
|
Bechhofer DH, Deutscher MP. Bacterial ribonucleases and their roles in RNA metabolism. Crit Rev Biochem Mol Biol 2019; 54:242-300. [PMID: 31464530 PMCID: PMC6776250 DOI: 10.1080/10409238.2019.1651816] [Citation(s) in RCA: 117] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 07/22/2019] [Accepted: 07/31/2019] [Indexed: 12/16/2022]
Abstract
Ribonucleases (RNases) are mediators in most reactions of RNA metabolism. In recent years, there has been a surge of new information about RNases and the roles they play in cell physiology. In this review, a detailed description of bacterial RNases is presented, focusing primarily on those from Escherichia coli and Bacillus subtilis, the model Gram-negative and Gram-positive organisms, from which most of our current knowledge has been derived. Information from other organisms is also included, where relevant. In an extensive catalog of the known bacterial RNases, their structure, mechanism of action, physiological roles, genetics, and possible regulation are described. The RNase complement of E. coli and B. subtilis is compared, emphasizing the similarities, but especially the differences, between the two. Included are figures showing the three major RNA metabolic pathways in E. coli and B. subtilis and highlighting specific steps in each of the pathways catalyzed by the different RNases. This compilation of the currently available knowledge about bacterial RNases will be a useful tool for workers in the RNA field and for others interested in learning about this area.
Collapse
Affiliation(s)
- David H. Bechhofer
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Murray P. Deutscher
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL, USA
| |
Collapse
|
16
|
Abstract
The role of mitochondria as a signaling platform downstream of the RNA sensors RIG-I and MDA5 is well defined. Now, a recent study in Nature by Dhir et al. (2018) identifies mitochondrial dsRNA as an immunogenic ligand, adding another intriguing aspect to the role of mitochondria in innate immunity.
Collapse
Affiliation(s)
- Andreas Linder
- Gene Center and Department of Biochemistry, Ludwig-Maximilians-Universität München, Munich 81377, Germany; Department of Medicine II, University Hospital, Ludwig-Maximilians-Universität München, Munich 81377, Germany
| | - Veit Hornung
- Gene Center and Department of Biochemistry, Ludwig-Maximilians-Universität München, Munich 81377, Germany; Center for Integrated Protein Science Munich, Munich 81377, Germany.
| |
Collapse
|
17
|
Dos Santos RF, Quendera AP, Boavida S, Seixas AF, Arraiano CM, Andrade JM. Major 3'-5' Exoribonucleases in the Metabolism of Coding and Non-coding RNA. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2018; 159:101-155. [PMID: 30340785 DOI: 10.1016/bs.pmbts.2018.07.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
3'-5' exoribonucleases are key enzymes in the degradation of superfluous or aberrant RNAs and in the maturation of precursor RNAs into their functional forms. The major bacterial 3'-5' exoribonucleases responsible for both these activities are PNPase, RNase II and RNase R. These enzymes are of ancient nature with widespread distribution. In eukaryotes, PNPase and RNase II/RNase R enzymes can be found in the cytosol and in mitochondria and chloroplasts; RNase II/RNase R-like enzymes are also found in the nucleus. Humans express one PNPase (PNPT1) and three RNase II/RNase R family members (Dis3, Dis3L and Dis3L2). These enzymes take part in a multitude of RNA surveillance mechanisms that are critical for translation accuracy. Although active against a wide range of both coding and non-coding RNAs, the different 3'-5' exoribonucleases exhibit distinct substrate affinities. The latest studies on these RNA degradative enzymes have contributed to the identification of additional homologue proteins, the uncovering of novel RNA degradation pathways, and to a better comprehension of several disease-related processes and response to stress, amongst many other exciting findings. Here, we provide a comprehensive and up-to-date overview on the function, structure, regulation and substrate preference of the key 3'-5' exoribonucleases involved in RNA metabolism.
Collapse
Affiliation(s)
- Ricardo F Dos Santos
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Ana P Quendera
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Sofia Boavida
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - André F Seixas
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Cecília M Arraiano
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - José M Andrade
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal.
| |
Collapse
|
18
|
Jones GH. Novel Aspects of Polynucleotide Phosphorylase Function in Streptomyces. Antibiotics (Basel) 2018; 7:antibiotics7010025. [PMID: 29562650 PMCID: PMC5872136 DOI: 10.3390/antibiotics7010025] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Revised: 03/13/2018] [Accepted: 03/16/2018] [Indexed: 12/31/2022] Open
Abstract
Polynucleotide phosphorylase (PNPase) is a 3′–5′-exoribnuclease that is found in most bacteria and in some eukaryotic organelles. The enzyme plays a key role in RNA decay in these systems. PNPase structure and function have been studied extensively in Escherichiacoli, but there are several important aspects of PNPase function in Streptomyces that differ from what is observed in E. coli and other bacterial genera. This review highlights several of those differences: (1) the organization and expression of the PNPase gene in Streptomyces; (2) the possible function of PNPase as an RNA 3′-polyribonucleotide polymerase in Streptomyces; (3) the function of PNPase as both an exoribonuclease and as an RNA 3′-polyribonucleotide polymerase in Streptomyces; (4) the function of (p)ppGpp as a PNPase effector in Streptomyces. The review concludes with a consideration of a number of unanswered questions regarding the function of Streptomyces PNPase, which can be examined experimentally.
Collapse
Affiliation(s)
- George H Jones
- Department of Biology, Emory University, Atlanta, GA 30322, USA.
| |
Collapse
|
19
|
He LS, Zhang PW, Huang JM, Zhu FC, Danchin A, Wang Y. The Enigmatic Genome of an Obligate Ancient Spiroplasma Symbiont in a Hadal Holothurian. Appl Environ Microbiol 2018; 84:e01965-17. [PMID: 29054873 PMCID: PMC5734040 DOI: 10.1128/aem.01965-17] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Accepted: 10/15/2017] [Indexed: 11/20/2022] Open
Abstract
Protective symbiosis has been reported in many organisms, but the molecular mechanisms of the mutualistic interactions between the symbionts and their hosts are unclear. Here, we sequenced the 424-kbp genome of "Candidatus Spiroplasma holothuricola," which dominated the hindgut microbiome of a sea cucumber, a major scavenger captured in the Mariana Trench (6,140 m depth). Phylogenetic relationships indicated that the dominant bacterium in the hindgut was derived from a basal group of Spiroplasma species. In this organism, the genes responsible for the biosynthesis of amino acids, glycolysis, and sugar transporters were lost, strongly suggesting endosymbiosis. The highly decayed genome consists of two chromosomes and harbors genes coding for proteolysis, microbial toxin, restriction-methylation systems, and clustered regularly interspaced short palindromic repeats (CRISPRs), composed of three cas genes and 76 CRISPR spacers. The holothurian host is probably protected against invading viruses from sediments by the CRISPRs/Cas and restriction systems of the endosymbiotic spiroplasma. The protective endosymbiosis indicates the important ecological role of the ancient Spiroplasma symbiont in the maintenance of hadal ecosystems.IMPORTANCE Sea cucumbers are major inhabitants in hadal trenches. They collect microbes in surface sediment and remain tolerant against potential pathogenic bacteria and viruses. This study presents the genome of endosymbiotic spiroplasmas in the gut of a sea cucumber captured in the Mariana Trench. The extreme reduction of the genome and loss of essential metabolic pathways strongly support its endosymbiotic lifestyle. Moreover, a considerable part of the genome was occupied by a CRISPR/Cas system to provide immunity against viruses and antimicrobial toxin-encoding genes for the degradation of microbes. This novel species of Spiroplasma is probably an important protective symbiont for the sea cucumbers in the hadal zone.
Collapse
Affiliation(s)
- Li-Sheng He
- Institute of Deep-Sea Science and Engineering, Chinese Academy of Sciences, Sanya, Hainan, China
| | - Pei-Wei Zhang
- Institute of Deep-Sea Science and Engineering, Chinese Academy of Sciences, Sanya, Hainan, China
| | - Jiao-Mei Huang
- Institute of Deep-Sea Science and Engineering, Chinese Academy of Sciences, Sanya, Hainan, China
| | - Fang-Chao Zhu
- Institute of Deep-Sea Science and Engineering, Chinese Academy of Sciences, Sanya, Hainan, China
| | - Antoine Danchin
- Institute of Cardiometabolism and Nutrition, Hôpital de la Pitié-Salpêtrière, Paris, France
| | - Yong Wang
- Institute of Deep-Sea Science and Engineering, Chinese Academy of Sciences, Sanya, Hainan, China
| |
Collapse
|
20
|
Raj R, Mitra S, Gopal B. Characterization of Staphylococcus epidermidis Polynucleotide phosphorylase and its interactions with ribonucleases RNase J1 and RNase J2. Biochem Biophys Res Commun 2017; 495:2078-2084. [PMID: 29242153 DOI: 10.1016/j.bbrc.2017.12.056] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Accepted: 12/10/2017] [Indexed: 11/16/2022]
Abstract
Polynucleotide phosphorylase catalyzes both 3'-5' exoribonuclease and polyadenylation reactions. The crystal structure of Staphylococcus epidermidis PNPase revealed a bound phosphate in the PH2 domain of each protomer coordinated by three adjacent serine residues. Mutational analysis suggests that phosphate coordination by these serine residues is essential to maintain the catalytic center in an active conformation. We note that PNPase forms a complex with RNase J1 and RNase J2 without substantially altering either exo-ribonuclease or polyadenylation activity of this enzyme. This decoupling of catalytic activity from protein-protein interactions suggests that association of these endo- or exo-ribonucleases with PNPase could be more relevant for cellular localization or concerted targeting of structured RNA for recycling.
Collapse
Affiliation(s)
- Rishi Raj
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore 560012, India
| | - Sharmistha Mitra
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore 560012, India
| | | |
Collapse
|