1
|
Mohd Nazri MN, Khairil Anwar NA, Mohd Zaidi NF, Fadzli Mustaffa KM, Mokhtar NF. PD-L1 DNA aptamers isolated from agarose-bead SELEX. Bioorg Med Chem Lett 2024; 112:129943. [PMID: 39222892 DOI: 10.1016/j.bmcl.2024.129943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 08/28/2024] [Accepted: 08/29/2024] [Indexed: 09/04/2024]
Abstract
Increased expression and activity of the PD-L1/PD-1 pathway suppresses the activation of cytotoxic T cells, which is vital in anti-tumour defence, allowing tumours to rise, expand and progress. Current strategies using antibodies to target PD-1/PD-L1 have been very effective in cancer therapeutics and companion diagnostics. Aptamers are a new class of molecules that offer an alternative to antibodies. Herein, the systematic evolution of ligands by exponential enrichment (SELEX) using agarose slurry beads was conducted to isolate DNA aptamers specific to recombinant human PD-L1 (rhPD-L1). Isolated aptamers were sequenced and analysed using MEGA X and structural features were examined using mFold. Three aptamer candidates (P33, P32, and P12) were selected for evaluation of binding affinity (dissociation constant, Kd) using ELONA and specificity and competitive inhibition assessment using the potentiostat-electrochemical method. Among those three, P32 displayed the highest specificity (8 nM) against PD-L1. However, P32 competes for the same binding site with the control antibody, 28-8. This study warrants further assessment of P32 aptamer as a potential, cost-effective alternative tool for targeting PD-L1.
Collapse
Affiliation(s)
- Muhammad Najmi Mohd Nazri
- Institute for Research in Molecular Medicine (INFORMM), USM Health Campus, 16150 Kota Bharu, Kelantan, Malaysia.
| | - Nur Amira Khairil Anwar
- Institute for Research in Molecular Medicine (INFORMM), USM Health Campus, 16150 Kota Bharu, Kelantan, Malaysia.
| | - Nur Fatihah Mohd Zaidi
- Institute for Research in Molecular Medicine (INFORMM), USM Health Campus, 16150 Kota Bharu, Kelantan, Malaysia.
| | - Khairul Mohd Fadzli Mustaffa
- Institute for Research in Molecular Medicine (INFORMM), USM Health Campus, 16150 Kota Bharu, Kelantan, Malaysia.
| | - Noor Fatmawati Mokhtar
- Institute for Research in Molecular Medicine (INFORMM), USM Health Campus, 16150 Kota Bharu, Kelantan, Malaysia.
| |
Collapse
|
2
|
Liu Y, Zhao Z, Zeng Y, He M, Lyu Y, Yuan Q. Thermodynamics and Kinetics-Directed Regulation of Nucleic Acid-Based Molecular Recognition. SMALL METHODS 2024:e2401102. [PMID: 39392199 DOI: 10.1002/smtd.202401102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 09/28/2024] [Indexed: 10/12/2024]
Abstract
Nucleic acid-based molecular recognition plays crucial roles in various fields like biosensing and disease diagnostics. To achieve optimal detection and analysis, it is essential to regulate the response performance of nucleic acid probes or switches to match specific application requirements by regulating thermodynamics and kinetics properties. However, the impacts of thermodynamics and kinetics theories on recognition performance are sometimes obscure and the relative conclusions are not intuitive. To promote the thorough understanding and rational utilization of thermodynamics and kinetics theories, this review focuses on the landmarks and recent advances of nucleic acid thermodynamics and kinetics and summarizes the nucleic acid thermodynamics and kinetics-based strategies for regulation of nucleic acid-based molecular recognition. This work hopes such a review can provide reference and guidance for the development and optimization of nucleic acid probes and switches in the future, as well as for advancements in other nucleic acid-related fields.
Collapse
Affiliation(s)
- Yihao Liu
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, 410082, China
| | - Zihan Zhao
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, 410082, China
| | - Yuqi Zeng
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, 410082, China
| | - Minze He
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, 410082, China
| | - Yifan Lyu
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, 410082, China
- Furong Laboratory, Changsha, 410082, China
| | - Quan Yuan
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, 410082, China
- Institute of Chemical Biology and Nanomedicine, College of Biology, Hunan University, Changsha, 410082, China
| |
Collapse
|
3
|
Cheng X, Li X, Kang Y, Zhang D, Yu Q, Chen J, Li X, Du L, Yang T, Gong Y, Yi M, Zhang S, Zhu S, Ding S, Cheng W. Rapid in situ RNA imaging based on Cas12a thrusting strand displacement reaction. Nucleic Acids Res 2023; 51:e111. [PMID: 37941139 PMCID: PMC10711451 DOI: 10.1093/nar/gkad953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 10/09/2023] [Accepted: 10/12/2023] [Indexed: 11/10/2023] Open
Abstract
RNA In situ imaging through DNA self-assembly is advantaged in illustrating its structures and functions with high-resolution, while the limited reaction efficiency and time-consuming operation hinder its clinical application. Here, we first proposed a new strand displacement reaction (SDR) model (Cas12a thrusting SDR, CtSDR), in which Cas12a could overcome the inherent reaction limitation and dramatically enhance efficiency through energy replenishment and by-product consumption. The target-initiated CtSDR amplification was established for RNA analysis, with order of magnitude lower limit of detection (LOD) than the Cas13a system. The CtSDR-based RNA in situ imaging strategy was developed to monitor intra-cellular microRNA expression change and delineate the landscape of oncogenic RNA in 66 clinic tissue samples, possessing a clear advantage over classic in situ hybridization (ISH) in terms of operation time (1 h versus 14 h) while showing comparable sensitivity and specificity. This work presents a promising approach to developing advanced molecular diagnostic tools.
Collapse
Affiliation(s)
- Xiaoxue Cheng
- The Center for Clinical Molecular Medical detection, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P.R. China
- Biobank Center, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P.R. China
| | - Xiaosong Li
- The Center for Clinical Molecular Medical detection, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P.R. China
| | - Yuexi Kang
- The Center for Clinical Molecular Medical detection, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P.R. China
| | - Decai Zhang
- Laboratory Medicine, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510000, PR China
| | - Qiubo Yu
- Molecular Medicine Diagnostic and Testing Center, Chongqing Medical University, Chongqing 400016, P.R. China
| | - Junman Chen
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, P.R. China
| | - Xinyu Li
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, P.R. China
| | - Li Du
- The Center for Clinical Molecular Medical detection, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P.R. China
| | - Tiantian Yang
- The Center for Clinical Molecular Medical detection, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P.R. China
| | - Yao Gong
- The Center for Clinical Molecular Medical detection, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P.R. China
| | - Ming Yi
- The Center for Clinical Molecular Medical detection, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P.R. China
| | - Songzhi Zhang
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, P.R. China
| | - Shasha Zhu
- The Center for Clinical Molecular Medical detection, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P.R. China
| | - Shijia Ding
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, P.R. China
| | - Wei Cheng
- The Center for Clinical Molecular Medical detection, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P.R. China
- Biobank Center, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P.R. China
| |
Collapse
|
4
|
Tobiason M, Yurke B, Hughes WL. Generation of DNA oligomers with similar chemical kinetics via in-silico optimization. Commun Chem 2023; 6:226. [PMID: 37853171 PMCID: PMC10584830 DOI: 10.1038/s42004-023-01026-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 10/10/2023] [Indexed: 10/20/2023] Open
Abstract
Networks of interacting DNA oligomers are useful for applications such as biomarker detection, targeted drug delivery, information storage, and photonic information processing. However, differences in the chemical kinetics of hybridization reactions, referred to as kinetic dispersion, can be problematic for some applications. Here, it is found that limiting unnecessary stretches of Watson-Crick base pairing, referred to as unnecessary duplexes, can yield exceptionally low kinetic dispersions. Hybridization kinetics can be affected by unnecessary intra-oligomer duplexes containing only 2 base-pairs, and such duplexes explain up to 94% of previously reported kinetic dispersion. As a general design rule, it is recommended that unnecessary intra-oligomer duplexes larger than 2 base-pairs and unnecessary inter-oligomer duplexes larger than 7 base-pairs be avoided. Unnecessary duplexes typically scale exponentially with network size, and nearly all networks contain unnecessary duplexes substantial enough to affect hybridization kinetics. A new method for generating networks which utilizes in-silico optimization to mitigate unnecessary duplexes is proposed and demonstrated to reduce in-vitro kinetic dispersions as much as 96%. The limitations of the new design rule and generation method are evaluated in-silico by creating new oligomers for several designs, including three previously programmed reactions and one previously engineered structure.
Collapse
Affiliation(s)
- Michael Tobiason
- Department of Computer Science, Boise State University, Boise, ID, USA.
- Micron School of Materials Science & Engineering, Boise State University, Boise, ID, USA.
| | - Bernard Yurke
- Micron School of Materials Science & Engineering, Boise State University, Boise, ID, USA
- Department of Electrical & Computer Engineering, Boise State University, Boise, ID, USA
| | - William L Hughes
- School of Engineering, University of British Columbia Okanagan Campus, Kelowna, BC, Canada.
| |
Collapse
|
5
|
Wang L, Zhao J, Xiong X, Li L, Zhu T, Pei H. Enzyme-Free Nucleic Acid Circuits for Fold-Change Detection. Chempluschem 2023; 88:e202300083. [PMID: 37005227 DOI: 10.1002/cplu.202300083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 03/26/2023] [Accepted: 03/27/2023] [Indexed: 04/04/2023]
Abstract
Fold-change detection is widespread in sensory systems of various organisms. Dynamic DNA nanotechnology provides an important toolbox for reproducing structures and responses of cellular circuits. In this work, we construct an enzyme-free nucleic acid circuit based on the incoherent feed-forward loop using toehold-mediated DNA strand displacement reactions and explore its dynamic behaviors. The mathematical model based on ordinary differential equations is used to evaluate the parameter regime required for fold-change detection. After selecting appropriate parameters, the constructed synthetic circuit exhibits approximate fold-change detection for multiple rounds of inputs with different initial concentrations. This work is anticipated to shed new light on the design of DNA dynamic circuits in the enzyme-free environment.
Collapse
Affiliation(s)
- Likun Wang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai, 200241 (P. R., China
| | - Jiayan Zhao
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai, 200241 (P. R., China
| | - Xiewei Xiong
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai, 200241 (P. R., China
| | - Li Li
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai, 200241 (P. R., China
| | - Tong Zhu
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai, 200241 (P. R., China
| | - Hao Pei
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai, 200241 (P. R., China
| |
Collapse
|
6
|
Grzędowski A, Ma T, Bizzotto D. FRET Imaging of Nonuniformly Distributed DNA SAMs on Gold Reveals the Role Played by the Donor/Acceptor Ratio and the Local Environment in Measuring the Rate of Hybridization. CHEMICAL & BIOMEDICAL IMAGING 2023; 1:286-296. [PMID: 37388962 PMCID: PMC10302881 DOI: 10.1021/cbmi.3c00031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 04/18/2023] [Accepted: 05/05/2023] [Indexed: 07/01/2023]
Abstract
Mixed DNA SAMs labeled with a fluorophore (either AlexaFluor488 or AlexaFluor647) were prepared on a single crystal gold bead electrode using potential-assisted thiol exchange and studied using Förster resonance energy transfer (FRET). A measure of the local environment of the DNA SAM (e.g., crowding) was possible using FRET imaging on these surfaces since electrodes prepared this way have a range of surface densities (ΓDNA). The FRET signal was strongly dependent on ΓDNA and on the ratio of AlexaFluor488 to AlexaFluor647 used to make the DNA SAM, which were consistent with a model of FRET in 2D systems. FRET was shown to provide a direct measure of the local DNA SAM arrangement on each crystallographic region of interest providing a direct assessment of the probe environment and its influence on the rate of hybridization. The kinetics of duplex formation for these DNA SAMs was also studied using FRET imaging over a range of coverages and DNA SAM compositions. Hybridization of the surface-bound DNA increased the average distance between the fluorophore label and the gold electrode surface and decreased the distance between the donor (D) and acceptor (A), both of which result in an increase in FRET intensity. This increase in FRET was modeled using a second order Langmuir adsorption rate equation, reflecting the fact that both D and A labeled DNA are required to become hybridized to observe a FRET signal. The self-consistent analysis of the hybridization rates on low and high coverage regions on the same electrode showed that the low coverage regions achieved full hybridization 5× faster than the higher coverage regions, approaching rates typically found in solution. The relative increase in FRET intensity from each region of interest was controlled by manipulating the donor to acceptor composition of the DNA SAM without changing the rate of hybridization. The FRET response can be optimized by controlling the coverage and the composition of the DNA SAM sensor surface and could be further improved with the use of a FRET pair with a larger (e.g., > 5 nm) Förster radius.
Collapse
|
7
|
Zolaktaf S, Dannenberg F, Schmidt M, Condon A, Winfree E. Predicting DNA kinetics with a truncated continuous-time Markov chain method. Comput Biol Chem 2023; 104:107837. [PMID: 36858009 DOI: 10.1016/j.compbiolchem.2023.107837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 02/05/2023] [Accepted: 02/21/2023] [Indexed: 03/03/2023]
Abstract
Predicting the kinetics of reactions involving nucleic acid strands is a fundamental task in biology and biotechnology. Reaction kinetics can be modeled as an elementary step continuous-time Markov chain, where states correspond to secondary structures and transitions correspond to base pair formation and breakage. Since the number of states in the Markov chain could be large, rates are determined by estimating the mean first passage time from sampled trajectories. As a result, the cost of kinetic predictions becomes prohibitively expensive for rare events with extremely long trajectories. Also problematic are scenarios where multiple predictions are needed for the same reaction, e.g., under different environmental conditions, or when calibrating model parameters, because a new set of trajectories is needed multiple times. We propose a new method, called pathway elaboration, to handle these scenarios. Pathway elaboration builds a truncated continuous-time Markov chain through both biased and unbiased sampling. The resulting Markov chain has moderate state space size, so matrix methods can efficiently compute reaction rates, even for rare events. Also the transition rates of the truncated Markov chain can easily be adapted when model or environmental parameters are perturbed, making model calibration feasible. We illustrate the utility of pathway elaboration on toehold-mediated strand displacement reactions, show that it well-approximates trajectory-based predictions of unbiased elementary step models on a wide range of reaction types for which such predictions are feasible, and demonstrate that it performs better than alternative truncation-based approaches that are applicable for mean first passage time estimation. Finally, in a small study, we use pathway elaboration to optimize the Metropolis kinetic model of Multistrand, an elementary step simulator, showing that the optimized parameters greatly improve reaction rate predictions. Our framework and dataset are available at https://github.com/DNA-and-Natural-Algorithms-Group/PathwayElaboration.
Collapse
Affiliation(s)
| | | | - Mark Schmidt
- University of British Columbia, Canada; Canada CIFAR AI Chair (Amii), Canada.
| | | | - Erik Winfree
- California Institute of Technology, United States of America.
| |
Collapse
|
8
|
Mayer T, Oesinghaus L, Simmel FC. Toehold-Mediated Strand Displacement in Random Sequence Pools. J Am Chem Soc 2023; 145:634-644. [PMID: 36571481 DOI: 10.1021/jacs.2c11208] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Toehold-mediated strand displacement (TMSD) has been used extensively for molecular sensing and computing in DNA-based molecular circuits. As these circuits grow in complexity, sequence similarity between components can lead to cross-talk, causing leak, altered kinetics, or even circuit failure. For small non-biological circuits, such unwanted interactions can be designed against. In environments containing a huge number of sequences, taking all possible interactions into account becomes infeasible. Therefore, a general understanding of the impact of sequence backgrounds on TMSD reactions is of great interest. Here, we investigate the impact of random DNA sequences on TMSD circuits. We begin by studying individual interfering strands and use the obtained data to build machine learning models that estimate kinetics. We then investigate the influence of pools of random strands and find that the kinetics are determined by only a small subpopulation of strongly interacting strands. Consequently, their behavior can be mimicked by a small collection of such strands. The equilibration of the circuit with the background sequences strongly influences this behavior, leading to up to 1 order of magnitude difference in reaction speed. Finally, we compare two established and one novel technique that speed up TMSD reactions in random sequence pools: a three-letter alphabet, protection of toeholds by intramolecular secondary structure, or by an additional blocking strand. While all of these techniques were useful, only the latter can be used without sequence constraints. We expect that our insights will be useful for the construction of TMSD circuits that are robust to molecular noise.
Collapse
Affiliation(s)
- Thomas Mayer
- School of Natural Sciences, Department of Bioscience, TU Munich, D-85748Garching, Germany
| | - Lukas Oesinghaus
- School of Natural Sciences, Department of Bioscience, TU Munich, D-85748Garching, Germany
| | - Friedrich C Simmel
- School of Natural Sciences, Department of Bioscience, TU Munich, D-85748Garching, Germany
| |
Collapse
|
9
|
Hertel S, Spinney RE, Xu SY, Ouldridge TE, Morris RG, Lee LK. The stability and number of nucleating interactions determine DNA hybridization rates in the absence of secondary structure. Nucleic Acids Res 2022; 50:7829-7841. [PMID: 35880577 PMCID: PMC9371923 DOI: 10.1093/nar/gkac590] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 06/23/2022] [Accepted: 07/25/2022] [Indexed: 11/12/2022] Open
Abstract
The kinetics of DNA hybridization are fundamental to biological processes and DNA-based technologies. However, the precise physical mechanisms that determine why different DNA sequences hybridize at different rates are not well understood. Secondary structure is one predictable factor that influences hybridization rates but is not sufficient on its own to fully explain the observed sequence-dependent variance. In this context, we measured hybridization rates of 43 different DNA sequences that are not predicted to form secondary structure and present a parsimonious physically justified model to quantify our observations. Accounting only for the combinatorics of complementary nucleating interactions and their sequence-dependent stability, the model achieves good correlation with experiment with only two free parameters. Our results indicate that greater repetition of Watson-Crick pairs increases the number of initial states able to proceed to full hybridization, with the stability of those pairings dictating the likelihood of such progression, thus providing new insight into the physical factors underpinning DNA hybridization rates.
Collapse
Affiliation(s)
- Sophie Hertel
- EMBL Australia Node for Single Molecule Science, School of Medical Sciences, University of New South Wales, Sydney 2052, Australia
| | - Richard E Spinney
- EMBL Australia Node for Single Molecule Science, School of Medical Sciences, University of New South Wales, Sydney 2052, Australia.,School of Physics, University of New South Wales, Sydney 2052, Australia
| | - Stephanie Y Xu
- EMBL Australia Node for Single Molecule Science, School of Medical Sciences, University of New South Wales, Sydney 2052, Australia
| | - Thomas E Ouldridge
- Department of Bioengineering and Centre for Synthetic Biology, Imperial College London, London SW7 2AZ, UK
| | - Richard G Morris
- EMBL Australia Node for Single Molecule Science, School of Medical Sciences, University of New South Wales, Sydney 2052, Australia.,School of Physics, University of New South Wales, Sydney 2052, Australia
| | - Lawrence K Lee
- EMBL Australia Node for Single Molecule Science, School of Medical Sciences, University of New South Wales, Sydney 2052, Australia.,ARC Centre of Excellence in Synthetic Biology, University of New South Wales, Sydney, Australia
| |
Collapse
|
10
|
Wong KL, Liu J. Factors and methods to modulate DNA hybridization kinetics. Biotechnol J 2021; 16:e2000338. [PMID: 34411451 DOI: 10.1002/biot.202000338] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 08/11/2021] [Accepted: 08/12/2021] [Indexed: 11/09/2022]
Abstract
DNA oligonucleotides are widely used in a diverse range of research fields from analytical chemistry, molecular biology, nanotechnology to drug delivery. In these applications, DNA hybridization is often the most important enabling reaction. Achieving control over hybridization kinetics and a high yield of hybridized products is needed to ensure high-quality and reproducible results. Since DNA strands are highly negatively charged and can also fold upon itself to form various intramolecular structures, DNA hybridization needs to overcome these barriers. Nucleation and diffusion are two main kinetic limiting steps although their relative importance differs in different conditions. The effects of length and sequence, temperature, pH, salt concentration, cationic polymers, organic solvents, freezing and crowding agents are summarized in the context of overcoming these barriers. This article will help researchers in the biotechnology-related fields to better understand and control DNA hybridization, as well as provide a landscape for future work in simulation and experiment to optimize DNA hybridization systems.
Collapse
Affiliation(s)
- Kingsley L Wong
- Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario, Canada
| | - Juewen Liu
- Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario, Canada
| |
Collapse
|
11
|
Rejali NA, Ye FD, Zuiter AM, Keller CC, Wittwer CT. Nearest-neighbour transition-state analysis for nucleic acid kinetics. Nucleic Acids Res 2021; 49:4574-4585. [PMID: 33823552 PMCID: PMC8096236 DOI: 10.1093/nar/gkab205] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 02/24/2021] [Accepted: 03/13/2021] [Indexed: 11/13/2022] Open
Abstract
We used stopped-flow to monitor hypochromicity for 43 oligonucleotide duplexes to study nucleic acid kinetics and extract transition-state parameters for association and dissociation. Reactions were performed in 1.0 M NaCl (for literature comparisons) and 2.2 mM MgCl2 (PCR conditions). Dissociation kinetics depended on sequence, increased exponentially with temperature, and transition-state parameters inversely correlated to thermodynamic parameters (r = -0.99). Association had no consistent enthalpic component, varied little with temperature or sequence, and poorly correlated to thermodynamic parameters (r = 0.28). Average association rates decreased 78% in MgCl2 compared to NaCl while dissociation was relatively insensitive to ionic conditions. A nearest-neighbour kinetic model for dissociation predicted rate constants within 3-fold of literature values (n = 11). However, a nearest-neighbour model for association appeared overparameterized and inadequate for predictions. Kinetic predictions were used to simulate published high-speed (<1 min) melting analysis and extreme (<2 min) PCR experiments. Melting simulations predicted apparent melting temperatures increase on average 2.4°C when temperature ramp rates increased from 0.1 to 32°C/s, compared to 2.8°C reported in the literature. PCR simulations revealed that denaturation kinetics are dependent on the thermocycling profile. Simulations overestimated annealing efficiencies at shorter annealing times and suggested that polymerase interactions contribute to primer-template complex stability at extension temperatures.
Collapse
Affiliation(s)
- Nick A Rejali
- Department of Pathology, University of Utah, Salt Lake City, UT 84132, USA
| | - Felix D Ye
- Department of Pathology, University of Utah, Salt Lake City, UT 84132, USA
| | - Aisha M Zuiter
- Department of Pathology, University of Utah, Salt Lake City, UT 84132, USA
| | - Caroline C Keller
- Department of Pathology, University of Utah, Salt Lake City, UT 84132, USA
| | - Carl T Wittwer
- Department of Pathology, University of Utah, Salt Lake City, UT 84132, USA
| |
Collapse
|
12
|
Teixeira da Silva JA. Room temperature in scientific protocols and experiments should be defined: a reproducibility issue. Biotechniques 2021; 70:306-308. [PMID: 34030450 DOI: 10.2144/btn-2020-0131] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
13
|
Dickinson GD, Mortuza GM, Clay W, Piantanida L, Green CM, Watson C, Hayden EJ, Andersen T, Kuang W, Graugnard E, Zadegan R, Hughes WL. An alternative approach to nucleic acid memory. Nat Commun 2021; 12:2371. [PMID: 33888693 PMCID: PMC8062470 DOI: 10.1038/s41467-021-22277-y] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 03/04/2021] [Indexed: 11/08/2022] Open
Abstract
DNA is a compelling alternative to non-volatile information storage technologies due to its information density, stability, and energy efficiency. Previous studies have used artificially synthesized DNA to store data and automated next-generation sequencing to read it back. Here, we report digital Nucleic Acid Memory (dNAM) for applications that require a limited amount of data to have high information density, redundancy, and copy number. In dNAM, data is encoded by selecting combinations of single-stranded DNA with (1) or without (0) docking-site domains. When self-assembled with scaffold DNA, staple strands form DNA origami breadboards. Information encoded into the breadboards is read by monitoring the binding of fluorescent imager probes using DNA-PAINT super-resolution microscopy. To enhance data retention, a multi-layer error correction scheme that combines fountain and bi-level parity codes is used. As a prototype, fifteen origami encoded with 'Data is in our DNA!\n' are analyzed. Each origami encodes unique data-droplet, index, orientation, and error-correction information. The error-correction algorithms fully recover the message when individual docking sites, or entire origami, are missing. Unlike other approaches to DNA-based data storage, reading dNAM does not require sequencing. As such, it offers an additional path to explore the advantages and disadvantages of DNA as an emerging memory material.
Collapse
Affiliation(s)
- George D Dickinson
- Micron School of Materials Science and Engineering, Boise State University, Boise, ID, USA
| | - Golam Md Mortuza
- Department of Computer Science, Boise State University, Boise, ID, USA
| | - William Clay
- Micron School of Materials Science and Engineering, Boise State University, Boise, ID, USA
| | - Luca Piantanida
- Micron School of Materials Science and Engineering, Boise State University, Boise, ID, USA
| | - Christopher M Green
- Micron School of Materials Science and Engineering, Boise State University, Boise, ID, USA
- Center for Bio/Molecular Science and Engineering, U.S. Naval Research Laboratory, Washington, DC, USA
| | - Chad Watson
- Micron School of Materials Science and Engineering, Boise State University, Boise, ID, USA
| | - Eric J Hayden
- Department of Biological Sciences, Boise State University, Boise, ID, USA
| | - Tim Andersen
- Department of Computer Science, Boise State University, Boise, ID, USA
| | - Wan Kuang
- Department of Electrical and Computer Engineering, Boise State University, Boise, ID, USA
| | - Elton Graugnard
- Micron School of Materials Science and Engineering, Boise State University, Boise, ID, USA
| | - Reza Zadegan
- Micron School of Materials Science and Engineering, Boise State University, Boise, ID, USA
- Department of Nanoengineering, Joint School of Nanoscience and Nanoengineering, North Carolina A&T State University, Greensboro, NC, USA
| | - William L Hughes
- Micron School of Materials Science and Engineering, Boise State University, Boise, ID, USA.
| |
Collapse
|
14
|
Abstract
Hybridization between nucleic acid strands immobilized on a solid support with partners in solution is widely practiced in bioanalytical technologies and materials science. An important fundamental aspect of understanding these reactions is the role played by immobilization in the dynamics of duplex formation and disassembly. This report reviews and analyzes literature kinetic data to identify commonly observed trends and to correlate them with probable molecular mechanisms. The analysis reveals that while under certain conditions impacts from immobilization are minimal so that surface and solution hybridization kinetics are comparable, it is more typical to observe pronounced offsets between the two scenarios. In the forward (hybridization) direction, rates at the surface commonly decrease by one to two decades relative to solution, while in the reverse direction rates of strand separation at the surface can exceed those in solution by tens of decades. By recasting the deviations in terms of activation barriers, a consensus of how immobilization impacts nucleation, zipping, and strand separation can be conceived within the classical mechanism in which duplex formation is rate limited by preassembly of a nucleus a few base pairs in length, while dehybridization requires the cumulative breakup of base pairs along the length of a duplex. Evidence is considered for how excess interactions encountered on solid supports impact these processes.
Collapse
Affiliation(s)
- Eshan Treasurer
- Department of Chemical and Biomolecular Engineering, New York University Tandon School of Engineering, Brooklyn, New York 11201, United States
| | - Rastislav Levicky
- Department of Chemical and Biomolecular Engineering, New York University Tandon School of Engineering, Brooklyn, New York 11201, United States
| |
Collapse
|
15
|
Guo B, Yan Y, Fan L, Wu H, Zhao M, Duan X, Cheng W, Ding S. Molybdenum disulfide@5-carboxyfluorescein-probe biosensor for unamplified specific fragment detection in long nucleic acids based on magnetic composite probe-actuated deblocking of secondary structure. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2020; 12:4813-4822. [PMID: 32966358 DOI: 10.1039/d0ay01398f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Secondary structures in long circulating tumor nucleic acids have potential obstacles for specific location point hybridized detection of gene fragments. The exploration of biosensing strategies requires selectively changing the nucleic acids conformation and inducing signal switching. Herein, a self-assembled magnetic composite probe (MCP) was fabricated by the hybridization reaction of Linker DNA and a "Y"-junction-DNA nanostructure on the surface of magnetic beads, contributing to the capture, secondary structure unlocking, and enrichment of the PML/RARα DNA "L" subtype. Then, by integrating the MCP-actuated reactor, a one-step "off-on" signal switching MoS2@FAM-probe biosensing method was developed for the efficient detection of the PML/RARα DNA "L" subtype. The proposed biosensor was capable of detecting 100 bases PML/RARα DNA "L" subtype with a wide linear range of 1 pM to 200 nM and a limit of detection down to 0.223 pM without signal amplification. In addition, the biosensing method was successfully applied for the detection of target in serum samples. It is worth pointing out that this simple biosensing strategy could enable long nucleic acids fragments with secondary structures from ctDNA and ctRNA to be quantitatively assayed based on direct hybridization.
Collapse
Affiliation(s)
- Bin Guo
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China. and Department of Clinical Laboratory, The Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, China
| | - Yurong Yan
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China.
| | - Lu Fan
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China.
| | - Haiping Wu
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China.
| | - Min Zhao
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China.
| | - Xiaolei Duan
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China.
| | - Wei Cheng
- The Center for Clinical Molecular Medical Detection, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Shijia Ding
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China.
| |
Collapse
|
16
|
Tethered multifluorophore motion reveals equilibrium transition kinetics of single DNA double helices. Proc Natl Acad Sci U S A 2018; 115:E7512-E7521. [PMID: 30037988 PMCID: PMC6094131 DOI: 10.1073/pnas.1800585115] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Understanding cellular functions and dysfunctions often begins with quantifying the interactions between the binding partners involved in the processes. Learning about the kinetics of the interactions is of particular importance to understand the dynamics of cellular processes. We created a tethered multifluorophore motion assay using DNA origami that enables over 1-hour-long recordings of the statistical binding and unbinding of single pairs of biomolecules directly in equilibrium. The experimental concept is simple and the data interpretation is very direct, which makes the system easy to use for a wide variety of researchers. Due to the modularity and addressability of the DNA origami-based assay, our system may be readily adapted to study various other molecular interactions. We describe a tethered multifluorophore motion assay based on DNA origami for revealing bimolecular reaction kinetics on the single-molecule level. Molecular binding partners may be placed at user-defined positions and in user-defined stoichiometry; and binding states are read out by tracking the motion of quickly diffusing fluorescent reporter units. Multiple dyes per reporter unit enable singe-particle observation for more than 1 hour. We applied the system to study in equilibrium reversible hybridization and dissociation of complementary DNA single strands as a function of tether length, cation concentration, and sequence. We observed up to hundreds of hybridization and dissociation events per single reactant pair and could produce cumulative statistics with tens of thousands of binding and unbinding events. Because the binding partners per particle do not exchange, we could also detect subtle heterogeneity from molecule to molecule, which enabled separating data reflecting the actual target strand pair binding kinetics from falsifying influences stemming from chemically truncated oligonucleotides. Our data reflected that mainly DNA strand hybridization, but not strand dissociation, is affected by cation concentration, in agreement with previous results from different assays. We studied 8-bp-long DNA duplexes with virtually identical thermodynamic stability, but different sequences, and observed strongly differing hybridization kinetics. Complementary full-atom molecular-dynamics simulations indicated two opposing sequence-dependent phenomena: helical templating in purine-rich single strands and secondary structures. These two effects can increase or decrease, respectively, the fraction of strand collisions leading to successful nucleation events for duplex formation.
Collapse
|