1
|
Wall BPG, Nguyen M, Harrell JC, Dozmorov MG. Machine and Deep Learning Methods for Predicting 3D Genome Organization. Methods Mol Biol 2025; 2856:357-400. [PMID: 39283464 DOI: 10.1007/978-1-0716-4136-1_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
Three-dimensional (3D) chromatin interactions, such as enhancer-promoter interactions (EPIs), loops, topologically associating domains (TADs), and A/B compartments, play critical roles in a wide range of cellular processes by regulating gene expression. Recent development of chromatin conformation capture technologies has enabled genome-wide profiling of various 3D structures, even with single cells. However, current catalogs of 3D structures remain incomplete and unreliable due to differences in technology, tools, and low data resolution. Machine learning methods have emerged as an alternative to obtain missing 3D interactions and/or improve resolution. Such methods frequently use genome annotation data (ChIP-seq, DNAse-seq, etc.), DNA sequencing information (k-mers and transcription factor binding site (TFBS) motifs), and other genomic properties to learn the associations between genomic features and chromatin interactions. In this review, we discuss computational tools for predicting three types of 3D interactions (EPIs, chromatin interactions, and TAD boundaries) and analyze their pros and cons. We also point out obstacles to the computational prediction of 3D interactions and suggest future research directions.
Collapse
Affiliation(s)
- Brydon P G Wall
- Center for Biological Data Science, Virginia Commonwealth University, Richmond, VA, USA
| | - My Nguyen
- Department of Biostatistics, Virginia Commonwealth University, Richmond, VA, USA
| | - J Chuck Harrell
- Department of Pathology, Virginia Commonwealth University, Richmond, VA, USA
- Massey Comprehensive Cancer Center, Virginia Commonwealth University, Richmond, VA, USA
- Center for Pharmaceutical Engineering, Virginia Commonwealth University, Richmond, VA, USA
| | - Mikhail G Dozmorov
- Department of Biostatistics, Virginia Commonwealth University, Richmond, VA, USA.
- Department of Pathology, Virginia Commonwealth University, Richmond, VA, USA.
| |
Collapse
|
2
|
Wall BPG, Nguyen M, Harrell JC, Dozmorov MG. Machine and deep learning methods for predicting 3D genome organization. ARXIV 2024:arXiv:2403.03231v1. [PMID: 38495565 PMCID: PMC10942493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
Three-Dimensional (3D) chromatin interactions, such as enhancer-promoter interactions (EPIs), loops, Topologically Associating Domains (TADs), and A/B compartments play critical roles in a wide range of cellular processes by regulating gene expression. Recent development of chromatin conformation capture technologies has enabled genome-wide profiling of various 3D structures, even with single cells. However, current catalogs of 3D structures remain incomplete and unreliable due to differences in technology, tools, and low data resolution. Machine learning methods have emerged as an alternative to obtain missing 3D interactions and/or improve resolution. Such methods frequently use genome annotation data (ChIP-seq, DNAse-seq, etc.), DNA sequencing information (k-mers, Transcription Factor Binding Site (TFBS) motifs), and other genomic properties to learn the associations between genomic features and chromatin interactions. In this review, we discuss computational tools for predicting three types of 3D interactions (EPIs, chromatin interactions, TAD boundaries) and analyze their pros and cons. We also point out obstacles of computational prediction of 3D interactions and suggest future research directions.
Collapse
Affiliation(s)
- Brydon P. G. Wall
- Center for Biological Data Science, Virginia Commonwealth University, Richmond, VA, 23284, USA
| | - My Nguyen
- Department of Biostatistics, Virginia Commonwealth University, Richmond, VA, 23298, USA
| | - J. Chuck Harrell
- Department of Pathology, Virginia Commonwealth University, Richmond, VA, 23284, USA
- Massey Comprehensive Cancer Center, Virginia Commonwealth University, Richmond, VA 23298, USA
- Center for Pharmaceutical Engineering, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Mikhail G. Dozmorov
- Department of Biostatistics, Virginia Commonwealth University, Richmond, VA, 23298, USA
- Department of Pathology, Virginia Commonwealth University, Richmond, VA, 23284, USA
| |
Collapse
|
3
|
Neidviecky E, Deng H. Determination of Complex Formation between Drosophila Nrf2 and GATA4 Factors at Selective Chromatin Loci Demonstrates Transcription Coactivation. Cells 2023; 12:938. [PMID: 36980279 PMCID: PMC10047698 DOI: 10.3390/cells12060938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 03/03/2023] [Accepted: 03/17/2023] [Indexed: 03/30/2023] Open
Abstract
Nrf2 is the dominant cellular stress response factor that protects cells through transcriptional responses to xenobiotic and oxidative stimuli. Nrf2 malfunction is highly correlated with many human diseases, but the underlying molecular mechanisms remain to be fully uncovered. GATA4 is a conserved GATA family transcription factor that is essential for cardiac and dorsal epidermal development. Here, we describe a novel interaction between Drosophila Nrf2 and GATA4 proteins, i.e., cap'n'collar C (CncC) and Pannier (Pnr), respectively. Using the bimolecular fluorescence complementation (BiFC) assay-a unique imaging tool for probing protein complexes in living cells-we detected CncC-Pnr complexes in the nuclei of Drosophila embryonic and salivary gland cells. Visualization of CncC-Pnr BiFC signals on the polytene chromosome revealed that CncC and Pnr tend to form complexes in euchromatic regions, with a preference for loci that are not highly occupied by CncC or Pnr alone. Most genes within these loci are activated by the CncC-Pnr BiFC, but not by individually expressed CncC or Pnr fusion proteins, indicating a novel mechanism whereby CncC and Pnr interact at specific genomic loci and coactivate genes at these loci. Finally, CncC-induced early lethality can be rescued by Pnr depletion, suggesting that CncC and Pnr function in the same genetic pathway during the early development of Drosophila. Taken together, these results elucidate a novel crosstalk between the Nrf2 xenobiotic/oxidative response factor and GATA factors in the transcriptional regulation of development. This study also demonstrates that the polytene chromosome BiFC assay is a valuable tool for mapping genes that are targeted by specific transcription factor complexes.
Collapse
Affiliation(s)
| | - Huai Deng
- Department of Biology, University of Minnesota Duluth, 1035 Kirby Drive, Duluth, MN 55812, USA
| |
Collapse
|
4
|
Liu S, Cao Y, Cui K, Tang Q, Zhao K. Hi-TrAC reveals division of labor of transcription factors in organizing chromatin loops. Nat Commun 2022; 13:6679. [PMID: 36335136 PMCID: PMC9637178 DOI: 10.1038/s41467-022-34276-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 10/20/2022] [Indexed: 11/08/2022] Open
Abstract
The three-dimensional genomic structure plays a critical role in gene expression, cellular differentiation, and pathological conditions. It is pivotal to elucidate fine-scale chromatin architectures, especially interactions of regulatory elements, to understand the temporospatial regulation of gene expression. In this study, we report Hi-TrAC as a proximity ligation-free, robust, and sensitive technique to profile genome-wide chromatin interactions at high-resolution among regulatory elements. Hi-TrAC detects chromatin looping among accessible regions at single nucleosome resolution. With almost half-million identified loops, we reveal a comprehensive interaction network of regulatory elements across the genome. After integrating chromatin binding profiles of transcription factors, we discover that cohesin complex and CTCF are responsible for organizing long-range chromatin loops, related to domain formation; whereas ZNF143 and HCFC1 are involved in structuring short-range chromatin loops between regulatory elements, which directly regulate gene expression. Thus, we introduce a methodology to identify a delicate and comprehensive network of cis-regulatory elements, revealing the complexity and a division of labor of transcription factors in organizing chromatin loops for genome organization and gene expression.
Collapse
Affiliation(s)
- Shuai Liu
- grid.94365.3d0000 0001 2297 5165Laboratory of Epigenome Biology, Systems Biology Center, Division of Intramural Research, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD USA
| | - Yaqiang Cao
- grid.94365.3d0000 0001 2297 5165Laboratory of Epigenome Biology, Systems Biology Center, Division of Intramural Research, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD USA
| | - Kairong Cui
- grid.94365.3d0000 0001 2297 5165Laboratory of Epigenome Biology, Systems Biology Center, Division of Intramural Research, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD USA
| | - Qingsong Tang
- grid.94365.3d0000 0001 2297 5165Laboratory of Epigenome Biology, Systems Biology Center, Division of Intramural Research, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD USA
| | - Keji Zhao
- grid.94365.3d0000 0001 2297 5165Laboratory of Epigenome Biology, Systems Biology Center, Division of Intramural Research, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD USA
| |
Collapse
|
5
|
Mourad R. TADreg: a versatile regression framework for TAD identification, differential analysis and rearranged 3D genome prediction. BMC Bioinformatics 2022; 23:82. [PMID: 35236295 PMCID: PMC8892791 DOI: 10.1186/s12859-022-04614-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 02/16/2022] [Indexed: 11/10/2022] Open
Abstract
Background/Aim In higher eukaryotes, the three-dimensional (3D) organization of the genome is intimately related to numerous key biological functions including gene expression, DNA repair and DNA replication regulations. Alteration of 3D organization, in particular topologically associating domains (TADs), is detrimental to the organism and can give rise to a broad range of diseases such as cancers. Methods Here, we propose a versatile regression framework which not only identifies TADs in a fast and accurate manner, but also detects differential TAD borders across conditions for which few methods exist, and predicts 3D genome reorganization after chromosomal rearrangement. Moreover, the framework is biologically meaningful, has an intuitive interpretation and is easy to visualize. Result and conclusion The novel regression ranks among top TAD callers. Moreover, it identifies new features of the genome we called TAD facilitators, and that are enriched with specific transcription factors. It also unveils the importance of cell-type specific transcription factors in establishing novel TAD borders during neuronal differentiation. Lastly, it compares favorably with the state-of-the-art method for predicting rearranged 3D genome. Supplementary Information The online version contains supplementary material available at 10.1186/s12859-022-04614-0.
Collapse
Affiliation(s)
- Raphaël Mourad
- CNRS, UPS, MCD, Centre de Biologie Intégrative (CBI), University of Toulouse, 31062, Toulouse, France.
| |
Collapse
|
6
|
Moretti C, Stévant I, Ghavi-Helm Y. 3D genome organisation in Drosophila. Brief Funct Genomics 2021; 19:92-100. [PMID: 31796947 DOI: 10.1093/bfgp/elz029] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 08/02/2019] [Accepted: 09/20/2019] [Indexed: 12/17/2022] Open
Abstract
Ever since Thomas Hunt Morgan's discovery of the chromosomal basis of inheritance by using Drosophila melanogaster as a model organism, the fruit fly has remained an essential model system in studies of genome biology, including chromatin organisation. Very much as in vertebrates, in Drosophila, the genome is organised in territories, compartments and topologically associating domains (TADs). However, these domains might be formed through a slightly different mechanism than in vertebrates due to the presence of a large and potentially redundant set of insulator proteins and the minor role of dCTCF in TAD boundary formation. Here, we review the different levels of chromatin organisation in Drosophila and discuss mechanisms and factors that might be involved in TAD formation. The dynamics of TADs and enhancer-promoter interactions in the context of transcription are covered in the light of currently conflicting results. Finally, we illustrate the value of polymer modelling approaches to infer the principles governing the three-dimensional organisation of the Drosophila genome.
Collapse
Affiliation(s)
- Charlotte Moretti
- Institut de Génomique Fonctionnelle de Lyon, Univ Lyon, CNRS UMR 5242, Ecole Normale Supérieure de Lyon, Université Claude Bernard Lyon 1, 46 allée d'Italie F-69364 Lyon, France
| | - Isabelle Stévant
- Institut de Génomique Fonctionnelle de Lyon, Univ Lyon, CNRS UMR 5242, Ecole Normale Supérieure de Lyon, Université Claude Bernard Lyon 1, 46 allée d'Italie F-69364 Lyon, France
| | - Yad Ghavi-Helm
- Institut de Génomique Fonctionnelle de Lyon, Univ Lyon, CNRS UMR 5242, Ecole Normale Supérieure de Lyon, Université Claude Bernard Lyon 1, 46 allée d'Italie F-69364 Lyon, France
| |
Collapse
|
7
|
Maksimenko OG, Fursenko DV, Belova EV, Georgiev PG. CTCF As an Example of DNA-Binding Transcription Factors Containing Clusters of C2H2-Type Zinc Fingers. Acta Naturae 2021; 13:31-46. [PMID: 33959385 PMCID: PMC8084297 DOI: 10.32607/actanaturae.11206] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 11/12/2020] [Indexed: 12/11/2022] Open
Abstract
In mammals, most of the boundaries of topologically associating domains and all well-studied insulators are rich in binding sites for the CTCF protein. According to existing experimental data, CTCF is a key factor in the organization of the architecture of mammalian chromosomes. A characteristic feature of the CTCF is that the central part of the protein contains a cluster consisting of eleven domains of C2H2-type zinc fingers, five of which specifically bind to a long DNA sequence conserved in most animals. The class of transcription factors that carry a cluster of C2H2-type zinc fingers consisting of five or more domains (C2H2 proteins) is widely represented in all groups of animals. The functions of most C2H2 proteins still remain unknown. This review presents data on the structure and possible functions of these proteins, using the example of the vertebrate CTCF protein and several well- characterized C2H2 proteins in Drosophila and mammals.
Collapse
Affiliation(s)
- O. G. Maksimenko
- Institute of Gene Biology RAS, Moscow, 119334 Russia
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology RAS, Moscow, 119334 Russia
| | | | - E. V. Belova
- Institute of Gene Biology RAS, Moscow, 119334 Russia
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology RAS, Moscow, 119334 Russia
| | | |
Collapse
|
8
|
Huning L, Kunkel GR. The ubiquitous transcriptional protein ZNF143 activates a diversity of genes while assisting to organize chromatin structure. Gene 2020; 769:145205. [PMID: 33031894 DOI: 10.1016/j.gene.2020.145205] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 09/24/2020] [Accepted: 09/29/2020] [Indexed: 10/23/2022]
Abstract
Zinc Finger Protein 143 (ZNF143) is a pervasive C2H2 zinc-finger transcriptional activator protein regulating the efficiency of eukaryotic promoter regions. ZNF143 is able to activate transcription at both protein coding genes and small RNA genes transcribed by either RNA polymerase II or RNA polymerase III. Target genes regulated by ZNF143 are involved in an array of different cellular processes including both cancer and development. Although a key player in regulating eukaryotic genes, the molecular mechanism by with ZNF143 binds and activates genes transcribed by two different polymerases is still relatively unknown. In addition to its role as a transcriptional regulator, recent genomics experiments have implicated ZNF143 as a potential co-factor involved in chromatin looping and establishing higher order structure within the genome. This review focuses primarily on possible activation mechanisms of promoters by ZNF143, with less emphasis on the role of ZNF143 in cancer and development, and its function in establishing higher order chromatin contacts within the genome.
Collapse
Affiliation(s)
- Laura Huning
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843-2128, USA
| | - Gary R Kunkel
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843-2128, USA.
| |
Collapse
|
9
|
Heurteau A, Perrois C, Depierre D, Fosseprez O, Humbert J, Schaak S, Cuvier O. Insulator-based loops mediate the spreading of H3K27me3 over distant micro-domains repressing euchromatin genes. Genome Biol 2020; 21:193. [PMID: 32746892 PMCID: PMC7397589 DOI: 10.1186/s13059-020-02106-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Accepted: 07/14/2020] [Indexed: 12/16/2022] Open
Abstract
Abstract
Background
Chromosomes are subdivided spatially to delimit long-range interactions into topologically associating domains (TADs). TADs are often flanked by chromatin insulators and transcription units that may participate in such demarcation. Remarkably, single-cell Drosophila TAD units correspond to dynamic heterochromatin nano-compartments that can self-assemble. The influence of insulators on such dynamic compartmentalization remains unclear. Moreover, to what extent heterochromatin domains are fully compartmentalized away from active genes remains unclear from Drosophila to human.
Results
Here, we identify H3K27me3 micro-domains genome-wide in Drosophila, which are attributed to the three-dimensional spreading of heterochromatin marks into euchromatin. Whereas depletion of insulator proteins increases H3K27me3 spreading locally, across heterochromatin borders, it concomitantly decreases H3K27me3 levels at distant micro-domains discrete sites. Quantifying long-range interactions suggests that random interactions between heterochromatin TADs and neighbor euchromatin cannot predict the presence of micro-domains, arguing against the hypothesis that they reflect defects in self-folding or in insulating repressive TADs. Rather, micro-domains are predicted by specific long-range interactions with the TAD borders bound by insulator proteins and co-factors required for looping. Accordingly, H3K27me3 spreading to distant sites is impaired by insulator mutants that compromise recruitment of looping co-factors. Both depletions and insulator mutants significantly reduce H3K27me3 micro-domains, deregulating the flanking genes.
Conclusions
Our data highlight a new regulatory mode of H3K27me3 by insulator-based long-range interactions controlling distant euchromatic genes.
Collapse
Affiliation(s)
- Alexandre Heurteau
- Chromatin Dynamics and Cell Proliferation, Center of Integrative Biology (CBI), Laboratoire de Biologie Moléculaire Eucaryote (LBME), CNRS, Université Fédérale Paul Sabatier de Toulouse (UPS), F-31000, Toulouse, France
| | - Charlène Perrois
- Chromatin Dynamics and Cell Proliferation, Center of Integrative Biology (CBI), Laboratoire de Biologie Moléculaire Eucaryote (LBME), CNRS, Université Fédérale Paul Sabatier de Toulouse (UPS), F-31000, Toulouse, France
| | - David Depierre
- Chromatin Dynamics and Cell Proliferation, Center of Integrative Biology (CBI), Laboratoire de Biologie Moléculaire Eucaryote (LBME), CNRS, Université Fédérale Paul Sabatier de Toulouse (UPS), F-31000, Toulouse, France
| | - Olivier Fosseprez
- Chromatin Dynamics and Cell Proliferation, Center of Integrative Biology (CBI), Laboratoire de Biologie Moléculaire Eucaryote (LBME), CNRS, Université Fédérale Paul Sabatier de Toulouse (UPS), F-31000, Toulouse, France
| | - Jonathan Humbert
- Chromatin Dynamics and Cell Proliferation, Center of Integrative Biology (CBI), Laboratoire de Biologie Moléculaire Eucaryote (LBME), CNRS, Université Fédérale Paul Sabatier de Toulouse (UPS), F-31000, Toulouse, France
- St. Patrick Research Group in Basic Oncology, Laval University Cancer Research Center, Centre Hospitalier Universitaire de Québec City, Quebec, QC, G1R 3S3, Canada
| | - Stéphane Schaak
- Chromatin Dynamics and Cell Proliferation, Center of Integrative Biology (CBI), Laboratoire de Biologie Moléculaire Eucaryote (LBME), CNRS, Université Fédérale Paul Sabatier de Toulouse (UPS), F-31000, Toulouse, France
| | - Olivier Cuvier
- Chromatin Dynamics and Cell Proliferation, Center of Integrative Biology (CBI), Laboratoire de Biologie Moléculaire Eucaryote (LBME), CNRS, Université Fédérale Paul Sabatier de Toulouse (UPS), F-31000, Toulouse, France.
| |
Collapse
|
10
|
Ye B, Yang G, Li Y, Zhang C, Wang Q, Yu G. ZNF143 in Chromatin Looping and Gene Regulation. Front Genet 2020; 11:338. [PMID: 32318100 PMCID: PMC7154149 DOI: 10.3389/fgene.2020.00338] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2019] [Accepted: 03/20/2020] [Indexed: 01/02/2023] Open
Abstract
ZNF143, a human homolog of the transcriptional activator Staf, is a C2H2-type protein consisting of seven zinc finger domains. As a transcription factor (TF), ZNF143 is sequence specifically binding to chromatin and activates the expression of protein-coding and non-coding genes on a genome scale. Although it is ubiquitous expressed, its expression in cancer cells and tissues is usually higher than that in normal cells and tissues. Therefore, abnormal expression of ZNF143 is related to cancer cell survival, proliferation, differentiation, migration, and invasion, suggesting that new small molecules can be designed by targeting ZNF143 as it may be a good potential biomarker and therapeutic target for related cancers. However, the mechanism on how ZNF143 regulates its targeting gene remains unclear. Recently, with the development of chromatin conformation capture (3C) and its derivatives, and high-throughput sequencing technology, new findings have been obtained in the study of ZNF143. Pioneering studies have showed that ZNF143 binds directly to promoters and contributes to chromatin interactions connecting promoters to distal regulatory elements, such as enhancers. Further, it has proved that ZNF143 is involved in CCCTC-binding factor (CTCF) in establishing the conserved chromatin loops by cooperating with cohesin and other partners. These results indicate that ZNF143 is a key loop formation factor. In addition, we report ZNF143 is dynamically bound to chromatin during the cell cycle demonstrated that it is a potential mitotic bookmarking factor. It may be associated with CTCF for mitosis-to-G1 phase transition and chromatin loop re-establishment in early G1 phase. In the future, researchers could further clarify the fine mechanism of ZNF143 in mediating chromatin loops with the help of CUT&RUN (CUT&Tag) and Cut-C technology. Thus, in this review, we summarize the research progress of TF ZNF143 in detail and also predict the potential functions of ZNF143 in cell fate and identity based on our recent discoveries.
Collapse
Affiliation(s)
- Bingyu Ye
- State Key Laboratory of Cell Differentiation and Regulation, Henan Normal University, Xinxiang, China.,Henan International Joint Laboratory of Pulmonary Fibrosis, Henan Normal University, Xinxiang, China.,Henan Center for Outstanding Overseas Scientists of Pulmonary Fibrosis, Henan Normal University, Xinxiang, China.,College of Life Sciences, Henan Normal University, Xinxiang, China.,Institute of Biomedical Science, Henan Normal University, Xinxiang, China.,Overseas Expertise Introduction Center for Discipline Innovation of Pulmonary Fibrosis (111 Project), Henan Normal University, Xinxiang, China
| | - Ganggang Yang
- State Key Laboratory of Cell Differentiation and Regulation, Henan Normal University, Xinxiang, China.,Henan International Joint Laboratory of Pulmonary Fibrosis, Henan Normal University, Xinxiang, China.,Henan Center for Outstanding Overseas Scientists of Pulmonary Fibrosis, Henan Normal University, Xinxiang, China.,College of Life Sciences, Henan Normal University, Xinxiang, China.,Institute of Biomedical Science, Henan Normal University, Xinxiang, China.,Overseas Expertise Introduction Center for Discipline Innovation of Pulmonary Fibrosis (111 Project), Henan Normal University, Xinxiang, China
| | - Yuanmeng Li
- College of Life Sciences, Henan Normal University, Xinxiang, China
| | - Chunyan Zhang
- State Key Laboratory of Cell Differentiation and Regulation, Henan Normal University, Xinxiang, China.,Henan International Joint Laboratory of Pulmonary Fibrosis, Henan Normal University, Xinxiang, China.,Henan Center for Outstanding Overseas Scientists of Pulmonary Fibrosis, Henan Normal University, Xinxiang, China.,College of Life Sciences, Henan Normal University, Xinxiang, China.,Institute of Biomedical Science, Henan Normal University, Xinxiang, China.,Overseas Expertise Introduction Center for Discipline Innovation of Pulmonary Fibrosis (111 Project), Henan Normal University, Xinxiang, China
| | - Qiwen Wang
- State Key Laboratory of Cell Differentiation and Regulation, Henan Normal University, Xinxiang, China.,Henan International Joint Laboratory of Pulmonary Fibrosis, Henan Normal University, Xinxiang, China.,Henan Center for Outstanding Overseas Scientists of Pulmonary Fibrosis, Henan Normal University, Xinxiang, China.,College of Life Sciences, Henan Normal University, Xinxiang, China.,Institute of Biomedical Science, Henan Normal University, Xinxiang, China.,Overseas Expertise Introduction Center for Discipline Innovation of Pulmonary Fibrosis (111 Project), Henan Normal University, Xinxiang, China
| | - Guoying Yu
- State Key Laboratory of Cell Differentiation and Regulation, Henan Normal University, Xinxiang, China.,Henan International Joint Laboratory of Pulmonary Fibrosis, Henan Normal University, Xinxiang, China.,Henan Center for Outstanding Overseas Scientists of Pulmonary Fibrosis, Henan Normal University, Xinxiang, China.,College of Life Sciences, Henan Normal University, Xinxiang, China.,Institute of Biomedical Science, Henan Normal University, Xinxiang, China.,Overseas Expertise Introduction Center for Discipline Innovation of Pulmonary Fibrosis (111 Project), Henan Normal University, Xinxiang, China
| |
Collapse
|
11
|
Trieu T, Martinez-Fundichely A, Khurana E. DeepMILO: a deep learning approach to predict the impact of non-coding sequence variants on 3D chromatin structure. Genome Biol 2020; 21:79. [PMID: 32216817 PMCID: PMC7098089 DOI: 10.1186/s13059-020-01987-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Accepted: 03/06/2020] [Indexed: 12/17/2022] Open
Abstract
Non-coding variants have been shown to be related to disease by alteration of 3D genome structures. We propose a deep learning method, DeepMILO, to predict the effects of variants on CTCF/cohesin-mediated insulator loops. Application of DeepMILO on variants from whole-genome sequences of 1834 patients of twelve cancer types revealed 672 insulator loops disrupted in at least 10% of patients. Our results show mutations at loop anchors are associated with upregulation of the cancer driver genes BCL2 and MYC in malignant lymphoma thus pointing to a possible new mechanism for their dysregulation via alteration of insulator loops.
Collapse
Affiliation(s)
- Tuan Trieu
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY, 10065, USA.
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, 10065, USA.
- Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, 10021, USA.
| | - Alexander Martinez-Fundichely
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY, 10065, USA
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, 10065, USA
- Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, 10021, USA
| | - Ekta Khurana
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY, 10065, USA.
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, 10065, USA.
- Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, 10021, USA.
- Caryl and Israel Englander Institute for Precision Medicine, New York Presbyterian Hospital-Weill Cornell Medicine, New York, NY, 10065, USA.
| |
Collapse
|
12
|
Liu EM, Martinez-Fundichely A, Diaz BJ, Aronson B, Cuykendall T, MacKay M, Dhingra P, Wong EWP, Chi P, Apostolou E, Sanjana NE, Khurana E. Identification of Cancer Drivers at CTCF Insulators in 1,962 Whole Genomes. Cell Syst 2019; 8:446-455.e8. [PMID: 31078526 PMCID: PMC6917527 DOI: 10.1016/j.cels.2019.04.001] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Revised: 11/20/2018] [Accepted: 04/02/2019] [Indexed: 12/15/2022]
Abstract
Recent studies have shown that mutations at non-coding elements, such as promoters and enhancers, can act as cancer drivers. However, an important class of non-coding elements, namely CTCF insulators, has been overlooked in the previous driver analyses. We used insulator annotations from CTCF and cohesin ChIA-PET and analyzed somatic mutations in 1,962 whole genomes from 21 cancer types. Using the heterogeneous patterns of transcription-factor-motif disruption, functional impact, and recurrence of mutations, we developed a computational method that revealed 21 insulators showing signals of positive selection. In particular, mutations in an insulator in multiple cancer types, including 16% of melanoma samples, are associated with TGFB1 up-regulation. Using CRISPR-Cas9, we find that alterations at two of the most frequently mutated regions in this insulator increase cell growth by 40%-50%, supporting the role of this boundary element as a cancer driver. Thus, our study reveals several CTCF insulators as putative cancer drivers.
Collapse
Affiliation(s)
- Eric Minwei Liu
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10065, USA; Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY 10065, USA; Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY 10021, USA
| | - Alexander Martinez-Fundichely
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10065, USA; Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY 10065, USA; Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY 10021, USA
| | - Bianca Jay Diaz
- New York Genome Center, New York, NY 10013, USA; Department of Biology, New York University, New York, NY 10003, USA
| | - Boaz Aronson
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10065, USA; Department of Medicine, Weill Cornell Medicine, New York, NY 10021, USA
| | - Tawny Cuykendall
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10065, USA; Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY 10065, USA; Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY 10021, USA
| | - Matthew MacKay
- Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY 10021, USA
| | - Priyanka Dhingra
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10065, USA; Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY 10065, USA; Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY 10021, USA
| | - Elissa W P Wong
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Ping Chi
- Department of Medicine, Weill Cornell Medicine, New York, NY 10021, USA; Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Effie Apostolou
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10065, USA; Department of Medicine, Weill Cornell Medicine, New York, NY 10021, USA
| | - Neville E Sanjana
- New York Genome Center, New York, NY 10013, USA; Department of Biology, New York University, New York, NY 10003, USA
| | - Ekta Khurana
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10065, USA; Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY 10065, USA; Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY 10021, USA; Caryl and Israel Englander Institute for Precision Medicine, New York Presbyterian Hospital, Weill Cornell Medicine, New York, NY 10065, USA.
| |
Collapse
|
13
|
Lu Y, Sun Y, Drummer C, Nanayakkara GK, Shao Y, Saaoud F, Johnson C, Zhang R, Yu D, Li X, Yang WY, Yu J, Jiang X, Choi ET, Wang H, Yang X. Increased acetylation of H3K14 in the genomic regions that encode trained immunity enzymes in lysophosphatidylcholine-activated human aortic endothelial cells - Novel qualification markers for chronic disease risk factors and conditional DAMPs. Redox Biol 2019; 24:101221. [PMID: 31153039 PMCID: PMC6543097 DOI: 10.1016/j.redox.2019.101221] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2019] [Revised: 05/06/2019] [Accepted: 05/14/2019] [Indexed: 12/14/2022] Open
Abstract
To test our hypothesis that proatherogenic lysophosphatidylcholine (LPC) upregulates trained immunity pathways (TIPs) in human aortic endothelial cells (HAECs), we conducted an intensive analyses on our RNA-Seq data and histone 3 lysine 14 acetylation (H3K14ac)-CHIP-Seq data, both performed on HAEC treated with LPC. Our analysis revealed that: 1) LPC induces upregulation of three TIPs including glycolysis enzymes (GE), mevalonate enzymes (ME), and acetyl-CoA generating enzymes (ACE); 2) LPC induces upregulation of 29% of 31 histone acetyltransferases, three of which acetylate H3K14; 3) LPC induces H3K14 acetylation (H3K14ac) in the genomic DNA that encodes LPC-induced TIP genes (79%) in comparison to that of in LPC-induced effector genes (43%) including ICAM-1; 4) TIP pathways are significantly different from that of EC activation effectors including adhesion molecule ICAM-1; 5) reactive oxygen species generating enzyme NOX2 deficiency decreases, but antioxidant transcription factor Nrf2 deficiency increases, the expressions of a few TIP genes and EC activation effector genes; and 6) LPC induced TIP genes(81%) favor inter-chromosomal long-range interactions (CLRI, trans-chromatin interaction) while LPC induced effector genes (65%) favor intra-chromosomal CLRIs (cis-chromatin interaction). Our findings demonstrated that proatherogenic lipids upregulate TIPs in HAECs, which are a new category of qualification markers for chronic disease risk factors and conditional DAMPs and potential mechanisms for acute inflammation transition to chronic ones. These novel insights may lead to identifications of new cardiovascular risk factors in upregulating TIPs in cardiovascular cells and novel therapeutic targets for the treatment of metabolic cardiovascular diseases, inflammation, and cancers. (total words: 245).
Collapse
Affiliation(s)
- Yifan Lu
- Centers for Inflammation, Translational & Clinical Lung Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, 19140, USA
| | - Yu Sun
- Centers for Inflammation, Translational & Clinical Lung Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, 19140, USA
| | - Charles Drummer
- Centers for Inflammation, Translational & Clinical Lung Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, 19140, USA
| | - Gayani K Nanayakkara
- Centers for Inflammation, Translational & Clinical Lung Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, 19140, USA
| | - Ying Shao
- Centers for Inflammation, Translational & Clinical Lung Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, 19140, USA
| | - Fatma Saaoud
- Centers for Inflammation, Translational & Clinical Lung Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, 19140, USA
| | - Candice Johnson
- Centers for Inflammation, Translational & Clinical Lung Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, 19140, USA
| | - Ruijing Zhang
- Centers for Inflammation, Translational & Clinical Lung Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, 19140, USA
| | - Daohai Yu
- Department of Clinical Sciences, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, 19140, USA
| | - Xinyuan Li
- Centers for Inflammation, Translational & Clinical Lung Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, 19140, USA
| | - William Y Yang
- Centers for Inflammation, Translational & Clinical Lung Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, 19140, USA
| | - Jun Yu
- Metabolic Disease Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, 19140, USA
| | - Xiaohua Jiang
- Centers for Inflammation, Translational & Clinical Lung Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, 19140, USA; Metabolic Disease Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, 19140, USA
| | - Eric T Choi
- Metabolic Disease Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, 19140, USA; Division of Vascular & Endovascular Surgery, Department of Surgery, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, 19140, USA
| | - Hong Wang
- Metabolic Disease Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, 19140, USA; Department of Microbiology and Immunology, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, 19140, USA
| | - Xiaofeng Yang
- Centers for Inflammation, Translational & Clinical Lung Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, 19140, USA; Metabolic Disease Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, 19140, USA; Cardiovascular Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, 19140, USA; Department of Microbiology and Immunology, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, 19140, USA.
| |
Collapse
|
14
|
Shrestha S, Oh DH, McKowen JK, Dassanayake M, Hart CM. 4C-seq characterization of Drosophila BEAF binding regions provides evidence for highly variable long-distance interactions between active chromatin. PLoS One 2018; 13:e0203843. [PMID: 30248133 PMCID: PMC6152978 DOI: 10.1371/journal.pone.0203843] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2018] [Accepted: 08/28/2018] [Indexed: 11/21/2022] Open
Abstract
Chromatin organization is crucial for nuclear functions such as gene regulation, DNA replication and DNA repair. Insulator binding proteins, such as the Drosophila Boundary Element-Associated Factor (BEAF), are involved in chromatin organization. To further understand the role of BEAF, we detected cis- and trans-interaction partners of four BEAF binding regions (viewpoints) using 4C (circular chromosome conformation capture) and analyzed their association with different genomic features. Previous genome-wide mapping found that BEAF usually binds near transcription start sites, often of housekeeping genes, so our viewpoints were selected to reflect this. Our 4C data show the interaction partners of our viewpoints are highly variable and generally enriched for active chromatin marks. The most consistent association was with housekeeping genes, a feature in common with our viewpoints. Fluorescence in situ hybridization indicated that the long-distance interactions occur even in the absence of BEAF. These data are most consistent with a model in which BEAF is redundant with other factors found at active promoters. Our results point to principles of long-distance interactions made by active chromatin, supporting a previously proposed model in which condensed chromatin is sticky and associates into topologically associating domains (TADs) separated by active chromatin. We propose that the highly variable long-distance interactions we detect are driven by redundant factors that open chromatin to promote transcription, combined with active chromatin filling spaces between TADs while packing of TADs relative to each other varies from cell to cell.
Collapse
Affiliation(s)
- Shraddha Shrestha
- Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana, United States of America
| | - Dong-Ha Oh
- Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana, United States of America
| | - J. Keller McKowen
- Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana, United States of America
| | - Maheshi Dassanayake
- Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana, United States of America
| | - Craig M. Hart
- Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana, United States of America
- * E-mail:
| |
Collapse
|