1
|
Li C, Jia H, Wei R, Liu J, Wang H, Zhou M, Yan C, Huang L. An easy-operation aptasensor for simultaneous detection of multiple tumor-associated exosomal proteins based on multicolor fluorescent DNA nanoassemblies. Talanta 2025; 281:126843. [PMID: 39277930 DOI: 10.1016/j.talanta.2024.126843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 09/05/2024] [Accepted: 09/07/2024] [Indexed: 09/17/2024]
Abstract
As a promising liquid biopsy biomarker, exosomes have demonstrated great potential and advantages in the noninvasive tumor diagnosis. However, an accurate and sensitive method for tumors-associated exosomes detection is scarce. Herein, we presented an easy-operation aptasensor which simultaneously detect multiple exosomal proteins by using multicolor fluorescent DNA nanoassemblies (FDNs) and CD63 aptamer-modified magnetic beads (MNPs-AptCD63). In this system, the FDNs were firstly constructed by encapsulating different quantum dots (QDs) into rolling circle amplification (RCA) products that contained different aptamer sequences. Thus, the FDNs could selectively recognize the different exosomal proteins captured by the MNPs-AptCD63, and achieve the multiplex and sensitive detection according to the fluorescence of QDs. Benefiting from the signal amplification capacity and high selectivity of FDNs, this aptasensor not only could detect exosomes as low as 650 particles/μL, but also showed accurate analysis in clinical samples. In addition, we can also achieve point-of-care testing (POCT) due to the simple analysis steps and naked-eye observable fluorescence of QDs under the ultraviolet irradiation. We believe that our aptasensor could provide a promising platform for exosomes-based personalized diagnosis and precise monitoring of human health.
Collapse
Affiliation(s)
- Chao Li
- School of Life Sciences, Anhui Medical University, Hefei, Anhui, 230032, China
| | - Haojie Jia
- School of Life Sciences, Anhui Medical University, Hefei, Anhui, 230032, China
| | - Rong Wei
- Affiliated Maternity and Child Health Hospital of Anhui Medical University, Hefei, Anhui, 230000, China
| | - Jiqing Liu
- School of Life Sciences, Anhui University, Hefei, Anhui, 230601, China
| | - Haoyu Wang
- School of Life Sciences, Anhui Medical University, Hefei, Anhui, 230032, China
| | - Mengyang Zhou
- School of Life Sciences, Anhui Medical University, Hefei, Anhui, 230032, China
| | - Chao Yan
- School of Life Sciences, Anhui University, Hefei, Anhui, 230601, China.
| | - Lin Huang
- School of Life Sciences, Anhui Medical University, Hefei, Anhui, 230032, China.
| |
Collapse
|
2
|
Xu C, Zhao J, Chen S, Sakharov IY, Hu S, Zhao S. An ultrasensitive bunge bedstraw herb type DNA machine for absolute quantification of mRNA in single cell. Biosens Bioelectron 2022; 217:114702. [PMID: 36130443 DOI: 10.1016/j.bios.2022.114702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 09/01/2022] [Accepted: 09/05/2022] [Indexed: 11/30/2022]
Abstract
Messenger ribonucleic acids (mRNAs) comprise a class of small nucleic acids carrying genetic information, which exhibit very important role in medical research and diagnosis. If only the mean mRNA expression levels of the mRNA population are considered in medical research, important information linking mRNA expression and cellular function may be lost. Single-cell analysis provides valuable insights into studying its heterogeneity, signaling, and stochastic gene expression. In this study, a "bunge bedstraw herb"-type DNA machine based on DNAzyme catalyzing coupled clamping hybrid chain reaction (c-HCR) is presented. In the DNA machine, a bunge bedstraw herb-type DNA structure was first formed by hybridizing a core junction scaffold cruciform probe to a hairpin probe that can trigger the c-HCR via a target molecule in four directions. This approach can reduce the detection limit of mRNA to 5 × 10-15 M. Absolute quantification of survivin mRNA in individual cells was achieved using the DNA machine on a microfluidic chip electrophoresis platform. The reported method represents an unprecedented single-cell analysis platform for single-cell biology studies.
Collapse
Affiliation(s)
- Chunhuan Xu
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection, Ministry of Education, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, China
| | - Jingjin Zhao
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection, Ministry of Education, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, China.
| | - Shengyu Chen
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection, Ministry of Education, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, China
| | - Ivan Yu Sakharov
- Department of Chemistry, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Shengqiang Hu
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection, Ministry of Education, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, China
| | - Shulin Zhao
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection, Ministry of Education, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, China.
| |
Collapse
|
3
|
Moreno-Velásquez SD, Pérez JC. Imaging and Quantification of mRNA Molecules at Single-Cell Resolution in the Human Fungal Pathogen Candida albicans. mSphere 2021; 6:e0041121. [PMID: 34232078 PMCID: PMC8386430 DOI: 10.1128/msphere.00411-21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 06/24/2021] [Indexed: 11/20/2022] Open
Abstract
The study of gene expression in fungi has typically relied on measuring transcripts in populations of cells. A major disadvantage of this approach is that the transcripts' spatial distribution and stochastic variation among individual cells within a clonal population is lost. Traditional fluorescence in situ hybridization techniques have been of limited use in fungi due to poor specificity and high background signal. Here, we report that in situ hybridization chain reaction (HCR), a method that employs split-initiator probes to trigger signal amplification upon mRNA-probe hybridization, is ideally suited for the imaging and quantification of low-abundance transcripts at single-cell resolution in the fungus Candida albicans. We show that HCR allows the absolute quantification of transcripts within a cell by microscopy as well as their relative quantification by flow cytometry. mRNA imaging also revealed the subcellular localization of specific transcripts. Furthermore, we establish that HCR is amenable to multiplexing by visualizing different transcripts in the same cell. Finally, we combine HCR with immunostaining to image specific mRNAs and proteins simultaneously within a single C. albicans cell. The fungus is a major pathogen in humans where it can colonize and invade mucosal surfaces and most internal organs. The technical development that we introduce, therefore, paves the way to study the patterns of expression of pathogenesis-associated C. albicans genes in infected organs at single-cell resolution. IMPORTANCE Tools to visualize and quantify transcripts at single-cell resolution have enabled the dissection of spatiotemporal patterns of gene expression in animal cells and tissues. Yet the accurate quantification of transcripts at single-cell resolution remains challenging for the much smaller microbial cells. Widespread phenomena such as stochastic variation in transcript levels among cells-even within a clonal population-seem to play important roles in the biology of many microorganisms. Investigating this process requires microbial cell-optimized procedures to image and measure mRNAs at single-molecule resolution. In this report, we adapt and expand in situ hybridization chain reaction (HCR) combined with split-initiator probes to visualize transcripts in the human-pathogenic fungus Candida albicans at high resolution.
Collapse
Affiliation(s)
- Sergio D. Moreno-Velásquez
- Interdisciplinary Center for Clinical Research, University Hospital Würzburg, Würzburg, Germany
- Institute for Molecular Infection Biology, University Würzburg, Würzburg, Germany
| | - J. Christian Pérez
- Department of Microbiology and Molecular Genetics, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| |
Collapse
|
4
|
Baladi T, Nilsson JR, Gallud A, Celauro E, Gasse C, Levi-Acobas F, Sarac I, Hollenstein MR, Dahlén A, Esbjörner EK, Wilhelmsson LM. Stealth Fluorescence Labeling for Live Microscopy Imaging of mRNA Delivery. J Am Chem Soc 2021; 143:5413-5424. [PMID: 33797236 PMCID: PMC8154517 DOI: 10.1021/jacs.1c00014] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
![]()
Methods for tracking
RNA inside living cells without perturbing
their natural interactions and functions are critical within biology
and, in particular, to facilitate studies of therapeutic RNA delivery.
We present a stealth labeling approach that can efficiently, and with
high fidelity, generate RNA transcripts, through enzymatic incorporation
of the triphosphate of tCO, a fluorescent tricyclic cytosine
analogue. We demonstrate this by incorporation of tCO in
up to 100% of the natural cytosine positions of a 1.2 kb mRNA encoding
for the histone H2B fused to GFP (H2B:GFP). Spectroscopic characterization
of this mRNA shows that the incorporation rate of tCO is
similar to cytosine, which allows for efficient labeling and controlled
tuning of labeling ratios for different applications. Using live cell
confocal microscopy and flow cytometry, we show that the tCO-labeled mRNA is efficiently translated into H2B:GFP inside human
cells. Hence, we not only develop the use of fluorescent base analogue
labeling of nucleic acids in live-cell microscopy but also, importantly,
show that the resulting transcript is translated into the correct
protein. Moreover, the spectral properties of our transcripts and
their translation product allow for their straightforward, simultaneous
visualization in live cells. Finally, we find that chemically transfected
tCO-labeled RNA, unlike a state-of-the-art fluorescently
labeled RNA, gives rise to expression of a similar amount of protein
as its natural counterpart, hence representing a methodology for studying
natural, unperturbed processing of mRNA used in RNA therapeutics and
in vaccines, like the ones developed against SARS-CoV-2.
Collapse
Affiliation(s)
- Tom Baladi
- Department of Chemistry and Chemical Engineering, Chemistry and Biochemistry, Chalmers University of Technology, SE-41296 Gothenburg, Sweden.,Medicinal Chemistry, Research and Early Development, Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Jesper R Nilsson
- Department of Chemistry and Chemical Engineering, Chemistry and Biochemistry, Chalmers University of Technology, SE-41296 Gothenburg, Sweden
| | - Audrey Gallud
- Department of Biology and Biological Engineering, Chemical Biology, Chalmers University of Technology, SE-41296 Gothenburg, Sweden
| | - Emanuele Celauro
- Department of Biology and Biological Engineering, Chemical Biology, Chalmers University of Technology, SE-41296 Gothenburg, Sweden
| | - Cécile Gasse
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, 91057 Evry, France
| | - Fabienne Levi-Acobas
- Department of Structural Biology and Chemistry, Laboratory for Bioorganic Chemistry of Nucleic Acids, CNRS UMR3523, Institut Pasteur, 28, Rue du Docteur Roux, 75724 Paris CEDEX 15, France
| | - Ivo Sarac
- Department of Structural Biology and Chemistry, Laboratory for Bioorganic Chemistry of Nucleic Acids, CNRS UMR3523, Institut Pasteur, 28, Rue du Docteur Roux, 75724 Paris CEDEX 15, France
| | - Marcel R Hollenstein
- Department of Structural Biology and Chemistry, Laboratory for Bioorganic Chemistry of Nucleic Acids, CNRS UMR3523, Institut Pasteur, 28, Rue du Docteur Roux, 75724 Paris CEDEX 15, France
| | - Anders Dahlén
- Medicinal Chemistry, Research and Early Development, Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Elin K Esbjörner
- Department of Biology and Biological Engineering, Chemical Biology, Chalmers University of Technology, SE-41296 Gothenburg, Sweden
| | - L Marcus Wilhelmsson
- Department of Chemistry and Chemical Engineering, Chemistry and Biochemistry, Chalmers University of Technology, SE-41296 Gothenburg, Sweden
| |
Collapse
|
5
|
Brion C, Lutz SM, Albert FW. Simultaneous quantification of mRNA and protein in single cells reveals post-transcriptional effects of genetic variation. eLife 2020; 9:60645. [PMID: 33191917 PMCID: PMC7707838 DOI: 10.7554/elife.60645] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 11/14/2020] [Indexed: 01/27/2023] Open
Abstract
Trans-acting DNA variants may specifically affect mRNA or protein levels of genes located throughout the genome. However, prior work compared trans-acting loci mapped in separate studies, many of which had limited statistical power. Here, we developed a CRISPR-based system for simultaneous quantification of mRNA and protein of a given gene via dual fluorescent reporters in single, live cells of the yeast Saccharomyces cerevisiae. In large populations of recombinant cells from a cross between two genetically divergent strains, we mapped 86 trans-acting loci affecting the expression of ten genes. Less than 20% of these loci had concordant effects on mRNA and protein of the same gene. Most loci influenced protein but not mRNA of a given gene. One locus harbored a premature stop variant in the YAK1 kinase gene that had specific effects on protein or mRNA of dozens of genes. These results demonstrate complex, post-transcriptional genetic effects on gene expression.
Collapse
Affiliation(s)
- Christian Brion
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, United States
| | - Sheila M Lutz
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, United States
| | - Frank Wolfgang Albert
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, United States
| |
Collapse
|
6
|
Garcia PD, Leach RW, Wadsworth GM, Choudhary K, Li H, Aviran S, Kim HD, Zakian VA. Stability and nuclear localization of yeast telomerase depend on protein components of RNase P/MRP. Nat Commun 2020; 11:2173. [PMID: 32358529 PMCID: PMC7195438 DOI: 10.1038/s41467-020-15875-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 03/27/2020] [Indexed: 01/17/2023] Open
Abstract
RNase P and MRP are highly conserved, multi-protein/RNA complexes with essential roles in processing ribosomal and tRNAs. Three proteins found in both complexes, Pop1, Pop6, and Pop7 are also telomerase-associated. Here, we determine how temperature sensitive POP1 and POP6 alleles affect yeast telomerase. At permissive temperatures, mutant Pop1/6 have little or no effect on cell growth, global protein levels, the abundance of Est1 and Est2 (telomerase proteins), and the processing of TLC1 (telomerase RNA). However, in pop mutants, TLC1 is more abundant, telomeres are short, and TLC1 accumulates in the cytoplasm. Although Est1/2 binding to TLC1 occurs at normal levels, Est1 (and hence Est3) binding is highly unstable. We propose that Pop-mediated stabilization of Est1 binding to TLC1 is a pre-requisite for formation and nuclear localization of the telomerase holoenzyme. Furthermore, Pop proteins affect TLC1 and the RNA subunits of RNase P/MRP in very different ways.
Collapse
Affiliation(s)
- P Daniela Garcia
- Department of Molecular Biology, Princeton University, Princeton, NJ, 08544, USA
| | - Robert W Leach
- Bioinformatics Group, Genomics Core Facility, Carl Icahn Laboratory, Princeton University, Princeton, New Jersey, 08544, USA
| | - Gable M Wadsworth
- School of Physics, Georgia Institute of Technology, Atlanta, Georgia, 30332, USA
| | - Krishna Choudhary
- Department of Biomedical Engineering and Genome Center, University of California, Davis, California, 95616, USA
- Gladstone Institute of Data Science and Biotechnology, San Francisco, CA, 94158, USA
| | - Hua Li
- Department of Biomedical Engineering and Genome Center, University of California, Davis, California, 95616, USA
| | - Sharon Aviran
- Department of Biomedical Engineering and Genome Center, University of California, Davis, California, 95616, USA
| | - Harold D Kim
- School of Physics, Georgia Institute of Technology, Atlanta, Georgia, 30332, USA
| | - Virginia A Zakian
- Department of Molecular Biology, Princeton University, Princeton, NJ, 08544, USA.
| |
Collapse
|
7
|
Tang J, Han KY. Low-photobleaching line-scanning confocal microscopy using dual inclined beams. JOURNAL OF BIOPHOTONICS 2019; 12:e201900075. [PMID: 31111688 DOI: 10.1002/jbio.201900075] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 04/22/2019] [Accepted: 05/17/2019] [Indexed: 06/09/2023]
Abstract
Confocal microscopy is an indispensable tool for biological imaging due to its high resolution and optical sectioning capability. However, its slow imaging speed and severe photobleaching have largely prevented further applications. Here, we present dual inclined beam line-scanning (LS) confocal microscopy. The reduced excitation intensity of our imaging method enabled a 2-fold longer observation time of fluorescence compared to traditional LS microscopy while maintaining a good sectioning capability and single-molecule sensitivity. We characterized the performance of our method and applied it to subcellular imaging and three-dimensional single-molecule RNA imaging in mammalian cells.
Collapse
Affiliation(s)
- Jialei Tang
- CREOL, The College of Optics and Photonics, University of Central Florida, Orlando, Florida
| | - Kyu Young Han
- CREOL, The College of Optics and Photonics, University of Central Florida, Orlando, Florida
| |
Collapse
|
8
|
Feng X, Kang W, Wu X, Wang S, Liu F. Quantitative Detection and Real-Time Monitoring of Endogenous mRNA at the Single Live Cell Level Using a Ratiometric Molecular Beacon. ACS APPLIED MATERIALS & INTERFACES 2019; 11:28752-28761. [PMID: 31329405 DOI: 10.1021/acsami.9b12394] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Messenger ribonucleic acid (mRNA) plays an important role in various cellular processes. however, traditional techniques cannot realize mRNA detections in live cells as they rely on mRNA purification or cell fixation. To achieve real-time and quantitative mRNA detections at a single live cell level, a single-strand stem-loop-structured ratiometric molecular beacon (RMB) composed of the phosphorothioate-modified loop domain on the 2'-O-methyl RNA backbone with a reporter dye, quencher, and reference dye is proposed to detect the Hsp27 mRNA as a modeled endogenous mRNA. When the RMB hybridizes with the target, the stem-loop structure opens, causing separation of the reporter dye and the quencher and restores the reporter fluorescent signals; therefore, the Hsp27 mRNA can be quantitatively detected according to the ratio of the reporter fluorescent signal to the reference fluorescent signal. Both the phosphorothioate and 2'-O-methyl RNA modifications obviously reduce the nonspecific opening, and the additional reference dye ensures the detection precision using co-localization analysis. Not only does this remove the false-positive signal caused by the nuclease degradation-generated RMB fragment, but it also corrects variations caused by direct measurement of reporter fluorescence intensities at a single cell level owing to inhomogeneity in probe delivery. The designed RMB could detect the Hsp27 mRNA with high signal-to-noise ratio and sensitivity as well as excellent specificity and antidegradation capability proved in vitro and in live cells. Furthermore, it was successfully adopted in subcellular localization, quantitative copy number measurements, and even real-time monitoring of Hsp27 mRNA in live cells, demonstrating that the proposed RMB can be a potential quantitative endogenous mRNA detection tool, especially at a single live cell level.
Collapse
Affiliation(s)
- Xufei Feng
- Joint International Research Laboratory of Animal Health and Food Safety & Single Molecule Nanometry Laboratory (Sinmolab) , Nanjing Agricultural University , Nanjing 210095 , China
| | - Wenjie Kang
- Joint International Research Laboratory of Animal Health and Food Safety & Single Molecule Nanometry Laboratory (Sinmolab) , Nanjing Agricultural University , Nanjing 210095 , China
| | - Xuping Wu
- The Second Hospital of Nanjing , Nanjing University of Chinese Medicine , Nanjing 210003 , China
| | - Shouyu Wang
- Joint International Research Laboratory of Animal Health and Food Safety & Single Molecule Nanometry Laboratory (Sinmolab) , Nanjing Agricultural University , Nanjing 210095 , China
- Computational Optics Laboratory, School of Science , Jiangnan University , Wuxi , Jiangsu 214122 , China
| | - Fei Liu
- Joint International Research Laboratory of Animal Health and Food Safety & Single Molecule Nanometry Laboratory (Sinmolab) , Nanjing Agricultural University , Nanjing 210095 , China
| |
Collapse
|
9
|
Li G, Neuert G. Multiplex RNA single molecule FISH of inducible mRNAs in single yeast cells. Sci Data 2019; 6:94. [PMID: 31209217 PMCID: PMC6572782 DOI: 10.1038/s41597-019-0106-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Accepted: 05/17/2019] [Indexed: 12/31/2022] Open
Abstract
Transcript levels powerfully influence cell behavior and phenotype and are carefully regulated at several steps. Recently developed single cell approaches such as RNA single molecule fluorescence in-situ hybridization (smFISH) have produced advances in our understanding of how these steps work within the cell. In comparison to single-cell sequencing, smFISH provides more accurate quantification of RNA levels. Additionally, transcript subcellular localization is directly visualized, enabling the analysis of transcription (initiation and elongation), RNA export and degradation. As part of our efforts to investigate how this type of analysis can generate improved models of gene expression, we used smFISH to quantify the kinetic expression of STL1 and CTT1 mRNAs in single Saccharomyces cerevisiae cells upon 0.2 and 0.4 M NaCl osmotic stress. In this Data Descriptor, we outline our procedure along with our data in the form of raw images and processed mRNA counts. We discuss how these data can be used to develop single cell modelling approaches, to study fundamental processes in transcription regulation and develop single cell image processing approaches.
Collapse
Affiliation(s)
- Guoliang Li
- Department of Molecular Physiology and Biophysics, School of Medicine, Vanderbilt University, Nashville, TN, 37232, USA
| | - Gregor Neuert
- Department of Molecular Physiology and Biophysics, School of Medicine, Vanderbilt University, Nashville, TN, 37232, USA.
- Department of Biomedical Engineering, School of Engineering, Vanderbilt University, Nashville, TN, 37232, USA.
- Department of Pharmacology, School of Medicine, Vanderbilt University, Nashville, TN, 37232, USA.
| |
Collapse
|
10
|
Contribution of RNA Degradation to Intrinsic and Extrinsic Noise in Gene Expression. Cell Rep 2019; 26:3752-3761.e5. [DOI: 10.1016/j.celrep.2019.03.001] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Revised: 11/26/2018] [Accepted: 02/27/2019] [Indexed: 12/29/2022] Open
|
11
|
Wadsworth GM, Parikh RY, Kim HD. Dual-probe RNA FRET-FISH in Yeast. Bio Protoc 2018; 8:e2867. [PMID: 34285981 PMCID: PMC8275227 DOI: 10.21769/bioprotoc.2867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 05/09/2018] [Accepted: 05/12/2018] [Indexed: 11/02/2022] Open
Abstract
mRNA Fluorescence In Situ Hybridization (FISH) is a technique commonly used to profile the distribution of transcripts in cells. When combined with the common single molecule technique Fluorescence Resonance Energy Transfer (FRET), FISH can also be used to profile the co-expression of nearby sequences in the transcript to measure processes such as alternate initiation or splicing variation of the transcript. Unlike in a conventional FISH method using multiple probes to target a single transcript, FRET is limited to the use of two probes labeled with matched dyes and requires the use of sensitized emission. Any widefield microscope capable of sensitive single molecule detection of Cy3 and Cy5 should be able to measure FRET in yeast cells. Alternatively, a FRET-FISH method can be used to unambiguously ascertain identity of the transcript without the use of a guide probe set used in other FISH techniques.
Collapse
Affiliation(s)
| | - Rasesh Y. Parikh
- School of Physics, Georgia Institute of Technology, Atlanta, GA, USA
| | - Harold D. Kim
- School of Physics, Georgia Institute of Technology, Atlanta, GA, USA
| |
Collapse
|
12
|
Wadsworth GM, Parikh RY, Kim HD. Single-probe RNA FISH in Yeast. Bio Protoc 2018; 8:e2868. [PMID: 34285982 PMCID: PMC8275289 DOI: 10.21769/bioprotoc.2868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Revised: 05/09/2018] [Accepted: 05/14/2018] [Indexed: 11/02/2022] Open
Abstract
Quantitative profiling of mRNA expression is an important part of understanding the state of a cell. The technique of RNA Fluorescence In Situ Hybridization (FISH) involves targeting an RNA transcript with a set of 40 complementary fluorescently labeled DNA oligonucleotide probes. However, there are many circumstances such as transcripts shorter than 200 nt, splicing variations, or alternate initiation sites that create transcripts that would be indistinguishable to a set of multiple probes. To this end we adapted the standard FISH protocol to allow the use of a single probe with a single fluorophore to quantify the amount of transcripts inside budding yeast cells. In addition to allowing the quantification of short transcripts or short features of transcripts, this technique reduces the cost of performing FISH.
Collapse
Affiliation(s)
| | - Rasesh Y. Parikh
- School of Physics, Georgia Institute of Technology, Atlanta, GA, USA
| | - Harold D. Kim
- School of Physics, Georgia Institute of Technology, Atlanta, GA, USA
| |
Collapse
|