1
|
Xiao X, Wang Y, Li T, Wang Q, Luo X, Li J, Gao L. Microproteins encoded by short open reading frames: Vital regulators in neurological diseases. Prog Neurobiol 2024; 243:102694. [PMID: 39586488 DOI: 10.1016/j.pneurobio.2024.102694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 10/18/2024] [Accepted: 11/20/2024] [Indexed: 11/27/2024]
Abstract
Short open reading frames (sORFs) are frequently overlooked because of their historical classification as non-coding elements or dismissed as "transcriptional noise". However, advanced genomic and proteomic technologies have allowed for screening and validating sORFs-encoded peptides, revealing their fundamental regulatory roles in cellular processes and sparking a growing interest in microprotein biology. In neuroscience, microproteins serve as neurotransmitters in signal transmission and regulate metabolism and emotions, exerting pivotal effects on neurological conditions such as nerve injury, neurogenic tumors, inflammation, and neurodegenerative diseases. This review summarizes the origins, characteristics, classifications, and functions of microproteins, focusing on their molecular mechanisms in neurological disorders. Potential applications, future perspectives, and challenges are discussed.
Collapse
Affiliation(s)
- Xiao Xiao
- Laboratory of Molecular Translational Medicine, Center for Translational Medicine, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610041, PR China; Department of Medical Genetics, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610041, PR China.
| | - Yitian Wang
- Laboratory of Molecular Translational Medicine, Center for Translational Medicine, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610041, PR China; West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, Sichuan 610041, PR China.
| | - Tingyu Li
- Laboratory of Molecular Translational Medicine, Center for Translational Medicine, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610041, PR China.
| | - Qiang Wang
- Laboratory of Molecular Translational Medicine, Center for Translational Medicine, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610041, PR China.
| | - Xiaolei Luo
- Laboratory of Molecular Translational Medicine, Center for Translational Medicine, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610041, PR China.
| | - Jingdong Li
- Institute of Hepato-Biliary-Pancreatic-Intestinal Disease, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan 637100, PR China.
| | - Linbo Gao
- Laboratory of Molecular Translational Medicine, Center for Translational Medicine, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610041, PR China.
| |
Collapse
|
2
|
Tierney JAS, Świrski MI, Tjeldnes H, Kiran AM, Carancini G, Kiniry SJ, Michel AM, Kufel J, Valen E, Baranov PV. RiboSeq.Org: an integrated suite of resources for ribosome profiling data analysis and visualization. Nucleic Acids Res 2024:gkae1020. [PMID: 39540432 DOI: 10.1093/nar/gkae1020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 10/11/2024] [Accepted: 10/16/2024] [Indexed: 11/16/2024] Open
Abstract
Ribosome profiling (Ribo-Seq) has revolutionised our understanding of translation, but the increasing complexity and volume of Ribo-Seq data present challenges for its reuse. Here, we formally introduce RiboSeq.Org, an integrated suite of resources designed to facilitate Ribo-Seq data analysis and visualisation within a web browser. RiboSeq.Org comprises several interconnected tools: GWIPS-viz for genome-wide visualisation, Trips-Viz for transcriptome-centric analysis, RiboGalaxy for data processing and the newly developed RiboSeq data portal (RDP) for centralised dataset identification and access. The RDP currently hosts preprocessed datasets corresponding to 14840 sequence libraries (samples) from 969 studies across 96 species, in various file formats along with standardised metadata. RiboSeq.Org addresses key challenges in Ribo-Seq data reuse through standardised sample preprocessing, semi-automated metadata curation and programmatic information access via a REST API and command-line utilities. RiboSeq.Org enhances the accessibility and utility of public Ribo-Seq data, enabling researchers to gain new insights into translational regulation and protein synthesis across diverse organisms and conditions. By providing these integrated, user-friendly resources, RiboSeq.Org aims to lower the barrier to reproducible research in the field of translatomics and promote more efficient utilisation of the wealth of available Ribo-Seq data.
Collapse
Affiliation(s)
- Jack A S Tierney
- School of Biochemistry and Cell Biology, University College Cork, Western Rd, Cork, T12 CY82, Ireland
- SFI CRT in Genomics Data Science, University of Galway, University Rd, Galway, H91 TK33, Ireland
| | - Michał I Świrski
- Institute of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, ul. Pawińskiego 5A, Warsaw, 02-106, Poland
| | - Håkon Tjeldnes
- School of Biochemistry and Cell Biology, University College Cork, Western Rd, Cork, T12 CY82, Ireland
- Computational Biology Unit, Department of Informatics, University of Bergen, Thormøhlensgate Bergen, 55N-5008, Norway
| | - Anmol M Kiran
- School of Biochemistry and Cell Biology, University College Cork, Western Rd, Cork, T12 CY82, Ireland
| | - Gionmattia Carancini
- School of Biochemistry and Cell Biology, University College Cork, Western Rd, Cork, T12 CY82, Ireland
- SFI CRT in Genomics Data Science, University of Galway, University Rd, Galway, H91 TK33, Ireland
| | - Stephen J Kiniry
- EIRNA Bio, Food Science and Technology Building, 1 College Rd, Cork, T12 Y337, Ireland
| | - Audrey M Michel
- EIRNA Bio, Food Science and Technology Building, 1 College Rd, Cork, T12 Y337, Ireland
| | - Joanna Kufel
- Institute of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, ul. Pawińskiego 5A, Warsaw, 02-106, Poland
| | - Eivind Valen
- Computational Biology Unit, Department of Informatics, University of Bergen, Thormøhlensgate Bergen, 55N-5008, Norway
- Department of Biosciences, University of Oslo, Kristine Bonnevies hus, Blindernveien 31, 0731 Oslo, Norway
| | - Pavel V Baranov
- School of Biochemistry and Cell Biology, University College Cork, Western Rd, Cork, T12 CY82, Ireland
| |
Collapse
|
3
|
Wang Y, Tang Y, Xie Z, Wang H. RPFdb v3.0: an enhanced repository for ribosome profiling data and related content. Nucleic Acids Res 2024:gkae808. [PMID: 39319601 DOI: 10.1093/nar/gkae808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 08/15/2024] [Accepted: 09/05/2024] [Indexed: 09/26/2024] Open
Abstract
RPFdb (http://www.rpfdb.org or http://sysbio.gzzoc.com/rpfdb/) is a comprehensive repository dedicated to hosting ribosome profiling (Ribo-seq) data and related content. Herein, we present RPFdb v3.0, a significant update featuring expanded data content and improved functionality. Key enhancements include (i) increased data coverage, now encompassing 5018 Ribo-seq datasets and 2343 matched RNA-seq datasets from 496 studies across 34 species; (ii) implementation of translation efficiency, combining Ribo-seq and RNA-seq data to provide gene-specific translation efficiency; (iii) addition of pausing score, facilitating the identification of condition-specific triplet amino acid motifs with enhanced ribosome enrichment; (iv) refinement of open reading frame (ORF) annotation, leveraging RibORF v2.0 for more sensitive detection of actively translated ORFs; (v) introduction of a resource hub, curating advances in translatome sequencing techniques and data analytics tools to support a panoramic overview of the field; and (vi) redesigned web interface, providing intuitive navigation with dedicated pages for streamlined data retrieval, comparison and visualization. These enhancements make RPFdb a more powerful and user-friendly resource for researchers in the field of translatomics. The database is freely accessible and regularly updated to ensure its continued relevance to the scientific community.
Collapse
Affiliation(s)
- Yan Wang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China
| | - Yuewen Tang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China
| | - Zhi Xie
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China
| | - Hongwei Wang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China
| |
Collapse
|
4
|
Kim Y, Ha H, Kim K. Discovery of high-expressing lncRNA-derived sORFs as potential tumor-associated antigens in hepatocellular carcinoma. Genes Genomics 2024; 46:1085-1095. [PMID: 39112833 DOI: 10.1007/s13258-024-01549-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 07/15/2024] [Indexed: 08/28/2024]
Abstract
BACKGROUND This study is based on deep mining of Ribo-seq data for the identification of lncRNAs that have highly expressed sORFs in HCC. In this paper, dynamic prospects associated with sORFs acting as newly defined tumor-specific epitopes are discussed with possible improvement in strategies for tumor immunotherapy. OBJECTIVE Using ribosome profiling to identify and characterize sORFs within lncRNAs in HCC, identify potential therapeutic targets and tumor-specific epitopes applicable for immunotherapy. METHODS MetamORF performed the identification of sORFs with deep analysis of the data of ribosome profiling in lncRNAs associated with HCC. The translation efficiency in these molecules was estimated, and epitope prediction was done by pVACbind. Peptide search was done to check the presence of micropeptides translated from these identified sORFs. validated translational activity and identified potential epitopes. RESULTS Higher translation efficiency was noted in the case of lncRNAs associated with HCC compared to normal tissues. Of particular note is ORF3418981, which results in the highest expression and has supporting experimental evidence at the protein level. Epitope prediction identified a putative epitope at the C-terminus of ORF3418981. CONCLUSIONS This study uncovers the as-yet-unknown potential of lncRNA-derived sORFs as sources of tumor antigens, shifting the research focus from protein-coding genes to non-coding RNAs also in the HCC context. Moreover, this study highlights the contribution of a subset of lncRNAs, especially LINC00152, to the development of tumors and modulation of the immune response by its sORFs.
Collapse
Affiliation(s)
- Yooeun Kim
- Interdisciplinary Program in Bioinformatics, College of Natural Sciences, Seoul National University, Seoul, Republic of Korea
| | - Hongseok Ha
- Institute of Endemic Disease, Seoul National University Medical Research Center, Seoul, Republic of Korea
| | - Kwangsoo Kim
- Department of Medicine, College of Medicine, Seoul National University, Seoul, Republic of Korea.
- Department of Transdisciplinary Medicine, Institute of Convergence Medicine with Innovative Technology, Seoul National University Hospital, Seoul, Republic of Korea.
| |
Collapse
|
5
|
Cagliani R, Forni D, Mozzi A, Fuchs R, Tussia-Cohen D, Arrigoni F, Pozzoli U, De Gioia L, Hagai T, Sironi M. Evolution of Virus-like Features and Intrinsically Disordered Regions in Retrotransposon-derived Mammalian Genes. Mol Biol Evol 2024; 41:msae154. [PMID: 39101471 PMCID: PMC11299033 DOI: 10.1093/molbev/msae154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 07/16/2024] [Accepted: 07/19/2024] [Indexed: 08/06/2024] Open
Abstract
Several mammalian genes have originated from the domestication of retrotransposons, selfish mobile elements related to retroviruses. Some of the proteins encoded by these genes have maintained virus-like features; including self-processing, capsid structure formation, and the generation of different isoforms through -1 programmed ribosomal frameshifting. Using quantitative approaches in molecular evolution and biophysical analyses, we studied 28 retrotransposon-derived genes, with a focus on the evolution of virus-like features. By analyzing the rate of synonymous substitutions, we show that the -1 programmed ribosomal frameshifting mechanism in three of these genes (PEG10, PNMA3, and PNMA5) is conserved across mammals and originates alternative proteins. These genes were targets of positive selection in primates, and one of the positively selected sites affects a B-cell epitope on the spike domain of the PNMA5 capsid, a finding reminiscent of observations in infectious viruses. More generally, we found that retrotransposon-derived proteins vary in their intrinsically disordered region content and this is directly associated with their evolutionary rates. Most positively selected sites in these proteins are located in intrinsically disordered regions and some of them impact protein posttranslational modifications, such as autocleavage and phosphorylation. Detailed analyses of the biophysical properties of intrinsically disordered regions showed that positive selection preferentially targeted regions with lower conformational entropy. Furthermore, positive selection introduces variation in binary sequence patterns across orthologues, as well as in chain compaction. Our results shed light on the evolutionary trajectories of a unique class of mammalian genes and suggest a novel approach to study how intrinsically disordered region biophysical characteristics are affected by evolution.
Collapse
Affiliation(s)
- Rachele Cagliani
- Scientific Institute IRCCS E. MEDEA, Computational Biology Unit, Bosisio Parini 23842, Italy
| | - Diego Forni
- Scientific Institute IRCCS E. MEDEA, Computational Biology Unit, Bosisio Parini 23842, Italy
| | - Alessandra Mozzi
- Scientific Institute IRCCS E. MEDEA, Computational Biology Unit, Bosisio Parini 23842, Italy
| | - Rotem Fuchs
- Shmunis School of Biomedicine and Cancer Research, George S Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| | - Dafna Tussia-Cohen
- Shmunis School of Biomedicine and Cancer Research, George S Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| | - Federica Arrigoni
- Department of Biotechnology and Biosciences, University of Milan-Bicocca, Milan 20126, Italy
| | - Uberto Pozzoli
- Scientific Institute IRCCS E. MEDEA, Computational Biology Unit, Bosisio Parini 23842, Italy
| | - Luca De Gioia
- Department of Biotechnology and Biosciences, University of Milan-Bicocca, Milan 20126, Italy
| | - Tzachi Hagai
- Shmunis School of Biomedicine and Cancer Research, George S Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| | - Manuela Sironi
- Scientific Institute IRCCS E. MEDEA, Computational Biology Unit, Bosisio Parini 23842, Italy
| |
Collapse
|
6
|
Perdikopanis N, Giannakakis A, Kavakiotis I, Hatzigeorgiou AG. D-sORF: Accurate Ab Initio Classification of Experimentally Detected Small Open Reading Frames (sORFs) Associated with Translational Machinery. BIOLOGY 2024; 13:563. [PMID: 39194501 DOI: 10.3390/biology13080563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/15/2024] [Accepted: 07/24/2024] [Indexed: 08/29/2024]
Abstract
Small open reading frames (sORFs; <300 nucleotides or <100 amino acids) are widespread across all genomes, and an increasing variety of them appear to be translating from non-genic regions. Over the past few decades, peptides produced from sORFs have been identified as functional in various organisms, from bacteria to humans. Despite recent advances in next-generation sequencing and proteomics, accurate annotation and classification of sORFs remain a rate-limiting step toward reliable and high-throughput detection of small proteins from non-genic regions. Additionally, the cost of computational methods utilizing machine learning is lower than that of biological experiments, and they can be employed to detect sORFs, laying the groundwork for biological experiments. We present D-sORF, a machine-learning framework that integrates the statistical nucleotide context and motif information around the start codon to predict coding sORFs. D-sORF scores directly for coding identity and requires only the underlying genomic sequence, without incorporating parameters such as the conservation, which, in the case of sORFs, may increase the dispersion of scores within the significantly less conserved non-genic regions. D-sORF achieves 94.74% precision and 92.37% accuracy for small ORFs (using the 99 nt medium length window). When D-sORF is applied to sORFs associated with ribosomes, the identification of transcripts producing peptides (annotated by the Ensembl IDs) is similar to or superior to experimental methodologies based on ribosome-sequencing (Ribo-Seq) profiling. In parallel, the recognition of putative negative data, such as the intron-containing transcripts that associate with ribosomes, remains remarkably low, indicating that D-sORF could be efficiently applied to filter out false-positive sORFs from Ribo-Seq data because of the non-productive ribosomal binding or noise inherent in these protocols.
Collapse
Affiliation(s)
- Nikos Perdikopanis
- Department of Electrical and Computer Engineering, University of Thessaly, 38221 Volos, Greece
- Department of Informatics and Telecommunications, National and Kapodistrian University of Athens, 15784 Athens, Greece
- Department of Computer Science and Biomedical Informatics, University of Thessaly, 38221 Volos, Greece
| | - Antonis Giannakakis
- Department of Molecular Biology and Genetics, Democritus University of Thrace, 68100 Alexandroupolis, Greece
- University Research Institute of Maternal and Child Health and Precision Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Ioannis Kavakiotis
- Department of Computer Science and Biomedical Informatics, University of Thessaly, 38221 Volos, Greece
| | - Artemis G Hatzigeorgiou
- Department of Computer Science and Biomedical Informatics, University of Thessaly, 38221 Volos, Greece
- Hellenic Pasteur Institute, 11521 Athens, Greece
| |
Collapse
|
7
|
Tian H, Tang L, Yang Z, Xiang Y, Min Q, Yin M, You H, Xiao Z, Shen J. Current understanding of functional peptides encoded by lncRNA in cancer. Cancer Cell Int 2024; 24:252. [PMID: 39030557 PMCID: PMC11265036 DOI: 10.1186/s12935-024-03446-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 07/09/2024] [Indexed: 07/21/2024] Open
Abstract
Dysregulated gene expression and imbalance of transcriptional regulation are typical features of cancer. RNA always plays a key role in these processes. Human transcripts contain many RNAs without long open reading frames (ORF, > 100 aa) and that are more than 200 bp in length. They are usually regarded as long non-coding RNA (lncRNA) which play an important role in cancer regulation, including chromatin remodeling, transcriptional regulation, translational regulation and as miRNA sponges. With the advancement of ribosome profiling and sequencing technologies, increasing research evidence revealed that some ORFs in lncRNA can also encode peptides and participate in the regulation of multiple organ tumors, which undoubtedly opens a new chapter in the field of lncRNA and oncology research. In this review, we discuss the biological function of lncRNA in tumors, the current methods to evaluate their coding potential and the role of functional small peptides encoded by lncRNA in cancers. Investigating the small peptides encoded by lncRNA and understanding the regulatory mechanisms of these functional peptides may contribute to a deeper understanding of cancer and the development of new targeted anticancer therapies.
Collapse
Affiliation(s)
- Hua Tian
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, 646000, China
- Cell Therapy and Cell Drugs of Luzhou Key Laboratory, Luzhou, 646000, China
- South Sichuan Institute of Translational Medicine, Luzhou, 646000, China
- School of Nursing, Chongqing College of Humanities, Science & Technology, Chongqing, China
| | - Lu Tang
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, 646000, China
- Cell Therapy and Cell Drugs of Luzhou Key Laboratory, Luzhou, 646000, China
- South Sichuan Institute of Translational Medicine, Luzhou, 646000, China
| | - Zihan Yang
- Department of Pathology, The Affiliated Hospital of Southwest Medical University, Luzhou, China, 646000
| | - Yanxi Xiang
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, 646000, China
- Cell Therapy and Cell Drugs of Luzhou Key Laboratory, Luzhou, 646000, China
- South Sichuan Institute of Translational Medicine, Luzhou, 646000, China
| | - Qi Min
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, 646000, China
- Cell Therapy and Cell Drugs of Luzhou Key Laboratory, Luzhou, 646000, China
- South Sichuan Institute of Translational Medicine, Luzhou, 646000, China
| | - Mengshuang Yin
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, 646000, China
- Cell Therapy and Cell Drugs of Luzhou Key Laboratory, Luzhou, 646000, China
- South Sichuan Institute of Translational Medicine, Luzhou, 646000, China
| | - Huili You
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, 646000, China
- Cell Therapy and Cell Drugs of Luzhou Key Laboratory, Luzhou, 646000, China
- South Sichuan Institute of Translational Medicine, Luzhou, 646000, China
| | - Zhangang Xiao
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, 646000, China.
- Cell Therapy and Cell Drugs of Luzhou Key Laboratory, Luzhou, 646000, China.
- South Sichuan Institute of Translational Medicine, Luzhou, 646000, China.
- Gulin Traditional Chinese Medicine Hospital, Luzhou, China.
- Department of Pharmacology, School of Pharmacy, Sichuan College of Traditional Chinese Medicine, Mianyang, China.
| | - Jing Shen
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, 646000, China.
- Cell Therapy and Cell Drugs of Luzhou Key Laboratory, Luzhou, 646000, China.
- South Sichuan Institute of Translational Medicine, Luzhou, 646000, China.
| |
Collapse
|
8
|
Zhang Q, Liu L. Novel insights into small open reading frame-encoded micropeptides in hepatocellular carcinoma: A potential breakthrough. Cancer Lett 2024; 587:216691. [PMID: 38360139 DOI: 10.1016/j.canlet.2024.216691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 01/13/2024] [Accepted: 01/27/2024] [Indexed: 02/17/2024]
Abstract
Traditionally, non-coding RNAs (ncRNAs) are regarded as a class of RNA transcripts that lack encoding capability; however, advancements in technology have revealed that some ncRNAs contain small open reading frames (sORFs) that are capable of encoding micropeptides of approximately 150 amino acids in length. sORF-encoded micropeptides (SEPs) have emerged as intriguing entities in hepatocellular carcinoma (HCC) research, shedding light on this previously unexplored realm. Recent studies have highlighted the regulatory functions of SEPs in the occurrence and progression of HCC. Some SEPs exhibit inhibitory effects on HCC, but others facilitate its development. This discovery has revolutionized the landscape of HCC research and clinical management. Here, we introduce the concept and characteristics of SEPs, summarize their associations with HCC, and elucidate their carcinogenic mechanisms in HCC metabolism, signaling pathways, cell proliferation, and metastasis. In addition, we propose a step-by-step workflow for the investigation of HCC-associated SEPs. Lastly, we discuss the challenges and prospects of applying SEPs in the diagnosis and treatment of HCC. This review aims to facilitate the discovery, optimization, and clinical application of HCC-related SEPs, inspiring the development of early diagnostic, individualized, and precision therapeutic strategies for HCC.
Collapse
Affiliation(s)
- Qiangnu Zhang
- Division of Hepatobiliary and Pancreas Surgery, Department of General Surgery, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), 518020, Shenzhen, China
| | - Liping Liu
- Division of Hepatobiliary and Pancreas Surgery, Department of General Surgery, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), 518020, Shenzhen, China.
| |
Collapse
|
9
|
Hernández G, García A, Weingarten-Gabbay S, Mishra R, Hussain T, Amiri M, Moreno-Hagelsieb G, Montiel-Dávalos A, Lasko P, Sonenberg N. Functional analysis of the AUG initiator codon context reveals novel conserved sequences that disfavor mRNA translation in eukaryotes. Nucleic Acids Res 2024; 52:1064-1079. [PMID: 38038264 PMCID: PMC10853783 DOI: 10.1093/nar/gkad1152] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 11/09/2023] [Accepted: 11/15/2023] [Indexed: 12/02/2023] Open
Abstract
mRNA translation is a fundamental process for life. Selection of the translation initiation site (TIS) is crucial, as it establishes the correct open reading frame for mRNA decoding. Studies in vertebrate mRNAs discovered that a purine at -3 and a G at +4 (where A of the AUG initiator codon is numbered + 1), promote TIS recognition. However, the TIS context in other eukaryotes has been poorly experimentally analyzed. We analyzed in vitro the influence of the -3, -2, -1 and + 4 positions of the TIS context in rabbit, Drosophila, wheat, and yeast. We observed that -3A conferred the best translational efficiency across these species. However, we found variability at the + 4 position for optimal translation. In addition, the Kozak motif that was defined from mammalian cells was only weakly predictive for wheat and essentially non-predictive for yeast. We discovered eight conserved sequences that significantly disfavored translation. Due to the big differences in translational efficiency observed among weak TIS context sequences, we define a novel category that we termed 'barren AUG context sequences (BACS)', which represent sequences disfavoring translation. Analysis of mRNA-ribosomal complexes structures provided insights into the function of BACS. The gene ontology of the BACS-containing mRNAs is presented.
Collapse
Affiliation(s)
- Greco Hernández
- mRNA and Cancer Laboratory, Unit of Biomedical Research on Cancer, National Institute of Cancer (INCan), Mexico City 14080, Mexico
| | - Alejandra García
- mRNA and Cancer Laboratory, Unit of Biomedical Research on Cancer, National Institute of Cancer (INCan), Mexico City 14080, Mexico
| | - Shira Weingarten-Gabbay
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, USA
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY, USA
| | - Rishi Kumar Mishra
- Department of Developmental Biology and Genetics, Indian Institute of Science, Bengaluru-560012, India
| | - Tanweer Hussain
- Department of Developmental Biology and Genetics, Indian Institute of Science, Bengaluru-560012, India
| | - Mehdi Amiri
- Department of Biochemistry and Goodman Cancer Institute. McGill University., Montreal, QC H3A 1A3, Canada
| | - Gabriel Moreno-Hagelsieb
- Department of Biology, Wilfrid Laurier University. 75 University Ave. W, Waterloo, ON N2L 3C5, Canada
| | - Angélica Montiel-Dávalos
- mRNA and Cancer Laboratory, Unit of Biomedical Research on Cancer, National Institute of Cancer (INCan), Mexico City 14080, Mexico
| | - Paul Lasko
- Department of Biology, McGill University. Montreal, QC H3G 0B1, Canada
| | - Nahum Sonenberg
- Department of Biochemistry and Goodman Cancer Institute. McGill University., Montreal, QC H3A 1A3, Canada
| |
Collapse
|
10
|
Kore H, Datta KK, Nagaraj SH, Gowda H. Protein-coding potential of non-canonical open reading frames in human transcriptome. Biochem Biophys Res Commun 2023; 684:149040. [PMID: 37897910 DOI: 10.1016/j.bbrc.2023.09.068] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 09/09/2023] [Accepted: 09/23/2023] [Indexed: 10/30/2023]
Abstract
In recent years, proteogenomics and ribosome profiling studies have identified a large number of proteins encoded by noncoding regions in the human genome. They are encoded by small open reading frames (sORFs) in the untranslated regions (UTRs) of mRNAs and long non-coding RNAs (lncRNAs). These sORF encoded proteins (SEPs) are often <150AA and show poor evolutionary conservation. A subset of them have been functionally characterized and shown to play an important role in fundamental biological processes including cardiac and muscle function, DNA repair, embryonic development and various human diseases. How many novel protein-coding regions exist in the human genome and what fraction of them are functionally important remains a mystery. In this review, we discuss current progress in unraveling SEPs, approaches used for their identification, their limitations and reliability of these identifications. We also discuss functionally characterized SEPs and their involvement in various biological processes and diseases. Lastly, we provide insights into their distinctive features compared to canonical proteins and challenges associated with annotating these in protein reference databases.
Collapse
Affiliation(s)
- Hitesh Kore
- Centre for Genomics and Personalised Health, Queensland University of Technology, Brisbane, Queensland, 4059, Australia; Cancer Precision Medicine Group, QIMR Berghofer Medical Research Institute, 300 Herston Road, Herston, Queensland, 4006, Australia; Faculty of Health, Queensland University of Technology, Brisbane, Queensland, 4059, Australia.
| | - Keshava K Datta
- Proteomics and Metabolomics Platform, La Trobe University, Melbourne, VIC, 3083, Australia
| | - Shivashankar H Nagaraj
- Centre for Genomics and Personalised Health, Queensland University of Technology, Brisbane, Queensland, 4059, Australia; Faculty of Health, Queensland University of Technology, Brisbane, Queensland, 4059, Australia
| | - Harsha Gowda
- Centre for Genomics and Personalised Health, Queensland University of Technology, Brisbane, Queensland, 4059, Australia; Cancer Precision Medicine Group, QIMR Berghofer Medical Research Institute, 300 Herston Road, Herston, Queensland, 4006, Australia; Faculty of Health, Queensland University of Technology, Brisbane, Queensland, 4059, Australia; Faculty of Medicine, The University of Queensland, Queensland, 4072, Australia.
| |
Collapse
|
11
|
Fedorova AD, Tierney JA, Michel AM, Baranov PV. RiboGalaxy: A Galaxy-based Web Platform for Ribosome Profiling Data Processing – 2023 Update. J Mol Biol 2023. [DOI: 10.1016/j.jmb.2023.168043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
|
12
|
Filatova A, Reveguk I, Piatkova M, Bessonova D, Kuziakova O, Demakova V, Romanishin A, Fishman V, Imanmalik Y, Chekanov N, Skitchenko R, Barbitoff Y, Kardymon O, Skoblov M. Annotation of uORFs in the OMIM genes allows to reveal pathogenic variants in 5'UTRs. Nucleic Acids Res 2023; 51:1229-1244. [PMID: 36651276 PMCID: PMC9943669 DOI: 10.1093/nar/gkac1247] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 11/29/2022] [Accepted: 12/15/2022] [Indexed: 01/19/2023] Open
Abstract
An increasing number of studies emphasize the role of non-coding variants in the development of hereditary diseases. However, the interpretation of such variants in clinical genetic testing still remains a critical challenge due to poor knowledge of their pathogenicity mechanisms. It was previously shown that variants in 5'-untranslated regions (5'UTRs) can lead to hereditary diseases due to disruption of upstream open reading frames (uORFs). Here, we performed a manual annotation of upstream translation initiation sites (TISs) in human disease-associated genes from the OMIM database and revealed ∼4.7 thousand of TISs related to uORFs. We compared our TISs with the previous studies and provided a list of 'high confidence' uORFs. Using a luciferase assay, we experimentally validated the translation of uORFs in the ETFDH, PAX9, MAST1, HTT, TTN,GLI2 and COL2A1 genes, as well as existence of N-terminal CDS extension in the ZIC2 gene. Besides, we created a tool to annotate the effects of genetic variants located in uORFs. We revealed the variants from the HGMD and ClinVar databases that disrupt uORFs and thereby could lead to Mendelian disorders. We also showed that the distribution of uORFs-affecting variants differs between pathogenic and population variants. Finally, drawing on manually curated data, we developed a machine-learning algorithm that allows us to predict the TISs in other human genes.
Collapse
Affiliation(s)
- Alexandra Filatova
- To whom correspondence should be addressed. Tel: +7 916 335 33 29; Fax: +7 499 324 07 02;
| | - Ivan Reveguk
- Laboratoire de Biologie Structurale de la Cellule, École Polytechnique, Paris, France
| | - Maria Piatkova
- Institute of Chemistry, Far Eastern Branch of the Russian Academy of Sciences, Vladivostok, Russia,Institute of high technologies and advanced materials, Far Eastern Federal University, Vladivostok, Russia
| | - Daria Bessonova
- Medical Center, Far Eastern Federal University, Vladivostok, Russia
| | - Olga Kuziakova
- Institute of Life Sciences and Biomedicine, Far Eastern Federal University, Vladivostok, Russia
| | | | - Alexander Romanishin
- Institute of Life Sciences and Biomedicine, Far Eastern Federal University, Vladivostok, Russia,Institute of Life Sciences, Immanuel Kant Baltic Federal University, Kaliningrad, Russia
| | - Veniamin Fishman
- Artificial Intelligence Research Institute, Moscow, Russia,Molecular Mechanisms of Ontogenesis, Institute of Cytology and Genetics SB RAS, Novosibirsk, Russia
| | | | | | | | - Yury Barbitoff
- Bioinformatics Institute, St. Petersburg, Russia,Department of Genomic Medicine, D.O. Ott Research Institute of Obstetrics, Gynaecology, and Reproductology, St. Petersburg, Russia,Dpt. of Genetics and Biotechnology, St. Petersburg State University, St. Petersburg, Russia
| | - Olga Kardymon
- Artificial Intelligence Research Institute, Moscow, Russia
| | | |
Collapse
|
13
|
Carrier MC, Lalaouna D, Massé E. Hfq protein and GcvB small RNA tailoring of oppA target mRNA to levels allowing translation activation by MicF small RNA in Escherichia coli. RNA Biol 2023; 20:59-76. [PMID: 36860088 PMCID: PMC9988348 DOI: 10.1080/15476286.2023.2179582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2023] Open
Abstract
Traffic of molecules across the bacterial membrane mainly relies on porins and transporters, whose expression must adapt to environmental conditions. To ensure bacterial fitness, synthesis and assembly of functional porins and transporters are regulated through a plethora of mechanisms. Among them, small regulatory RNAs (sRNAs) are known to be powerful post-transcriptional regulators. In Escherichia coli, the MicF sRNA is known to regulate only four targets, a very narrow targetome for a sRNA responding to various stresses, such as membrane stress, osmotic shock, or thermal shock. Using an in vivo pull-down assay combined with high-throughput RNA sequencing, we sought to identify new targets of MicF to better understand its role in the maintenance of cellular homoeostasis. Here, we report the first positively regulated target of MicF, the oppA mRNA. The OppA protein is the periplasmic component of the Opp ATP-binding cassette (ABC) oligopeptide transporter and regulates the import of short peptides, some of them bactericides. Mechanistic studies suggest that oppA translation is activated by MicF through a mechanism of action involving facilitated access to a translation-enhancing region in oppA 5'UTR. Intriguingly, MicF activation of oppA translation depends on cross-regulation by negative trans-acting effectors, the GcvB sRNA and the RNA chaperone protein Hfq.
Collapse
Affiliation(s)
- Marie-Claude Carrier
- Department of Biochemistry and Functional Genomics, RNA Group, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - David Lalaouna
- Department of Biochemistry and Functional Genomics, RNA Group, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Eric Massé
- Department of Biochemistry and Functional Genomics, RNA Group, Université de Sherbrooke, Sherbrooke, Québec, Canada
| |
Collapse
|
14
|
Antonov IV, O’Loughlin S, Gorohovski AN, O’Connor PB, Baranov PV, Atkins JF. Streptomyces rare codon UUA: from features associated with 2 adpA related locations to candidate phage regulatory translational bypassing. RNA Biol 2023; 20:926-942. [PMID: 37968863 PMCID: PMC10732093 DOI: 10.1080/15476286.2023.2270812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 10/02/2023] [Indexed: 11/17/2023] Open
Abstract
In Streptomyces species, the cell cycle involves a switch from an early and vegetative state to a later phase where secondary products including antibiotics are synthesized, aerial hyphae form and sporulation occurs. AdpA, which has two domains, activates the expression of numerous genes involved in the switch from the vegetative growth phase. The adpA mRNA of many Streptomyces species has a UUA codon in a linker region between 5' sequence encoding one domain and 3' sequence encoding its other and C-terminal domain. UUA codons are exceptionally rare in Streptomyces, and its functional cognate tRNA is not present in a fully modified and acylated form, in the early and vegetative phase of the cell cycle though it is aminoacylated later. Here, we report candidate recoding signals that may influence decoding of the linker region UUA. Additionally, a short ORF 5' of the main ORF has been identified with a GUG at, or near, its 5' end and an in-frame UUA near its 3' end. The latter is commonly 5 nucleotides 5' of the main ORF start. Ribosome profiling data show translation of that 5' region. Ten years ago, UUA-mediated translational bypassing was proposed as a sensor by a Streptomyces phage of its host's cell cycle stage and an effector of its lytic/lysogeny switch. We provide the first experimental evidence supportive of this proposal.
Collapse
Affiliation(s)
- Ivan V. Antonov
- Russian Academy of Science, Institute of Bioengineering, Research Center of Biotechnology, Moscow, Russia
- Laboratory of Bioinformatics, Faculty of Computer Science, National Research University Higher School of Economics, Moscow, Russia
- School of Biochemistry and Cell Biology, University College Cork, Cork, Ireland
| | - Sinéad O’Loughlin
- School of Biochemistry and Cell Biology, University College Cork, Cork, Ireland
| | - Alessandro N. Gorohovski
- Russian Academy of Science, Institute of Bioengineering, Research Center of Biotechnology, Moscow, Russia
- Structural Biology and BioComputing Program, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | | | - Pavel V. Baranov
- School of Biochemistry and Cell Biology, University College Cork, Cork, Ireland
| | - John F. Atkins
- School of Biochemistry and Cell Biology, University College Cork, Cork, Ireland
| |
Collapse
|
15
|
Mudge JM, Ruiz-Orera J, Prensner JR, Brunet MA, Calvet F, Jungreis I, Gonzalez JM, Magrane M, Martinez TF, Schulz JF, Yang YT, Albà MM, Aspden JL, Baranov PV, Bazzini AA, Bruford E, Martin MJ, Calviello L, Carvunis AR, Chen J, Couso JP, Deutsch EW, Flicek P, Frankish A, Gerstein M, Hubner N, Ingolia NT, Kellis M, Menschaert G, Moritz RL, Ohler U, Roucou X, Saghatelian A, Weissman JS, van Heesch S. Standardized annotation of translated open reading frames. Nat Biotechnol 2022; 40:994-999. [PMID: 35831657 PMCID: PMC9757701 DOI: 10.1038/s41587-022-01369-0] [Citation(s) in RCA: 97] [Impact Index Per Article: 48.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Jonathan M Mudge
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK.
| | - Jorge Ruiz-Orera
- Cardiovascular and Metabolic Sciences, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany.
| | - John R Prensner
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA, USA.
- Division of Pediatric Hematology/Oncology, Boston Children's Hospital, Boston, MA, USA.
| | - Marie A Brunet
- Department of Pediatrics, Medical Genetics Service, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Ferriol Calvet
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Irwin Jungreis
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- MIT Computer Science and Artificial Intelligence Laboratory, Cambridge, MA, USA
| | - Jose Manuel Gonzalez
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Michele Magrane
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Thomas F Martinez
- Clayton Foundation Laboratories for Peptide Biology, Salk Institute for Biological Studies, La Jolla, CA, USA
- Department of Pharmaceutical Sciences, University of California, Irvine, CA, USA
| | - Jana Felicitas Schulz
- Cardiovascular and Metabolic Sciences, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Yucheng T Yang
- Program in Computational Biology & Bioinformatics, Yale University, New Haven, CT, USA
- Department of Molecular Biophysics & Biochemistry, Yale University, New Haven, CT, USA
| | - M Mar Albà
- Evolutionary Genomics Group, Research Programme on Biomedical Informatics, Hospital del Mar Research Institute (IMIM) and Universitat Pompeu Fabra (UPF), Barcelona, Spain
- Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, Spain
| | - Julie L Aspden
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK
- LeedsOmics, University of Leeds, Leeds, UK
| | - Pavel V Baranov
- School of Biochemistry and Cell Biology, University College Cork, Cork, Ireland
| | - Ariel A Bazzini
- Stowers Institute for Medical Research, Kansas City, MO, USA
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, KS, USA
| | - Elspeth Bruford
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
- Department of Haematology, University of Cambridge School of Clinical Medicine, Cambridge, UK
| | - Maria Jesus Martin
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Lorenzo Calviello
- Functional Genomics Centre, Human Technopole, Milan, Italy
- Computational Biology Centre, Human Technopole, Milan, Italy
| | - Anne-Ruxandra Carvunis
- Department of Computational and Systems Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- Pittsburgh Center for Evolutionary Biology and Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Jin Chen
- Department of Pharmacology and Cecil H. and Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Juan Pablo Couso
- Centro Andaluz de Biologia del Desarrollo, CSIC-UPO, Seville, Spain
| | | | - Paul Flicek
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Adam Frankish
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Mark Gerstein
- Program in Computational Biology & Bioinformatics, Yale University, New Haven, CT, USA
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA
- Department of Computer Science, Yale University, New Haven, CT, USA
- Department of Statistics & Data Science, Yale University, New Haven, CT, USA
| | - Norbert Hubner
- Cardiovascular and Metabolic Sciences, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
- Charité-Universitätsmedizin, Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, Berlin, Germany
| | - Nicholas T Ingolia
- Department of Molecular and Cell Biology and California Institute for Quantitative Biosciences, University of California, Berkeley, Berkeley, CA, USA
| | - Manolis Kellis
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- MIT Computer Science and Artificial Intelligence Laboratory, Cambridge, MA, USA
| | - Gerben Menschaert
- Biobix, Lab of Bioinformatics and Computational Genomics, Department of Mathematical Modelling, Statistics and Bioinformatics, Ghent University, Ghent, Belgium
| | | | - Uwe Ohler
- Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
- Department of Biology, Humboldt-Universität zu Berlin, Berlin, Germany
- Department of Computer Science, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Xavier Roucou
- Department of Biochemistry and Functional Genomics, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Alan Saghatelian
- Clayton Foundation Laboratories for Peptide Biology, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Jonathan S Weissman
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA
- Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA, USA
| | | |
Collapse
|
16
|
Tang C, Zhou Y, Sun W, Hu H, Liu Y, Chen L, Ou F, Zeng S, Lin N, Yu L. Oncopeptide MBOP Encoded by LINC01234 Promotes Colorectal Cancer through MAPK Signaling Pathway. Cancers (Basel) 2022; 14:cancers14092338. [PMID: 35565466 PMCID: PMC9100262 DOI: 10.3390/cancers14092338] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 04/15/2022] [Accepted: 04/27/2022] [Indexed: 12/12/2022] Open
Abstract
Colorectal cancer (CRC) ranks third in incidence rate and second in mortality rate of malignancy worldwide, and the diagnosis and therapeutics of it remain to be further studied. With the emergence of noncoding RNAs (ncRNAs) and potential peptides derived from ncRNAs across various biological processes, we here aimed to identify a ncRNA-derived peptide possible for revealing the oncogenesis of CRC. Through combined predictive analysis of the coding potential of a batch of long noncoding RNAs (lncRNAs), the existence of an 85 amino-acid-peptide, named MEK1-binding oncopeptide (MBOP) and encoded from LINC01234 was confirmed. Mass spectrometry and Western blot assays indicated the overexpression of MBOP in CRC tissues and cell lines compared to adjacent noncancerous tissues and the normal colonic epithelial cell line. In vivo and in vitro migration and proliferation assays defined MBOP as an oncogenic peptide. Immunoprecipitation trials showed that MEK1 was the key interacting protein of MBOP, and MBOP promoted the MEK1/pERK/MMP2/MMP9 axis in CRC. Two E3-ligase enzymes MAEA and RMND5A mediated the ubiquitin-protease-system-related degradation of MBOP. This study indicates that MBOP might be a candidate prognostic indicator and a potential target for clinical therapy of CRC.
Collapse
Affiliation(s)
- Chunyuan Tang
- Institute of Drug Metabolism and Pharmaceutical Analysis, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China; (C.T.); (Y.Z.); (W.S.); (H.H.); (Y.L.); (F.O.); (S.Z.)
| | - Ying Zhou
- Institute of Drug Metabolism and Pharmaceutical Analysis, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China; (C.T.); (Y.Z.); (W.S.); (H.H.); (Y.L.); (F.O.); (S.Z.)
| | - Wen Sun
- Institute of Drug Metabolism and Pharmaceutical Analysis, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China; (C.T.); (Y.Z.); (W.S.); (H.H.); (Y.L.); (F.O.); (S.Z.)
| | - Haihong Hu
- Institute of Drug Metabolism and Pharmaceutical Analysis, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China; (C.T.); (Y.Z.); (W.S.); (H.H.); (Y.L.); (F.O.); (S.Z.)
| | - Yuxi Liu
- Institute of Drug Metabolism and Pharmaceutical Analysis, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China; (C.T.); (Y.Z.); (W.S.); (H.H.); (Y.L.); (F.O.); (S.Z.)
| | - Lu Chen
- Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Department of Clinical Pharmacy, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China; (L.C.); (N.L.)
- Westlake Laboratory of Life Sciences and Biomedicine of Zhejiang Province, Westlake University, Hangzhou 310024, China
| | - Fengting Ou
- Institute of Drug Metabolism and Pharmaceutical Analysis, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China; (C.T.); (Y.Z.); (W.S.); (H.H.); (Y.L.); (F.O.); (S.Z.)
| | - Su Zeng
- Institute of Drug Metabolism and Pharmaceutical Analysis, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China; (C.T.); (Y.Z.); (W.S.); (H.H.); (Y.L.); (F.O.); (S.Z.)
| | - Nengming Lin
- Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Department of Clinical Pharmacy, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China; (L.C.); (N.L.)
- Westlake Laboratory of Life Sciences and Biomedicine of Zhejiang Province, Westlake University, Hangzhou 310024, China
| | - Lushan Yu
- Institute of Drug Metabolism and Pharmaceutical Analysis, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China; (C.T.); (Y.Z.); (W.S.); (H.H.); (Y.L.); (F.O.); (S.Z.)
- Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Department of Clinical Pharmacy, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China; (L.C.); (N.L.)
- Correspondence: ; Tel.: +86-571-88208407
| |
Collapse
|
17
|
Abstract
The mechanisms that explain mitochondrial dysfunction in aging and healthspan continue to be studied, but one element has been unexplored: microproteins. Small open reading frames in circular mitochondria DNA can encode multiple microproteins, called mitochondria-derived peptides (MDPs). Currently, eight MDPs have been published: humanin, MOTS-c, and SHLPs 1–6. This Review describes recent advances in microprotein discovery with a focus on MDPs. It discusses what is currently known about MDPs in aging and how this new understanding could add to the way we understand age-related diseases including type 2 diabetes, cancer, and neurodegenerative diseases at the genomic, proteomic, and drug-development levels.
Collapse
|
18
|
Worthan SB, Franklin EA, Pham C, Yap MNF, Cruz-Vera LR. The Identity of the Constriction Region of the Ribosomal Exit Tunnel Is Important to Maintain Gene Expression in Escherichia coli. Microbiol Spectr 2022; 10:e0226121. [PMID: 35311583 PMCID: PMC9045200 DOI: 10.1128/spectrum.02261-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 02/22/2022] [Indexed: 11/23/2022] Open
Abstract
Mutational changes in bacterial ribosomes often affect gene expression and consequently cellular fitness. Understanding how mutant ribosomes disrupt global gene expression is critical to determining key genetic factors that affect bacterial survival. Here, we describe gene expression and phenotypic changes presented in Escherichia coli cells carrying an uL22(K90D) mutant ribosomal protein, which displayed alterations during growth. Ribosome profiling analyses revealed reduced expression of operons involved in catabolism, indole production, and lysine-dependent acid resistance. In general, translation initiation of proximal genes in several of these affected operons was substantially reduced. These reductions in expression were accompanied by increases in the expression of acid-induced membrane proteins and chaperones, the glutamate-decarboxylase regulon, and the autoinducer-2 metabolic regulon. In agreement with these changes, uL22(K90D) mutant cells had higher glutamate decarboxylase activity, survived better in extremely acidic conditions, and generated more biofilm in static cultures compared to their parental strain. Our work demonstrates that a single mutation in a non-conserved residue of a ribosomal protein affects a substantial number of genes to alter pH resistance and the formation of biofilms. IMPORTANCE All newly synthesized proteins must pass through a channel in the ribosome named the exit tunnel before emerging into the cytoplasm, membrane, and other compartments. The structural characteristics of the tunnel could govern protein folding and gene expression in a species-specific manner but how the identity of tunnel elements influences gene expression is less well-understood. Our global transcriptomics and translatome profiling demonstrate that a single substitution in a non-conserved amino acid of the E. coli tunnel protein uL22 has a profound impact on catabolism, cellular signaling, and acid resistance systems. Consequently, cells bearing the uL22 mutant ribosomes had an increased ability to survive acidic conditions and form biofilms. This work reveals a previously unrecognized link between tunnel identity and bacterial stress adaptation involving pH response and biofilm formation.
Collapse
Affiliation(s)
- Sarah B. Worthan
- Department of Biological Sciences, University of Alabama in Huntsville, Huntsville, Alabama, USA
| | - Elizabeth A. Franklin
- Department of Biological Sciences, University of Alabama in Huntsville, Huntsville, Alabama, USA
| | - Chi Pham
- Department of Biological Sciences, University of Alabama in Huntsville, Huntsville, Alabama, USA
| | - Mee-Ngan F. Yap
- Department of Microbiology-Immunology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Luis R. Cruz-Vera
- Department of Biological Sciences, University of Alabama in Huntsville, Huntsville, Alabama, USA
| |
Collapse
|
19
|
Khan YA, Loughran G, Steckelberg AL, Brown K, Kiniry SJ, Stewart H, Baranov PV, Kieft JS, Firth AE, Atkins JF. Evaluating ribosomal frameshifting in CCR5 mRNA decoding. Nature 2022; 604:E16-E23. [PMID: 35444316 PMCID: PMC9248028 DOI: 10.1038/s41586-022-04627-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Accepted: 06/04/2021] [Indexed: 12/21/2022]
Affiliation(s)
- Yousuf A Khan
- Division of Virology, Department of Pathology, University of Cambridge, Cambridge, UK
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, CA, USA
| | - Gary Loughran
- School of Biochemistry and Cell Biology, University College Cork, Cork, Ireland
| | - Anna-Lena Steckelberg
- Department of Biochemistry and Molecular Genetics, Denver School of Medicine, Aurora, CO, USA
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, USA
| | - Katherine Brown
- Division of Virology, Department of Pathology, University of Cambridge, Cambridge, UK
| | - Stephen J Kiniry
- School of Biochemistry and Cell Biology, University College Cork, Cork, Ireland
| | - Hazel Stewart
- Division of Virology, Department of Pathology, University of Cambridge, Cambridge, UK
| | - Pavel V Baranov
- School of Biochemistry and Cell Biology, University College Cork, Cork, Ireland
| | - Jeffrey S Kieft
- Department of Biochemistry and Molecular Genetics, Denver School of Medicine, Aurora, CO, USA.
| | - Andrew E Firth
- Division of Virology, Department of Pathology, University of Cambridge, Cambridge, UK.
| | - John F Atkins
- School of Biochemistry and Cell Biology, University College Cork, Cork, Ireland.
- Department of Human Genetics, University of Utah, Salt Lake City, UT, USA.
| |
Collapse
|
20
|
Ivanov IP, Saba JA, Fan CM, Wang J, Firth AE, Cao C, Green R, Dever TE. Evolutionarily conserved inhibitory uORFs sensitize Hox mRNA translation to start codon selection stringency. Proc Natl Acad Sci U S A 2022; 119:e2117226119. [PMID: 35217614 PMCID: PMC8892498 DOI: 10.1073/pnas.2117226119] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 01/20/2022] [Indexed: 01/15/2023] Open
Abstract
Translation start site selection in eukaryotes is influenced by context nucleotides flanking the AUG codon and by levels of the eukaryotic translation initiation factors eIF1 and eIF5. In a search of mammalian genes, we identified five homeobox (Hox) gene paralogs initiated by AUG codons in conserved suboptimal context as well as 13 Hox genes that contain evolutionarily conserved upstream open reading frames (uORFs) that initiate at AUG codons in poor sequence context. An analysis of published cap analysis of gene expression sequencing (CAGE-seq) data and generated CAGE-seq data for messenger RNAs (mRNAs) from mouse somites revealed that the 5' leaders of Hox mRNAs of interest contain conserved uORFs, are generally much shorter than reported, and lack previously proposed internal ribosome entry site elements. We show that the conserved uORFs inhibit Hox reporter expression and that altering the stringency of start codon selection by overexpressing eIF1 or eIF5 modulates the expression of Hox reporters. We also show that modifying ribosome homeostasis by depleting a large ribosomal subunit protein or treating cells with sublethal concentrations of puromycin leads to lower stringency of start codon selection. Thus, altering global translation can confer gene-specific effects through altered start codon selection stringency.
Collapse
Affiliation(s)
- Ivaylo P Ivanov
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD 20892
| | - James A Saba
- HHMI, Johns Hopkins University School of Medicine, Baltimore, MD 21205
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | - Chen-Ming Fan
- Department of Embryology, Carnegie Institution for Science, Baltimore, MD 21218
| | - Ji Wang
- Division of Virology, Department of Pathology, University of Cambridge, Cambridge CB2 1QP, United Kingdom
| | - Andrew E Firth
- Division of Virology, Department of Pathology, University of Cambridge, Cambridge CB2 1QP, United Kingdom
| | - Chune Cao
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD 20892
| | - Rachel Green
- HHMI, Johns Hopkins University School of Medicine, Baltimore, MD 21205;
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | - Thomas E Dever
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD 20892;
| |
Collapse
|
21
|
Zhong S, Lian Y, Luo W, Luo R, Wu X, Ji J, Ji Y, Ding J, Wang X. Upstream open reading frame with NOTCH2NLC GGC expansion generates polyglycine aggregates and disrupts nucleocytoplasmic transport: implications for polyglycine diseases. Acta Neuropathol 2021; 142:1003-1023. [PMID: 34694469 DOI: 10.1007/s00401-021-02375-3] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 08/30/2021] [Accepted: 09/25/2021] [Indexed: 12/13/2022]
Abstract
Neuronal intranuclear inclusion disease (NIID) is neurodegenerative disease characterized by widespread inclusions. Despite the identification of GGC repeat expansion in 5'UTR of NOTCH2NLC gene in adult-onset NIIDs, its pathogenic mechanism remains unclear. Gain-of-function poly-amino-acid proteins generated by unconventional translation have been revealed in nucleotide repeat expansion disorders, inspiring us to explore the possibility of unconventional translation in NIID. Here we demonstrated that NOTCH2NLC 5'UTR triggers the translation of a polyglycine (polyG)-containing protein, N2NLCpolyG. N2NLCpolyG accumulates in p62-positive inclusions in cultured cells, mouse models, and NIID patient tissues with NOTCH2NLC GGC expansion. Translation of N2NLCpolyG is initiated by an upstream open reading frame (uORF) embedding the GGC repeats. N2NLCpolyG tends to aggregate with the increase of GGC repeat units, and displays phase separation properties. N2NLCpolyG aggregation impairs nuclear lamina and nucleocytoplasmic transport but does not necessarily cause acute death on neuronal cells. Our study suggests a similarity of pathogenic mechanisms between NIID and another GGC-repeat disease, fragile X-associated tremor ataxia syndrome. These findings expand our knowledge of protein gain-of-function in NIID, and further highlight evidence for a novel spectrum of diseases caused by aberrant polyG protein aggregation, namely the polyG diseases.
Collapse
Affiliation(s)
- Shaoping Zhong
- Department of Neurology, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China
| | - Yangye Lian
- Department of Neurology, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China
| | - Wenyi Luo
- Department of Neurology, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China
| | - Rongkui Luo
- Department of Pathology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Xiaoling Wu
- Department of Neurology, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China
| | - Jun Ji
- Department of Nephrology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yuan Ji
- Department of Pathology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jing Ding
- Department of Neurology, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China.
- CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai, China.
| | - Xin Wang
- Department of Neurology, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China.
- Department of The State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China.
| |
Collapse
|
22
|
Nomura Y, Dohmae N. Discovery of a small protein-encoding cis-regulatory overlapping gene of the tumor suppressor gene Scribble in humans. Commun Biol 2021; 4:1098. [PMID: 34535749 PMCID: PMC8448870 DOI: 10.1038/s42003-021-02619-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 08/30/2021] [Indexed: 12/26/2022] Open
Abstract
Intensive gene annotation has revealed many functional and regulatory elements in the human genome. Although eukaryotic protein-coding genes are generally transcribed into monocistronic mRNAs, recent studies have discovered additional short open reading frames (sORFs) in mRNAs. Here, we performed proteogenomic data mining for hidden proteins categorized into sORF-encoded polypeptides (SEPs) in human cancers. We identified a new SEP-encoding overlapping sORF (oORF) on the cell polarity determinant Scribble (SCRIB) that is considered a proto-oncogene with tumor suppressor function in Hippo-YAP/TAZ, MAPK/ERK, and PI3K/Akt/mTOR signaling. Reanalysis of clinical human proteomic data revealed translational dysregulation of both SCRIB and its oORF, oSCRIB, during carcinogenesis. Biochemical analyses suggested that the translatable oSCRIB constitutively limits the capacity of eukaryotic ribosomes to translate the downstream SCRIB. These findings provide a new example of cis-regulatory oORFs that function as a ribosomal roadblock and potentially serve as a fail-safe mechanism to normal cells for non-excessive downstream gene expression, which is hijacked in cancer. Yuhta Nomura and Naoshi Dohmae report the discovery of a small protein-coding gene that overlaps the tumor suppressor gene Scribble. Their data suggest that the overlapping gene, oSCRIB, limits the translation of downstream Scribble and may have important implications in cancer.
Collapse
Affiliation(s)
- Yuhta Nomura
- Biomolecular Characterization Unit, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan.
| | - Naoshi Dohmae
- Biomolecular Characterization Unit, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan.
| |
Collapse
|
23
|
Konina D, Sparber P, Viakhireva I, Filatova A, Skoblov M. Investigation of LINC00493/SMIM26 Gene Suggests Its Dual Functioning at mRNA and Protein Level. Int J Mol Sci 2021; 22:ijms22168477. [PMID: 34445188 PMCID: PMC8395196 DOI: 10.3390/ijms22168477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 08/04/2021] [Accepted: 08/05/2021] [Indexed: 11/16/2022] Open
Abstract
The amount of human long noncoding RNA (lncRNA) genes is comparable to protein-coding; however, only a small number of lncRNAs are functionally annotated. Previously, it was shown that lncRNAs can participate in many key cellular processes, including regulation of gene expression at transcriptional and post-transcriptional levels. The lncRNA genes can contain small open reading frames (sORFs), and recent studies demonstrated that some of the resulting short proteins could play an important biological role. In the present study, we investigate the widely expressed lncRNA LINC00493. We determine the structure of the LINC00493 transcript, its cell localization and influence on cell physiology. Our data demonstrate that LINC00493 has an influence on cell viability in a cell-type-specific manner. Furthermore, it was recently shown that LINC00493 has a sORF that is translated into small protein SMIM26. The results of our knockdown and overexpression experiments suggest that both LINC00493/SMIM26 transcript and protein affect cell viability, but in the opposite manner.
Collapse
Affiliation(s)
- Daria Konina
- Moscow Institute of Physics and Technology, Phystech School of Biological and Medical Physics, 141701 Dolgoprudny, Russia
- Research Centre of Medical Genetics, Laboratory of Functional Genomics, 115478 Moscow, Russia; (P.S.); (I.V.); (M.S.)
- Correspondence: (D.K.); (A.F.)
| | - Peter Sparber
- Research Centre of Medical Genetics, Laboratory of Functional Genomics, 115478 Moscow, Russia; (P.S.); (I.V.); (M.S.)
| | - Iuliia Viakhireva
- Research Centre of Medical Genetics, Laboratory of Functional Genomics, 115478 Moscow, Russia; (P.S.); (I.V.); (M.S.)
| | - Alexandra Filatova
- Research Centre of Medical Genetics, Laboratory of Functional Genomics, 115478 Moscow, Russia; (P.S.); (I.V.); (M.S.)
- Correspondence: (D.K.); (A.F.)
| | - Mikhail Skoblov
- Research Centre of Medical Genetics, Laboratory of Functional Genomics, 115478 Moscow, Russia; (P.S.); (I.V.); (M.S.)
| |
Collapse
|
24
|
Filatova AY, Vasilyeva TA, Marakhonov AV, Sukhanova NV, Voskresenskaya AA, Zinchenko RA, Skoblov MY. Upstream ORF frameshift variants in the PAX6 5'UTR cause congenital aniridia. Hum Mutat 2021; 42:1053-1065. [PMID: 34174135 DOI: 10.1002/humu.24248] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 05/24/2021] [Accepted: 06/01/2021] [Indexed: 11/12/2022]
Abstract
Congenital aniridia (AN) is a severe autosomal dominant panocular disorder associated with pathogenic variants in the PAX6 gene. Previously, we performed a molecular genetic study of a large cohort of Russian patients with AN and revealed four noncoding nucleotide variants in the PAX6 5'UTR. 14 additional PAX6-5'UTR variants were also reported in the literature, but the mechanism of their pathogenicity remained unclear. In the present study, we experimentally analyze five patient-derived PAX6 5'UTR-variants: four variants that we identified in Russian patients (c.-128-2delA, c.-125dupG, c.-122dupG, c.-118_-117del) and one previously reported (c.-52+5G>C). We show that the variants lead to a decrease in the protein translation efficiency, while mRNA expression level is not significantly reduced. Two of these variants also affect splicing. Furthermore, we predict and experimentally validate the presence of an evolutionarily conserved small uORF in the PAX6 5'UTR. All studied variants lead to the frameshift of the uORF, resulting in its extension. This extended out-of-frame uORF overlaps with the downstream CDS and thereby reduces its translation efficiency. We conclude that the uORF frameshift may be the main mechanism of pathogenicity for at least 15 out of 18 known PAX6 5'UTR variants. Moreover, we predict additional uORFs in the PAX6 5'UTR.
Collapse
Affiliation(s)
| | | | | | - Natella V Sukhanova
- Central Clinical Hospital of the Russian Academy of Sciences, Moscow, Russian Federation
| | - Anna A Voskresenskaya
- Cheboksary Branch of the S. Fyodorov Eye Microsurgery Federal State Institution, Cheboksary, Russian Federation
| | - Rena A Zinchenko
- Research Centre for Medical Genetics, Moscow, Russian Federation.,N.A. Semashko National Research Institute of Public Health, Moscow, Russian Federation
| | | |
Collapse
|
25
|
Zhang H, Wang Y, Wu X, Tang X, Wu C, Lu J. Determinants of genome-wide distribution and evolution of uORFs in eukaryotes. Nat Commun 2021; 12:1076. [PMID: 33597535 PMCID: PMC7889888 DOI: 10.1038/s41467-021-21394-y] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 01/20/2021] [Indexed: 01/02/2023] Open
Abstract
Upstream open reading frames (uORFs) play widespread regulatory functions in modulating mRNA translation in eukaryotes, but the principles underlying the genomic distribution and evolution of uORFs remain poorly understood. Here, we analyze ~17 million putative canonical uORFs in 478 eukaryotic species that span most of the extant taxa of eukaryotes. We demonstrate how positive and purifying selection, coupled with differences in effective population size (Ne), has shaped the contents of uORFs in eukaryotes. Besides, gene expression level is important in influencing uORF occurrences across genes in a species. Our analyses suggest that most uORFs might play regulatory roles rather than encode functional peptides. We also show that the Kozak sequence context of uORFs has evolved across eukaryotic clades, and that noncanonical uORFs tend to have weaker suppressive effects than canonical uORFs in translation regulation. This study provides insights into the driving forces underlying uORF evolution in eukaryotes.
Collapse
Affiliation(s)
- Hong Zhang
- State Key Laboratory of Protein and Plant Gene Research, Center for Bioinformatics, School of Life Sciences, Peking University, Beijing, China
| | - Yirong Wang
- State Key Laboratory of Protein and Plant Gene Research, Center for Bioinformatics, School of Life Sciences, Peking University, Beijing, China
- College of Biology, Hunan University, Changsha, China
| | - Xinkai Wu
- State Key Laboratory of Protein and Plant Gene Research, Center for Bioinformatics, School of Life Sciences, Peking University, Beijing, China
| | - Xiaolu Tang
- State Key Laboratory of Protein and Plant Gene Research, Center for Bioinformatics, School of Life Sciences, Peking University, Beijing, China
| | - Changcheng Wu
- State Key Laboratory of Protein and Plant Gene Research, Center for Bioinformatics, School of Life Sciences, Peking University, Beijing, China
| | - Jian Lu
- State Key Laboratory of Protein and Plant Gene Research, Center for Bioinformatics, School of Life Sciences, Peking University, Beijing, China.
| |
Collapse
|
26
|
Brunet MA, Jacques J, Nassari S, Tyzack GE, McGoldrick P, Zinman L, Jean S, Robertson J, Patani R, Roucou X. The FUS gene is dual-coding with both proteins contributing to FUS-mediated toxicity. EMBO Rep 2021; 22:e50640. [PMID: 33226175 PMCID: PMC7788448 DOI: 10.15252/embr.202050640] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 10/08/2020] [Accepted: 10/13/2020] [Indexed: 12/12/2022] Open
Abstract
Novel functional coding sequences (altORFs) are camouflaged within annotated ones (CDS) in a different reading frame. We show here that an altORF is nested in the FUS CDS, encoding a conserved 170 amino acid protein, altFUS. AltFUS is endogenously expressed in human tissues, notably in the motor cortex and motor neurons. Over-expression of wild-type FUS and/or amyotrophic lateral sclerosis-linked FUS mutants is known to trigger toxic mechanisms in different models. These include inhibition of autophagy, loss of mitochondrial potential and accumulation of cytoplasmic aggregates. We find that altFUS, not FUS, is responsible for the inhibition of autophagy, and pivotal in mitochondrial potential loss and accumulation of cytoplasmic aggregates. Suppression of altFUS expression in a Drosophila model of FUS-related toxicity protects against neurodegeneration. Some mutations found in ALS patients are overlooked because of their synonymous effect on the FUS protein. Yet, we show they exert a deleterious effect causing missense mutations in the overlapping altFUS protein. These findings demonstrate that FUS is a bicistronic gene and suggests that both proteins, FUS and altFUS, cooperate in toxic mechanisms.
Collapse
Affiliation(s)
- Marie A Brunet
- Department of Biochemistry and Functional GenomicsUniversité de SherbrookeSherbrookeQCCanada
- PROTEOQuebec Network for Research on Protein Function, Structure, and EngineeringQuebecQCCanada
| | - Jean‐Francois Jacques
- Department of Biochemistry and Functional GenomicsUniversité de SherbrookeSherbrookeQCCanada
- PROTEOQuebec Network for Research on Protein Function, Structure, and EngineeringQuebecQCCanada
| | - Sonya Nassari
- Immunology and Cell Biology DepartmentUniversité de SherbrookeSherbrookeQCCanada
| | - Giulia E Tyzack
- The Francis Crick InstituteLondonUK
- Department of Neuromuscular DiseasesUCL Queen Square Institute of NeurologyLondonUK
| | - Philip McGoldrick
- Tanz Centre for Research in Neurodegenerative DiseasesUniversity of TorontoTorontoONCanada
| | - Lorne Zinman
- Division of NeurologyDepartment of MedicineSunnybrook Health Sciences CentreUniversity of TorontoTorontoONCanada
| | - Steve Jean
- Immunology and Cell Biology DepartmentUniversité de SherbrookeSherbrookeQCCanada
| | - Janice Robertson
- Tanz Centre for Research in Neurodegenerative DiseasesUniversity of TorontoTorontoONCanada
| | - Rickie Patani
- The Francis Crick InstituteLondonUK
- Department of Neuromuscular DiseasesUCL Queen Square Institute of NeurologyLondonUK
| | - Xavier Roucou
- Department of Biochemistry and Functional GenomicsUniversité de SherbrookeSherbrookeQCCanada
- PROTEOQuebec Network for Research on Protein Function, Structure, and EngineeringQuebecQCCanada
| |
Collapse
|
27
|
Translation initiation downstream from annotated start codons in human mRNAs coevolves with the Kozak context. Genome Res 2020; 30:974-984. [PMID: 32669370 PMCID: PMC7397870 DOI: 10.1101/gr.257352.119] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 06/25/2020] [Indexed: 12/13/2022]
Abstract
Eukaryotic translation initiation involves preinitiation ribosomal complex 5′-to-3′ directional probing of mRNA for codons suitable for starting protein synthesis. The recognition of codons as starts depends on the codon identity and on its immediate nucleotide context known as Kozak context. When the context is weak (i.e., nonoptimal), leaky scanning takes place during which a fraction of ribosomes continues the mRNA probing. We explored the relationship between the context of AUG codons annotated as starts of protein-coding sequences and the next AUG codon occurrence. We found that AUG codons downstream from weak starts occur in the same frame more frequently than downstream from strong starts. We suggest that evolutionary selection on in-frame AUGs downstream from weak start codons is driven by the advantage of the reduction of wasteful out-of-frame product synthesis and also by the advantage of producing multiple proteoforms from certain mRNAs. We confirmed translation initiation downstream from weak start codons using ribosome profiling data. We also tested translation of alternative start codons in 10 specific human genes using reporter constructs. In all tested cases, initiation at downstream start codons was more productive than at the annotated ones. In most cases, optimization of Kozak context did not completely abolish downstream initiation, and in the specific example of CMPK1 mRNA, the optimized start remained unproductive. Collectively, our work reveals previously uncharacterized forces shaping the evolution of protein-coding genes and points to the plurality of translation initiation and the existence of sequence features influencing start codon selection, other than Kozak context.
Collapse
|
28
|
Ng PC, Wong ED, MacPherson KA, Aleksander S, Argasinska J, Dunn B, Nash RS, Skrzypek MS, Gondwe F, Jha S, Karra K, Weng S, Miyasato S, Simison M, Engel SR, Cherry JM. Transcriptome visualization and data availability at the Saccharomyces Genome Database. Nucleic Acids Res 2020; 48:D743-D748. [PMID: 31612944 PMCID: PMC7061941 DOI: 10.1093/nar/gkz892] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Accepted: 10/07/2019] [Indexed: 12/13/2022] Open
Abstract
The Saccharomyces Genome Database (SGD; www.yeastgenome.org) maintains the official annotation of all genes in the Saccharomyces cerevisiae reference genome and aims to elucidate the function of these genes and their products by integrating manually curated experimental data. Technological advances have allowed researchers to profile RNA expression and identify transcripts at high resolution. These data can be configured in web-based genome browser applications for display to the general public. Accordingly, SGD has incorporated published transcript isoform data in our instance of JBrowse, a genome visualization platform. This resource will help clarify S. cerevisiae biological processes by furthering studies of transcriptional regulation, untranslated regions, genome engineering, and expression quantification in S. cerevisiae.
Collapse
Affiliation(s)
- Patrick C Ng
- Department of Genetics, Stanford University, Palo Alto, CA 94304-5477, USA
| | - Edith D Wong
- Department of Genetics, Stanford University, Palo Alto, CA 94304-5477, USA
| | | | - Suzi Aleksander
- Department of Genetics, Stanford University, Palo Alto, CA 94304-5477, USA
| | - Joanna Argasinska
- Department of Genetics, Stanford University, Palo Alto, CA 94304-5477, USA
| | - Barbara Dunn
- Department of Genetics, Stanford University, Palo Alto, CA 94304-5477, USA
| | - Robert S Nash
- Department of Genetics, Stanford University, Palo Alto, CA 94304-5477, USA
| | - Marek S Skrzypek
- Department of Genetics, Stanford University, Palo Alto, CA 94304-5477, USA
| | - Felix Gondwe
- Department of Genetics, Stanford University, Palo Alto, CA 94304-5477, USA
| | - Sagar Jha
- Department of Genetics, Stanford University, Palo Alto, CA 94304-5477, USA
| | - Kalpana Karra
- Department of Genetics, Stanford University, Palo Alto, CA 94304-5477, USA
| | - Shuai Weng
- Department of Genetics, Stanford University, Palo Alto, CA 94304-5477, USA
| | - Stuart Miyasato
- Department of Genetics, Stanford University, Palo Alto, CA 94304-5477, USA
| | - Matt Simison
- Department of Genetics, Stanford University, Palo Alto, CA 94304-5477, USA
| | - Stacia R Engel
- Department of Genetics, Stanford University, Palo Alto, CA 94304-5477, USA
| | - J Michael Cherry
- Department of Genetics, Stanford University, Palo Alto, CA 94304-5477, USA
| |
Collapse
|
29
|
Complex Analysis of Retroposed Genes' Contribution to Human Genome, Proteome and Transcriptome. Genes (Basel) 2020; 11:genes11050542. [PMID: 32408516 PMCID: PMC7290577 DOI: 10.3390/genes11050542] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 05/06/2020] [Accepted: 05/08/2020] [Indexed: 02/07/2023] Open
Abstract
Gene duplication is a major driver of organismal evolution. One of the main mechanisms of gene duplications is retroposition, a process in which mRNA is first transcribed into DNA and then reintegrated into the genome. Most gene retrocopies are depleted of the regulatory regions. Nevertheless, examples of functional retrogenes are rapidly increasing. These functions come from the gain of new spatio-temporal expression patterns, imposed by the content of the genomic sequence surrounding inserted cDNA and/or by selectively advantageous mutations, which may lead to the switch from protein coding to regulatory RNA. As recent studies have shown, these genes may lead to new protein domain formation through fusion with other genes, new regulatory RNAs or other regulatory elements. We utilized existing data from high-throughput technologies to create a complex description of retrogenes functionality. Our analysis led to the identification of human retroposed genes that substantially contributed to transcriptome and proteome. These retrocopies demonstrated the potential to encode proteins or short peptides, act as cis- and trans- Natural Antisense Transcripts (NATs), regulate their progenitors’ expression by competing for the same microRNAs, and provide a sequence to lncRNA and novel exons to existing protein-coding genes. Our study also revealed that retrocopies, similarly to retrotransposons, may act as recombination hot spots. To our best knowledge this is the first complex analysis of these functions of retrocopies.
Collapse
|
30
|
Wang H, Yang L, Wang Y, Chen L, Li H, Xie Z. RPFdb v2.0: an updated database for genome-wide information of translated mRNA generated from ribosome profiling. Nucleic Acids Res 2020; 47:D230-D234. [PMID: 30335166 PMCID: PMC6324049 DOI: 10.1093/nar/gky978] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2018] [Accepted: 10/06/2018] [Indexed: 12/17/2022] Open
Abstract
RPFdb (http://www.rpfdb.org or http://sysbio.sysu.edu.cn/rpfdb) is a public database for hosting, analyzing and visualizing ribosome profiling (ribo-seq) data. Since its initial release in 2015, the amount of new ribo-seq data has been considerably enlarged with the increasing popularity of ribo-seq technique. Here, we describe an updated version, RPFdb v2.0, which brings significant data expansion, feature improvements, and functionality optimization: (i) RPFdb v2.0 currently hosts 2884 ribo-seq datasets from 293 studies, covering 29 different species, in comparison with 777 datasets from 82 studies and 8 species in the previous version; (ii) A refined analysis pipeline with multi-step quality controls has been applied to improve the pre-processing and alignment of ribo-seq data; (iii) New functional modules have been added to provide actively translated open reading frames (ORFs) information for each ribo-seq data; (iv) More features have been made available to increase database usability. With these additions and enhancements, RPFdb v2.0 will represent a more valuable and comprehensive database for the gene regulation community.
Collapse
Affiliation(s)
- Hongwei Wang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China
| | - Ludong Yang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China
| | - Yan Wang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China
| | - Leshi Chen
- Centre for Advanced Computational Solutions (C-fACS), Lincoln University, New Zealand
| | - Huihui Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China
| | - Zhi Xie
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China
| |
Collapse
|
31
|
Kiniry SJ, O'Connor PBF, Michel AM, Baranov PV. Trips-Viz: a transcriptome browser for exploring Ribo-Seq data. Nucleic Acids Res 2020; 47:D847-D852. [PMID: 30239879 PMCID: PMC6324076 DOI: 10.1093/nar/gky842] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Accepted: 09/12/2018] [Indexed: 01/05/2023] Open
Abstract
Ribosome profiling (Ribo-Seq) is a technique that allows for the isolation and sequencing of mRNA fragments protected from nuclease digestion by actively translating ribosomes. Mapping these ribosome footprints to a genome or transcriptome generates quantitative information on translated regions. To provide access to publicly available ribosome profiling data in the context of transcriptomes we developed Trips-Viz (transcriptome-wide information on protein synthesis-visualized). Trips-Viz provides a large range of graphical tools for exploring global properties of translatomes and of individual transcripts. It enables analysis of aligned footprints to evaluate datasets quality, differential gene expression detection, visual identification of upstream ORFs and alternative proteoforms. Trips-Viz is available at https://trips.ucc.ie.
Collapse
Affiliation(s)
- Stephen J Kiniry
- School of Biochemistry and Cell Biology, University College Cork, Cork, Ireland
| | | | - Audrey M Michel
- School of Biochemistry and Cell Biology, University College Cork, Cork, Ireland
| | - Pavel V Baranov
- School of Biochemistry and Cell Biology, University College Cork, Cork, Ireland
| |
Collapse
|
32
|
Kiniry SJ, Michel AM, Baranov PV. Computational methods for ribosome profiling data analysis. WILEY INTERDISCIPLINARY REVIEWS. RNA 2020; 11:e1577. [PMID: 31760685 DOI: 10.1002/wrna.1577] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 10/12/2019] [Accepted: 10/16/2019] [Indexed: 12/15/2022]
Abstract
Since the introduction of the ribosome profiling technique in 2009 its popularity has greatly increased. It is widely used for the comprehensive assessment of gene expression and for studying the mechanisms of regulation at the translational level. As the number of ribosome profiling datasets being produced continues to grow, so too does the need for reliable software that can provide answers to the biological questions it can address. This review describes the computational methods and tools that have been developed to analyze ribosome profiling data at the different stages of the process. It starts with initial routine processing of raw data and follows with more specific tasks such as the identification of translated open reading frames, differential gene expression analysis, or evaluation of local or global codon decoding rates. The review pinpoints challenges associated with each step and explains the ways in which they are currently addressed. In addition it provides a comprehensive, albeit incomplete, list of publicly available software applicable to each step, which may be a beneficial starting point to those unexposed to ribosome profiling analysis. The outline of current challenges in ribosome profiling data analysis may inspire computational biologists to search for novel, potentially superior, solutions that will improve and expand the bioinformatician's toolbox for ribosome profiling data analysis. This article is characterized under: Translation > Ribosome Structure/Function RNA Evolution and Genomics > Computational Analyses of RNA Translation > Translation Mechanisms Translation > Translation Regulation.
Collapse
Affiliation(s)
- Stephen J Kiniry
- School of Biochemistry and Cell Biology, University College Cork, Cork, Ireland
| | - Audrey M Michel
- School of Biochemistry and Cell Biology, University College Cork, Cork, Ireland
| | - Pavel V Baranov
- School of Biochemistry and Cell Biology, University College Cork, Cork, Ireland
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, RAS, Moscow, Russia
| |
Collapse
|
33
|
Legrand C, Tuorto F. RiboVIEW: a computational framework for visualization, quality control and statistical analysis of ribosome profiling data. Nucleic Acids Res 2020; 48:e7. [PMID: 31777932 PMCID: PMC6954398 DOI: 10.1093/nar/gkz1074] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 10/15/2019] [Accepted: 11/04/2019] [Indexed: 12/18/2022] Open
Abstract
Recently, newly developed ribosome profiling methods based on high-throughput sequencing of ribosome-protected mRNA footprints allow to study genome-wide translational changes in detail. However, computational analysis of the sequencing data still represents a bottleneck for many laboratories. Further, specific pipelines for quality control and statistical analysis of ribosome profiling data, providing high levels of both accuracy and confidence, are currently lacking. In this study, we describe automated bioinformatic and statistical diagnoses to perform robust quality control of ribosome profiling data (RiboQC), to efficiently visualize ribosome positions and to estimate ribosome speed (RiboMine) in an unbiased way. We present an R pipeline to setup and undertake the analyses that offers the user an HTML page to scan own data regarding the following aspects: periodicity, ligation and digestion of footprints; reproducibility and batch effects of replicates; drug-related artifacts; unbiased codon enrichment including variability between mRNAs, for A, P and E sites; mining of some causal or confounding factors. We expect our pipeline to allow an optimal use of the wealth of information provided by ribosome profiling experiments.
Collapse
Affiliation(s)
- Carine Legrand
- Division of Epigenetics, DKFZ-ZMBH Alliance, German Cancer Research Center, Im Neuenheimer Feld 580, 69120 Heidelberg, Germany.,Independent researcher, Kreuzstr. 5, 68259 Mannheim, Germany
| | - Francesca Tuorto
- Division of Epigenetics, DKFZ-ZMBH Alliance, German Cancer Research Center, Im Neuenheimer Feld 580, 69120 Heidelberg, Germany
| |
Collapse
|
34
|
McCartney AM, Hyland EM, Cormican P, Moran RJ, Webb AE, Lee KD, Hernandez-Rodriguez J, Prado-Martinez J, Creevey CJ, Aspden JL, McInerney JO, Marques-Bonet T, O'Connell MJ. Gene Fusions Derived by Transcriptional Readthrough are Driven by Segmental Duplication in Human. Genome Biol Evol 2020; 11:2678-2690. [PMID: 31400206 PMCID: PMC6764479 DOI: 10.1093/gbe/evz163] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/17/2019] [Indexed: 12/14/2022] Open
Abstract
Gene fusion occurs when two or more individual genes with independent open reading frames becoming juxtaposed under the same open reading frame creating a new fused gene. A small number of gene fusions described in detail have been associated with novel functions, for example, the hominid-specific PIPSL gene, TNFSF12, and the TWE-PRIL gene family. We use Sequence Similarity Networks and species level comparisons of great ape genomes to identify 45 new genes that have emerged by transcriptional readthrough, that is, transcription-derived gene fusion. For 35 of these putative gene fusions, we have been able to assess available RNAseq data to determine whether there are reads that map to each breakpoint. A total of 29 of the putative gene fusions had annotated transcripts (9/29 of which are human-specific). We carried out RT-qPCR in a range of human tissues (placenta, lung, liver, brain, and testes) and found that 23 of the putative gene fusion events were expressed in at least one tissue. Examining the available ribosome foot-printing data, we find evidence for translation of three of the fused genes in human. Finally, we find enrichment for transcription-derived gene fusions in regions of known segmental duplication in human. Together, our results implicate chromosomal structural variation brought about by segmental duplication with the emergence of novel transcripts and translated protein products.
Collapse
Affiliation(s)
- Ann M McCartney
- Bioinformatics and Molecular Evolution Group, School of Biotechnology, Dublin City University, Ireland.,Computational and Molecular Evolutionary Biology Group, School of Biology, Faculty of Biological Sciences, The University of Leeds, United Kingdom
| | - Edel M Hyland
- Bioinformatics and Molecular Evolution Group, School of Biotechnology, Dublin City University, Ireland.,Institute for Global Food Security, Queens University Belfast, United Kingdom
| | - Paul Cormican
- Teagasc Animal and Bioscience Research Department, Animal & Grassland Research and Innovation Centre, Teagasc, Grange, Dunsany, County Meath, Ireland
| | - Raymond J Moran
- Bioinformatics and Molecular Evolution Group, School of Biotechnology, Dublin City University, Ireland.,Computational and Molecular Evolutionary Biology Group, School of Biology, Faculty of Biological Sciences, The University of Leeds, United Kingdom
| | - Andrew E Webb
- Bioinformatics and Molecular Evolution Group, School of Biotechnology, Dublin City University, Ireland
| | - Kate D Lee
- Bioinformatics and Molecular Evolution Group, School of Biotechnology, Dublin City University, Ireland.,School of Biological Sciences, University of Auckland, New Zealand.,School of Fundamental Sciences, Massey University, New Zealand
| | | | - Javier Prado-Martinez
- Institute of Evolutionary Biology (UPF-CSIC), PRBB, Dr. Aiguader 88, 08003 Barcelona, Spain.,Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, United Kingdom
| | - Christopher J Creevey
- Institute for Global Food Security, Queens University Belfast, United Kingdom.,Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, United Kingdom
| | - Julie L Aspden
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, The University of Leeds, United Kingdom
| | - James O McInerney
- Division of Evolution and Genomic Sciences, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, M13 9PL, United Kingdom.,School of Life Sciences, Faculty of Medicine and Health Sciences, The University of Nottingham, NG7 2RD, United Kingdom
| | - Tomas Marques-Bonet
- Institute of Evolutionary Biology (UPF-CSIC), PRBB, Dr. Aiguader 88, 08003 Barcelona, Spain.,Catalan Institution of Research and Advanced Studies (ICREA), Passeig de Lluís Companys, 23, 08010, Barcelona, Spain.,NAG-CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Baldiri i Reixac 4, 08028 Barcelona, Spain.,Institut Català de Paleontologia Miquel Crusafont, Universitat Autònoma de Barcelona, Edifici ICTA-ICP, c/ Columnes s/n, 08193 Cerdanyola del Vallés, Barcelona, Spain
| | - Mary J O'Connell
- Bioinformatics and Molecular Evolution Group, School of Biotechnology, Dublin City University, Ireland.,Computational and Molecular Evolutionary Biology Group, School of Biology, Faculty of Biological Sciences, The University of Leeds, United Kingdom.,School of Life Sciences, Faculty of Medicine and Health Sciences, The University of Nottingham, NG7 2RD, United Kingdom
| |
Collapse
|
35
|
Khan YA, Jungreis I, Wright JC, Mudge JM, Choudhary JS, Firth AE, Kellis M. Evidence for a novel overlapping coding sequence in POLG initiated at a CUG start codon. BMC Genet 2020; 21:25. [PMID: 32138667 PMCID: PMC7059407 DOI: 10.1186/s12863-020-0828-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Accepted: 02/19/2020] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND POLG, located on nuclear chromosome 15, encodes the DNA polymerase γ(Pol γ). Pol γ is responsible for the replication and repair of mitochondrial DNA (mtDNA). Pol γ is the only DNA polymerase found in mitochondria for most animal cells. Mutations in POLG are the most common single-gene cause of diseases of mitochondria and have been mapped over the coding region of the POLG ORF. RESULTS Using PhyloCSF to survey alternative reading frames, we found a conserved coding signature in an alternative frame in exons 2 and 3 of POLG, herein referred to as ORF-Y that arose de novo in placental mammals. Using the synplot2 program, synonymous site conservation was found among mammals in the region of the POLG ORF that is overlapped by ORF-Y. Ribosome profiling data revealed that ORF-Y is translated and that initiation likely occurs at a CUG codon. Inspection of an alignment of mammalian sequences containing ORF-Y revealed that the CUG codon has a strong initiation context and that a well-conserved predicted RNA stem-loop begins 14 nucleotides downstream. Such features are associated with enhanced initiation at near-cognate non-AUG codons. Reanalysis of the Kim et al. (2014) draft human proteome dataset yielded two unique peptides that map unambiguously to ORF-Y. An additional conserved uORF, herein referred to as ORF-Z, was also found in exon 2 of POLG. Lastly, we surveyed Clinvar variants that are synonymous with respect to the POLG ORF and found that most of these variants cause amino acid changes in ORF-Y or ORF-Z. CONCLUSIONS We provide evidence for a novel coding sequence, ORF-Y, that overlaps the POLG ORF. Ribosome profiling and mass spectrometry data show that ORF-Y is expressed. PhyloCSF and synplot2 analysis show that ORF-Y is subject to strong purifying selection. An abundance of disease-correlated mutations that map to exons 2 and 3 of POLG but also affect ORF-Y provides potential clinical significance to this finding.
Collapse
Affiliation(s)
- Yousuf A Khan
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA, 94305, USA.
- Division of Virology, Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QP, UK.
| | - Irwin Jungreis
- Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.
- Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA.
| | - James C Wright
- Functional Proteomics, Division of Cancer Biology, Institute of Cancer Research, 123 Old Brompton Road, London, SW7 3RP, UK
| | - Jonathan M Mudge
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SD, UK
| | | | - Andrew E Firth
- Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
| | - Manolis Kellis
- Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
| |
Collapse
|
36
|
Verbruggen S, Ndah E, Van Criekinge W, Gessulat S, Kuster B, Wilhelm M, Van Damme P, Menschaert G. PROTEOFORMER 2.0: Further Developments in the Ribosome Profiling-assisted Proteogenomic Hunt for New Proteoforms. Mol Cell Proteomics 2019; 18:S126-S140. [PMID: 31040227 PMCID: PMC6692777 DOI: 10.1074/mcp.ra118.001218] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 04/30/2019] [Indexed: 12/20/2022] Open
Abstract
PROTEOFORMER is a pipeline that enables the automated processing of data derived from ribosome profiling (RIBO-seq, i.e. the sequencing of ribosome-protected mRNA fragments). As such, genome-wide ribosome occupancies lead to the delineation of data-specific translation product candidates and these can improve the mass spectrometry-based identification. Since its first publication, different upgrades, new features and extensions have been added to the PROTEOFORMER pipeline. Some of the most important upgrades include P-site offset calculation during mapping, comprehensive data pre-exploration, the introduction of two alternative proteoform calling strategies and extended pipeline output features. These novelties are illustrated by analyzing ribosome profiling data of human HCT116 and Jurkat data. The different proteoform calling strategies are used alongside one another and in the end combined together with reference sequences from UniProt. Matching mass spectrometry data are searched against this extended search space with MaxQuant. Overall, besides annotated proteoforms, this pipeline leads to the identification and validation of different categories of new proteoforms, including translation products of up- and downstream open reading frames, 5' and 3' extended and truncated proteoforms, single amino acid variants, splice variants and translation products of so-called noncoding regions. Further, proof-of-concept is reported for the improvement of spectrum matching by including Prosit, a deep neural network strategy that adds extra fragmentation spectrum intensity features to the analysis. In the light of ribosome profiling-driven proteogenomics, it is shown that this allows validating the spectrum matches of newly identified proteoforms with elevated stringency. These updates and novel conclusions provide new insights and lessons for the ribosome profiling-based proteogenomic research field. More practical information on the pipeline, raw code, the user manual (README) and explanations on the different modes of availability can be found at the GitHub repository of PROTEOFORMER: https://github.com/Biobix/proteoformer.
Collapse
Affiliation(s)
- Steven Verbruggen
- BioBix, Lab of Bioinformatics and Computational Genomics, Department of Mathematical Modeling, Statistics and Bioinformatics, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium.
| | - Elvis Ndah
- BioBix, Lab of Bioinformatics and Computational Genomics, Department of Mathematical Modeling, Statistics and Bioinformatics, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium; VIB-UGent Center for Medical Biotechnology, Ghent, Belgium
| | - Wim Van Criekinge
- BioBix, Lab of Bioinformatics and Computational Genomics, Department of Mathematical Modeling, Statistics and Bioinformatics, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Siegfried Gessulat
- Chair of Proteomics and Bioanalytics, Technical University of Munich, Munich, Germany; SAP SE, Potsdam, Germany
| | - Bernhard Kuster
- Chair of Proteomics and Bioanalytics, Technical University of Munich, Munich, Germany
| | - Mathias Wilhelm
- Chair of Proteomics and Bioanalytics, Technical University of Munich, Munich, Germany
| | - Petra Van Damme
- VIB-UGent Center for Medical Biotechnology, Ghent, Belgium; Department of Biochemistry and Microbiology, Faculty of Sciences, Ghent University, Ghent, Belgium
| | - Gerben Menschaert
- BioBix, Lab of Bioinformatics and Computational Genomics, Department of Mathematical Modeling, Statistics and Bioinformatics, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium.
| |
Collapse
|
37
|
Egorov AA, Sakharova EA, Anisimova AS, Dmitriev SE, Gladyshev VN, Kulakovskiy IV. svist4get: a simple visualization tool for genomic tracks from sequencing experiments. BMC Bioinformatics 2019; 20:113. [PMID: 30841857 PMCID: PMC6404320 DOI: 10.1186/s12859-019-2706-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Accepted: 02/27/2019] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND High-throughput sequencing often provides a foundation for experimental analyses in the life sciences. For many such methods, an intermediate layer of bioinformatics data analysis is the genomic signal track constructed by short read mapping to a particular genome assembly. There are many software tools to visualize genomic tracks in a web browser or with a stand-alone graphical user interface. However, there are only few command-line applications suitable for automated usage or production of publication-ready visualizations. RESULTS Here we present svist4get, a command-line tool for customizable generation of publication-quality figures based on data from genomic signal tracks. Similarly to generic genome browser software, svist4get visualizes signal tracks at a given genomic location and is able to aggregate data from several tracks on a single plot along with the transcriptome annotation. The resulting plots can be saved as the vector or high-resolution bitmap images. We demonstrate practical use cases of svist4get for Ribo-Seq and RNA-Seq data. CONCLUSIONS svist4get is implemented in Python 3 and runs on Linux. The command-line interface of svist4get allows for easy integration into bioinformatics pipelines in a console environment. Extra customization is possible through configuration files and Python API. For convenience, svist4get is provided as pypi package. The source code is available at https://bitbucket.org/artegorov/svist4get/.
Collapse
Affiliation(s)
- Artyom A Egorov
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Leninskiye gory 1, Moscow, 119234, Russia. .,Department of Medical Physics, Faculty of Physics, Lomonosov Moscow State University, Leninskiye gory 1-2, Moscow, 119991, Russia.
| | - Ekaterina A Sakharova
- Vavilov Institute of General Genetics, Russian Academy of Sciences, Gubkina 3, Moscow, 119991, Russia
| | - Aleksandra S Anisimova
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Leninskiye gory 1, Moscow, 119234, Russia.,Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Leninskiye gory 1-73, Moscow, 119234, Russia
| | - Sergey E Dmitriev
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Leninskiye gory 1, Moscow, 119234, Russia.,Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Leninskiye gory 1-73, Moscow, 119234, Russia.,Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilova 32, Moscow, 119991, Russia
| | - Vadim N Gladyshev
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Leninskiye gory 1, Moscow, 119234, Russia.,Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, 02115, USA
| | - Ivan V Kulakovskiy
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Leninskiye gory 1, Moscow, 119234, Russia. .,Vavilov Institute of General Genetics, Russian Academy of Sciences, Gubkina 3, Moscow, 119991, Russia. .,Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilova 32, Moscow, 119991, Russia. .,Institute of Mathematical Problems of Biology RAS - the Branch of Keldysh Institute of Applied Mathematics of Russian Academy of Sciences, Vitkevicha 1, Pushchino, 142290, Moscow Region, Russia.
| |
Collapse
|
38
|
Magnesium-sensitive upstream ORF controls PRL phosphatase expression to mediate energy metabolism. Proc Natl Acad Sci U S A 2019; 116:2925-2934. [PMID: 30718434 DOI: 10.1073/pnas.1815361116] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Phosphatases of regenerating liver (PRL-1, PRL-2, and PRL-3, also known as PTP4A1, PTP4A2, and PTP4A3) control magnesium homeostasis through an association with the CNNM magnesium transport regulators. Although high PRL levels have been linked to cancer progression, regulation of their expression is poorly understood. Here we show that modulating intracellular magnesium levels correlates with a rapid change of PRL expression by a mechanism involving its 5'UTR mRNA region. Mutations or CRISPR-Cas9 targeting of the conserved upstream ORF present in the mRNA leader derepress PRL protein synthesis and attenuate the translational response to magnesium levels. Mechanistically, magnesium depletion reduces intracellular ATP but up-regulates PRL protein expression via activation of the AMPK/mTORC2 pathway, which controls cellular energy status. Hence, altered PRL-2 expression leads to metabolic reprogramming of the cells. These findings uncover a magnesium-sensitive mechanism controlling PRL expression, which plays a role in cellular bioenergetics.
Collapse
|
39
|
Zhao J, Qin B, Nikolay R, Spahn CMT, Zhang G. Translatomics: The Global View of Translation. Int J Mol Sci 2019; 20:ijms20010212. [PMID: 30626072 PMCID: PMC6337585 DOI: 10.3390/ijms20010212] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 12/19/2018] [Accepted: 01/02/2019] [Indexed: 01/01/2023] Open
Abstract
In all kingdoms of life, proteins are synthesized by ribosomes in a process referred to as translation. The amplitude of translational regulation exceeds the sum of transcription, mRNA degradation and protein degradation. Therefore, it is essential to investigate translation in a global scale. Like the other “omics”-methods, translatomics investigates the totality of the components in the translation process, including but not limited to translating mRNAs, ribosomes, tRNAs, regulatory RNAs and nascent polypeptide chains. Technical advances in recent years have brought breakthroughs in the investigation of these components at global scale, both for their composition and dynamics. These methods have been applied in a rapidly increasing number of studies to reveal multifaceted aspects of translation control. The process of translation is not restricted to the conversion of mRNA coding sequences into polypeptide chains, it also controls the composition of the proteome in a delicate and responsive way. Therefore, translatomics has extended its unique and innovative power to many fields including proteomics, cancer research, bacterial stress response, biological rhythmicity and plant biology. Rational design in translation can enhance recombinant protein production for thousands of times. This brief review summarizes the main state-of-the-art methods of translatomics, highlights recent discoveries made in this field and introduces applications of translatomics on basic biological and biomedical research.
Collapse
Affiliation(s)
- Jing Zhao
- Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou 510632, China.
| | - Bo Qin
- Institut für Medizinische Physik und Biophysik, Charité-Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany.
| | - Rainer Nikolay
- Institut für Medizinische Physik und Biophysik, Charité-Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany.
| | - Christian M T Spahn
- Institut für Medizinische Physik und Biophysik, Charité-Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany.
| | - Gong Zhang
- Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou 510632, China.
| |
Collapse
|
40
|
Akulich KA, Sinitcyn PG, Makeeva DS, Andreev DE, Terenin IM, Anisimova AS, Shatsky IN, Dmitriev SE. A novel uORF-based regulatory mechanism controls translation of the human MDM2 and eIF2D mRNAs during stress. Biochimie 2018; 157:92-101. [PMID: 30419262 DOI: 10.1016/j.biochi.2018.11.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Accepted: 11/06/2018] [Indexed: 01/02/2023]
Abstract
Short upstream open reading frames (uORFs) are the most prevalent cis-acting regulatory elements in the mammalian transcriptome which can orchestrate mRNA translation. Apart from being "passive roadblocks" that decrease expression of the main coding regions, particular uORFs can serve as specific sensors for changing conditions, thus regulating translation in response to cell stress. Here we report a novel uORF-based regulatory mechanism that is employed under conditions of hyperosmotic stress by at least two human mRNAs, coding for translation reinitiation/recycling factor eIF2D and E3 ubiquitin ligase MDM2. This novel mode of translational control selectively downregulates their expression and requires as few as one uORF. Using a set of reporter mRNAs and fleeting mRNA transfection (FLERT) technique, we provide evidence that the phenomenon does not rely on delayed reinitiation, altered AUG recognition, ribosome stalling, mRNA destabilization or other known mechanisms. Instead, it is based on events taking place at uORF stop codon or immediately downstream. Functional aspects and implications of the novel regulatory mechanism to cell physiology are discussed.
Collapse
Affiliation(s)
- Kseniya A Akulich
- School of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, 119234, Russia; Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119234, Russia
| | - Pavel G Sinitcyn
- School of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, 119234, Russia
| | - Desislava S Makeeva
- School of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, 119234, Russia; Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119234, Russia
| | - Dmitry E Andreev
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119234, Russia
| | - Ilya M Terenin
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119234, Russia; Sechenov First Moscow State Medical University, Institute of Molecular Medicine, 119991, Moscow, Russia
| | - Aleksandra S Anisimova
- School of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, 119234, Russia; Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119234, Russia
| | - Ivan N Shatsky
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119234, Russia
| | - Sergey E Dmitriev
- School of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, 119234, Russia; Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119234, Russia; Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, 119991, Russia; Department of Biochemistry, Biological Faculty, Lomonosov Moscow State University, Moscow, 119991, Russia.
| |
Collapse
|
41
|
Wu WS, Jiang YX, Chang JW, Chu YH, Chiu YH, Tsao YH, Nordling TEM, Tseng YY, Tseng JT. HRPDviewer: human ribosome profiling data viewer. DATABASE-THE JOURNAL OF BIOLOGICAL DATABASES AND CURATION 2018; 2018:5052387. [PMID: 30010738 PMCID: PMC6041748 DOI: 10.1093/database/bay074] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Accepted: 06/19/2018] [Indexed: 12/04/2022]
Abstract
Translational regulation plays an important role in protein synthesis. Dysregulation of translation causes abnormal cell physiology and leads to diseases such as inflammatory disorders and cancers. An emerging technique, called ribosome profiling (ribo-seq), was developed to capture a snapshot of translation. It is based on deep sequencing of ribosome-protected mRNA fragments. A lot of ribo-seq data have been generated in various studies, so databases are needed for depositing and visualizing the published ribo-seq data. Nowadays, GWIPS-viz, RPFdb and TranslatomeDB are the three largest databases developed for this purpose. However, two challenges remain to be addressed. First, GWIPS-viz and RPFdb databases align the published ribo-seq data to the genome. Since ribo-seq data aim to reveal the actively translated mRNA transcripts, there are advantages of aligning ribo-req data to the transcriptome over the genome. Second, TranslatomeDB does not provide any visualization and the other two databases only provide visualization of the ribo-seq data around a specific genomic location, while simultaneous visualization of the ribo-seq data on multiple mRNA transcripts produced from the same gene or different genes is desired. To address these two challenges, we developed the Human Ribosome Profiling Data viewer (HRPDviewer). HRPDviewer (i) contains 610 published human ribo-seq datasets from Gene Expression Omnibus, (ii) aligns the ribo-seq data to the transcriptome and (iii) provides visualization of the ribo-seq data on the selected mRNA transcripts. Using HRPDviewer, researchers can compare the ribosome binding patterns of multiple mRNA transcripts from the same gene or different genes to gain an accurate understanding of protein synthesis in human cells. We believe that HRPDviewer is a useful resource for researchers to study translational regulation in human. Database URL: http://cosbi4.ee.ncku.edu.tw/HRPDviewer/ or http://cosbi5.ee.ncku.edu.tw/HRPDviewer/
Collapse
Affiliation(s)
- Wei-Sheng Wu
- Department of Electrical Engineering, National Cheng Kung University, No.1, University Road, Tainan City, Taiwan
| | - Yu-Xuan Jiang
- Department of Electrical Engineering, National Cheng Kung University, No.1, University Road, Tainan City, Taiwan
| | - Jer-Wei Chang
- Department of Electrical Engineering, National Cheng Kung University, No.1, University Road, Tainan City, Taiwan
| | - Yu-Han Chu
- Department of Electrical Engineering, National Cheng Kung University, No.1, University Road, Tainan City, Taiwan
| | - Yi-Hao Chiu
- Department of Biotechnology and Bioindustry Sciences, National Cheng Kung University, No.1, University Road, Tainan City, Taiwan
| | - Yi-Hong Tsao
- Department of Biotechnology and Bioindustry Sciences, National Cheng Kung University, No.1, University Road, Tainan City, Taiwan
| | - Torbjörn E M Nordling
- Department of Mechanical Engineering, National Cheng Kung University, No.1, University Road, Tainan City, Taiwan
| | - Yan-Yuan Tseng
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI, USA
| | - Joseph T Tseng
- Department of Biotechnology and Bioindustry Sciences, National Cheng Kung University, No.1, University Road, Tainan City, Taiwan
| |
Collapse
|
42
|
Kumari R, Michel AM, Baranov PV. PausePred and Rfeet: webtools for inferring ribosome pauses and visualizing footprint density from ribosome profiling data. RNA (NEW YORK, N.Y.) 2018; 24:1297-1304. [PMID: 30049792 PMCID: PMC6140459 DOI: 10.1261/rna.065235.117] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Accepted: 07/23/2018] [Indexed: 05/25/2023]
Abstract
The process of translation is characterized by irregularities in the local decoding rates of specific mRNA codons. This includes the occurrences of long pauses that can take place when ribosomes decode certain peptide sequences, encounter strong RNA secondary structures, or decode "hungry" codons. Examples are known where such pausing or stalling is used for regulating protein synthesis. This can be achieved at the level of translation via direct alteration of ribosome progression through mRNA or by altering mRNA stability via NoGo decay. Ribosome pausing has also been implicated in the cotranslational folding of proteins. Ribosome profiling data often are used for inferring the locations of ribosome pauses. However, no dedicated online software is available for this purpose. Here we present PausePred (https://pausepred.ucc.ie/), which can be used to infer ribosome pauses from ribosome profiling (Ribo-seq) data. Peaks of ribosome footprint density are scored based on their magnitude relative to the background density within the surrounding area. The scoring allows the comparison of peaks across the transcriptome or genome. In addition to the score, PausePred reports the coordinates of the pause, the footprint density at the pause site, and the surrounding nucleotide sequence. The pauses can be visualized in the context of Ribo-seq and RNA-seq density plots generated for specific transcripts or genomic regions with the Rfeet tool. PausePred does not require input on the location of protein coding ORFs (although gene annotations can be optionally supplied). As a result, it can be used universally and its output does not depend on ever evolving annotations.
Collapse
Affiliation(s)
- Romika Kumari
- School of Biochemistry and Cell Biology, Western Gateway Building, University College Cork, Cork, Ireland
| | - Audrey M Michel
- School of Biochemistry and Cell Biology, Western Gateway Building, University College Cork, Cork, Ireland
| | - Pavel V Baranov
- School of Biochemistry and Cell Biology, Western Gateway Building, University College Cork, Cork, Ireland
| |
Collapse
|
43
|
Andreev DE, Arnold M, Kiniry SJ, Loughran G, Michel AM, Rachinskii D, Baranov PV. TASEP modelling provides a parsimonious explanation for the ability of a single uORF to derepress translation during the integrated stress response. eLife 2018; 7:32563. [PMID: 29932418 PMCID: PMC6033536 DOI: 10.7554/elife.32563] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Accepted: 06/21/2018] [Indexed: 12/13/2022] Open
Abstract
Translation initiation is the rate-limiting step of protein synthesis that is downregulated during the Integrated Stress Response (ISR). Previously, we demonstrated that most human mRNAs that are resistant to this inhibition possess translated upstream open reading frames (uORFs), and that in some cases a single uORF is sufficient for the resistance. Here we developed a computational model of Initiation Complexes Interference with Elongating Ribosomes (ICIER) to gain insight into the mechanism. We explored the relationship between the flux of scanning ribosomes upstream and downstream of a single uORF depending on uORF features. Paradoxically, our analysis predicts that reducing ribosome flux upstream of certain uORFs increases initiation downstream. The model supports the derepression of downstream translation as a general mechanism of uORF-mediated stress resistance. It predicts that stress resistance can be achieved with long slowly decoded uORFs that do not favor translation reinitiation and that start with initiators of low leakiness.
Collapse
Affiliation(s)
- Dmitry E Andreev
- School of Biochemistry and Cell Biology, University College Cork, Cork, Ireland.,Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Maxim Arnold
- Department of Mathematical Sciences, The University of Texas at Dallas, Richardson, United States
| | - Stephen J Kiniry
- School of Biochemistry and Cell Biology, University College Cork, Cork, Ireland
| | - Gary Loughran
- School of Biochemistry and Cell Biology, University College Cork, Cork, Ireland
| | - Audrey M Michel
- School of Biochemistry and Cell Biology, University College Cork, Cork, Ireland
| | - Dmitrii Rachinskii
- Department of Mathematical Sciences, The University of Texas at Dallas, Richardson, United States
| | - Pavel V Baranov
- School of Biochemistry and Cell Biology, University College Cork, Cork, Ireland
| |
Collapse
|
44
|
Affiliation(s)
- Stephen J. Kiniry
- School of Biochemistry and Cell Biology, University College Cork; Cork Ireland
| | - Audrey M. Michel
- School of Biochemistry and Cell Biology, University College Cork; Cork Ireland
| | - Pavel V. Baranov
- School of Biochemistry and Cell Biology, University College Cork; Cork Ireland
| |
Collapse
|
45
|
Mazzoni-Putman SM, Stepanova AN. A Plant Biologist's Toolbox to Study Translation. FRONTIERS IN PLANT SCIENCE 2018; 9:873. [PMID: 30013583 PMCID: PMC6036148 DOI: 10.3389/fpls.2018.00873] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Accepted: 06/04/2018] [Indexed: 05/03/2023]
Abstract
Across a broad range of species and biological questions, more and more studies are incorporating translation data to better assess how gene regulation occurs at the level of protein synthesis. The inclusion of translation data improves upon, and has been shown to be more accurate than, transcriptional studies alone. However, there are many different techniques available to measure translation and it can be difficult, especially for young or aspiring scientists, to determine which methods are best applied in specific situations. We have assembled this review in order to enhance the understanding and promote the utilization of translational methods in plant biology. We cover a broad range of methods to measure changes in global translation (e.g., radiolabeling, polysome profiling, or puromycylation), translation of single genes (e.g., fluorescent reporter constructs, toeprinting, or ribosome density mapping), sequencing-based methods to uncover the entire translatome (e.g., Ribo-seq or translating ribosome affinity purification), and mass spectrometry-based methods to identify changes in the proteome (e.g., stable isotope labeling by amino acids in cell culture or bioorthogonal noncanonical amino acid tagging). The benefits and limitations of each method are discussed with a particular note of how applications from other model systems might be extended for use in plants. In order to make this burgeoning field more accessible to students and newer scientists, our review includes an extensive glossary to define key terms.
Collapse
|