1
|
Zhang J, Wang G, Ma J, Duan Y, Sharma SA, Oladejo S, Ma X, Arellano G, Orchard RC, Reese TA, Kuang Z. HDAC3 integrates TGF-β and microbial cues to program tuft cell biogenesis and diurnal rhythms in mucosal immune surveillance. Sci Immunol 2024; 9:eadk7387. [PMID: 39331726 DOI: 10.1126/sciimmunol.adk7387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 04/29/2024] [Accepted: 08/29/2024] [Indexed: 09/29/2024]
Abstract
The intestinal mucosal surface is directly exposed to daily fluctuations in food and microbes driven by 24-hour light and feeding cycles. Intestinal epithelial tuft cells are key sentinels that surveil the gut luminal environment, but how these cells are diurnally programmed remains unknown. Here, we show that histone deacetylase 3 (HDAC3) controls tuft cell specification and the diurnal rhythm of its biogenesis, which is regulated by the gut microbiota and feeding schedule. Disruption of epithelial HDAC3 decreases tuft cell numbers, impairing antihelminth immunity and norovirus infection. Mechanistically, HDAC3 functions noncanonically to activate transforming growth factor-β (TGF-β) signaling, which promotes rhythmic expression of Pou2f3, a lineage-defining transcription factor of tuft cells. Our findings reveal an environmental-epigenetic link that controls the diurnal differentiation of tuft cells and promotes rhythmic mucosal surveillance and immune responses in anticipation of exogenous challenges.
Collapse
Affiliation(s)
- Jianglin Zhang
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - Guoxun Wang
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Junjie Ma
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - Yiran Duan
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - Samskrathi A Sharma
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - Sarah Oladejo
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - Xianda Ma
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - Giselle Arellano
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - Robert C Orchard
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Tiffany A Reese
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Zheng Kuang
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| |
Collapse
|
2
|
Xu T, Zheng X, Li B, Jin P, Qin Z, Wu H. A comprehensive review of computational prediction of genome-wide features. Brief Bioinform 2020; 21:120-134. [PMID: 30462144 PMCID: PMC10233247 DOI: 10.1093/bib/bby110] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Revised: 10/15/2018] [Accepted: 10/16/2018] [Indexed: 12/15/2022] Open
Abstract
There are significant correlations among different types of genetic, genomic and epigenomic features within the genome. These correlations make the in silico feature prediction possible through statistical or machine learning models. With the accumulation of a vast amount of high-throughput data, feature prediction has gained significant interest lately, and a plethora of papers have been published in the past few years. Here we provide a comprehensive review on these published works, categorized by the prediction targets, including protein binding site, enhancer, DNA methylation, chromatin structure and gene expression. We also provide discussions on some important points and possible future directions.
Collapse
Affiliation(s)
- Tianlei Xu
- Department of Mathematics and Computer Science, Emory University, Atlanta, GA, USA
| | - Xiaoqi Zheng
- Department of Mathematics, Shanghai Normal University, Shanghai, China
| | - Ben Li
- Department of Biostatistics and Bioinformatics, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Peng Jin
- Department of Human Genetics, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Zhaohui Qin
- Department of Biostatistics and Bioinformatics, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Hao Wu
- Department of Biostatistics and Bioinformatics, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| |
Collapse
|
3
|
Kuang Z, Wang Y, Li Y, Ye C, Ruhn KA, Behrendt CL, Olson EN, Hooper LV. The intestinal microbiota programs diurnal rhythms in host metabolism through histone deacetylase 3. Science 2019; 365:1428-1434. [PMID: 31604271 PMCID: PMC7158748 DOI: 10.1126/science.aaw3134] [Citation(s) in RCA: 197] [Impact Index Per Article: 39.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 05/23/2019] [Accepted: 08/02/2019] [Indexed: 12/20/2022]
Abstract
Circadian rhythmicity is a defining feature of mammalian metabolism that synchronizes metabolic processes to day-night light cycles. Here, we show that the intestinal microbiota programs diurnal metabolic rhythms in the mouse small intestine through histone deacetylase 3 (HDAC3). The microbiota induced expression of intestinal epithelial HDAC3, which was recruited rhythmically to chromatin, and produced synchronized diurnal oscillations in histone acetylation, metabolic gene expression, and nutrient uptake. HDAC3 also functioned noncanonically to coactivate estrogen-related receptor α, inducing microbiota-dependent rhythmic transcription of the lipid transporter gene Cd36 and promoting lipid absorption and diet-induced obesity. Our findings reveal that HDAC3 integrates microbial and circadian cues for regulation of diurnal metabolic rhythms and pinpoint a key mechanism by which the microbiota controls host metabolism.
Collapse
Affiliation(s)
- Zheng Kuang
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Yuhao Wang
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Yun Li
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Cunqi Ye
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Kelly A Ruhn
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Cassie L Behrendt
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Eric N Olson
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Lora V Hooper
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
- Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| |
Collapse
|
4
|
Ye C, Sutter BM, Wang Y, Kuang Z, Zhao X, Yu Y, Tu BP. Demethylation of the Protein Phosphatase PP2A Promotes Demethylation of Histones to Enable Their Function as a Methyl Group Sink. Mol Cell 2019; 73:1115-1126.e6. [PMID: 30772176 PMCID: PMC6628921 DOI: 10.1016/j.molcel.2019.01.012] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2018] [Revised: 11/29/2018] [Accepted: 01/08/2019] [Indexed: 12/21/2022]
Abstract
Dysregulation of chromatin methylation is associated with defects in cellular differentiation as well as a variety of cancers. How cells regulate the opposing activities of histone methyltransferase and demethylase enzymes to set the methylation status of the epigenome for proper control of gene expression and metabolism remains poorly understood. Here, we show that loss of methylation of the major phosphatase PP2A in response to methionine starvation activates the demethylation of histones through hyperphosphorylation of specific demethylase enzymes. In parallel, this regulatory mechanism enables cells to preserve SAM by increasing SAH to limit SAM consumption by methyltransferase enzymes. Mutants lacking the PP2A methyltransferase or the effector H3K36 demethylase Rph1 exhibit elevated SAM levels and are dependent on cysteine due to reduced capacity to sink the methyl groups of SAM. Therefore, PP2A directs the methylation status of histones by regulating the phosphorylation status of histone demethylase enzymes in response to SAM levels.
Collapse
Affiliation(s)
- Cunqi Ye
- Department of Biochemistry, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390-9038, USA
| | - Benjamin M Sutter
- Department of Biochemistry, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390-9038, USA
| | - Yun Wang
- Department of Biochemistry, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390-9038, USA
| | - Zheng Kuang
- Department of Immunology, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390-9093, USA
| | - Xiaozheng Zhao
- Department of Biochemistry, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390-9038, USA
| | - Yonghao Yu
- Department of Biochemistry, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390-9038, USA
| | - Benjamin P Tu
- Department of Biochemistry, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390-9038, USA.
| |
Collapse
|
5
|
Begum S. Engineering renal epithelial cells: programming and directed differentiation towards glomerular podocyte's progenitor and mature podocyte. Am J Transl Res 2019; 11:1102-1115. [PMID: 30899410 PMCID: PMC6413241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Accepted: 12/26/2018] [Indexed: 06/09/2023]
Abstract
Current knowledge of normal developmental physiology and identification of specific cell types of the kidney at molecular levels enables us to generate various cells of the kidney. The generation of renal specialized cells in vitro with its correct molecular and functional implications is the urgent need for cellular therapy in chronic kidney diseases and for organ formation. Glomerular podocytes are one of the major renal cells lose its functionality to maintain glomerular blood filtration function. In vitro, many inductions or reprogramming methods have been established for podocytes development. In these methods transcription factors, small molecules, and growth factors play the major role to remodel stem cells into podocyte progenitors and towards mature podocytes. Micro ribonucleic acids (miRNAs) have been utilizing as another strategy to generate podocyte. In this review, current protocols for in vitro glomerular podocyte differentiation have summarized emphasizing programming methods, signaling modulation, and cytoskeletal changes. Novel ideas are also pointed out, which are required for efficient optimal glomerular podocyte generation and their functional characterization in vitro with nanoarchitecture impression of the glomerular basement membrane.
Collapse
Affiliation(s)
- Sumreen Begum
- Stem Cells Research Laboratory (SCRL), Sindh Institute of Urology and Transplantation (SIUT) Karachi, Sindh, Pakistan
| |
Collapse
|
6
|
Stochasticity in transcriptional expression of a negative regulator of Arabidopsis ABA network. 3 Biotech 2019; 9:15. [PMID: 30622853 DOI: 10.1007/s13205-018-1542-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Accepted: 12/16/2018] [Indexed: 10/27/2022] Open
Abstract
Stably heritable spatiotemporal co/over-expression of distinct transcriptional regulators across generations is a desired target as they signal traffic in the cell. Here, the stability and expression pattern of AtHB7 (Arabidopsis homeodomain-leucine zipper class I) cDNA was characterized in 220 random population of transformed tomato clones where no AtHB7 orthologous has been identified in to date. Integration of p35S::AtHB7 casette was tested by the amplification of the stretches (700/425 bp) in the target by NPT II/AtHB7 oligos. Transcriptional expression pattern for the amplicons of the specific transcripts in the leaf tissues of transformants were determined by qRT-PCR. Transgene copy number was negatively correlated with transgene expression level, yet a majority of transformants (78%) carried single-copy of transgene. About 1:3 of the lines containing two-copy inserts showed less transcript expression. Heterologous CaMV 35S promoter drove AtHB7, illuminated no penalty on transgene expression levels, stability or plant phenotype under drought stress. Integration and expression analysis of transcription factors is of great significance for reliable prediction of gene dosing/functions in plant genomes so as to sustain breeding under abiotic stress to guarantee food security.
Collapse
|
7
|
Sánchez-Gaya V, Casaní-Galdón S, Ugidos M, Kuang Z, Mellor J, Conesa A, Tarazona S. Elucidating the Role of Chromatin State and Transcription Factors on the Regulation of the Yeast Metabolic Cycle: A Multi-Omic Integrative Approach. Front Genet 2018; 9:578. [PMID: 30555512 PMCID: PMC6284056 DOI: 10.3389/fgene.2018.00578] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Accepted: 11/08/2018] [Indexed: 11/15/2022] Open
Abstract
The Yeast Metabolic Cycle (YMC) is a model system in which levels of around 60% of the yeast transcripts cycle over time. The spatial and temporal resolution provided by the YMC has revealed that changes in the yeast metabolic landscape and chromatin status can be related to cycling gene expression. However, the interplay between histone modifications and transcription factor activity during the YMC is still poorly understood. Here we apply an innovative statistical approach to integrate chromatin state (ChIP-seq) and gene expression (RNA-seq) data to investigate the transcriptional control during the YMC. By using the multivariate regression models N-PLS (Partial Least Squares) and MORE (Multi-Omics REgulation) methodologies, we assessed the contribution of histone marks and transcription factors to the regulation of gene expression in the YMC. We found that H3K18ac and H3K9ac were the most important histone modifications, whereas Sfp1, Hfi1, Pip2, Mig2, and Yhp1 emerged as the most relevant transcription factors. A significant association in the co-regulation of gene expression was found between H3K18ac and the transcription factors Pip2 (involved in fatty acids metabolism), Xbp1 (cyclin implicated in the regulation of carbohydrate and amino acid metabolism), and Hfi1 (involved in the formation of the SAGA complex). These results evidence the crucial role of histone lysine acetylation levels in the regulation of gene expression in the YMC through the coordinated action of transcription factors and lysine acetyltransferases.
Collapse
Affiliation(s)
- Víctor Sánchez-Gaya
- Genomics of Gene Expression Laboratory Centro de Investigación Príncipe Felipe, Valencia, Spain
| | | | - Manuel Ugidos
- Genomics of Gene Expression Laboratory Centro de Investigación Príncipe Felipe, Valencia, Spain
| | - Zheng Kuang
- Institute for Systems Genetics, NYU Langone Health, New York, NY, United States
| | - Jane Mellor
- Department of Biochemistry University of Oxford, Oxford, United Kingdom
| | - Ana Conesa
- BioBam Bioinformatics S.L., Valencia, Spain.,Microbiology and Cell Science Department, Institute for Food and Agricultural Research, University of Florida, Gainesville, FL, United States.,Genetics Institute, University of Florida, Gainesville, FL, United States
| | - Sonia Tarazona
- Genomics of Gene Expression Laboratory Centro de Investigación Príncipe Felipe, Valencia, Spain.,Applied Statistics, Operational Research and Quality Department Polytechnic University of Valencia, Valencia, Spain
| |
Collapse
|
8
|
Stress response factors drive regrowth of quiescent cells. Curr Genet 2018; 64:807-810. [PMID: 29455333 DOI: 10.1007/s00294-018-0813-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Revised: 02/13/2018] [Accepted: 02/14/2018] [Indexed: 01/19/2023]
Abstract
Quiescent cells exploit an array of transcription factors to activate stress response machinery and maintain survival under nutrient-limited conditions. Our recent findings reveal that these transcription factors also play an important role in the exit of quiescence and regrowth. By studying Saccharomyces cerevisiae under a continuous, nutrient-limited condition, we found that Msn2 and Msn4 function as master regulators of glycolytic genes in the quiescent-like phase. They control the timing of transition from quiescence to growth by regulating the accumulation rate of acetyl-CoA, a key metabolite that is downstream of glycolysis and drives growth. These findings suggest a model that Msn2/4 not only protect the cells from starvation but also facilitate their regrowth from quiescence. Thus, understanding the functions of stress response transcription factors in metabolic regulation will provide deeper insight into how quiescent cells manage the capacity of regrowth.
Collapse
|
9
|
Kuang Z, Pinglay S, Ji H, Boeke JD. Msn2/4 regulate expression of glycolytic enzymes and control transition from quiescence to growth. eLife 2017; 6:29938. [PMID: 28949295 PMCID: PMC5634782 DOI: 10.7554/elife.29938] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Accepted: 09/25/2017] [Indexed: 11/13/2022] Open
Abstract
Nutrient availability and stresses impact a cell's decision to enter a growth state or a quiescent state. Acetyl-CoA stimulates cell growth under nutrient-limiting conditions, but how cells generate acetyl-CoA under starvation stress is less understood. Here, we show that general stress response factors, Msn2 and Msn4, function as master transcriptional regulators of yeast glycolysis via directly binding and activating genes encoding glycolytic enzymes. Yeast cells lacking Msn2 and Msn4 exhibit prevalent repression of glycolytic genes and a significant delay of acetyl-CoA accumulation and reentry into growth from quiescence. Thus Msn2/4 exhibit a dual role in activating carbohydrate metabolism genes and stress response genes. These results suggest a possible mechanism by which starvation-induced stress response factors may prime quiescent cells to reenter growth through glycolysis when nutrients are limited.
Collapse
Affiliation(s)
- Zheng Kuang
- Institute for Systems Genetics, NYU Langone Medical Center, New York, United States.,Department of Biochemistry and Molecular Pharmacology, NYU Langone Medical Center, New York, United States.,Department of Biostatistics, Johns Hopkins University School of Public Health, Baltimore, United States
| | - Sudarshan Pinglay
- Institute for Systems Genetics, NYU Langone Medical Center, New York, United States.,Department of Biochemistry and Molecular Pharmacology, NYU Langone Medical Center, New York, United States
| | - Hongkai Ji
- Department of Biostatistics, Johns Hopkins University School of Public Health, Baltimore, United States
| | - Jef D Boeke
- Institute for Systems Genetics, NYU Langone Medical Center, New York, United States.,Department of Biochemistry and Molecular Pharmacology, NYU Langone Medical Center, New York, United States
| |
Collapse
|