1
|
Kuznetsova VE, Shershov VE, Shtylev GF, Shishkin IY, Butvilovskaya VI, Stomakhin AA, Grechishnikova IV, Zasedateleva OA, Chudinov AV. Optimized Method for the Synthesis of Alkyne-Modified 2'-Deoxynucleoside Triphosphates. Molecules 2024; 29:4747. [PMID: 39407673 PMCID: PMC11477703 DOI: 10.3390/molecules29194747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 10/03/2024] [Accepted: 10/04/2024] [Indexed: 10/20/2024] Open
Abstract
A general approach is presented for synthesizing alkyne-modified nucleoside triphosphates via the Sonogashira cross-coupling reaction of unprotected halogenated 2'-deoxynucleoside, followed by monophosphorylation and the reaction of the corresponding phosphoromorpholidate with tributylammonium pyrophosphate. A highly efficient approach for the milligram-scale synthesis of base-modified nucleoside triphosphates with an amino acid-like side chain was developed. The present chemical method outweighs the other reported methods of a base-modified nucleoside triphosphates synthesis in terms of it being a protection-free strategy, the shortening of reaction steps, and increased yields (about 70%). The resulting 8-alkynylated dATP was tested as a substrate for DNA polymerases in a primer extension reaction.
Collapse
Affiliation(s)
- Viktoriya E. Kuznetsova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia; (V.E.S.); (G.F.S.); (I.Y.S.); (V.I.B.); (O.A.Z.); (A.V.C.)
| | | | | | | | | | | | | | | | | |
Collapse
|
2
|
Xu J, Zhao S, Zhang Q, Huang X, Du K, Wang J, Wang J, Chen C, Zhang B, Chang J, Gong X. Development of highly sensitive dual-enhanced fluorescence quenching immunochromatographic test strips based on Pt nanoprobes. Biosens Bioelectron 2024; 254:116195. [PMID: 38479341 DOI: 10.1016/j.bios.2024.116195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 02/18/2024] [Accepted: 03/05/2024] [Indexed: 04/02/2024]
Abstract
The fluorescence-quenching method is crucial in vitro analysis, particularly for immunochromatographic test strips (ICTs) using noble metal nanoparticles as probes. However, ICTs still fall short in meeting the requirements for the detection of traces biomarkers due to the noble metal nanoparticles can only quench fluorescence of the dyes within a confined distance. Interestingly, noble metal nanoparticles, such as Pt NPs cannot only perform fluorescence-quenching ability based on the Förster resonance energy transfer (FRET), but also show perfect oxidase-like catalytic performance on many kinds of substrates, such as 3,3',5,5' -tetramethylbenzidine (TMB). We observed that the oxTMB (the oxidation products of TMB) exhibited notable effectiveness in quenching Cy5 fluorescence by the strong inner filter effect (IFE), which obviously improved the fluorescence-quenching efficiency with extremely low background signal. Through the dual-enhanced fluorescence quenching mechanism, the fluorescence quenching constant (Kn) was 661.24-fold that of only Pt NPs on the NC membrane. To validate the feasibility of this technique, we employed two types of biomarkers, namely microRNA (miR-15a-5p) and the signature protein (PSA). The sensitivity of miR-15a-5p was 9.286 × 10-18 mol/L and 17.5-fold more than that based on Pt NPs. As for the PSA, the LOD (0.6265 pg/mL) was 15.5-fold enhancement more sensitive after catalysis. Overall, the dual-enhanced fluorescence quenching rFICTs could act as a practical detection for biomarker in real samples.
Collapse
Affiliation(s)
- Jiashuo Xu
- School of Life Sciences, Tianjin University and Tianjin Engineering Center of Micro-Nano Biomaterials and Detection-Treatment Technology (Tianjin), Tianjin, 300072, China
| | - Shuang Zhao
- School of Life Sciences, Tianjin University and Tianjin Engineering Center of Micro-Nano Biomaterials and Detection-Treatment Technology (Tianjin), Tianjin, 300072, China
| | - Qiuting Zhang
- School of Life Sciences, Tianjin University and Tianjin Engineering Center of Micro-Nano Biomaterials and Detection-Treatment Technology (Tianjin), Tianjin, 300072, China
| | - Xu Huang
- School of Medical Imaging Tianjin Medical University, Tianjin, 300204, China
| | - Kang Du
- Tianjin BoomSciex Technology Co., Ltd, Tianjin, 300400, China
| | - Jinzhi Wang
- School of Life Sciences, Tianjin University and Tianjin Engineering Center of Micro-Nano Biomaterials and Detection-Treatment Technology (Tianjin), Tianjin, 300072, China
| | - Jiaxun Wang
- School of Life Sciences, Tianjin University and Tianjin Engineering Center of Micro-Nano Biomaterials and Detection-Treatment Technology (Tianjin), Tianjin, 300072, China
| | - Cheng Chen
- Tianjin Key Laboratory of Function and Application of Biological Macromolecular Structures, School of Life Sciences, Tianjin University, Tianjin, 300072, China
| | - Bingbo Zhang
- Department of Radiology, Tongji Hospital, Shanghai Frontiers Science Center of Nanocatalytic Medicine, The Institute for Biomedical Engineering & Nano Science, School of Medicine, Tongji University, Shanghai, 200065, China.
| | - Jin Chang
- School of Life Sciences, Tianjin University and Tianjin Engineering Center of Micro-Nano Biomaterials and Detection-Treatment Technology (Tianjin), Tianjin, 300072, China.
| | - Xiaoqun Gong
- School of Life Sciences, Tianjin University and Tianjin Engineering Center of Micro-Nano Biomaterials and Detection-Treatment Technology (Tianjin), Tianjin, 300072, China.
| |
Collapse
|
3
|
Zasedateleva OA, Surzhikov SA, Kuznetsova VE, Shershov VE, Barsky VE, Zasedatelev AS, Chudinov AV. Non-Covalent Interactions between dUTP C5-Substituents and DNA Polymerase Decrease PCR Efficiency. Int J Mol Sci 2023; 24:13643. [PMID: 37686447 PMCID: PMC10487964 DOI: 10.3390/ijms241713643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 08/31/2023] [Accepted: 09/02/2023] [Indexed: 09/10/2023] Open
Abstract
The approach based on molecular modeling was developed to study dNTP derivatives characterized by new polymerase-specific properties. For this purpose, the relative efficiency of PCR amplification with modified dUTPs was studied using Taq, Tth, Pfu, Vent, Deep Vent, Vent (exo-), and Deep Vent (exo-) DNA polymerases. The efficiency of PCR amplification with modified dUTPs was compared with the results of molecular modeling using the known 3D structures of KlenTaq polymerase-DNA-dNTP complexes. The dUTPs were C5-modified with bulky functional groups (the Cy5 dye analogs) or lighter aromatic groups. Comparing the experimental data and the results of molecular modeling revealed the decrease in PCR efficiency in the presence of modified dUTPs with an increase in the number of non-covalent bonds between the substituents and the DNA polymerase (about 15% decrease per one extra non-covalent bond). Generalization of the revealed patterns to all the studied polymerases of the A and B families is discussed herein. The number of non-covalent bonds between the substituents and polymerase amino acid residues is proposed to be a potentially variable parameter for regulating enzyme activity.
Collapse
Affiliation(s)
- Olga A. Zasedateleva
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 32 Vavilov Street, 119991 Moscow, Russia
| | | | | | | | | | | | | |
Collapse
|
4
|
Kuznetsova VE, Shershov VE, Guseinov TO, Miftakhov RA, Solyev PN, Novikov RA, Levashova AI, Zasedatelev AS, Lapa SA, Chudinov AV. Synthesis of Cy5-Labelled C5-Alkynyl-modified cytidine triphosphates via Sonogashira coupling for DNA labelling. Bioorg Chem 2023; 131:106315. [PMID: 36528924 DOI: 10.1016/j.bioorg.2022.106315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 11/15/2022] [Accepted: 12/05/2022] [Indexed: 12/14/2022]
Abstract
New applications of palladium-catalyzed Sonogashira-type cross-coupling reaction between C5-halogenated 2'-deoxycytidine-5'-monophosphate and novel cyanine dyes with a terminal alkyne group have been developed. The present methodology allows to synthesize of fluorescently labeled C5-nucleoside triphosphates with different acetylene linkers between the fluorophore and pyrimidine base in good to excellent yields under mild reaction conditions. Modified 2'-deoxycytidine-5'-triphosphates were shown to be good substrates for DNA polymerases and were incorporated into the DNA by polymerase chain reaction.
Collapse
Affiliation(s)
- Viktoriya E Kuznetsova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia.
| | - Valeriy E Shershov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Teimur O Guseinov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Rinat A Miftakhov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Pavel N Solyev
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Roman A Novikov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Anna I Levashova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Alexander S Zasedatelev
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Sergey A Lapa
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Alexander V Chudinov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia.
| |
Collapse
|
5
|
Optimized aptamer functionalization for enhanced anticancer efficiency in vivo. Int J Pharm 2022; 628:122330. [DOI: 10.1016/j.ijpharm.2022.122330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 10/15/2022] [Accepted: 10/18/2022] [Indexed: 11/18/2022]
|
6
|
Wu Y, Bu X, Ke Y, Sun H, Li J, Chen L, Cui W, He Y, Wu L. Insight into the Stereocontrol of DNA Polymerase‐Catalysed Reaction by Chiral Cobalt Complexes. Adv Synth Catal 2022. [DOI: 10.1002/adsc.202200418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Ya Wu
- College of Chemistry and Chemical Engineering Xi'an Shiyou University Xi'an 710065 People's Republic of China
| | - Xinya Bu
- School of Chemical Sciences University of Chinese Academy of Sciences Beijing 100049 People's Republic of China
| | - Yongqi Ke
- School of Chemical Sciences University of Chinese Academy of Sciences Beijing 100049 People's Republic of China
| | - Huaming Sun
- School of Chemistry and Chemical Engineering Shaanxi Normal University Xi'an 710065 People's Republic of China
| | - Jingyao Li
- College of Chemistry and Chemical Engineering Xi'an Shiyou University Xi'an 710065 People's Republic of China
| | - Lu Chen
- School of Chemical Sciences University of Chinese Academy of Sciences Beijing 100049 People's Republic of China
| | - Wei Cui
- School of Chemical Sciences University of Chinese Academy of Sciences Beijing 100049 People's Republic of China
| | - Yujian He
- School of Chemical Sciences University of Chinese Academy of Sciences Beijing 100049 People's Republic of China
| | - Li Wu
- School of Chemical Sciences University of Chinese Academy of Sciences Beijing 100049 People's Republic of China
- State Key Laboratory of Natural and Biomimetic Drugs School of Pharmaceutical Sciences Peking University Beijing 100191 People's Republic of China
| |
Collapse
|
7
|
Liu D, Shu X, Xiang S, Li T, Huang C, Cheng M, Cao J, Hua Y, Liu J. N4 -allyldeoxycytidine: A New DNA Tag with Chemical Sequencing Power for Pinpointing Labelling Sites, Mapping Epigenetic Mark, and in situ Imaging. Chembiochem 2022; 23:e202200143. [PMID: 35438823 DOI: 10.1002/cbic.202200143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 04/18/2022] [Indexed: 11/08/2022]
Abstract
DNA tagging with base analogs has found numerous applications. To precisely record the DNA labelling information, it will be highly beneficial to develop chemical sequencing tags that can be encoded into DNA as regular bases and decoded as mutant bases upon a mild, efficient and bioorthognal chemical treatment. Here we reported such a DNA tag, N4-allyldeoxycytidine (a4dC), to label and identify DNA by in vitro assays. The iodination of a4dC led to fast and complete formation of 3, N4-cyclized deoxycytidine, which induced base misincorporation during DNA replication and thus could be located at single base resolution. We explored the applications of a4dC in pinpointing DNA labelling sites at single base resolution, mapping epigenetic mark N4-methyldeoxycytidine, and imaging nucleic acids in situ. In addition, mammalian cellular DNA could be metabolically labelled with a4dC. Together,our study sheds light on the design of next generation DNA tags with chemical sequencing power.
Collapse
Affiliation(s)
- Donghong Liu
- Zhejiang University, Department of polymer science and engineering, CHINA
| | - Xiao Shu
- Zhejiang University, Department of polymer science and engineering, CHINA
| | - Siying Xiang
- Zhejiang University, Department of polymer science and engineering, CHINA
| | - Tengwei Li
- Zhejiang University, Department of polymer science and engineering, CHINA
| | - Chenyang Huang
- Zhejiang University, Department of polymer science and engineering, CHINA
| | - Mohan Cheng
- Zhejiang University, Department of polymer science and engineering, CHINA
| | - Jie Cao
- Zhejiang University, Life Sciences Institute; Department of Polymer Science and Engineering, CHINA
| | - Yuejin Hua
- Zhejiang University, he MOE Key Laboratory of Biosystems Homeostasis & Protection; Department of Infectious Diseases, Sir Run Run Shaw Hospital, College of Medicine, CHINA
| | - Jianzhao Liu
- Zhejiang University, Department of Polymer Science and Engineering, Zheda road 38, 310007, hangzhou, CHINA
| |
Collapse
|
8
|
Biocompatible and noncytotoxic nucleoside-based AIEgens sensor for lighting-up nucleic acids. CHINESE CHEM LETT 2021. [DOI: 10.1016/j.cclet.2021.02.038] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
9
|
Goryunova MS, Arzhanik VK, Zavriev SK, Ryazantsev DY. Rolling circle amplification with fluorescently labeled dUTP-balancing the yield and degree of labeling. Anal Bioanal Chem 2021; 413:3737-3748. [PMID: 33834268 DOI: 10.1007/s00216-021-03322-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 03/28/2021] [Accepted: 03/31/2021] [Indexed: 10/21/2022]
Abstract
Detection methods based on rolling circle amplification (RCA) have been applied to a large number of targets in molecular biology. The key feature of RCA-based methods as well as other nucleic acid amplification methods is their exceptional sensitivity, which allows the detection of molecules at low concentrations, achieved by signal amplification due to nucleic acid magnification and subsequent detection. Variations on the method, such as immuno-RCA, extend the range of potential targets that can be detected. Employing fluorescently labeled nucleotides for direct incorporation into an amplification product is an attractive method for RCA product detection. However, the effectiveness of this approach remains doubtful. In our study, we utilized different modified dUTPs, including sulfo-cyanine3-dUTP, sulfo-cyanine5-dUTP, sulfo-cyanine5.5-dUTP, BDP-FL-dUTP, and amino-11-dUTP, to investigate whether the properties of the fluorophore used for modification affected the reaction yield and effectiveness of incorporation of nucleotide analogs by phi29 DNA polymerase. Among the modified dUTPs, sulfo-cyanine3-dUTP demonstrated the highest incorporation effectiveness, equal to 4-9 labels per 1000 nucleotides. The mean length of the RCA product was estimated to be approximately 175,000 nucleotides. The total increase in fluorescence from a single target/product complex was 850 times. The results obtained in the study illustrate the possibility of successful application of nucleotide analogs for RCA detection and present quantitative characteristics of fluorescently labeled dUTPs to be incorporated into RCA products.
Collapse
Affiliation(s)
- M S Goryunova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Laboratory of Molecular Diagnostics, Russian Academy of Science, Miklukho-Maklaya Street, 16/10, 117997, Moscow, Russia
| | - V K Arzhanik
- Faculty of Biology, Moscow State University, Leninskie Gory, 1, building 12, 119234, Moscow, Russia
| | - S K Zavriev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Laboratory of Molecular Diagnostics, Russian Academy of Science, Miklukho-Maklaya Street, 16/10, 117997, Moscow, Russia
| | - D Y Ryazantsev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Laboratory of Molecular Diagnostics, Russian Academy of Science, Miklukho-Maklaya Street, 16/10, 117997, Moscow, Russia.
| |
Collapse
|
10
|
Zhang C, Zheng T, Wang H, Chen W, Huang X, Liang J, Qiu L, Han D, Tan W. Rapid One-Pot Detection of SARS-CoV-2 Based on a Lateral Flow Assay in Clinical Samples. Anal Chem 2021; 93:3325-3330. [PMID: 33570399 PMCID: PMC7885334 DOI: 10.1021/acs.analchem.0c05059] [Citation(s) in RCA: 89] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 02/05/2021] [Indexed: 01/01/2023]
Abstract
Rapid tests for pathogen identification and spread assessment are critical for infectious disease control and prevention. The control of viral outbreaks requires a nucleic acid diagnostic test that is sensitive and simple and delivers fast and reliable results. Here, we report a one-pot direct reverse transcript loop-mediated isothermal amplification (RT-LAMP) assay of SARS-CoV-2 based on a lateral flow assay in clinical samples. The entire contiguous sample-to-answer workflow takes less than 40 min from a clinical swab sample to a diagnostic result without professional instruments and technicians. The assay achieved an accuracy of 100% in 12 synthetic and 12 clinical samples compared to the data from PCR-based assays. We anticipate that our method will provide a universal platform for rapid and point-of-care detection of emerging infectious diseases.
Collapse
Affiliation(s)
- Chao Zhang
- Institute
of Molecular Medicine (IMM), Shanghai Key Laboratory for Nucleic Acid
Chemistry and Nanomedicine, State Key Laboratory of Oncogenes and
Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Tingting Zheng
- Institute
of Molecular Medicine (IMM), Shanghai Key Laboratory for Nucleic Acid
Chemistry and Nanomedicine, State Key Laboratory of Oncogenes and
Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Hua Wang
- Department
of Laboratory Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Wei Chen
- Clinical
Laboratory, Central Hospital of Loudi, Loudi, Hunan 417099, China
| | - Xiaoye Huang
- Clinical
Laboratory, Central Hospital of Loudi, Loudi, Hunan 417099, China
| | - Jianqi Liang
- Clinical
Laboratory, Central Hospital of Loudi, Loudi, Hunan 417099, China
| | - Liping Qiu
- Molecular
Science and Biomedicine Laboratory (MBL), State Key Laboratory of
Chemo/Bio- Sensing and Chemometrics, College of Chemistry and Chemical
Engineering, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, China
| | - Da Han
- Institute
of Molecular Medicine (IMM), Shanghai Key Laboratory for Nucleic Acid
Chemistry and Nanomedicine, State Key Laboratory of Oncogenes and
Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Weihong Tan
- Institute
of Molecular Medicine (IMM), Shanghai Key Laboratory for Nucleic Acid
Chemistry and Nanomedicine, State Key Laboratory of Oncogenes and
Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
- Molecular
Science and Biomedicine Laboratory (MBL), State Key Laboratory of
Chemo/Bio- Sensing and Chemometrics, College of Chemistry and Chemical
Engineering, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, China
- Institute
of Cancer and Basic Medicine (ICBM), Chinese Academy of Sciences, The Cancer Hospital of the University of Chinese Academy
of Sciences, Hangzhou, Zhejiang 310018, China
| |
Collapse
|
11
|
Ikonnikova AY, Shershov VE, Moroz YV, Vasiliskov VA, Lapa SA, Miftakhov RA, Kuznetsova VE, Chudinov AV, Nasedkina TV. The Efficacy of Hybridization Analysis of DNA Labeled with Red and Near-Infrared Cyanine Dyes. Biophysics (Nagoya-shi) 2021. [DOI: 10.1134/s000635092101005x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
12
|
Shershov VE, Ikonnikova AY, Vasiliskov VA, Lapa SA, Miftakhov RA, Kuznetsova VE, Chudinov AV, Nasedkina TV. The Efficiency of DNA Labeling with Near-Infrared Fluorescent Dyes. Biophysics (Nagoya-shi) 2020. [DOI: 10.1134/s0006350920050188] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
13
|
Lapa SA, Guseinov TO, Pavlov AS, Shershov VE, Kuznetsova VE, Zasedatelev AS, Chudinov AV. A Simultaneous Use of Cy5-Modified Derivatives of Deoxyuridine and Deoxycytidine in PCR. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2020. [DOI: 10.1134/s1068162020040111] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
14
|
PCR incorporation of dUMPs modified with aromatic hydrocarbon substituents of different hydrophilicities: Synthesis of C5-modified dUTPs and PCR studies using Taq, Tth, Vent (exo-) and Deep Vent (exo-) polymerases. Bioorg Chem 2020; 99:103829. [PMID: 32299018 DOI: 10.1016/j.bioorg.2020.103829] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Revised: 03/25/2020] [Accepted: 04/05/2020] [Indexed: 02/07/2023]
Abstract
Deoxyuridine triphosphate derivatives (dUTPs) modified at the C5 position of the pyrimidine ring with various aromatic hydrocarbon substituents of different hydrophilicities have been synthesized. The aromatic hydrocarbon substituents were attached to dUTPs via a CHCHCH2NHCOCH2 linker. The efficiency of the PCR incorporation of modified dUMPs using Taq, Tth, Vent (exo-) and Deep Vent (exo-) polymerases and a model DNA template containing one, two and three adjacent adenine nucleotides at three different sites within the sequence was investigated. For all the polymerases used, the yield of the modified PCR product was significantly increased with increasing hydrophilicity of the aromatic hydrocarbon substituent. In particular, for the above polymerases, the efficiency of the incorporation of dUMPs modified with the most hydrophilic of the studied aromatic hydrocarbon substituents, a 4-hydroxyphenyl residue, was 60-85% of the efficiency of dTMP incorporation. At the same time, the relative efficiencies of the incorporation of dUMPs modified with 2-, 4-methoxyphenyl, phenyl and 4-nitrophenyl substituents ranged from 20 to 50% and were 2-18% for the 1-naphthalene and 4-biphenyl groups, which were the most hydrophobic of the studied aromatic hydrocarbon substituents.
Collapse
|
15
|
Lapa SA, Volkova OS, Spitsyn MA, Shershov VE, Kuznetsova VE, Guseinov TO, Zasedatelev AS, Chudinov AV. Amplification Efficiency and Substrate Properties of Fluorescently Labeled Deoxyuridine Triphosphates in PCR in the Presence of DNA Polymerases without 3'-5' Exonuclease Activity. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2019. [DOI: 10.1134/s1068162019040046] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
16
|
Vasiliskov VA, Lapa SA, Kuznetsova VE, Surzhikov SA, Shershov VE, Spitsyn MA, Guseinov TO, Miftahov RA, Zasedateleva OA, Lisitsa AV, Radko SP, Zasedatelev AS, Timofeev EN, Chudinov AV. Novel 5-Alkylcarboxamide-2'-Deoxyuridine-5'-Triphosphates for Enzymatic Synthesis of Highly Modified DNA. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2019. [DOI: 10.1134/s1068162019030063] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
17
|
Kolganova NA, Vasiliskov VA, Kuznetsova VE, Shershov VE, Lapa SA, Guseinov TO, Spitsyn MA, Timofeev EN, Chudinov AV. Factors Affecting the Tailing of Blunt End DNA with Fluorescent Pyrimidine dNTPs. Mol Biotechnol 2018; 60:879-886. [PMID: 30244435 DOI: 10.1007/s12033-018-0124-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
The transferase activity of non-proofreading DNA polymerases is a well-known phenomenon that has been utilized in cloning and sequencing applications. The non-templated addition of modified nucleotides at DNA blunt ends is a potentially useful feature of DNA polymerases that can be used for selective transformation of DNA 3' ends. In this paper, we characterized the tailing reaction at perfectly matched and mismatched duplex ends with Cy3- and Cy5-modified pyrimidine nucleotides. It was shown that the best DNA tailing substrate does not have a perfect Watson-Crick base pair at the end. Mismatched duplexes with a 3' dC were the most efficient in the Taq DNA polymerase-catalysed tailing reaction with a Cy5-modified dUTP. We further demonstrated that the arrangement of the dye residue relative to the nucleobase notably affects the outcome of the tailing reaction. A comparative study of labelled deoxycytidine and deoxyuridine nucleotides showed higher efficiency for dUTP derivatives. The non-templated addition of modified nucleotides by Taq polymerase at a duplex blunt end was generally complicated by the pyrophosphorolysis and 5' exonuclease activity of the enzyme.
Collapse
Affiliation(s)
- Natalia A Kolganova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilov Street 32, Moscow, Russia, 119991
| | - Vadim A Vasiliskov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilov Street 32, Moscow, Russia, 119991
| | - Viktoriya E Kuznetsova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilov Street 32, Moscow, Russia, 119991
| | - Valeriy E Shershov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilov Street 32, Moscow, Russia, 119991
| | - Sergey A Lapa
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilov Street 32, Moscow, Russia, 119991
| | - Timur O Guseinov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilov Street 32, Moscow, Russia, 119991
| | - Maksim A Spitsyn
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilov Street 32, Moscow, Russia, 119991
| | - Edward N Timofeev
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilov Street 32, Moscow, Russia, 119991.
| | - Alexander V Chudinov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilov Street 32, Moscow, Russia, 119991
| |
Collapse
|
18
|
Güixens-Gallardo P, Zawada Z, Matyašovský J, Dziuba D, Pohl R, Kraus T, Hocek M. Brightly Fluorescent 2′-Deoxyribonucleoside Triphosphates Bearing Methylated Bodipy Fluorophore for in Cellulo Incorporation to DNA, Imaging, and Flow Cytometry. Bioconjug Chem 2018; 29:3906-3912. [DOI: 10.1021/acs.bioconjchem.8b00721] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Pedro Güixens-Gallardo
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nam. 2, CZ-16610 Prague 6, Czech Republic
- Department of Organic Chemistry, Faculty of Science, Charles University in Prague, Hlavova 8, CZ-12843 Prague 2, Czech Republic
| | - Zbigniew Zawada
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nam. 2, CZ-16610 Prague 6, Czech Republic
| | - Ján Matyašovský
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nam. 2, CZ-16610 Prague 6, Czech Republic
- Department of Organic Chemistry, Faculty of Science, Charles University in Prague, Hlavova 8, CZ-12843 Prague 2, Czech Republic
| | - Dmytro Dziuba
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nam. 2, CZ-16610 Prague 6, Czech Republic
| | - Radek Pohl
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nam. 2, CZ-16610 Prague 6, Czech Republic
| | - Tomáš Kraus
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nam. 2, CZ-16610 Prague 6, Czech Republic
| | - Michal Hocek
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nam. 2, CZ-16610 Prague 6, Czech Republic
- Department of Organic Chemistry, Faculty of Science, Charles University in Prague, Hlavova 8, CZ-12843 Prague 2, Czech Republic
| |
Collapse
|
19
|
Gryadunov DA, Shaskolskiy BL, Nasedkina TV, Rubina AY, Zasedatelev AS. The EIMB Hydrogel Microarray Technology: Thirty Years Later. Acta Naturae 2018; 10:4-18. [PMID: 30713758 PMCID: PMC6351029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Indexed: 11/26/2022] Open
Abstract
Biological microarrays (biochips) are analytical tools that can be used to implement complex integrative genomic and proteomic approaches to the solution of problems of personalized medicine (e.g., patient examination in order to reveal the disease long before the manifestation of clinical symptoms, assess the severity of pathological or infectious processes, and choose a rational treatment). The efficiency of biochips is predicated on their ability to perform multiple parallel specific reactions and to allow one to study the interactions of biopolymer molecules, such as DNA, proteins, glycans, etc. One of the pioneers of microarray technology was the Engelhardt Institute of Molecular Biology of the Russian Academy of Sciences (EIMB), with its suggestion to immobilize molecular probes in the three-dimensional structure of a hydrophilic gel. Since the first experiments on sequencing by hybridization on oligonucleotide microarrays conducted some 30 years ago, the hydrogel microarrays designed at the EIMB have come a long and successful way from basic research to clinical laboratory diagnostics. This review discusses the key aspects of hydrogel microarray technology and a number of state-ofthe-art approaches for a multiplex analysis of DNA and the protein biomarkers of socially significant diseases, including the molecular genetic, immunological, and epidemiological aspects of pathogenesis.
Collapse
Affiliation(s)
- D. A. Gryadunov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilova Str., 32, Moscow, 119991, Russia
| | - B. L. Shaskolskiy
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilova Str., 32, Moscow, 119991, Russia
| | - T. V. Nasedkina
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilova Str., 32, Moscow, 119991, Russia
| | - A. Yu. Rubina
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilova Str., 32, Moscow, 119991, Russia
| | - A. S. Zasedatelev
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilova Str., 32, Moscow, 119991, Russia
| |
Collapse
|