1
|
Rivera-Flores I, Wang E, Murphy K. Mycobacterium smegmatis NucS-promoted DNA mismatch repair involves limited resection by a 5'-3' exonuclease and is independent of homologous recombination and NHEJ. Nucleic Acids Res 2024; 52:12308-12323. [PMID: 39417425 PMCID: PMC11551767 DOI: 10.1093/nar/gkae895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 09/07/2024] [Accepted: 09/27/2024] [Indexed: 10/19/2024] Open
Abstract
The MutSL mismatch repair (MMR) systems in bacteria and eukaryotes correct mismatches made at the replication fork to maintain genome stability. A novel MMR system is represented by the EndoMS/NucS endonuclease from Actinobacterium Corynebacterium glutamicum, which recognizes mismatched substrates in vitro and creates dsDNA breaks at the mismatch. In this report, a genetic analysis shows that an M. smegmatis ΔnucS strain could be complemented by expression of wild type NucS protein, but not by one deleted of its last five amino acids, a region predicted to be critical for binding to the β-clamp at the replication fork. Oligo-recombineering was then leveraged to deliver defined mismatches to a defective hygromycin resistance gene on the M. smegmatis chromosome. We find that NucS recognizes and repairs G-G, G-T, and T-T mismatches in vivo, consistent with the recognition of these same mismatches in C. glutamicum in vitro, as well as mutation accumulation studies done in M. smegmatis. Finally, an assay that employs an oligo that promotes the generation of two mismatches in close proximity on the chromosome shows that a NucS-promoted cut is processed by a 5'-3' exonuclease (or 5'-Flap endonuclease) and that NucS-promoted MMR is independent of both homologous recombination and non-homologous end-joining.
Collapse
Affiliation(s)
- Iris V Rivera-Flores
- Department of Microbiology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Emily X Wang
- Department of Microbiology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Kenan C Murphy
- Department of Microbiology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| |
Collapse
|
2
|
Islam T, Josephs EA. Genome editing outcomes reveal mycobacterial NucS participates in a short-patch repair of DNA mismatches. Nucleic Acids Res 2024; 52:12295-12307. [PMID: 38747340 PMCID: PMC11551744 DOI: 10.1093/nar/gkae402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 04/24/2024] [Accepted: 05/01/2024] [Indexed: 05/28/2024] Open
Abstract
In the canonical DNA mismatch repair (MMR) mechanism in bacteria, if a nucleotide is incorrectly mis-paired with the template strand during replication, the resulting repair of this mis-pair can result in the degradation and re-synthesis of hundreds or thousands of nucleotides on the newly-replicated strand (long-patch repair). While mycobacteria, which include important pathogens such as Mycobacterium tuberculosis, lack the otherwise highly-conserved enzymes required for the canonical MMR reaction, it was found that disruption of a mycobacterial mismatch-sensitive endonuclease NucS results in a hyper-mutative phenotype, leading to the idea that NucS might be involved in a cryptic, independently-evolved DNA MMR mechanism, perhaps mediated by homologous recombination (HR) with a sister chromatid. Using oligonucleotide recombination, which allows us to introduce mismatches specifically into the genomes of a model for M. tuberculosis, Mycobacterium smegmatis, we find that NucS participates in a direct repair of DNA mismatches where the patch of excised nucleotides is largely confined to within ∼5-6 bp of the mis-paired nucleotides, which is inconsistent with mechanistic models of canonical mycobacterial HR or other double-strand break (DSB) repair reactions. The results presented provide evidence of a novel NucS-associated mycobacterial MMR mechanism occurring in vivo to regulate genetic mutations in mycobacteria.
Collapse
Affiliation(s)
- Tanjina Islam
- Department of Nanoscience, University of North Carolina at Greensboro, Greensboro, NC 27401, USA
| | - Eric A Josephs
- Department of Nanoscience, University of North Carolina at Greensboro, Greensboro, NC 27401, USA
- Department of Biology, University of North Carolina at Greensboro, Greensboro, NC 27401, USA
| |
Collapse
|
3
|
Wang Q, Zhang J, Zhao Z, Li Y, You J, Wang Y, Li X, Xu M, Rao Z. Dual genetic level modification engineering accelerate genome evolution of Corynebacterium glutamicum. Nucleic Acids Res 2024; 52:8609-8627. [PMID: 38967005 DOI: 10.1093/nar/gkae577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 06/02/2024] [Accepted: 06/26/2024] [Indexed: 07/06/2024] Open
Abstract
High spontaneous mutation rate is crucial for obtaining ideal phenotype and exploring the relationship between genes and phenotype. How to break the genetic stability of organisms and increase the mutation frequency has become a research hotspot. Here, we present a practical and controllable evolutionary tool (oMut-Cgts) based on dual genetic level modification engineering for Corynebacterium glutamicum. Firstly, the modification engineering of transcription and replication levels based on RNA polymerase α subunit and DNA helicase Cgl0854 as the 'dock' of cytidine deaminase (pmCDA1) significantly increased the mutation rate, proving that the localization of pmCDA1 around transient ssDNA is necessary for genome mutation. Then, the combined modification and optimization of engineering at dual genetic level achieved 1.02 × 104-fold increased mutation rate. The genome sequencing revealed that the oMut-Cgts perform uniform and efficient C:G→T:A transitions on a genome-wide scale. Furthermore, oMut-Cgts-mediated rapid evolution of C. glutamicum with stress (acid, oxidative and ethanol) tolerance proved that the tool has powerful functions in multi-dimensional biological engineering (rapid phenotype evolution, gene function mining and protein evolution). The strategies for rapid genome evolution provided in this study are expected to be applicable to a variety of applications in all prokaryotic cells.
Collapse
Affiliation(s)
- Qing Wang
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
- Institute of Future Food Technology, JITRI, Yixing 214200, China
| | - Jie Zhang
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
- Institute of Future Food Technology, JITRI, Yixing 214200, China
| | - Zhe Zhao
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
- Institute of Future Food Technology, JITRI, Yixing 214200, China
| | - Yichen Li
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
- Institute of Future Food Technology, JITRI, Yixing 214200, China
| | - Jiajia You
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
- Institute of Future Food Technology, JITRI, Yixing 214200, China
| | - Yi Wang
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
- Institute of Future Food Technology, JITRI, Yixing 214200, China
| | - Xiangfei Li
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
- Institute of Future Food Technology, JITRI, Yixing 214200, China
| | - Meijuan Xu
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
- Institute of Future Food Technology, JITRI, Yixing 214200, China
| | - Zhiming Rao
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
- Institute of Future Food Technology, JITRI, Yixing 214200, China
| |
Collapse
|
4
|
Dagva O, Thibessard A, Lorenzi JN, Labat V, Piotrowski E, Rouhier N, Myllykallio H, Leblond P, Bertrand C. Correction of non-random mutational biases along a linear bacterial chromosome by the mismatch repair endonuclease NucS. Nucleic Acids Res 2024; 52:5033-5047. [PMID: 38444149 PMCID: PMC11109965 DOI: 10.1093/nar/gkae132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 01/19/2024] [Accepted: 02/09/2024] [Indexed: 03/07/2024] Open
Abstract
The linear chromosome of Streptomyces exhibits a highly compartmentalized structure with a conserved central region flanked by variable arms. As double strand break (DSB) repair mechanisms play a crucial role in shaping the genome plasticity of Streptomyces, we investigated the role of EndoMS/NucS, a recently characterized endonuclease involved in a non-canonical mismatch repair (MMR) mechanism in archaea and actinobacteria, that singularly corrects mismatches by creating a DSB. We showed that Streptomyces mutants lacking NucS display a marked colonial phenotype and a drastic increase in spontaneous mutation rate. In vitro biochemical assays revealed that NucS cooperates with the replication clamp to efficiently cleave G/T, G/G and T/T mismatched DNA by producing DSBs. These findings are consistent with the transition-shifted mutational spectrum observed in the mutant strains and reveal that NucS-dependent MMR specific task is to eliminate G/T mismatches generated by the DNA polymerase during replication. Interestingly, our data unveil a crescent-shaped distribution of the transition frequency from the replication origin towards the chromosomal ends, shedding light on a possible link between NucS-mediated DSBs and Streptomyces genome evolution.
Collapse
Affiliation(s)
- Oyut Dagva
- Université de Lorraine, INRAE, UMR 1128 DynAMic, 54000 Nancy, France
| | | | | | - Victor Labat
- Université de Lorraine, INRAE, UMR 1128 DynAMic, 54000 Nancy, France
| | - Emilie Piotrowski
- Université de Lorraine, INRAE, UMR 1128 DynAMic, 54000 Nancy, France
| | - Nicolas Rouhier
- Université de Lorraine, INRAE, UMR 1136 IAM, 54000 Nancy, France
| | - Hannu Myllykallio
- Ecole Polytechnique, INSERM U696-CNRS UMR 7645 LOB, 91128 Palaiseau, France
| | - Pierre Leblond
- Université de Lorraine, INRAE, UMR 1128 DynAMic, 54000 Nancy, France
| | - Claire Bertrand
- Université de Lorraine, INRAE, UMR 1128 DynAMic, 54000 Nancy, France
| |
Collapse
|
5
|
Islam T, Josephs EA. Genome Editing Outcomes Reveal Mycobacterial NucS Participates in a Short-Patch Repair of DNA Mismatches. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.23.563644. [PMID: 37961639 PMCID: PMC10634747 DOI: 10.1101/2023.10.23.563644] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
In the canonical DNA mismatch repair (MMR) mechanism in bacteria, if during replication a nucleotide is incorrectly mis-paired with the template strand, the resulting repair of this mis-pair can result in the degradation and re-synthesis of hundreds or thousands of nucleotides on the newly-replicated strand (long-patch repair). While mycobacteria, which include important pathogens such as Mycobacterium tuberculosis, lack the otherwise highly-conserved enzymes required for the canonical MMR reaction, it was found that disruption of a mycobacterial mismatch-sensitive endonuclease NucS results in a hyper-mutative phenotype, which has led to the idea that NucS might be involved in a cryptic, independently-evolved DNA MMR mechanism. It has been proposed that nuclease activity at a mismatch might result in correction by homologous recombination (HR) with a sister chromatid. Using oligonucleotide recombination, which allows us to introduce mismatches during replication specifically into the genomes of a model for M. tuberculosis, Mycobacterium smegmatis, we find that NucS participates in a direct repair of DNA mismatches where the patch of excised nucleotides is largely confined to within ~5 - 6 bp of the mis-paired nucleotides, which is inconsistent with mechanistic models of canonical mycobacterial HR or other double-strand break (DSB) repair reactions. The results presented provide evidence of a novel NucS-associated mycobacterial MMR mechanism occurring in vivo to regulate genetic mutations in mycobacteria.
Collapse
Affiliation(s)
- Tanjina Islam
- Department of Nanoscience, University of North Carolina at Greensboro, Greensboro, NC, 27401, USA
| | - Eric A. Josephs
- Department of Nanoscience, University of North Carolina at Greensboro, Greensboro, NC, 27401, USA
- Department of Biology, University of North Carolina at Greensboro, Greensboro, NC, 27401, USA
| |
Collapse
|
6
|
Lynch M, Ali F, Lin T, Wang Y, Ni J, Long H. The divergence of mutation rates and spectra across the Tree of Life. EMBO Rep 2023; 24:e57561. [PMID: 37615267 PMCID: PMC10561183 DOI: 10.15252/embr.202357561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 08/01/2023] [Accepted: 08/02/2023] [Indexed: 08/25/2023] Open
Abstract
Owing to advances in genome sequencing, genome stability has become one of the most scrutinized cellular traits across the Tree of Life. Despite its centrality to all things biological, the mutation rate (per nucleotide site per generation) ranges over three orders of magnitude among species and several-fold within individual phylogenetic lineages. Within all major organismal groups, mutation rates scale negatively with the effective population size of a species and with the amount of functional DNA in the genome. This relationship is most parsimoniously explained by the drift-barrier hypothesis, which postulates that natural selection typically operates to reduce mutation rates until further improvement is thwarted by the power of random genetic drift. Despite this constraint, the molecular mechanisms underlying DNA replication fidelity and repair are free to wander, provided the performance of the entire system is maintained at the prevailing level. The evolutionary flexibility of the mutation rate bears on the resolution of several prior conundrums in phylogenetic and population-genetic analysis and raises challenges for future applications in these areas.
Collapse
Affiliation(s)
- Michael Lynch
- Biodesign Center for Mechanisms of EvolutionArizona State UniversityTempeAZUSA
| | - Farhan Ali
- Biodesign Center for Mechanisms of EvolutionArizona State UniversityTempeAZUSA
| | - Tongtong Lin
- Institute of Evolution and Marine Biodiversity, KLMMEOcean University of ChinaQingdaoChina
| | - Yaohai Wang
- Institute of Evolution and Marine Biodiversity, KLMMEOcean University of ChinaQingdaoChina
| | - Jiahao Ni
- Institute of Evolution and Marine Biodiversity, KLMMEOcean University of ChinaQingdaoChina
| | - Hongan Long
- Institute of Evolution and Marine Biodiversity, KLMMEOcean University of ChinaQingdaoChina
| |
Collapse
|
7
|
Cai N, Chen J, Gao N, Ni X, Lei Y, Pu W, Wang L, Che B, Fan L, Zhou W, Feng J, Wang Y, Zheng P, Sun J. Engineering of the DNA replication and repair machinery to develop binary mutators for rapid genome evolution of Corynebacterium glutamicum. Nucleic Acids Res 2023; 51:8623-8642. [PMID: 37449409 PMCID: PMC10484736 DOI: 10.1093/nar/gkad602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 06/29/2023] [Accepted: 07/06/2023] [Indexed: 07/18/2023] Open
Abstract
Corynebacterium glutamicum is an important industrial workhorse for production of amino acids and chemicals. Although recently developed genome editing technologies have advanced the rational genetic engineering of C. glutamicum, continuous genome evolution based on genetic mutators is still unavailable. To address this issue, the DNA replication and repair machinery of C. glutamicum was targeted in this study. DnaQ, the homolog of ϵ subunit of DNA polymerase III responsible for proofreading in Escherichia coli, was proven irrelevant to DNA replication fidelity in C. glutamicum. However, the histidinol phosphatase (PHP) domain of DnaE1, the α subunit of DNA polymerase III, was characterized as the key proofreading element and certain variants with PHP mutations allowed elevated spontaneous mutagenesis. Repression of the NucS-mediated post-replicative mismatch repair pathway or overexpression of newly screened NucS variants also impaired the DNA replication fidelity. Simultaneous interference with the DNA replication and repair machinery generated a binary genetic mutator capable of increasing the mutation rate by up to 2352-fold. The mutators facilitated rapid evolutionary engineering of C. glutamicum to acquire stress tolerance and protein overproduction phenotypes. This study provides efficient tools for evolutionary engineering of C. glutamicum and could inspire the development of mutagenesis strategy for other microbial hosts.
Collapse
Affiliation(s)
- Ningyun Cai
- Tianjin University of Science and Technology, Tianjin 300457, China
- Key Laboratory of Engineering Biology for Low-carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Jiuzhou Chen
- Key Laboratory of Engineering Biology for Low-carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Ning Gao
- Key Laboratory of Engineering Biology for Low-carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaomeng Ni
- Key Laboratory of Engineering Biology for Low-carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Yu Lei
- Key Laboratory of Engineering Biology for Low-carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Wei Pu
- Key Laboratory of Engineering Biology for Low-carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Lixian Wang
- Key Laboratory of Engineering Biology for Low-carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Bin Che
- Key Laboratory of Engineering Biology for Low-carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Liwen Fan
- Key Laboratory of Engineering Biology for Low-carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Wenjuan Zhou
- Key Laboratory of Engineering Biology for Low-carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Jinhui Feng
- Key Laboratory of Engineering Biology for Low-carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Yu Wang
- Key Laboratory of Engineering Biology for Low-carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- National Center of Technology Innovation for Synthetic Biology, Tianjin 300308, China
- Haihe Laboratory of Synthetic Biology, Tianjin 300308, China
| | - Ping Zheng
- Tianjin University of Science and Technology, Tianjin 300457, China
- Key Laboratory of Engineering Biology for Low-carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- National Center of Technology Innovation for Synthetic Biology, Tianjin 300308, China
| | - Jibin Sun
- Key Laboratory of Engineering Biology for Low-carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- National Center of Technology Innovation for Synthetic Biology, Tianjin 300308, China
| |
Collapse
|
8
|
Ju Y, Zhang H, Du X, Wei J, Liu J, Wei L, Liu Q, Xu N. DRAGON: Harnessing the power of DNA repair for accelerating genome evolution in Corynebacterium glutamicum. Metab Eng 2023; 79:182-191. [PMID: 37579915 DOI: 10.1016/j.ymben.2023.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 08/10/2023] [Accepted: 08/11/2023] [Indexed: 08/16/2023]
Abstract
Hypermutation is a robust phenotype characterized by high elevation of spontaneous mutation rates, which has been shown to facilitate rapid adaptation to the stressful environments by hitchhiking with favorable mutations. Accumulating evidence argues that deficient DNA repair can give rise to hypermutation events in bacteria. Here, we provided a comprehensive survey of DNA repair systems to identify promising targets ensuring high DNA fidelity in Corynebacterium glutamicum. Four effective DNA repair factors, including nucS, tag, xpb, and dinP, were found to be strongly associated with the occurrence of hypermutable phenotypes, and these targets were then engineered to establish a CRISPRi-based all-in-one plasmid system for genome mutagenesis. On the basis of these findings, we presented a novel evolutionary engineering method named "DNA repair-assisted genome evolution (DRAGON)". As a proof-of-concept, DRAGON strategy was successfully applied to facilitate rapid acquisition of microbial robustness in C. glutamicum, such as increased tolerances towards kanamycin, acidic pH and high L-serine, showing its promise and potential for rapid strain improvement. Overall, our study will offer new insights into the understanding of DNA repair and evolutionary adaptation in C. glutamicum.
Collapse
Affiliation(s)
- Yun Ju
- Tianjin University of Science and Technology, Tianjin, 300457, PR China
| | - Hongyu Zhang
- University of Chinese Academy of Sciences, Beijing, 100049, PR China; Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, PR China
| | - Xiaocong Du
- Tianjin University of Science and Technology, Tianjin, 300457, PR China
| | - Jingxuan Wei
- Tianjin University of Science and Technology, Tianjin, 300457, PR China
| | - Jun Liu
- University of Chinese Academy of Sciences, Beijing, 100049, PR China; Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, PR China; National Technology Innovation Center of Synthetic Biology, Tianjin, 300308, PR China; Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, PR China
| | - Liang Wei
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, PR China; National Technology Innovation Center of Synthetic Biology, Tianjin, 300308, PR China.
| | - Qingdai Liu
- Tianjin University of Science and Technology, Tianjin, 300457, PR China.
| | - Ning Xu
- University of Chinese Academy of Sciences, Beijing, 100049, PR China; Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, PR China; National Technology Innovation Center of Synthetic Biology, Tianjin, 300308, PR China; Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, PR China.
| |
Collapse
|
9
|
Fressatti Cardoso R, Martín-Blecua I, Pietrowski Baldin V, Meneguello JE, Valverde JR, Blázquez J, Castañeda-García A. Noncanonical Mismatch Repair Protein NucS Modulates the Emergence of Antibiotic Resistance in Mycobacterium abscessus. Microbiol Spectr 2022; 10:e0222822. [PMID: 36219122 PMCID: PMC9769700 DOI: 10.1128/spectrum.02228-22] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 09/22/2022] [Indexed: 01/06/2023] Open
Abstract
NucS/EndoMS-dependent noncanonical mismatch repair (MMR) ensures the stability of genomic DNA in mycobacteria and acts as a guardian of the genome by preventing the accumulation of point mutations. In order to address whether the inactivation of noncanonical MMR could increase the acquisition of drug resistance by mutation, a ΔnucS strain was constructed and explored in the emerging pathogen Mycobacterium abscessus. Deletion of nucS resulted in a mutator phenotype with increased acquisition of resistance to macrolides and aminoglycosides, the two main groups of antimycobacterial agents for M. abscessus treatment, and also to second-line drugs such as fluoroquinolones. Inactivation of the noncanonical MMR in M. abscessus led to increases of 10- to 22-fold in the appearance of spontaneous mutants resistant to the macrolide clarithromycin and the aminoglycosides amikacin, gentamicin, and apramycin, compared with the wild-type strain. Furthermore, emergence of fluoroquinolone (ciprofloxacin) resistance was detected in a nucS-deficient strain but not in a wild-type M. abscessus strain. Acquired drug resistance to macrolides and aminoglycosides was analyzed through sequencing of the 23S rRNA gene rrl and the 16S rRNA gene rrs from independent drug-resistant colonies of both strains. When the acquisition of clarithromycin resistance was examined, a different mutational profile was detected in the M. abscessus ΔnucS strain compared with the wild-type one. To summarize, M. abscessus requires the NucS-dependent noncanonical MMR pathway to prevent the emergence of drug-resistant isolates by mutation. To our knowledge, this is the first report that reveals the role of NucS in a human pathogen, and these findings have potential implications for the treatment of M. abscessus infections. IMPORTANCE Chronic infections caused by M. abscessus are an emerging challenge in public health, posing a substantial health and economic burden, especially in patients with cystic fibrosis. Treatment of M. abscessus infections with antibiotics is particularly challenging, as its complex drug resistance mechanisms, including constitutive resistance through DNA mutation, lead to high rates of treatment failure. To decipher the evolution of antibiotic resistance in M. abscessus, we studied NucS-dependent noncanonical MMR, a unique DNA repair pathway involved in genomic maintenance. Inactivation of NucS is linked to the increase of DNA mutations (hypermutation), which can confer drug resistance. Our analysis detected increased acquisition of mutations conferring resistance to first-line and second-line antibiotics. We believe that this study will improve the knowledge of how this pathogen could evolve into an untreatable infectious agent, and it uncovers a role for hypermutators in chronic infectious diseases under antibiotic pressure.
Collapse
Affiliation(s)
- Rosilene Fressatti Cardoso
- Departamento de Análises Clínicas e Biomedicina, Universidade Estadual de Maringá, Maringá, Paraná, Brazil
| | - Isabel Martín-Blecua
- Departamento de Biotecnología Microbiana, Centro Nacional de Biotecnología CNB-CSIC, Madrid, Spain
| | - Vanessa Pietrowski Baldin
- Departamento de Análises Clínicas e Biomedicina, Universidade Estadual de Maringá, Maringá, Paraná, Brazil
| | - Jean Eduardo Meneguello
- Departamento de Análises Clínicas e Biomedicina, Universidade Estadual de Maringá, Maringá, Paraná, Brazil
| | - José Ramón Valverde
- Departamento de Computación Científica, Centro Nacional de Biotecnología CNB-CSIC, Madrid, Spain
| | - Jesús Blázquez
- Departamento de Biotecnología Microbiana, Centro Nacional de Biotecnología CNB-CSIC, Madrid, Spain
| | - Alfredo Castañeda-García
- Departamento de Biotecnología Microbiana, Centro Nacional de Biotecnología CNB-CSIC, Madrid, Spain
| |
Collapse
|
10
|
Mulye M, Singh MI, Jain V. From Processivity to Genome Maintenance: The Many Roles of Sliding Clamps. Genes (Basel) 2022; 13:2058. [PMID: 36360296 PMCID: PMC9690074 DOI: 10.3390/genes13112058] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 11/03/2022] [Accepted: 11/04/2022] [Indexed: 07/30/2023] Open
Abstract
Sliding clamps play a pivotal role in the process of replication by increasing the processivity of the replicative polymerase. They also serve as an interacting platform for a plethora of other proteins, which have an important role in other DNA metabolic processes, including DNA repair. In other words, clamps have evolved, as has been correctly referred to, into a mobile "tool-belt" on the DNA, and provide a platform for several proteins that are involved in maintaining genome integrity. Because of the central role played by the sliding clamp in various processes, its study becomes essential and relevant in understanding these processes and exploring the protein as an important drug target. In this review, we provide an updated report on the functioning, interactions, and moonlighting roles of the sliding clamps in various organisms and its utilization as a drug target.
Collapse
Affiliation(s)
- Meenakshi Mulye
- Correspondence: (M.M.); (V.J.); Tel.: +91-755-269-1425 (V.J.); Fax: +91-755-269-2392 (V.J.)
| | | | - Vikas Jain
- Correspondence: (M.M.); (V.J.); Tel.: +91-755-269-1425 (V.J.); Fax: +91-755-269-2392 (V.J.)
| |
Collapse
|
11
|
Kamoshida G, Yamada N, Nakamura T, Yamaguchi D, Kai D, Yamashita M, Hayashi C, Kanda N, Sakaguchi M, Morimoto H, Sawada T, Okada T, Kaya Y, Takemoto N, Yahiro K. Preferential Selection of Low-Frequency, Lipopolysaccharide-Modified, Colistin-Resistant Mutants with a Combination of Antimicrobials in Acinetobacter baumannii. Microbiol Spectr 2022; 10:e0192822. [PMID: 36173297 PMCID: PMC9602988 DOI: 10.1128/spectrum.01928-22] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 09/13/2022] [Indexed: 12/31/2022] Open
Abstract
Colistin, which targets lipopolysaccharide (LPS), is used as a last-resort drug against severe infections caused by drug-resistant Acinetobacter baumannii. However, A. baumannii possesses two colistin-resistance mechanisms. LPS modification caused by mutations in pmrAB genes is often observed in clinical isolates of multidrug-resistant Gram-negative pathogens. In addition to LPS modification, A. baumannii has a unique colistin resistance mechanism, a complete loss of LPS due to mutations in the lpxACD genes, which are involved in LPS biosynthesis. This study aimed to elucidate the detailed mechanism of the emergence of colistin-resistant A. baumannii using strains with the same genetic background. Various colistin-resistant strains were generated experimentally using colistin alone and in combination with other antimicrobials, such as meropenem and ciprofloxacin, and the mutation spectrum was analyzed. In vitro selection of A. baumannii in the presence of colistin led to the emergence of strains harboring mutations in lpxACD genes, resulting in LPS-deficient colistin-resistant strains. However, combination of colistin with other antimicrobials led to the selection of pmrAB mutant strains, resulting in strains with modified LPS (LPS-modified strains). Further, the LPS-deficient strains showed decreased fitness and increased susceptibility to many antibiotics and disinfectants. As LPS-deficient strains have a higher biological cost than LPS-modified strains, our findings suggested that pmrAB mutants are more likely to be isolated in clinical settings. We provide novel insights into the mechanisms of resistance to colistin and provide substantial solutions along with precautions for facilitating current research and treatment of colistin-resistant A. baumannii infections. IMPORTANCE Acinetobacter baumannii has developed resistance to various antimicrobial drugs, and its drug-resistant strains cause nosocomial infections. Controlling these infections has become a global clinical challenge. Carbapenem antibiotics are the frontline treatment drugs for infectious diseases caused by A. baumannii. For patients with infections caused by carbapenem-resistant A. baumannii, colistin-based therapy is often the only treatment option. However, A. baumannii readily acquires resistance to colistin. Many patients infected with colistin-resistant A. baumannii undergo colistin treatment before isolation of the colistin-resistant strain, and it is hypothesized that colistin resistance predominantly emerges under selective pressure during colistin therapy. Although the concomitant use of colistin and carbapenems has been reported to have a synergistic effect in vitro against carbapenem-resistant A. baumannii strains, our observations strongly suggest the need for attention to the emergence of strains with a modified lipopolysaccharide during treatment.
Collapse
Affiliation(s)
- Go Kamoshida
- Department of Microbiology and Infection Control Sciences, Kyoto Pharmaceutical University, Kyoto, Japan
| | - Noriteru Yamada
- Department of Microbiology and Infection Control Sciences, Kyoto Pharmaceutical University, Kyoto, Japan
| | - Tomoka Nakamura
- Department of Microbiology and Infection Control Sciences, Kyoto Pharmaceutical University, Kyoto, Japan
| | - Daiki Yamaguchi
- Department of Microbiology and Infection Control Sciences, Kyoto Pharmaceutical University, Kyoto, Japan
| | - Daichi Kai
- Department of Microbiology and Infection Control Sciences, Kyoto Pharmaceutical University, Kyoto, Japan
| | - Maho Yamashita
- Department of Microbiology and Infection Control Sciences, Kyoto Pharmaceutical University, Kyoto, Japan
| | - Chiaki Hayashi
- Department of Microbiology and Infection Control Sciences, Kyoto Pharmaceutical University, Kyoto, Japan
| | - Nana Kanda
- Department of Microbiology and Infection Control Sciences, Kyoto Pharmaceutical University, Kyoto, Japan
| | - Moe Sakaguchi
- Department of Microbiology and Infection Control Sciences, Kyoto Pharmaceutical University, Kyoto, Japan
| | - Hitoshi Morimoto
- Department of Microbiology and Infection Control Sciences, Kyoto Pharmaceutical University, Kyoto, Japan
| | - Teppei Sawada
- Department of Microbiology and Infection Control Sciences, Kyoto Pharmaceutical University, Kyoto, Japan
| | - Tomoko Okada
- Department of Microbiology and Infection Control Sciences, Kyoto Pharmaceutical University, Kyoto, Japan
| | - Yuki Kaya
- Department of Microbiology and Infection Control Sciences, Kyoto Pharmaceutical University, Kyoto, Japan
| | - Norihiko Takemoto
- Pathogenic Microbe Laboratory, Research Institute, National Center for Global Health and Medicine, Tokyo, Japan
| | - Kinnosuke Yahiro
- Department of Microbiology and Infection Control Sciences, Kyoto Pharmaceutical University, Kyoto, Japan
| |
Collapse
|
12
|
Rapid evolution of mutation rate and spectrum in response to environmental and population-genetic challenges. Nat Commun 2022; 13:4752. [PMID: 35963846 PMCID: PMC9376063 DOI: 10.1038/s41467-022-32353-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 07/26/2022] [Indexed: 11/15/2022] Open
Abstract
Ecological and demographic factors can significantly shape the evolution of microbial populations both directly and indirectly, as when changes in the effective population size affect the efficiency of natural selection on the mutation rate. However, it remains unclear how rapidly the mutation-rate responds evolutionarily to the entanglement of ecological and population-genetic factors over time. Here, we directly assess the mutation rate and spectrum of Escherichia coli clones isolated from populations evolving in response to 1000 days of different transfer volumes and resource-replenishment intervals. The evolution of mutation rates proceeded rapidly in response to demographic and/or environmental changes, with substantial bidirectional shifts observed as early as 59 generations. These results highlight the remarkable rapidity by which mutation rates are shaped in asexual lineages in response to environmental and population-genetic forces, and are broadly consistent with the drift-barrier hypothesis for the evolution of mutation rates, while also highlighting situations in which mutator genotypes may be promoted by positive selection. How rapidly the mutation rate responds evolutionarily to ecological and population-genetic factors over time is unclear. Here, the authors show that the evolution of mutation rates in E. coli proceeds rapidly in response to these factors with substantial bidirectional shifts.
Collapse
|
13
|
Abstract
Bacteria are continuously exposed to numerous endogenous and exogenous DNA-damaging agents. To maintain genome integrity and ensure cell survival, bacteria have evolved several DNA repair pathways to correct different types of DNA damage and non-canonical bases, including strand breaks, nucleotide modifications, cross-links, mismatches and ribonucleotide incorporations. Recent advances in genome-wide screens, the availability of thousands of whole-genome sequences and advances in structural biology have enabled the rapid discovery and characterization of novel bacterial DNA repair pathways and new enzymatic activities. In this Review, we discuss recent advances in our understanding of base excision repair and nucleotide excision repair, and we discuss several new repair processes including the EndoMS mismatch correction pathway and the MrfAB excision repair system.
Collapse
Affiliation(s)
- Katherine J Wozniak
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | - Lyle A Simmons
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
14
|
Katju V, Konrad A, Deiss TC, Bergthorsson U. Mutation rate and spectrum in obligately outcrossing Caenorhabditis elegans mutation accumulation lines subjected to RNAi-induced knockdown of the mismatch repair gene msh-2. G3 GENES|GENOMES|GENETICS 2022; 12:6407146. [PMID: 34849777 PMCID: PMC8727991 DOI: 10.1093/g3journal/jkab364] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 10/13/2021] [Indexed: 01/09/2023]
Abstract
DNA mismatch repair (MMR), an evolutionarily conserved repair pathway shared by prokaryotic and eukaryotic species alike, influences molecular evolution by detecting and correcting mismatches, thereby protecting genetic fidelity, reducing the mutational load, and preventing lethality. Herein we conduct the first genome-wide evaluation of the alterations to the mutation rate and spectrum under impaired activity of the MutSα homolog, msh-2, in Caenorhabditis elegans male–female fog-2(lf) lines. We performed mutation accumulation (MA) under RNAi-induced knockdown of msh-2 for up to 50 generations, followed by next-generation sequencing of 19 MA lines and the ancestral control. msh-2 impairment in the male–female background substantially increased the frequency of nuclear base substitutions (∼23×) and small indels (∼328×) relative to wildtype hermaphrodites. However, we observed no increase in the mutation rates of mtDNA, and copy-number changes of single-copy genes. There was a marked increase in copy-number variation of rDNA genes under MMR impairment. In C. elegans, msh-2 repairs transitions more efficiently than transversions and increases the AT mutational bias relative to wildtype. The local sequence context, including sequence complexity, G + C-content, and flanking bases influenced the mutation rate. The X chromosome exhibited lower substitution and higher indel rates than autosomes, which can either result from sex-specific mutation rates or a nonrandom distribution of mutable sites between chromosomes. Provided the observed difference in mutational pattern is mostly due to MMR impairment, our results indicate that the specificity of MMR varies between taxa, and is more efficient in detecting and repairing small indels in eukaryotes relative to prokaryotes.
Collapse
Affiliation(s)
- Vaishali Katju
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX 77845, USA
| | - Anke Konrad
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX 77845, USA
- Faculdade de Ciência da Universidade de Lisboa (FCUL), CE3C—Centre for Ecology, Evolution and Environmental Changes, 1749-016 Lisboa, Portugal
| | - Thaddeus C Deiss
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX 77845, USA
| | - Ulfar Bergthorsson
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX 77845, USA
| |
Collapse
|
15
|
Lin T, Zhang L, Wu M, Jiang D, Li Z, Yang Z. Repair of Hypoxanthine in DNA Revealed by DNA Glycosylases and Endonucleases From Hyperthermophilic Archaea. Front Microbiol 2021; 12:736915. [PMID: 34531846 PMCID: PMC8438529 DOI: 10.3389/fmicb.2021.736915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 08/04/2021] [Indexed: 11/13/2022] Open
Abstract
Since hyperthermophilic Archaea (HA) thrive in high-temperature environments, which accelerate the rates of deamination of base in DNA, their genomic stability is facing a severe challenge. Hypoxanthine (Hx) is one of the common deaminated bases in DNA. Generally, replication of Hx in DNA before repaired causes AT → GC mutation. Biochemical data have demonstrated that 3-methyladenine DNA glycosylase II (AlkA) and Family V uracil DNA glycosylase (UDG) from HA could excise Hx from DNA, thus triggering a base excision repair (BER) process for Hx repair. Besides, three endonucleases have been reported from HA: Endonuclease V (EndoV), Endonuclease Q (EndoQ), and Endonuclease NucS (EndoNucS), capable of cleaving Hx-containing DNA, thereby providing alternative pathways for Hx repair. Both EndoV and EndoQ could cleave one DNA strand with Hx, thus forming a nick and further initiating an alternative excision repair (AER) process for the follow-up repair. By comparison, EndoNucS cleaves both strands of Hx-containing DNA in a restriction endonuclease manner, thus producing a double-stranded break (DSB). This created DSB might be repaired by homologous recombination (HR) or by a combination activity of DNA polymerase (DNA pol), flap endonuclease 1 (FEN1), and DNA ligase (DNA lig). Herein, we reviewed the most recent advances in repair of Hx in DNA triggered by DNA glycosylases and endonucleases from HA, and proposed future research directions.
Collapse
Affiliation(s)
- Tan Lin
- College of Environmental Science and Engineering, Marine Science and Technology Institute, Yangzhou University, Yangzhou, China
| | - Likui Zhang
- College of Environmental Science and Engineering, Marine Science and Technology Institute, Yangzhou University, Yangzhou, China.,Guangling College, Yangzhou University, Yangzhou, China
| | - Mai Wu
- College of Environmental Science and Engineering, Marine Science and Technology Institute, Yangzhou University, Yangzhou, China
| | - Donghao Jiang
- College of Environmental Science and Engineering, Marine Science and Technology Institute, Yangzhou University, Yangzhou, China
| | - Zheng Li
- College of Plant Protection, Agricultural University of Hebei, Baoding, China
| | - Zhihui Yang
- College of Plant Protection, Agricultural University of Hebei, Baoding, China
| |
Collapse
|
16
|
Castro RAD, Borrell S, Gagneux S. The within-host evolution of antimicrobial resistance in Mycobacterium tuberculosis. FEMS Microbiol Rev 2021; 45:fuaa071. [PMID: 33320947 PMCID: PMC8371278 DOI: 10.1093/femsre/fuaa071] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 12/11/2020] [Indexed: 12/12/2022] Open
Abstract
Tuberculosis (TB) has been responsible for the greatest number of human deaths due to an infectious disease in general, and due to antimicrobial resistance (AMR) in particular. The etiological agents of human TB are a closely-related group of human-adapted bacteria that belong to the Mycobacterium tuberculosis complex (MTBC). Understanding how MTBC populations evolve within-host may allow for improved TB treatment and control strategies. In this review, we highlight recent works that have shed light on how AMR evolves in MTBC populations within individual patients. We discuss the role of heteroresistance in AMR evolution, and review the bacterial, patient and environmental factors that likely modulate the magnitude of heteroresistance within-host. We further highlight recent works on the dynamics of MTBC genetic diversity within-host, and discuss how spatial substructures in patients' lungs, spatiotemporal heterogeneity in antimicrobial concentrations and phenotypic drug tolerance likely modulates the dynamics of MTBC genetic diversity in patients during treatment. We note the general characteristics that are shared between how the MTBC and other bacterial pathogens evolve in humans, and highlight the characteristics unique to the MTBC.
Collapse
Affiliation(s)
- Rhastin A D Castro
- Swiss Tropical and Public Health Institute, Socinstrasse 57, 4051 Basel, Basel, Switzerland
- University of Basel, Petersplatz 1, 4001 Basel, Basel, Switzerland
| | - Sonia Borrell
- Swiss Tropical and Public Health Institute, Socinstrasse 57, 4051 Basel, Basel, Switzerland
- University of Basel, Petersplatz 1, 4001 Basel, Basel, Switzerland
| | - Sebastien Gagneux
- Swiss Tropical and Public Health Institute, Socinstrasse 57, 4051 Basel, Basel, Switzerland
- University of Basel, Petersplatz 1, 4001 Basel, Basel, Switzerland
| |
Collapse
|
17
|
Murphy KC. Oligo-Mediated Recombineering and its Use for Making SNPs, Knockouts, Insertions, and Fusions in Mycobacterium tuberculosis. Methods Mol Biol 2021; 2314:301-321. [PMID: 34235660 DOI: 10.1007/978-1-0716-1460-0_14] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Phage recombination systems have been instrumental in the development of gene modification technologies for bacterial pathogens. In particular, the Che9 phage RecET system has been used successfully for over 10 years for making gene knockouts and fusions in Mycobacterium tuberculosis. This "recombineering" technology typically uses linear dsDNA substrates that contain a drug-resistance marker flanked by (up to) 500 base pairs of DNA homologous to the target site. Less often employed in mycobacterial recombineering is the use of oligonucleotides, which require only the action of the RecT annealase to align oligos to ssDNA regions of the replication fork, for subsequent incorporation into the chromosome. Despite the higher frequency of such events relative to dsDNA-promoted recombineering, oligo-mediated changes generally suffer from the disadvantage of not being selectable, thus making them harder to isolate. This chapter discusses steps and methodologies that increase the frequencies of finding oligo-mediated events, including the transfer of single nucleotide polymorphisms (SNPs) to mycobacterial chromosomes, and the use of oligos in conjunction with the mycobacterial phage Bxb1 site-specific recombination system for the easy generation of knockouts, insertion, and fusions, in a protocol known as ORBIT.
Collapse
Affiliation(s)
- Kenan C Murphy
- Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, MA, USA.
| |
Collapse
|
18
|
Control of Genome Stability by EndoMS/NucS-Mediated Non-Canonical Mismatch Repair. Cells 2021; 10:cells10061314. [PMID: 34070467 PMCID: PMC8228993 DOI: 10.3390/cells10061314] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 05/17/2021] [Accepted: 05/18/2021] [Indexed: 12/17/2022] Open
Abstract
The DNA repair endonuclease EndoMS/NucS is highly conserved in Archaea and Actinobacteria. This enzyme is able to recognize and cleave dsDNA carrying a mismatched base pair, and its activity is enhanced by the interaction with the sliding clamp of the replisome. Today, EndoMS/NucS has been established as the key protein of a non-canonical mismatch repair (MMR) pathway, acting specifically in the repair of transitions and being essential for maintaining genome stability. Despite having some particularities, such as its lower activity on transversions and the inability to correct indels, EndoMS/NucS meets the main hallmarks of a MMR. Its absence leads to a hypermutator phenotype, a transition-biased mutational spectrum and an increase in homeologous recombination. Interestingly, polymorphic EndoMS/NucS variants with a possible effect in mutation rate have been detected in clinical isolates of the relevant actinobacterial pathogen Mycobacterium tuberculosis. Considering that MMR defects are often associated with the emergence of resistant bacteria, the existence of EndoMS/NucS-defective mutators could have an important role in the acquisition of antibiotic resistance in M. tuberculosis. Therefore, a further understanding of the EndoMS/NucS-mediated non-canonical MMR pathway may reveal new strategies to predict and fight drug resistance. This review is focused on the recent progress in NucS, with special emphasis on its effect on genome stability and evolvability in Actinobacteria.
Collapse
|
19
|
Complex Evolution of the Mismatch Repair System in Eukaryotes is Illuminated by Novel Archaeal Genomes. J Mol Evol 2021; 89:12-18. [PMID: 33409543 PMCID: PMC7884376 DOI: 10.1007/s00239-020-09979-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 11/27/2020] [Indexed: 11/21/2022]
Abstract
Repairing DNA damage is one of the most important functions of the ‘housekeeping’ proteins, as DNA molecules are constantly subject to different kinds of damage. An important mechanism of DNA repair is the mismatch repair system (MMR). In eukaryotes, it is more complex than it is in bacteria or Archaea due to an inflated number of paralogues produced as a result of an extensive process of gene duplication and further specialization upon the evolution of the first eukaryotes, including an important part of the meiotic machinery. Recently, the discovery and sequencing of Asgard Archaea allowed us to revisit the MMR system evolution with the addition of new data from a group that is closely related to the eukaryotic ancestor. This new analysis provided evidence for a complex evolutionary history of eukaryotic MMR: an archaeal origin for the nuclear MMR system in eukaryotes, with subsequent acquisitions of other MMR systems from organelles.
Collapse
|
20
|
Ahmad S, Huang Q, Ni J, Xiao Y, Yang Y, Shen Y. Functional Analysis of the NucS/EndoMS of the Hyperthermophilic Archaeon Sulfolobus islandicus REY15A. Front Microbiol 2020; 11:607431. [PMID: 33335523 PMCID: PMC7736090 DOI: 10.3389/fmicb.2020.607431] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 11/10/2020] [Indexed: 11/13/2022] Open
Abstract
EndoMS is a recently identified mismatch specific endonuclease in Thermococcales of Archaea and Mycobacteria of Bacteria. The homologs of EndoMS are conserved in Archaea and Actinobacteria, where classic MutS-MutL-mediated DNA mismatch repair pathway is absent or non-functional. Here, we report a study on the in vitro mismatch cleavage activity and in vivo function of an EndoMS homolog (SisEndoMS) from Sulfolobus islandicus REY15A, the model archaeon belonging to Crenarchaeota. SisEndoMS is highly active on duplex DNA containing G/T, G/G, and T/T mismatches. Interestingly, the cleavage activity of SisEndoMS is stimulated by the heterotrimeric PCNAs, and when Mn2+ was used as the co-factor instead of Mg2+, SisEndoMS was also active on DNA substrates containing C/T or A/G mismatches, suggesting that the endonuclease activity can be regulated by ion co-factors and accessory proteins. We compared the spontaneous mutation rate of the wild type strain REY15A and ∆endoMS by counter selection against 5-fluoroorotic acid (5-FOA). The endoMS knockout mutant had much higher spontaneous mutation rate (5.06 × 10−3) than that of the wild type (4.6 × 10−6). A mutation accumulation analysis also showed that the deletion mutant had a higher mutation occurrence than the wild type, with transition mutation being the dominant, suggesting that SisEndoMS is responsible for mutation avoidance in this hyperthermophilic archaeon. Overexpression of the wild type SisEndoMS in S. islandicus resulted in retarded growth and abnormal cell morphology, similar to strains overexpressing Hje and Hjc, the Holliday junction endonucleases. Transcriptomic analysis revealed that SisEndoMS overexpression led to upregulation of distinct gene including the CRISPR-Cas IIIB system, methyltransferases, and glycosyltransferases, which are mainly localized to specific regions in the chromosome. Collectively, our results support that EndoMS proteins represent a noncanonical DNA repair pathway in Archaea. The mechanism of the mismatch repair pathway in Sulfolobus which have a single chromosome is discussed.
Collapse
Affiliation(s)
- Sohail Ahmad
- CRISPR and Archaea Biology Research Center, State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, Qingdao, China
| | - Qihong Huang
- CRISPR and Archaea Biology Research Center, State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, Qingdao, China
| | - Jinfeng Ni
- CRISPR and Archaea Biology Research Center, State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, Qingdao, China
| | - Yuanxi Xiao
- CRISPR and Archaea Biology Research Center, State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, Qingdao, China
| | - Yunfeng Yang
- CRISPR and Archaea Biology Research Center, State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, Qingdao, China
| | - Yulong Shen
- CRISPR and Archaea Biology Research Center, State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, Qingdao, China
| |
Collapse
|
21
|
Marshall CJ, Santangelo TJ. Archaeal DNA Repair Mechanisms. Biomolecules 2020; 10:E1472. [PMID: 33113933 PMCID: PMC7690668 DOI: 10.3390/biom10111472] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 10/14/2020] [Accepted: 10/15/2020] [Indexed: 12/29/2022] Open
Abstract
Archaea often thrive in environmental extremes, enduring levels of heat, pressure, salinity, pH, and radiation that prove intolerable to most life. Many environmental extremes raise the propensity for DNA damaging events and thus, impact DNA stability, placing greater reliance on molecular mechanisms that recognize DNA damage and initiate accurate repair. Archaea can presumably prosper in harsh and DNA-damaging environments in part due to robust DNA repair pathways but surprisingly, no DNA repair pathways unique to Archaea have been described. Here, we review the most recent advances in our understanding of archaeal DNA repair. We summarize DNA damage types and their consequences, their recognition by host enzymes, and how the collective activities of many DNA repair pathways maintain archaeal genomic integrity.
Collapse
Affiliation(s)
| | - Thomas J. Santangelo
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO 80523, USA;
| |
Collapse
|
22
|
Zhang L, Jiang D, Wu M, Yang Z, Oger PM. New Insights Into DNA Repair Revealed by NucS Endonucleases From Hyperthermophilic Archaea. Front Microbiol 2020; 11:1263. [PMID: 32714287 PMCID: PMC7343888 DOI: 10.3389/fmicb.2020.01263] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 05/18/2020] [Indexed: 12/22/2022] Open
Abstract
Hyperthermophilic Archaea (HA) thrive in high temperature environments and their genome is facing severe stability challenge due to the increased DNA damage levels caused by high temperature. Surprisingly, HA display spontaneous mutation frequencies similar to mesophilic microorganisms, thereby indicating that the former must possess more efficient DNA repair systems than the latter to counteract the potentially enhanced mutation rates under the harsher environment. Although a few repair proteins or enzymes from HA have been biochemically and structurally characterized, the molecular mechanisms of DNA repair of HA remain largely unknown. Genomic analyses of HA revealed that they lack MutS/MutL homologues of the mismatch repair (MMR) pathway and the recognition proteins of the nucleotide excision repair (NER) pathway. Endonucleases play an essential role in DNA repair. NucS endonuclease, a novel endonuclease recently identified in some HA and bacteria, has been shown to act on branched, mismatched, and deaminated DNA, suggesting that this endonuclease is a multifunctional enzyme involved in NER, MMR, and deaminated base repair in a non-canonical manner. However, the catalytic mechanism and the physiological function of NucS endonucleases from HA need to be further clarified to determine how they participate in the different DNA repair pathways in cells from HA. In this review, we focus on recent advances in our understanding of the function of NucS endonucleases from HA in NER, MMR, and deaminated DNA repair, and propose directions for future studies of the NucS family of endonucleases.
Collapse
Affiliation(s)
- Likui Zhang
- College of Environmental Science and Engineering, Marine Science and Technology Institute, Yangzhou University, Yangzhou, China.,Guangling College, Yangzhou University, Yangzhou, China
| | - Donghao Jiang
- College of Environmental Science and Engineering, Marine Science and Technology Institute, Yangzhou University, Yangzhou, China
| | - Mai Wu
- College of Environmental Science and Engineering, Marine Science and Technology Institute, Yangzhou University, Yangzhou, China
| | - Zhihui Yang
- College of Plant Protection, Agricultural University of Hebei, Baoding, China
| | - Philippe M Oger
- Univ Lyon, INSA de Lyon, CNRS UMR 5240, Villeurbanne, France
| |
Collapse
|
23
|
Khanam T, Afsar M, Shukla A, Alam F, Kumar S, Soyar H, Dolma K, Pasupuleti M, Srivastava KK, Ampapathi RS, Ramachandran R. M. tuberculosis class II apurinic/ apyrimidinic-endonuclease/3'-5' exonuclease (XthA) engages with NAD+-dependent DNA ligase A (LigA) to counter futile cleavage and ligation cycles in base excision repair. Nucleic Acids Res 2020; 48:4325-4343. [PMID: 32232338 PMCID: PMC7530888 DOI: 10.1093/nar/gkaa188] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 02/24/2020] [Accepted: 03/27/2020] [Indexed: 12/19/2022] Open
Abstract
Class-II AP-endonuclease (XthA) and NAD+-dependent DNA ligase (LigA) are involved in initial and terminal stages of bacterial DNA base excision repair (BER), respectively. XthA acts on abasic sites of damaged DNA to create nicks with 3′OH and 5′-deoxyribose phosphate (5′-dRP) moieties. Co-immunoprecipitation using mycobacterial cell-lysate, identified MtbLigA-MtbXthA complex formation. Pull-down experiments using purified wild-type, and domain-deleted MtbLigA mutants show that LigA-XthA interactions are mediated by the BRCT-domain of LigA. Small-Angle-X-ray scattering, 15N/1H-HSQC chemical shift perturbation experiments and mutational analysis identified the BRCT-domain region that interacts with a novel 104DGQPSWSGKP113 motif on XthA for complex-formation. Isothermal-titration calorimetry experiments show that a synthetic peptide with this sequence interacts with MtbLigA and disrupts XthA–LigA interactions. In vitro assays involving DNA substrate and product analogs show that LigA can efficiently reseal 3′OH and 5′dRP DNA termini created by XthA at abasic sites. Assays and SAXS experiments performed in the presence and absence of DNA, show that XthA inhibits LigA by specifically engaging with the latter's BRCT-domain to prevent it from encircling substrate DNA. Overall, the study suggests a coordinating function for XthA whereby it engages initially with LigA to prevent the undesirable consequences of futile cleavage and ligation cycles that might derail bacterial BER.
Collapse
Affiliation(s)
- Taran Khanam
- Molecular and Structural Biology Division, CSIR-Central Drug Research Institute, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow 226031, Uttar Pradesh, India
| | - Mohammad Afsar
- Molecular and Structural Biology Division, CSIR-Central Drug Research Institute, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow 226031, Uttar Pradesh, India
| | - Ankita Shukla
- Molecular and Structural Biology Division, CSIR-Central Drug Research Institute, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow 226031, Uttar Pradesh, India
| | - Faiyaz Alam
- Sophisticated Analytical Instruments Based Facility and Research Division, CSIR-Central Drug Research Institute, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow 226031, Uttar Pradesh, India
| | - Sanjay Kumar
- Molecular and Structural Biology Division, CSIR-Central Drug Research Institute, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow 226031, Uttar Pradesh, India
| | - Horam Soyar
- Microbiology Division, CSIR-Central Drug Research Institute, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow 226031, Uttar Pradesh, India
| | - Kunzes Dolma
- CSIR-Institute of Microbial Technology, Sector 39A, Chandigarh 160036, India
| | - Mukesh Pasupuleti
- Microbiology Division, CSIR-Central Drug Research Institute, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow 226031, Uttar Pradesh, India
| | - Kishore Kumar Srivastava
- Microbiology Division, CSIR-Central Drug Research Institute, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow 226031, Uttar Pradesh, India
| | - Ravi Sankar Ampapathi
- Sophisticated Analytical Instruments Based Facility and Research Division, CSIR-Central Drug Research Institute, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow 226031, Uttar Pradesh, India
| | - Ravishankar Ramachandran
- Molecular and Structural Biology Division, CSIR-Central Drug Research Institute, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow 226031, Uttar Pradesh, India
| |
Collapse
|
24
|
Castañeda-García A, Martín-Blecua I, Cebrián-Sastre E, Chiner-Oms A, Torres-Puente M, Comas I, Blázquez J. Specificity and mutagenesis bias of the mycobacterial alternative mismatch repair analyzed by mutation accumulation studies. SCIENCE ADVANCES 2020; 6:eaay4453. [PMID: 32095527 PMCID: PMC7015689 DOI: 10.1126/sciadv.aay4453] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Accepted: 11/25/2019] [Indexed: 05/09/2023]
Abstract
The postreplicative mismatch repair (MMR) is an almost ubiquitous DNA repair essential for maintaining genome stability. It has been suggested that Mycobacteria have an alternative MMR in which NucS, an endonuclease with no structural homology to the canonical MMR proteins (MutS/MutL), is the key factor. Here, we analyze the spontaneous mutations accumulated in a neutral manner over thousands of generations by Mycobacterium smegmatis and its MMR-deficient derivative (ΔnucS). The base pair substitution rates per genome per generation are 0.004 and 0.165 for wild type and ΔnucS, respectively. By comparing the activity of different bacterial MMR pathways, we demonstrate that both MutS/L- and NucS-based systems display similar specificity and mutagenesis bias, revealing a functional evolutionary convergence. However, NucS is not able to repair indels in vivo. Our results provide an unparalleled view of how this mycobacterial system works in vivo to maintain genome stability and how it may affect Mycobacterium evolution.
Collapse
Affiliation(s)
- A. Castañeda-García
- Centro Nacional de Biotecnología–CSIC, Madrid, Spain
- Corresponding author. (A.C.-G.); (J.B.)
| | | | | | - A. Chiner-Oms
- Instituto de Biomedicina de Valencia, IBV-CSIC, Valencia, Spain
| | | | - I. Comas
- Instituto de Biomedicina de Valencia, IBV-CSIC, Valencia, Spain
- CIBER in Epidemiology and Public Health
| | - J. Blázquez
- Centro Nacional de Biotecnología–CSIC, Madrid, Spain
- Corresponding author. (A.C.-G.); (J.B.)
| |
Collapse
|
25
|
Zhang L, Shi H, Gan Q, Wang Y, Wu M, Yang Z, Oger P, Zheng J. An alternative pathway for repair of deaminated bases in DNA triggered by archaeal NucS endonuclease. DNA Repair (Amst) 2019; 85:102734. [PMID: 31704332 DOI: 10.1016/j.dnarep.2019.102734] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2019] [Revised: 10/10/2019] [Accepted: 10/10/2019] [Indexed: 01/09/2023]
Abstract
Recent studies show that NucS endonucleases participate in mismatch repair in several archaea and bacteria. However, the function of archaeal NucS endonucleases has not been completely clarified. Here, we describe a NucS endonuclease from the hyperthermophilic and radioresistant archaeon Thermococcus gammatolerans (Tga NucS) that can cleave uracil (U)- and hypoxanthine (I)-containing dsDNA at 80 °C. Biochemical evidence shows that the cleavage sites of the enzyme are at the second phosphodiester on the 5'- site of U or I, and at the third phosphodiester on the 5'-site of the opposite base of U or I, creating a double strand break with a 4-nt 5'-overhang.The ends of the cleaved product of Tga NucS are ligatable, possessing 5'-phosphate and 3'-hydroxyl termini, which can be utilized by DNA repair proteins or enzymes. Tga NucS displays a preference for U/G- and I/T-containing dsDNA over other pairs with U or I, suggesting that the enzyme is responsible for repair of U and I in DNA that arise from deamination. Biochemical characterization of cleaving U- and I-containing DNA by Tga NucS was also investigated. The DNA-binding results show that the enzyme exhibits a higher affinity for normal, U- and I-containing dsDNA than for normal, U- and I-containing ssDNA. Therefore, we present an alternative pathway for repair of deaminated bases in DNA triggered by archaeal NucS endonuclease in hyperthermophilic archaea.
Collapse
Affiliation(s)
- Likui Zhang
- Marine Science & Technology Institute, Department of Environmental Science and Engineering, Yangzhou University, China; Guangling College, Yangzhou University, China.
| | - Haoqiang Shi
- Marine Science & Technology Institute, Department of Environmental Science and Engineering, Yangzhou University, China
| | - Qi Gan
- Marine Science & Technology Institute, Department of Environmental Science and Engineering, Yangzhou University, China
| | - Yuxiao Wang
- Marine Science & Technology Institute, Department of Environmental Science and Engineering, Yangzhou University, China
| | - Mai Wu
- Marine Science & Technology Institute, Department of Environmental Science and Engineering, Yangzhou University, China
| | - Zhihui Yang
- College of Plant Protection, Agricultural University of Hebei, Baoding City, Hebei Province 071001, China.
| | - Philippe Oger
- Univ Lyon, INSA de Lyon, CNRS UMR 5240, Villeurbanne, France.
| | - Jianting Zheng
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
26
|
Exploring the Binding Mechanism and Dynamics of EndoMS/NucS to Mismatched dsDNA. Int J Mol Sci 2019; 20:ijms20205142. [PMID: 31627318 PMCID: PMC6829318 DOI: 10.3390/ijms20205142] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 10/03/2019] [Accepted: 10/12/2019] [Indexed: 12/15/2022] Open
Abstract
The well-known mismatch repair (MMR) machinery, MutS/MutL, is absent in numerous Archaea and some Bacteria. Recent studies have shown that EndoMS/NucS has the ability to cleave double-stranded DNA (dsDNA) containing a mismatched base pair, which suggests a novel mismatch repair process. However, the recognition mechanism and the binding process of EndoMS/NucS in the MMR pathway remain unclear. In this study, we investigate the binding dynamics of EndoMS/NucS to mismatched dsDNA and its energy as a function of the angle between the two C-terminal domains of EndoMS/NucS, through molecular docking and extensive molecular dynamics (MD) simulations. It is found that there exists a half-open transition state corresponding to an energy barrier (at an activation angle of approximately 80∘) between the open state and the closed state, according to the energy curve. When the angle is larger than the activation angle, the C-terminal domains can move freely and tend to change to the open state (local energy minimum). Otherwise, the C-terminal domains will interact with the mismatched dsDNA directly and converge to the closed state at the global energy minimum. As such, this two-state system enables the exposed N-terminal domains of EndoMS/NucS to recognize mismatched dsDNA during the open state and then stabilize the binding of the C-terminal domains of EndoMS/NucS to the mismatched dsDNA during the closed state. We also investigate how the EndoMS/NucS recognizes and binds to mismatched dsDNA, as well as the effects of K+ ions. The results provide insights into the recognition and binding mechanisms of EndoMS/NucS to mismatched dsDNA in the MMR pathway.
Collapse
|
27
|
Suzuki S, Kurosawa N. Endonucleases responsible for DNA repair of helix-distorting DNA lesions in the thermophilic crenarchaeon Sulfolobus acidocaldarius in vivo. Extremophiles 2019; 23:613-624. [PMID: 31377865 DOI: 10.1007/s00792-019-01120-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Accepted: 07/21/2019] [Indexed: 02/03/2023]
Abstract
The DNA repair mechanisms of hyperthermophiles can provide important insights for understanding how genetic information is maintained under extreme environments. Recent biochemical studies have identified a novel endonuclease in hyperthermophilic archaea, NucS/EndoMS, that acts on branched DNA substrates and mismatched bases. NucS/EndoMS is thought to participate in the DNA repair of helix-distorting DNA lesions, including UV-induced DNA damage and DNA adducts, and mismatched bases; however, the specific in vivo role of NucS/EndoMS in hyperthermophilic archaeal DNA repair has not been reported. To explore the role of this protein, we knocked out the nucS/endoMS gene of the thermophilic crenarchaeon Sulfolobus acidocaldarius and characterized the mutant phenotypes. While the nucS/endoMS-deleted strain exhibited sensitivity to DNA adducts, it did not have high mutation rates or any sensitivity to UV irradiation. It has been proposed that the XPF endonuclease is involved in homologous recombination-mediated stalled-fork DNA repair. The xpf-deficient strain exhibited sensitivity to helix-distorting DNA lesions, but the sensitivity of the nucS/endoMS and xpf double knockout strain did not increase compared to that of the single knockout strains. We conclude that the endonuclease NucS/EndoMS works with XPF in homologous recombination-mediated stalled-fork DNA repair for the removal of helix-distorting DNA lesions in S. acidocaldarius.
Collapse
Affiliation(s)
- Shoji Suzuki
- Department of Science and Engineering for Sustainable Development, Faculty of Science and Engineering, Soka University, Tokyo, Japan
| | - Norio Kurosawa
- Department of Science and Engineering for Sustainable Development, Faculty of Science and Engineering, Soka University, Tokyo, Japan.
| |
Collapse
|
28
|
Minobe A, Fukui K, Yonezu H, Ohshita K, Mizobuchi S, Morisawa T, Hakumai Y, Yano T, Ashiuchi M, Wakamatsu T. Biochemical characterization of mismatch-binding protein MutS1 and nicking endonuclease MutL from a euryarchaeon Methanosaeta thermophila. DNA Repair (Amst) 2019; 75:29-38. [PMID: 30711824 DOI: 10.1016/j.dnarep.2019.01.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 01/21/2019] [Accepted: 01/21/2019] [Indexed: 12/20/2022]
Abstract
In eukaryotes and most bacteria, the MutS1/MutL-dependent mismatch repair system (MMR) corrects DNA mismatches that arise as replication errors. MutS1 recognizes mismatched DNA and stimulates the nicking endonuclease activity of MutL to incise mismatch-containing DNA. In archaea, there has been no experimental evidence to support the existence of the MutS1/MutL-dependent MMR. Instead, it was revealed that a large part of archaea possess mismatch-specific endonuclease EndoMS, indicating that the EndoMS-dependent MMR is widely adopted in archaea. However, some archaeal genomes encode MutS1 and MutL homologs, and their molecular functions have not been revealed. In this study, we purified and characterized recombinant MutS1 and the C-terminal endonuclease domain of MutL from a methanogenic archaeon Methanosaeta thermophila (mtMutS1 and the mtMutL CTD, respectively). mtMutS1 bound to mismatched DNAs with a higher affinity than to perfectly-matched and other structured DNAs, which resembles the DNA-binding specificities of eukaryotic and bacterial MutS1 homologs. The mtMutL CTD showed a Mn2+/Ni2+/Co2+-dependent nicking endonuclease activity that introduces single-strand breaks into a circular double-stranded DNA. The nicking endonuclease activity of the mtMutL CTD was impaired by mutagenizing the metal-binding motif that is identical to those of eukaryotic and bacterial MutL endonucleases. These results raise the possibility that not only the EndoMS-dependent MMR but also the traditional MutS1/MutL-dependent MMR exist in archaea.
Collapse
Affiliation(s)
- Ai Minobe
- Agricultural Science, Graduate School of Integrated Arts and Sciences, Kochi University, 200 Otsu, Monobe, Nankoku, Kochi, 783-8502, Japan
| | - Kenji Fukui
- Department of Biochemistry, Osaka Medical College, 2-7 Daigakumachi, Takatsuki, Osaka, 569-8686, Japan
| | - Hitomi Yonezu
- Agricultural Science, Graduate School of Integrated Arts and Sciences, Kochi University, 200 Otsu, Monobe, Nankoku, Kochi, 783-8502, Japan
| | - Koki Ohshita
- Agricultural Science, Graduate School of Integrated Arts and Sciences, Kochi University, 200 Otsu, Monobe, Nankoku, Kochi, 783-8502, Japan
| | - Saki Mizobuchi
- Agricultural Science, Graduate School of Integrated Arts and Sciences, Kochi University, 200 Otsu, Monobe, Nankoku, Kochi, 783-8502, Japan
| | - Takashi Morisawa
- Agricultural Science, Graduate School of Integrated Arts and Sciences, Kochi University, 200 Otsu, Monobe, Nankoku, Kochi, 783-8502, Japan
| | - Yuichi Hakumai
- Agricultural Science, Graduate School of Integrated Arts and Sciences, Kochi University, 200 Otsu, Monobe, Nankoku, Kochi, 783-8502, Japan
| | - Takato Yano
- Department of Biochemistry, Osaka Medical College, 2-7 Daigakumachi, Takatsuki, Osaka, 569-8686, Japan
| | - Makoto Ashiuchi
- Agricultural Science, Graduate School of Integrated Arts and Sciences, Kochi University, 200 Otsu, Monobe, Nankoku, Kochi, 783-8502, Japan
| | - Taisuke Wakamatsu
- Agricultural Science, Graduate School of Integrated Arts and Sciences, Kochi University, 200 Otsu, Monobe, Nankoku, Kochi, 783-8502, Japan.
| |
Collapse
|