1
|
Gilliot PA, Gorochowski TE. Transfer learning for cross-context prediction of protein expression from 5'UTR sequence. Nucleic Acids Res 2024; 52:e58. [PMID: 38864396 PMCID: PMC11260469 DOI: 10.1093/nar/gkae491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 04/28/2024] [Accepted: 05/28/2024] [Indexed: 06/13/2024] Open
Abstract
Model-guided DNA sequence design can accelerate the reprogramming of living cells. It allows us to engineer more complex biological systems by removing the need to physically assemble and test each potential design. While mechanistic models of gene expression have seen some success in supporting this goal, data-centric, deep learning-based approaches often provide more accurate predictions. This accuracy, however, comes at a cost - a lack of generalization across genetic and experimental contexts that has limited their wider use outside the context in which they were trained. Here, we address this issue by demonstrating how a simple transfer learning procedure can effectively tune a pre-trained deep learning model to predict protein translation rate from 5' untranslated region (5'UTR) sequence for diverse contexts in Escherichia coli using a small number of new measurements. This allows for important model features learnt from expensive massively parallel reporter assays to be easily transferred to new settings. By releasing our trained deep learning model and complementary calibration procedure, this study acts as a starting point for continually refined model-based sequence design that builds on previous knowledge and future experimental efforts.
Collapse
Affiliation(s)
- Pierre-Aurélien Gilliot
- School of Biological Sciences, University of Bristol, 24 Tyndall Avenue, Bristol BS8 1TQ, UK
| | - Thomas E Gorochowski
- School of Biological Sciences, University of Bristol, 24 Tyndall Avenue, Bristol BS8 1TQ, UK
- BrisEngBio, School of Chemistry, University of Bristol, Cantock’s Close, Bristol BS8 1TS, UK
| |
Collapse
|
2
|
Leal-Alves C, Deng Z, Kermeci N, Shih SCC. Integrating microfluidics and synthetic biology: advancements and diverse applications across organisms. LAB ON A CHIP 2024; 24:2834-2860. [PMID: 38712893 DOI: 10.1039/d3lc01090b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
Synthetic biology is the design and modification of biological systems for specific functions, integrating several disciplines like engineering, genetics, and computer science. The field of synthetic biology is to understand biological processes within host organisms through the manipulation and regulation of their genetic pathways and the addition of biocontrol circuits to enhance their production capabilities. This pursuit serves to address global challenges spanning diverse domains that are difficult to tackle through conventional routes of production. Despite its impact, achieving precise, dynamic, and high-throughput manipulation of biological processes is still challenging. Microfluidics offers a solution to those challenges, enabling controlled fluid handling at the microscale, offering lower reagent consumption, faster analysis of biochemical reactions, automation, and high throughput screening. In this review, we diverge from conventional focus on automating the synthetic biology design-build-test-learn cycle, and instead, focus on microfluidic platforms and their role in advancing synthetic biology through its integration with host organisms - bacterial cells, yeast, fungi, animal cells - and cell-free systems. The review illustrates how microfluidic devices have been instrumental in understanding biological systems by showcasing microfluidics as an essential tool to create synthetic genetic circuits, pathways, and organisms within controlled environments. In conclusion, we show how microfluidics expedite synthetic biology applications across diverse domains including but not limited to personalized medicine, bioenergy, and agriculture.
Collapse
Affiliation(s)
- Chiara Leal-Alves
- Centre for Applied Synthetic Biology, Concordia University, 7141 Sherbrooke St. W, Montréal, QC, H4B1R6 Canada.
- Department of Electrical and Computer Engineering, Concordia University, 1515 Ste-Catherine St. W, Montréal, QC, H3G1M8 Canada
| | - Zhiyang Deng
- Centre for Applied Synthetic Biology, Concordia University, 7141 Sherbrooke St. W, Montréal, QC, H4B1R6 Canada.
- Department of Electrical and Computer Engineering, Concordia University, 1515 Ste-Catherine St. W, Montréal, QC, H3G1M8 Canada
| | - Natalia Kermeci
- Centre for Applied Synthetic Biology, Concordia University, 7141 Sherbrooke St. W, Montréal, QC, H4B1R6 Canada.
- Department of Biology, Concordia University, 7141 Sherbrooke St. W, Montréal, QC, H4B1R6 Canada
| | - Steve C C Shih
- Centre for Applied Synthetic Biology, Concordia University, 7141 Sherbrooke St. W, Montréal, QC, H4B1R6 Canada.
- Department of Electrical and Computer Engineering, Concordia University, 1515 Ste-Catherine St. W, Montréal, QC, H3G1M8 Canada
- Department of Biology, Concordia University, 7141 Sherbrooke St. W, Montréal, QC, H4B1R6 Canada
| |
Collapse
|
3
|
García-Tomsig NI, García-Rodriguez FM, Guedes-García SK, Millán V, Becker A, Robledo M, Jiménez-Zurdo JI. A double-negative feedback loop between NtrBC and a small RNA rewires nitrogen metabolism in legume symbionts. mBio 2023; 14:e0200323. [PMID: 37850753 PMCID: PMC10746234 DOI: 10.1128/mbio.02003-23] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 09/05/2023] [Indexed: 10/19/2023] Open
Abstract
IMPORTANCE Root nodule endosymbioses between diazotrophic rhizobia and legumes provide the largest input of combined N to the biosphere, thus representing an alternative to harmful chemical fertilizers for sustainable crop production. Rhizobia have evolved intricate strategies to coordinate N assimilation for their own benefit with N2 fixation to sustain plant growth. The rhizobial N status is transduced by the NtrBC two-component system, the seemingly ubiquitous form of N signal transduction in Proteobacteria. Here, we show that the regulatory sRNA NfeR1 (nodule formation efficiency RNA) of the alfalfa symbiont Sinorhizobium meliloti is transcribed from a complex promoter repressed by NtrC in a N-dependent manner and feedback silences ntrBC by complementary base-pairing. These findings unveil a more prominent role of NtrC as a transcriptional repressor than hitherto anticipated and a novel RNA-based mechanism for NtrBC regulation. The NtrBC-NfeR1 double-negative feedback loop accurately rewires symbiotic S. meliloti N metabolism and is likely conserved in α-rhizobia.
Collapse
Affiliation(s)
- Natalia I. García-Tomsig
- Structure, Dynamics and Function of Rhizobacterial Genomes (RhizoRNA Lab), Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas (CSIC), Granada, Spain
| | - Fernando M. García-Rodriguez
- Structure, Dynamics and Function of Rhizobacterial Genomes (RhizoRNA Lab), Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas (CSIC), Granada, Spain
| | - Sabina K. Guedes-García
- Structure, Dynamics and Function of Rhizobacterial Genomes (RhizoRNA Lab), Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas (CSIC), Granada, Spain
| | - Vicenta Millán
- Structure, Dynamics and Function of Rhizobacterial Genomes (RhizoRNA Lab), Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas (CSIC), Granada, Spain
| | - Anke Becker
- Center for Synthetic Microbiology (SYNMIKRO), Philipps-Universität Marburg, Marburg, Germany
| | - Marta Robledo
- Structure, Dynamics and Function of Rhizobacterial Genomes (RhizoRNA Lab), Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas (CSIC), Granada, Spain
| | - José I. Jiménez-Zurdo
- Structure, Dynamics and Function of Rhizobacterial Genomes (RhizoRNA Lab), Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas (CSIC), Granada, Spain
| |
Collapse
|
4
|
Velazquez Sanchez AK, Klopprogge B, Zimmermann KH, Ignatova Z. Tailored Synthetic sRNAs Dynamically Tune Multilayer Genetic Circuits. ACS Synth Biol 2023; 12:2524-2535. [PMID: 37595156 DOI: 10.1021/acssynbio.2c00614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/20/2023]
Abstract
Predictable and controllable tuning of genetic circuits to regulate gene expression, including modulation of existing circuits or constructs without the need for redesign or rebuilding, is a persistent challenge in synthetic biology. Here, we propose rationally designed new small RNAs (sRNAs) that dynamically modulate gene expression of genetic circuits with a broad range (high, medium, and low) of repression. We designed multiple multilayer genetic circuits in which the variable effector element is a transcription factor (TF) controlling downstream the production of a reporter protein. The sRNAs target TFs instead of a reporter gene, and harnessing the intrinsic RNA-interference pathway in E. coli allowed for a wide range of expression modulation of the reporter protein, including the most difficult to achieve dynamic switch to an OFF state. The synthetic sRNAs are expressed independently of the circuit(s), thus allowing for repression without modifying the circuit itself. Our work provides a frame for achieving independent modulation of gene expression and dynamic and modular control of the multilayer genetic circuits by only including an independent control circuit expressing synthetic sRNAs, without altering the structure of existing genetic circuits.
Collapse
Affiliation(s)
- Ana K Velazquez Sanchez
- Biochemistry and Molecular Biology, Department of Chemistry, University of Hamburg, 20146 Hamburg, Germany
| | - Bjarne Klopprogge
- Biochemistry and Molecular Biology, Department of Chemistry, University of Hamburg, 20146 Hamburg, Germany
| | - Karl-Heinz Zimmermann
- Algebraic Engineering, Institute of Embedded Systems, Hamburg University of Technology, 21073 Hamburg, Germany
| | - Zoya Ignatova
- Biochemistry and Molecular Biology, Department of Chemistry, University of Hamburg, 20146 Hamburg, Germany
| |
Collapse
|
5
|
Alexis E, Schulte CCM, Cardelli L, Papachristodoulou A. Regulation strategies for two-output biomolecular networks. J R Soc Interface 2023; 20:20230174. [PMID: 37528680 PMCID: PMC10394417 DOI: 10.1098/rsif.2023.0174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Accepted: 07/06/2023] [Indexed: 08/03/2023] Open
Abstract
Feedback control theory facilitates the development of self-regulating systems with desired performance which are predictable and insensitive to disturbances. Feedback regulatory topologies are found in many natural systems and have been of key importance in the design of reliable synthetic bio-devices operating in complex biological environments. Here, we study control schemes for biomolecular processes with two outputs of interest, expanding previously described concepts based on single-output systems. Regulation of such processes may unlock new design possibilities but can be challenging due to coupling interactions; also potential disturbances applied on one of the outputs may affect both. We therefore propose architectures for robustly manipulating the ratio/product and linear combinations of the outputs as well as each of the outputs independently. To demonstrate their characteristics, we apply these architectures to a simple process of two mutually activated biomolecular species. We also highlight the potential for experimental implementation by exploring synthetic realizations both in vivo and in vitro. This work presents an important step forward in building bio-devices capable of sophisticated functions.
Collapse
Affiliation(s)
- Emmanouil Alexis
- Department of Engineering Science, University of Oxford, Oxford OX1 3PJ, UK
| | - Carolin C. M. Schulte
- Department of Engineering Science, University of Oxford, Oxford OX1 3PJ, UK
- Department of Biology, University of Oxford, Oxford OX1 3RB, UK
| | - Luca Cardelli
- Department of Computer Science, University of Oxford, Oxford OX1 3QD, UK
| | | |
Collapse
|
6
|
Gyorgy A, Menezes A, Arcak M. A blueprint for a synthetic genetic feedback optimizer. Nat Commun 2023; 14:2554. [PMID: 37137895 PMCID: PMC10156725 DOI: 10.1038/s41467-023-37903-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 04/05/2023] [Indexed: 05/05/2023] Open
Abstract
Biomolecular control enables leveraging cells as biomanufacturing factories. Despite recent advancements, we currently lack genetically encoded modules that can be deployed to dynamically fine-tune and optimize cellular performance. Here, we address this shortcoming by presenting the blueprint of a genetic feedback module to optimize a broadly defined performance metric by adjusting the production and decay rate of a (set of) regulator species. We demonstrate that the optimizer can be implemented by combining available synthetic biology parts and components, and that it can be readily integrated with existing pathways and genetically encoded biosensors to ensure its successful deployment in a variety of settings. We further illustrate that the optimizer successfully locates and tracks the optimum in diverse contexts when relying on mass action kinetics-based dynamics and parameter values typical in Escherichia coli.
Collapse
Affiliation(s)
- Andras Gyorgy
- Division of Engineering, New York University Abu Dhabi, Abu Dhabi, UAE.
| | - Amor Menezes
- Department of Mechanical and Aerospace Engineering, University of Florida, Gainesville, FL, USA
| | - Murat Arcak
- Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, CA, USA
| |
Collapse
|
7
|
Anastassov S, Filo M, Chang CH, Khammash M. A cybergenetic framework for engineering intein-mediated integral feedback control systems. Nat Commun 2023; 14:1337. [PMID: 36906662 PMCID: PMC10008564 DOI: 10.1038/s41467-023-36863-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 02/21/2023] [Indexed: 03/13/2023] Open
Abstract
The ability of biological systems to tightly regulate targeted variables, despite external and internal disturbances, is known as Robust Perfect Adaptation (RPA). Achieved frequently through biomolecular integral feedback controllers at the cellular level, RPA has important implications for biotechnology and its various applications. In this study, we identify inteins as a versatile class of genetic components suitable for implementing these controllers and present a systematic approach for their design. We develop a theoretical foundation for screening intein-based RPA-achieving controllers and a simplified approach for modeling them. We then genetically engineer and test intein-based controllers using commonly used transcription factors in mammalian cells and demonstrate their exceptional adaptation properties over a wide dynamic range. The small size, flexibility, and applicability of inteins across life forms allow us to create a diversity of genetic RPA-achieving integral feedback control systems that can be used in various applications, including metabolic engineering and cell-based therapy.
Collapse
Affiliation(s)
- Stanislav Anastassov
- Department of Biosystems Science and Engineering, ETH Zürich, 4058, Basel, Switzerland
| | - Maurice Filo
- Department of Biosystems Science and Engineering, ETH Zürich, 4058, Basel, Switzerland
| | - Ching-Hsiang Chang
- Department of Biosystems Science and Engineering, ETH Zürich, 4058, Basel, Switzerland
| | - Mustafa Khammash
- Department of Biosystems Science and Engineering, ETH Zürich, 4058, Basel, Switzerland.
| |
Collapse
|
8
|
Guidi C, De Wannemaeker L, De Baets J, Demeester W, Maertens J, De Paepe B, De Mey M. Dynamic feedback regulation for efficient membrane protein production using a small RNA-based genetic circuit in Escherichia coli. Microb Cell Fact 2022; 21:260. [PMID: 36522655 PMCID: PMC9753035 DOI: 10.1186/s12934-022-01983-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 12/05/2022] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Membrane proteins (MPs) are an important class of molecules with a wide array of cellular functions and are part of many metabolic pathways. Despite their great potential-as therapeutic drug targets or in microbial cell factory optimization-many challenges remain for efficient and functional expression in a host such as Escherichia coli. RESULTS A dynamically regulated small RNA-based circuit was developed to counter membrane stress caused by overexpression of different MPs. The best performing small RNAs were able to enhance the maximum specific growth rate with 123%. On culture level, the total MP production was increased two-to three-fold compared to a system without dynamic control. This strategy not only improved cell growth and production of the studied MPs, it also suggested the potential use for countering metabolic burden in general. CONCLUSIONS A dynamically regulated feedback circuit was developed that can sense metabolic stress caused by, in casu, the overexpression of an MP and responds to it by balancing the metabolic state of the cell and more specifically by downregulating the expression of the MP of interest. This negative feedback mechanism was established by implementing and optimizing simple-to-use genetic control elements based on post-transcriptional regulation: small non-coding RNAs. In addition to membrane-related stress when the MP accumulated in the cytoplasm as aggregates, the sRNA-based feedback control system was still effective for improving cell growth but resulted in a decreased total protein production. This result suggests promiscuity of the MP sensor for more than solely membrane stress.
Collapse
Affiliation(s)
- Chiara Guidi
- Centre for Synthetic Biology, Ghent University, 9000, Ghent, Belgium
| | | | - Jasmine De Baets
- Centre for Synthetic Biology, Ghent University, 9000, Ghent, Belgium
| | - Wouter Demeester
- Centre for Synthetic Biology, Ghent University, 9000, Ghent, Belgium
| | - Jo Maertens
- Centre for Synthetic Biology, Ghent University, 9000, Ghent, Belgium
| | - Brecht De Paepe
- Centre for Synthetic Biology, Ghent University, 9000, Ghent, Belgium
| | - Marjan De Mey
- Centre for Synthetic Biology, Ghent University, 9000, Ghent, Belgium.
| |
Collapse
|
9
|
Abstract
The invention of the Fourier integral in the 19th century laid the foundation for modern spectral analysis methods. This integral decomposes a temporal signal into its frequency components, providing deep insights into its generating process. While this idea has precipitated several scientific and technological advances, its impact has been fairly limited in cell biology, largely due to the difficulties in connecting the underlying noisy intracellular networks to the frequency content of observed single-cell trajectories. Here we develop a spectral theory and computational methodologies tailored specifically to the computation and analysis of frequency spectra of noisy intracellular networks. Specifically, we develop a method to compute the frequency spectrum for general nonlinear networks, and for linear networks we present a decomposition that expresses the frequency spectrum in terms of its sources. Several examples are presented to illustrate how our results provide frequency-based methods for the design and analysis of noisy intracellular networks.
Collapse
Affiliation(s)
- Ankit Gupta
- Department of Biosystems Science and Engineering, ETH Zürich, Mattenstrasse 26, 4058, Basel, Switzerland
| | - Mustafa Khammash
- Department of Biosystems Science and Engineering, ETH Zürich, Mattenstrasse 26, 4058, Basel, Switzerland.
| |
Collapse
|
10
|
Cengher L, Manna AC, Cho J, Theprungsirikul J, Sessions K, Rigby W, Cheung AL. Regulation of neutrophil myeloperoxidase inhibitor SPIN by the small RNA Teg49 in Staphylococcus aureus. Mol Microbiol 2022; 117:1447-1463. [PMID: 35578788 PMCID: PMC9880452 DOI: 10.1111/mmi.14919] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 05/04/2022] [Accepted: 05/11/2022] [Indexed: 01/31/2023]
Abstract
Teg49 is a Staphylococcus aureus trans-acting regulatory sRNA derived from cleavage of the sarA P3 transcript. We showed by RNA-Seq here that the 5' trident-like structure in Teg49 regulates transcriptionally (direct and indirect) 22 genes distinct from sarA. Among these, Teg49 was noted to repress spn, encoding a 102 residue preprotein which yields the mature 73 residue peptide which inhibits the catalytic activity of myeloperoxidase in human neutrophils. Teg49 was found to regulate spn mRNA post-transcriptionally in strain SH1000 through 9-nt base-pairing between hairpin loop 2 of Teg49 and an exposed bulge of the spn mRNA. Mutations of the Teg49 binding site disrupted the repression of spn, leading to reduced degradation, and increased half-life of spn mRNA in the Teg49 mutant. The spn-Teg49 interaction was also confirmed with a synonymous spn mutation to yield enhanced spn expression in the mutant vs. the parent. The Teg49 mutant with increased spn expression exhibited enhanced resistance to MPO activity in vitro. Killing assays with human neutrophils showed that the Teg49 mutant was more resistant to killing after phagocytosis. Altogether, this study shows that Teg49 in S. aureus has a distinct and important regulatory profile whereby this sRNA modulates resistance to myeloperoxidase-mediated killing by human neutrophils.
Collapse
Affiliation(s)
- Liviu Cengher
- Department of Microbiology and Immunology, Geisel School of Medicine Dartmouth College Hanover New Hampshire USA
| | - Adhar C. Manna
- Department of Microbiology and Immunology, Geisel School of Medicine Dartmouth College Hanover New Hampshire USA
| | - Junho Cho
- Department of Microbiology and Immunology, Geisel School of Medicine Dartmouth College Hanover New Hampshire USA
| | - Jomkuan Theprungsirikul
- Department of Microbiology and Immunology, Geisel School of Medicine Dartmouth College Hanover New Hampshire USA
| | - Katherine Sessions
- Department of Microbiology and Immunology, Geisel School of Medicine Dartmouth College Hanover New Hampshire USA
| | - William Rigby
- Department of Microbiology and Immunology, Geisel School of Medicine Dartmouth College Hanover New Hampshire USA
| | - Ambrose L. Cheung
- Department of Microbiology and Immunology, Geisel School of Medicine Dartmouth College Hanover New Hampshire USA
| |
Collapse
|
11
|
Roca J, Santiago-Frangos A, Woodson SA. Diversity of bacterial small RNAs drives competitive strategies for a mutual chaperone. Nat Commun 2022; 13:2449. [PMID: 35508531 PMCID: PMC9068810 DOI: 10.1038/s41467-022-30211-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 04/06/2022] [Indexed: 12/17/2022] Open
Abstract
Hundreds of bacterial small RNAs (sRNAs) require the Hfq chaperone to regulate mRNA expression. Hfq is limiting, thus competition among sRNAs for binding to Hfq shapes the proteomes of individual cells. To understand how sRNAs compete for a common partner, we present a single-molecule fluorescence platform to simultaneously visualize binding and release of multiple sRNAs with Hfq. We show that RNA residents rarely dissociate on their own. Instead, clashes between residents and challengers on the same face of Hfq cause rapid exchange, whereas RNAs that recognize different surfaces may cohabit Hfq for several minutes before one RNA departs. The prevalence of these pathways depends on the structure of each RNA and how it interacts with Hfq. We propose that sRNA diversity creates many pairwise interactions with Hfq that allow for distinct biological outcomes: active exchange favors fast regulation whereas co-residence of dissimilar RNAs favors target co-recognition or target exclusion.
Collapse
Affiliation(s)
- Jorjethe Roca
- T. C. Jenkins Department of Biophysics, Johns Hopkins University, 3400 N. Charles St., Baltimore, MD, 21218, USA
| | - Andrew Santiago-Frangos
- CMDB Program, Johns Hopkins University, 3400 N. Charles St., Baltimore, MD, 21218, USA.,Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT, 59717, USA
| | - Sarah A Woodson
- T. C. Jenkins Department of Biophysics, Johns Hopkins University, 3400 N. Charles St., Baltimore, MD, 21218, USA.
| |
Collapse
|
12
|
Sootla A, Delalez N, Alexis E, Norman A, Steel H, Wadhams GH, Papachristodoulou A. Dichotomous feedback: a signal sequestration-based feedback mechanism for biocontroller design. J R Soc Interface 2022; 19:20210737. [PMID: 35440202 PMCID: PMC9019519 DOI: 10.1098/rsif.2021.0737] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
We introduce a new design framework for implementing negative feedback regulation in synthetic biology, which we term ‘dichotomous feedback’. Our approach is different from current methods, in that it sequesters existing fluxes in the process to be controlled, and in this way takes advantage of the process’s architecture to design the control law. This signal sequestration mechanism appears in many natural biological systems and can potentially be easier to realize than ‘molecular sequestration’ and other comparison motifs that are nowadays common in biomolecular feedback control design. The loop is closed by linking the strength of signal sequestration to the process output. Our feedback regulation mechanism is motivated by two-component signalling systems, where a second response regulator could be competing with the natural response regulator thus sequestering kinase activity. Here, dichotomous feedback is established by increasing the concentration of the second response regulator as the level of the output of the natural process increases. Extensive analysis demonstrates how this type of feedback shapes the signal response, attenuates intrinsic noise while increasing robustness and reducing crosstalk.
Collapse
Affiliation(s)
- Aivar Sootla
- Department of Engineering Science, University of Oxford, Oxford OX1 3PJ, UK
| | - Nicolas Delalez
- Department of Engineering Science, University of Oxford, Oxford OX1 3PJ, UK
| | - Emmanouil Alexis
- Department of Engineering Science, University of Oxford, Oxford OX1 3PJ, UK
| | - Arthur Norman
- Department of Biochemistry, University of Oxford, Oxford OX1 3PJ, UK
| | - Harrison Steel
- Department of Engineering Science, University of Oxford, Oxford OX1 3PJ, UK
| | - George H Wadhams
- Department of Biochemistry, University of Oxford, Oxford OX1 3PJ, UK
| | | |
Collapse
|
13
|
Filo M, Kumar S, Khammash M. A hierarchy of biomolecular proportional-integral-derivative feedback controllers for robust perfect adaptation and dynamic performance. Nat Commun 2022; 13:2119. [PMID: 35440114 PMCID: PMC9018779 DOI: 10.1038/s41467-022-29640-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Accepted: 03/25/2022] [Indexed: 01/05/2023] Open
Abstract
Proportional-Integral-Derivative (PID) feedback controllers are the most widely used controllers in industry. Recently, the design of molecular PID-controllers has been identified as an important goal for synthetic biology and the field of cybergenetics. In this paper, we consider the realization of PID-controllers via biomolecular reactions. We propose an array of topologies offering a compromise between simplicity and high performance. We first demonstrate that different biomolecular PI-controllers exhibit different performance-enhancing capabilities. Next, we introduce several derivative controllers based on incoherent feedforward loops acting in a feedback configuration. Alternatively, we show that differentiators can be realized by placing molecular integrators in a negative feedback loop, which can be augmented by PI-components to yield PID-controllers. We demonstrate that PID-controllers can enhance stability and dynamic performance, and can also reduce stochastic noise. Finally, we provide an experimental demonstration using a hybrid setup where in silico PID-controllers regulate a genetic circuit in single yeast cells.
Collapse
Affiliation(s)
- Maurice Filo
- Department of Biosystems Science and Engineering, ETH Zürich, Mattenstrasse 26, 4058, Basel, Switzerland
| | - Sant Kumar
- Department of Biosystems Science and Engineering, ETH Zürich, Mattenstrasse 26, 4058, Basel, Switzerland
| | - Mustafa Khammash
- Department of Biosystems Science and Engineering, ETH Zürich, Mattenstrasse 26, 4058, Basel, Switzerland.
| |
Collapse
|
14
|
Goetz H, Stone A, Zhang R, Lai Y, Tian X. Double-edged role of resource competition in gene expression noise and control. ADVANCED GENETICS (HOBOKEN, N.J.) 2022; 3:2100050. [PMID: 35989723 PMCID: PMC9390979 DOI: 10.1002/ggn2.202100050] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 01/08/2022] [Indexed: 04/30/2023]
Abstract
Despite extensive investigation demonstrating that resource competition can significantly alter the deterministic behaviors of synthetic gene circuits, it remains unclear how resource competition contributes to the gene expression noise and how this noise can be controlled. Utilizing a two-gene circuit as a prototypical system, we uncover a surprising double-edged role of resource competition in gene expression noise: competition decreases noise through introducing a resource constraint but generates its own type of noise which we name as "resource competitive noise." Utilization of orthogonal resources enables retainment of the noise reduction conferred by resource constraint while removing the added resource competitive noise. The noise reduction effects are studied using three negative feedback types: negatively competitive regulation (NCR), local, and global controllers, each having four placement architectures in the protein biosynthesis pathway (mRNA or protein inhibition on transcription or translation). Our results show that both local and NCR controllers with mRNA-mediated inhibition are efficacious at reducing noise, with NCR controllers demonstrating a superior noise-reduction capability. We also find that combining feedback controllers with orthogonal resources can improve the local controllers. This work provides deep insights into the origin of stochasticity in gene circuits with resource competition and guidance for developing effective noise control strategies.
Collapse
Affiliation(s)
- Hanah Goetz
- School for Engineering of Matter, Transport and EnergyArizona State UniversityTempeAZ85287USA
| | - Austin Stone
- School of Biological and Health Systems EngineeringArizona State UniversityTempeAZ85287USA
| | - Rong Zhang
- School of Biological and Health Systems EngineeringArizona State UniversityTempeAZ85287USA
| | - Ying‐Cheng Lai
- School of Electrical, Computer and Energy EngineeringArizona State UniversityTempeAZ85287USA
- Department of PhysicsArizona State UniversityTempeAZ85287USA
| | - Xiao‐Jun Tian
- School of Biological and Health Systems EngineeringArizona State UniversityTempeAZ85287USA
| |
Collapse
|
15
|
Climent-Catala A, Ouldridge TE, Stan GBV, Bae W. Building an RNA-Based Toggle Switch Using Inhibitory RNA Aptamers. ACS Synth Biol 2022; 11:562-569. [PMID: 35133150 PMCID: PMC9007568 DOI: 10.1021/acssynbio.1c00580] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
![]()
Synthetic
RNA systems offer unique advantages such as faster response,
increased specificity, and programmability compared to conventional
protein-based networks. Here, we demonstrate an in vitro RNA-based toggle switch using RNA aptamers capable of inhibiting
the transcriptional activity of T7 or SP6 RNA polymerases. The activities
of both polymerases are monitored simultaneously by using Broccoli
and malachite green light-up aptamer systems. In our toggle switch,
a T7 promoter drives the expression of SP6 inhibitory aptamers, and
an SP6 promoter expresses T7 inhibitory aptamers. We show that the
two distinct states originating from the mutual inhibition of aptamers
can be toggled by adding DNA sequences to sequester the RNA inhibitory
aptamers. Finally, we assessed our RNA-based toggle switch in degrading
conditions by introducing controlled degradation of RNAs using a mix
of RNases. Our results demonstrate that the RNA-based toggle switch
could be used as a control element for nucleic acid networks in synthetic
biology applications.
Collapse
Affiliation(s)
- Alicia Climent-Catala
- Imperial College Centre for Synthetic Biology, London, SW7 2AZ, U.K
- Department of Chemistry, Imperial College London, London, SW7 2AZ, U.K
| | - Thomas E. Ouldridge
- Imperial College Centre for Synthetic Biology, London, SW7 2AZ, U.K
- Department of Bioengineering, Imperial College London, London, SW7 2AZ, U.K
| | - Guy-Bart V. Stan
- Imperial College Centre for Synthetic Biology, London, SW7 2AZ, U.K
- Department of Bioengineering, Imperial College London, London, SW7 2AZ, U.K
| | - Wooli Bae
- Imperial College Centre for Synthetic Biology, London, SW7 2AZ, U.K
- Department of Bioengineering, Imperial College London, London, SW7 2AZ, U.K
| |
Collapse
|
16
|
Ge C, Run S, Jia H, Tian P. Leveraging quorum sensing system for automatic coordination of Escherichia coli growth and lactic acid biosynthesis. ANN MICROBIOL 2022. [DOI: 10.1186/s13213-022-01663-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Purpose
Overproduction of desired metabolites usually sacrifices cell growth. Here we report that quorum sensing (QS) can be exploited to coordinate cell growth and lactic acid production in Escherichia coli.
Methods
We engineered two QS strains: one strain overexpressing acyl-homoserine lactone (AHL) synthesis genes (“ON”), the other strain overexpressing both AHL synthesis and degradation gene (aiiA) (“ON to semi-OFF”). To clarify the impact of the QS system on lactic acid production, D-lactate dehydrogenase gene ldhA was deleted from the E. coli genome, and Enhanced Green Fluorescence Protein (eGFP) was used as the reporter.
Results
Compared to the “ON” strain, the “ON to semi-OFF” strain showed delayed log growth and decreased egfp expression at stationary phase. When egfp was replaced by ldhA for lactic acid production, compared to the wild-type strain, the “ON to semi-OFF” strain demonstrated 231.9% and 117.3% increase in D-lactic acid titer and space-time yield, respectively, while the “ON” strain demonstrated 83.6%, 31%, and 36% increase in growth rate, maximum OD600, and glucose consumption rate, respectively. Quantitative real-time PCR revealed that both ldhA and the genes for phosphotransferase system were up-regulated in ldhA-overexpressing “ON” strain compared to the strain only harboring QS system. Moreover, the “ON” strain showed considerable increase in glucose consumption after a short lag phase. Compared to the reference strain harboring only ldhA gene in vector, both the “ON” and “ON to semi-OFF” strains demonstrated synchronization between cell growth and D-lactic acid production.
Conclusions
Collectively, QS can be leveraged to coordinate microbial growth and product formation.
Collapse
|
17
|
Dwijayanti A, Storch M, Stan GB, Baldwin GS. A modular RNA interference system for multiplexed gene regulation. Nucleic Acids Res 2022; 50:1783-1793. [PMID: 35061908 PMCID: PMC8860615 DOI: 10.1093/nar/gkab1301] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 12/20/2021] [Accepted: 12/22/2021] [Indexed: 11/13/2022] Open
Abstract
The rational design and realisation of simple-to-use genetic control elements that are modular, orthogonal and robust is essential to the construction of predictable and reliable biological systems of increasing complexity. To this effect, we introduce modular Artificial RNA interference (mARi), a rational, modular and extensible design framework that enables robust, portable and multiplexed post-transcriptional regulation of gene expression in Escherichia coli. The regulatory function of mARi was characterised in a range of relevant genetic contexts, demonstrating its independence from other genetic control elements and the gene of interest, and providing new insight into the design rules of RNA based regulation in E. coli, while a range of cellular contexts also demonstrated it to be independent of growth-phase and strain type. Importantly, the extensibility and orthogonality of mARi enables the simultaneous post-transcriptional regulation of multi-gene systems as both single-gene cassettes and poly-cistronic operons. To facilitate adoption, mARi was designed to be directly integrated into the modular BASIC DNA assembly framework. We anticipate that mARi-based genetic control within an extensible DNA assembly framework will facilitate metabolic engineering, layered genetic control, and advanced genetic circuit applications.
Collapse
Affiliation(s)
| | - Marko Storch
- Imperial College Centre for Synthetic Biology, Imperial College London, London SW7 2AZ, UK
| | - Guy-Bart Stan
- Imperial College Centre for Synthetic Biology, Imperial College London, London SW7 2AZ, UK.,Department of Bioengineering, Bessemer Building, South Kensington Campus, Imperial College London, London SW7 2AZ, UK
| | - Geoff S Baldwin
- Imperial College Centre for Synthetic Biology, Imperial College London, London SW7 2AZ, UK.,Department of Life Sciences, Sir Alexander Fleming Building, South Kensington Campus, Imperial College London, London SW7 2AZ, UK
| |
Collapse
|
18
|
Biomolecular mechanisms for signal differentiation. iScience 2021; 24:103462. [PMID: 34927021 PMCID: PMC8649740 DOI: 10.1016/j.isci.2021.103462] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 09/24/2021] [Accepted: 11/12/2021] [Indexed: 01/05/2023] Open
Abstract
Cells can sense temporal changes of molecular signals, allowing them to predict environmental variations and modulate their behavior. This paper elucidates biomolecular mechanisms of time derivative computation, facilitating the design of reliable synthetic differentiator devices for a variety of applications, ultimately expanding our understanding of cell behavior. In particular, we describe and analyze three alternative biomolecular topologies that are able to work as signal differentiators to input signals around their nominal operation. We propose strategies to preserve their performance even in the presence of high-frequency input signal components which are detrimental to the performance of most differentiators. We find that the core of the proposed topologies appears in natural regulatory networks and we further discuss their biological relevance. The simple structure of our designs makes them promising tools for realizing derivative control action in synthetic biology.
Collapse
|
19
|
Lins MRDCR, Amorim LADS, Corrêa GG, Picão BW, Mack M, Cerri MO, Pedrolli DB. Targeting riboswitches with synthetic small RNAs for metabolic engineering. Metab Eng 2021; 68:59-67. [PMID: 34517126 DOI: 10.1016/j.ymben.2021.09.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 08/25/2021] [Accepted: 09/08/2021] [Indexed: 11/29/2022]
Abstract
Our growing knowledge of the diversity of non-coding RNAs in natural systems and our deepening knowledge of RNA folding and function have fomented the rational design of RNA regulators. Based on that knowledge, we designed and implemented a small RNA tool to target bacterial riboswitches and activate gene expression (rtRNA). The synthetic rtRNA is suitable for regulation of gene expression both in cell-free and in cellular systems. It targets riboswitches to promote the antitermination folding regardless the cognate metabolite concentration. Therefore, it prevents transcription termination increasing gene expression up to 103-fold. We successfully used small RNA arrays for multiplex targeting of riboswitches. Finally, we used the synthetic rtRNAs to engineer an improved riboflavin producer strain. The easiness to design and construct, and the fact that the rtRNA works as a single genome copy, make it an attractive tool for engineering industrial metabolite-producing strains.
Collapse
Affiliation(s)
- Milca Rachel da Costa Ribeiro Lins
- Universidade Estadual Paulista (UNESP), School of Pharmaceutical Sciences, Department of Bioprocess Engineering and Biotechnology, Rodovia Araraquara-Jau Km1, 14800-903, Araraquara, Brazil
| | - Laura Araujo da Silva Amorim
- Universidade Estadual Paulista (UNESP), School of Pharmaceutical Sciences, Department of Bioprocess Engineering and Biotechnology, Rodovia Araraquara-Jau Km1, 14800-903, Araraquara, Brazil
| | - Graciely Gomes Corrêa
- Universidade Estadual Paulista (UNESP), School of Pharmaceutical Sciences, Department of Bioprocess Engineering and Biotechnology, Rodovia Araraquara-Jau Km1, 14800-903, Araraquara, Brazil
| | - Bruno Willian Picão
- Universidade Estadual Paulista (UNESP), School of Pharmaceutical Sciences, Department of Bioprocess Engineering and Biotechnology, Rodovia Araraquara-Jau Km1, 14800-903, Araraquara, Brazil
| | - Matthias Mack
- Mannheim University of Applied Sciences, Institute for Technical Microbiology, Paul-Wittsack-Str. 10, 68163, Mannheim, Germany
| | - Marcel Otávio Cerri
- Universidade Estadual Paulista (UNESP), School of Pharmaceutical Sciences, Department of Bioprocess Engineering and Biotechnology, Rodovia Araraquara-Jau Km1, 14800-903, Araraquara, Brazil
| | - Danielle Biscaro Pedrolli
- Universidade Estadual Paulista (UNESP), School of Pharmaceutical Sciences, Department of Bioprocess Engineering and Biotechnology, Rodovia Araraquara-Jau Km1, 14800-903, Araraquara, Brazil.
| |
Collapse
|
20
|
Castle SD, Grierson CS, Gorochowski TE. Towards an engineering theory of evolution. Nat Commun 2021; 12:3326. [PMID: 34099656 PMCID: PMC8185075 DOI: 10.1038/s41467-021-23573-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 05/04/2021] [Indexed: 02/07/2023] Open
Abstract
Biological technologies are fundamentally unlike any other because biology evolves. Bioengineering therefore requires novel design methodologies with evolution at their core. Knowledge about evolution is currently applied to the design of biosystems ad hoc. Unless we have an engineering theory of evolution, we will neither be able to meet evolution's potential as an engineering tool, nor understand or limit its unintended consequences for our biological designs. Here, we propose the evotype as a helpful concept for engineering the evolutionary potential of biosystems, or other self-adaptive technologies, potentially beyond the realm of biology.
Collapse
Affiliation(s)
- Simeon D Castle
- School of Biological Sciences, University of Bristol, Bristol, UK
| | - Claire S Grierson
- School of Biological Sciences, University of Bristol, Bristol, UK
- BrisSynBio, University of Bristol, Bristol, UK
| | - Thomas E Gorochowski
- School of Biological Sciences, University of Bristol, Bristol, UK.
- BrisSynBio, University of Bristol, Bristol, UK.
| |
Collapse
|
21
|
Perrino G, Hadjimitsis A, Ledesma-Amaro R, Stan GB. Control engineering and synthetic biology: working in synergy for the analysis and control of microbial systems. Curr Opin Microbiol 2021; 62:68-75. [PMID: 34062481 DOI: 10.1016/j.mib.2021.05.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 04/30/2021] [Accepted: 05/06/2021] [Indexed: 01/12/2023]
Abstract
The implementation of novel functionalities in living cells is a key aspect of synthetic biology. In the last decade, the field of synthetic biology has made progress working in synergy with control engineering, whose solid framework has provided concepts and tools to analyse biological systems and guide their design. In this review, we briefly highlight recent work focused on the application of control theoretical concepts and tools for the analysis and design of synthetic biology systems in microbial cells.
Collapse
Affiliation(s)
- Giansimone Perrino
- Department of Bioengineering & Imperial College Centre for Synthetic Biology, Imperial College London, UK
| | - Andreas Hadjimitsis
- Department of Bioengineering & Imperial College Centre for Synthetic Biology, Imperial College London, UK
| | - Rodrigo Ledesma-Amaro
- Department of Bioengineering & Imperial College Centre for Synthetic Biology, Imperial College London, UK
| | - Guy-Bart Stan
- Department of Bioengineering & Imperial College Centre for Synthetic Biology, Imperial College London, UK.
| |
Collapse
|
22
|
Recent advances in tuning the expression and regulation of genes for constructing microbial cell factories. Biotechnol Adv 2021; 50:107767. [PMID: 33974979 DOI: 10.1016/j.biotechadv.2021.107767] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 04/29/2021] [Accepted: 05/05/2021] [Indexed: 12/14/2022]
Abstract
To overcome environmental problems caused by the use of fossil resources, microbial cell factories have become a promising technique for the sustainable and eco-friendly development of valuable products from renewable resources. Constructing microbial cell factories with high titers, yields, and productivity requires a balance between growth and production; to this end, tuning gene expression and regulation is necessary to optimise and precisely control complicated metabolic fluxes. In this article, we review the current trends and advances in tuning gene expression and regulation and consider their engineering at each of the three stages of gene regulation: genomic, mRNA, and protein. In particular, the technological approaches utilised in a diverse range of genetic-engineering-based tools for the construction of microbial cell factories are reviewed and representative applications of these strategies are presented. Finally, the prospects for strategies and systems for tuning gene expression and regulation are discussed.
Collapse
|
23
|
Harnessing the central dogma for stringent multi-level control of gene expression. Nat Commun 2021; 12:1738. [PMID: 33741937 PMCID: PMC7979795 DOI: 10.1038/s41467-021-21995-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 02/18/2021] [Indexed: 11/17/2022] Open
Abstract
Strictly controlled inducible gene expression is crucial when engineering biological systems where even tiny amounts of a protein have a large impact on function or host cell viability. In these cases, leaky protein production must be avoided, but without affecting the achievable range of expression. Here, we demonstrate how the central dogma offers a simple solution to this challenge. By simultaneously regulating transcription and translation, we show how basal expression of an inducible system can be reduced, with little impact on the maximum expression rate. Using this approach, we create several stringent expression systems displaying >1000-fold change in their output after induction and show how multi-level regulation can suppress transcriptional noise and create digital-like switches between ‘on’ and ‘off’ states. These tools will aid those working with toxic genes or requiring precise regulation and propagation of cellular signals, plus illustrate the value of more diverse regulatory designs for synthetic biology. Inducible gene expression systems should minimise leaky output and offer a large achievable range of expression. Here, the authors regulate transcription and translation together to suppress noise and create digital-like responses, while maintaining a large expression range in vivo and in vitro.
Collapse
|
24
|
Winner-takes-all resource competition redirects cascading cell fate transitions. Nat Commun 2021; 12:853. [PMID: 33558556 PMCID: PMC7870843 DOI: 10.1038/s41467-021-21125-3] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 01/12/2021] [Indexed: 12/25/2022] Open
Abstract
Failure of modularity remains a significant challenge for assembling synthetic gene circuits with tested modules as they often do not function as expected. Competition over shared limited gene expression resources is a crucial underlying reason. It was reported that resource competition makes two seemingly separate genes connect in a graded linear manner. Here we unveil nonlinear resource competition within synthetic gene circuits. We first build a synthetic cascading bistable switches (Syn-CBS) circuit in a single strain with two coupled self-activation modules to achieve two successive cell fate transitions. Interestingly, we find that the in vivo transition path was redirected as the activation of one switch always prevails against the other, contrary to the theoretically expected coactivation. This qualitatively different type of resource competition between the two modules follows a ‘winner-takes-all’ rule, where the winner is determined by the relative connection strength between the modules. To decouple the resource competition, we construct a two-strain circuit, which achieves successive activation and stable coactivation of the two switches. These results illustrate that a highly nonlinear hidden interaction between the circuit modules due to resource competition may cause counterintuitive consequences on circuit functions, which can be controlled with a division of labor strategy. Synthetic gene circuits may not function as expected due to the resource competition between modules. Here the authors build cascading bistable switches to achieve two successive cell fate transitions but found a ‘winner-takes-all’ behaviour, which is overcome by a division of labour strategy.
Collapse
|
25
|
Cuba Samaniego C, Franco E. Ultrasensitive molecular controllers for quasi-integral feedback. Cell Syst 2021; 12:272-288.e3. [PMID: 33539724 DOI: 10.1016/j.cels.2021.01.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 09/22/2020] [Accepted: 01/11/2021] [Indexed: 12/24/2022]
Abstract
Feedback control has enabled the success of automated technologies by mitigating the effects of variability, unknown disturbances, and noise. While it is known that biological feedback loops reduce the impact of noise and help shape kinetic responses, many questions remain about how to design molecular integral controllers. Here, we propose a modular strategy to build molecular quasi-integral feedback controllers, which involves following two design principles. The first principle is to utilize an ultrasensitive response, which determines the gain of the controller and influences the steady-state error. The second is to use a tunable threshold of the ultrasensitive response, which determines the equilibrium point of the system. We describe a reaction network, named brink controller, that satisfies these conditions by combining molecular sequestration and an activation/deactivation cycle. With computational models, we examine potential biological implementations of brink controllers, and we illustrate different example applications.
Collapse
Affiliation(s)
- Christian Cuba Samaniego
- Mechanical and Aerospace Engineering, University of California at Los Angeles, Los Angeles, CA 90095, USA
| | - Elisa Franco
- Mechanical and Aerospace Engineering, University of California at Los Angeles, Los Angeles, CA 90095, USA; Molecular Biology Institute, University of California at Los Angeles, Los Angeles, CA 90095, USA; Bioengineering, University of California at Los Angeles, Los Angeles, CA 90095, USA; Mechanical Engineering, University of California at Riverside, Riverside, CA 92521, USA.
| |
Collapse
|
26
|
|
27
|
Exploiting noise to engineer adaptability in synthetic multicellular systems. CURRENT OPINION IN BIOMEDICAL ENGINEERING 2020. [DOI: 10.1016/j.cobme.2020.100251] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
28
|
Hoyos M, Huber M, Förstner KU, Papenfort K. Gene autoregulation by 3' UTR-derived bacterial small RNAs. eLife 2020; 9:58836. [PMID: 32744240 PMCID: PMC7398697 DOI: 10.7554/elife.58836] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 07/23/2020] [Indexed: 01/01/2023] Open
Abstract
Negative feedback regulation, that is the ability of a gene to repress its own synthesis, is the most abundant regulatory motif known to biology. Frequently reported for transcriptional regulators, negative feedback control relies on binding of a transcription factor to its own promoter. Here, we report a novel mechanism for gene autoregulation in bacteria relying on small regulatory RNA (sRNA) and the major endoribonuclease, RNase E. TIER-seq analysis (transiently-inactivating-an-endoribonuclease-followed-by-RNA-seq) revealed ~25,000 RNase E-dependent cleavage sites in Vibrio cholerae, several of which resulted in the accumulation of stable sRNAs. Focusing on two examples, OppZ and CarZ, we discovered that these sRNAs are processed from the 3' untranslated region (3' UTR) of the oppABCDF and carAB operons, respectively, and base-pair with their own transcripts to inhibit translation. For OppZ, this process also triggers Rho-dependent transcription termination. Our data show that sRNAs from 3' UTRs serve as autoregulatory elements allowing negative feedback control at the post-transcriptional level.
Collapse
Affiliation(s)
- Mona Hoyos
- Friedrich Schiller University Jena, Institute of Microbiology, Jena, Germany.,Faculty of Biology I, Ludwig-Maximilians-University of Munich, Martinsried, Germany
| | - Michaela Huber
- Friedrich Schiller University Jena, Institute of Microbiology, Jena, Germany.,Faculty of Biology I, Ludwig-Maximilians-University of Munich, Martinsried, Germany
| | - Konrad U Förstner
- TH Köln - University of Applied Sciences, Institute of Information Science, Cologne, Germany.,ZB MED - Information Centre for Life Sciences, Cologne, Germany
| | - Kai Papenfort
- Friedrich Schiller University Jena, Institute of Microbiology, Jena, Germany.,Faculty of Biology I, Ludwig-Maximilians-University of Munich, Martinsried, Germany.,Microverse Cluster, Friedrich Schiller University Jena, Jena, Germany
| |
Collapse
|
29
|
Steel H, Habgood R, Kelly CL, Papachristodoulou A. In situ characterisation and manipulation of biological systems with Chi.Bio. PLoS Biol 2020; 18:e3000794. [PMID: 32730242 PMCID: PMC7419009 DOI: 10.1371/journal.pbio.3000794] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 08/11/2020] [Accepted: 07/08/2020] [Indexed: 11/18/2022] Open
Abstract
The precision and repeatability of in vivo biological studies is predicated upon methods for isolating a targeted subsystem from external sources of noise and variability. However, in many experimental frameworks, this is made challenging by nonstatic environments during host cell growth, as well as variability introduced by manual sampling and measurement protocols. To address these challenges, we developed Chi.Bio, a parallelised open-source platform that represents a new experimental paradigm in which all measurement and control actions can be applied to a bulk culture in situ. In addition to continuous-culturing capabilities, it incorporates tunable light outputs, spectrometry, and advanced automation features. We demonstrate its application to studies of cell growth and biofilm formation, automated in silico control of optogenetic systems, and readout of multiple orthogonal fluorescent proteins in situ. By integrating precise measurement and actuation hardware into a single low-cost platform, Chi.Bio facilitates novel experimental methods for synthetic, systems, and evolutionary biology and broadens access to cutting-edge research capabilities.
Collapse
Affiliation(s)
- Harrison Steel
- Department of Engineering Science, University of Oxford, Oxford, United Kingdom
- * E-mail:
| | - Robert Habgood
- Department of Engineering Science, University of Oxford, Oxford, United Kingdom
| | - Ciarán L. Kelly
- Department of Applied Sciences, Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne, United Kingdom
| | | |
Collapse
|
30
|
Bartoli V, Meaker GA, di Bernardo M, Gorochowski TE. Tunable genetic devices through simultaneous control of transcription and translation. Nat Commun 2020; 11:2095. [PMID: 32350250 PMCID: PMC7190835 DOI: 10.1038/s41467-020-15653-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Accepted: 03/20/2020] [Indexed: 02/07/2023] Open
Abstract
Synthetic genetic circuits allow us to modify the behavior of living cells. However, changes in environmental conditions and unforeseen interactions with the host cell can cause deviations from a desired function, resulting in the need for time-consuming reassembly to fix these issues. Here, we use a regulatory motif that controls transcription and translation to create genetic devices whose response functions can be dynamically tuned. This allows us, after construction, to shift the on and off states of a sensor by 4.5- and 28-fold, respectively, and modify genetic NOT and NOR logic gates to allow their transitions between states to be varied over a >6-fold range. In all cases, tuning leads to trade-offs in the fold-change and the ability to distinguish cellular states. This work lays the foundation for adaptive genetic circuits that can be tuned after their physical assembly to maintain functionality across diverse environments and design contexts.
Collapse
Affiliation(s)
- Vittorio Bartoli
- BrisSynBio, University of Bristol, Life Sciences Building, Tyndall Avenue, Bristol, UK
- Department of Engineering Mathematics, University of Bristol, Woodland Road, Bristol, UK
| | - Grace A Meaker
- School of Biosciences, Cardiff University, Museum Avenue, Cardiff, UK
| | - Mario di Bernardo
- BrisSynBio, University of Bristol, Life Sciences Building, Tyndall Avenue, Bristol, UK
- Department of Engineering Mathematics, University of Bristol, Woodland Road, Bristol, UK
- Department of Electrical Engineering and Information Technology, University of Naples Federico II, Via Claudio 21, Napoli, Italy
| | - Thomas E Gorochowski
- BrisSynBio, University of Bristol, Life Sciences Building, Tyndall Avenue, Bristol, UK.
- School of Biological Sciences, University of Bristol, Tyndall Avenue, Bristol, UK.
| |
Collapse
|
31
|
Agrawal DK, Marshall R, Noireaux V, Sontag ED. In vitro implementation of robust gene regulation in a synthetic biomolecular integral controller. Nat Commun 2019; 10:5760. [PMID: 31848346 PMCID: PMC6917713 DOI: 10.1038/s41467-019-13626-z] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Accepted: 11/18/2019] [Indexed: 12/20/2022] Open
Abstract
Feedback mechanisms play a critical role in the maintenance of cell homeostasis in the presence of disturbances and uncertainties. Motivated by the need to tune the dynamics and improve the robustness of gene circuits, biological engineers have proposed various designs that mimic natural molecular feedback control mechanisms. However, practical and predictable implementations have proved challenging because of the complexity of synthesis and analysis of complex biomolecular networks. Here, we analyze and experimentally validate a synthetic biomolecular controller executed in vitro. The controller ensures that gene expression rate tracks an externally imposed reference level, and achieves this goal even in the presence of certain kinds of disturbances. Our design relies upon an analog of the well-known principle of integral feedback in control theory. We implement the controller in an Escherichia coli cell-free transcription-translation system, which allows rapid prototyping and implementation. Modeling and theory guide experimental implementation with well-defined operational predictability.
Collapse
Affiliation(s)
- Deepak K Agrawal
- Department of Bioengineering, Northeastern University, Boston, MA, USA
- Department of Electrical and Computer Engineering, Northeastern University, Boston, MA, USA
| | - Ryan Marshall
- School of Physics and Astronomy, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Vincent Noireaux
- School of Physics and Astronomy, University of Minnesota, Minneapolis, MN, 55455, USA.
| | - Eduardo D Sontag
- Department of Bioengineering, Northeastern University, Boston, MA, USA.
- Department of Electrical and Computer Engineering, Northeastern University, Boston, MA, USA.
- Laboratory of Systems Pharmacology, Program in Therapeutic Science, Harvard Medical School, Boston MA, USA.
| |
Collapse
|
32
|
Steel H, Papachristodoulou A. Low-Burden Biological Feedback Controllers for Near-Perfect Adaptation. ACS Synth Biol 2019; 8:2212-2219. [PMID: 31500408 DOI: 10.1021/acssynbio.9b00125] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The robustness and reliability of synthetic biological systems can be substantially improved by the introduction of feedback control architectures that parallel those employed in traditional engineering disciplines. One common control goal is adaptation (or disturbance rejection), which refers to a system's ability to maintain a constant output despite variation in some of its constituent processes (as frequently occurs in noisy cellular environments) or external perturbations. In this paper, we propose and analyze a control architecture that employs integrase and excisionase proteins to invert regions of DNA and an mRNA-mRNA annihilation reaction. Combined, these components approximate the functionality of a switching controller (as employed in classical control engineering) with three distinct operational modes. We demonstrate that this system is capable of near-perfect adaptation to variation in rates of both transcription and translation and can also operate without excessive consumption of cellular resources. The system's steady-state behavior is analyzed, and limits on its operating range are derived. Deterministic simulations of its dynamics are presented and are then extended to the stochastic case, which treats biochemical reactions as discrete events.
Collapse
Affiliation(s)
- Harrison Steel
- Dept of Engineering Science, University of Oxford, Oxford OX1 3PJ, U.K
| | | |
Collapse
|
33
|
Hard Limits and Performance Tradeoffs in a Class of Antithetic Integral Feedback Networks. Cell Syst 2019; 9:49-63.e16. [PMID: 31279505 DOI: 10.1016/j.cels.2019.06.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Revised: 02/28/2019] [Accepted: 05/30/2019] [Indexed: 12/18/2022]
Abstract
Feedback regulation is pervasive in biology at both the organismal and cellular level. In this article, we explore the properties of a particular biomolecular feedback mechanism called antithetic integral feedback, which can be implemented using the binding of two molecules. Our work develops an analytic framework for understanding the hard limits, performance tradeoffs, and architectural properties of this simple model of biological feedback control. Using tools from control theory, we show that there are simple parametric relationships that determine both the stability and the performance of these systems in terms of speed, robustness, steady-state error, and leakiness. These findings yield a holistic understanding of the behavior of antithetic integral feedback and contribute to a more general theory of biological control systems.
Collapse
|
34
|
A universal biomolecular integral feedback controller for robust perfect adaptation. Nature 2019; 570:533-537. [PMID: 31217585 DOI: 10.1038/s41586-019-1321-1] [Citation(s) in RCA: 142] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Accepted: 05/22/2019] [Indexed: 11/09/2022]
Abstract
Homeostasis is a recurring theme in biology that ensures that regulated variables robustly-and in some systems, completely-adapt to environmental perturbations. This robust perfect adaptation feature is achieved in natural circuits by using integral control, a negative feedback strategy that performs mathematical integration to achieve structurally robust regulation1,2. Despite its benefits, the synthetic realization of integral feedback in living cells has remained elusive owing to the complexity of the required biological computations. Here we prove mathematically that there is a single fundamental biomolecular controller topology3 that realizes integral feedback and achieves robust perfect adaptation in arbitrary intracellular networks with noisy dynamics. This adaptation property is guaranteed both for the population-average and for the time-average of single cells. On the basis of this concept, we genetically engineer a synthetic integral feedback controller in living cells4 and demonstrate its tunability and adaptation properties. A growth-rate control application in Escherichia coli shows the intrinsic capacity of our integral controller to deliver robustness and highlights its potential use as a versatile controller for regulation of biological variables in uncertain networks. Our results provide conceptual and practical tools in the area of cybergenetics3,5, for engineering synthetic controllers that steer the dynamics of living systems3-9.
Collapse
|
35
|
Brave new ‘RNA’ world—advances in RNA tools and their application for understanding and engineering biological systems. ACTA ACUST UNITED AC 2019. [DOI: 10.1016/j.coisb.2019.02.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
36
|
Baetica AA, Westbrook A, El-Samad H. Control theoretical concepts for synthetic and systems biology. ACTA ACUST UNITED AC 2019. [DOI: 10.1016/j.coisb.2019.02.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
37
|
|
38
|
Zheng X, Yang J, Zhou C, Zhang C, Zhang Q, Wei X. Allosteric DNAzyme-based DNA logic circuit: operations and dynamic analysis. Nucleic Acids Res 2019; 47:1097-1109. [PMID: 30541100 PMCID: PMC6379719 DOI: 10.1093/nar/gky1245] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Revised: 11/29/2018] [Accepted: 12/03/2018] [Indexed: 12/29/2022] Open
Abstract
Recently, due to the dual roles of DNA and enzyme, DNAzyme has been widely used in the field of DNA circuit, which has a wide range of applications in bio-engineered system, information processing and biocomputing. In fact, the activity of DNAzymes was regulated by subunits assembly, pH control and metal ions triggers. However, those regulations required to change the sequences of whole DNAzyme, as separating parts and inserting extra DNA sequence. Inspired by the allosteric regulation of proteins in nature, a new allosteric strategy is proposed to regulate the activity of DNAzyme without DNA sequences changes. In this strategy, DNA strand displacement was used to regulate the DNAzyme structure, through which the activity of DNAzyme was well controlled. The strategy was applied to E6-type DNAzymes, and the operations of DNA logic circuit (YES, OR, AND, cascading and feedback) were established and simulated with the dynamic analyses. The allosteric regulation has potential to construct more complicated molecular systems, which can be applied to bio-sensing and detection.
Collapse
Affiliation(s)
- Xuedong Zheng
- College of Computer Science, Shenyang Aerospace University, Shenyang 110136, China
| | - Jing Yang
- School of Control and Computer Engineering, North China Electric Power University, Beijing 102206, China
| | - Changjun Zhou
- College of Mathematics and Computer sciences, Zhejiang Normal University, Jinhua, 321004, China
| | - Cheng Zhang
- School of Electronics Engineering and Computer Science, Peking University, Key laboratory of High Confidence Software Technologies, Ministry of Education, Beijing 100871, China
| | - Qiang Zhang
- Key Laboratory of Advanced Design and Intelligent Computing, Dalian University, Ministry of Education, Dalian 116622, China
- School of Computer Scicence and Technology, Dalian University of Technology, Dalian 116024, China
| | - Xiaopeng Wei
- Key Laboratory of Advanced Design and Intelligent Computing, Dalian University, Ministry of Education, Dalian 116622, China
- School of Computer Scicence and Technology, Dalian University of Technology, Dalian 116024, China
| |
Collapse
|
39
|
A quasi-integral controller for adaptation of genetic modules to variable ribosome demand. Nat Commun 2018; 9:5415. [PMID: 30575748 PMCID: PMC6303309 DOI: 10.1038/s41467-018-07899-z] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2018] [Accepted: 12/03/2018] [Indexed: 01/25/2023] Open
Abstract
The behavior of genetic circuits is often poorly predictable. A gene’s expression level is not only determined by the intended regulators, but also affected by changes in ribosome availability imparted by expression of other genes. Here we design a quasi-integral biomolecular feedback controller that enables the expression level of any gene of interest (GOI) to adapt to changes in available ribosomes. The feedback is implemented through a synthetic small RNA (sRNA) that silences the GOI’s mRNA, and uses orthogonal extracytoplasmic function (ECF) sigma factor to sense the GOI’s translation and to actuate sRNA transcription. Without the controller, the expression level of the GOI is reduced by 50% when a resource competitor is activated. With the controller, by contrast, gene expression level is practically unaffected by the competitor. This feedback controller allows adaptation of genetic modules to variable ribosome demand and thus aids modular construction of complicated circuits. Competition for shared cellular resources often renders genetic circuits poorly predictable. Here the authors design a biomolecular quasi-integral controller that allows gene expression to adapt to variable demand in translation resources.
Collapse
|