1
|
Ramos-Alonso L, Chymkowitch P. Maintaining transcriptional homeostasis during cell cycle. Transcription 2024; 15:1-21. [PMID: 37655806 PMCID: PMC11093055 DOI: 10.1080/21541264.2023.2246868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 07/31/2023] [Accepted: 08/03/2023] [Indexed: 09/02/2023] Open
Abstract
The preservation of gene expression patterns that define cellular identity throughout the cell division cycle is essential to perpetuate cellular lineages. However, the progression of cells through different phases of the cell cycle severely disrupts chromatin accessibility, epigenetic marks, and the recruitment of transcriptional regulators. Notably, chromatin is transiently disassembled during S-phase and undergoes drastic condensation during mitosis, which is a significant challenge to the preservation of gene expression patterns between cell generations. This article delves into the specific gene expression and chromatin regulatory mechanisms that facilitate the preservation of transcriptional identity during replication and mitosis. Furthermore, we emphasize our recent findings revealing the unconventional role of yeast centromeres and mitotic chromosomes in maintaining transcriptional fidelity beyond mitosis.
Collapse
Affiliation(s)
- Lucía Ramos-Alonso
- Department of Biosciences, Faculty of Mathematics and Natural Sciences, University of Oslo, Oslo, Norway
| | - Pierre Chymkowitch
- Department of Biosciences, Faculty of Mathematics and Natural Sciences, University of Oslo, Oslo, Norway
| |
Collapse
|
2
|
Liu S, Li X, Liu X, Wang J, Li L, Kong D. RNA polymerase III directly participates in DNA homologous recombination. Trends Cell Biol 2022; 32:988-995. [PMID: 35811227 DOI: 10.1016/j.tcb.2022.06.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 06/05/2022] [Accepted: 06/14/2022] [Indexed: 01/21/2023]
Abstract
A recent study showed that RNA transcription is directly involved in DNA homologous recombination (HR). The first step in HR is end resection, which degrades a few kilobases or more from the 5'-end strand at DNA breaks, but the 3'-end strand remains strictly intact. Such protection of the 3'-end strand is achieved by the transient formation of an RNA-DNA hybrid structure. The RNA strand in the hybrid is newly synthesized by RNA polymerase III. The revelation of the existence of an RNA-DNA hybrid intermediate should further help resolve several long-standing questions of HR. In this article, we also put forward our views on some controversial issues related to RNA-DNA hybrids, RNA polymerases, and the protection of 3'-end strands.
Collapse
Affiliation(s)
- Sijie Liu
- Peking-Tsinghua Center for Life Sciences, The National Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking University, Beijing 100871, China.
| | - Xizhou Li
- Department of Breast and Thyroid Surgery, Changhai Hospital, The Naval Military Medical University, Shanghai, China
| | - Xiaoqin Liu
- Peking-Tsinghua Center for Life Sciences, The National Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking University, Beijing 100871, China; Institute of Brain Science, Shanxi Datong University, Datong 037009, China
| | - Jingna Wang
- Peking-Tsinghua Center for Life Sciences, The National Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking University, Beijing 100871, China
| | - Lingyan Li
- Peking-Tsinghua Center for Life Sciences, The National Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking University, Beijing 100871, China
| | - Daochun Kong
- Peking-Tsinghua Center for Life Sciences, The National Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking University, Beijing 100871, China.
| |
Collapse
|
3
|
Hu T, Wang X, Xia Y, Wu L, Ma Y, Zhou R, Zhao Y. Comprehensive analysis identifies as a critical prognostic prediction gene in breast cancer. Chin Med J (Engl) 2022; 135:2218-2231. [PMID: 36113844 PMCID: PMC9771277 DOI: 10.1097/cm9.0000000000002025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Aurora kinases (AURKs) family plays a vital role not only in cell division but also in tumorigenesis. However, there are still rare systematic analyses of the diverse expression patterns and prognostic value of the AURKs family in breast cancer (BC). Systematic bioinformatics analysis was conducted to explore the biological role, prognostic value, and immunologic function of AURKs family in BC. METHODS The expression, prognostic value, and clinical functions of AURKs family in BC were evaluated with several bioinformatics web portals: ONCOMINE Gene Expression Profiling Interactive Analysis, Kaplan-Meier plotter, cBioPortal, Metascape, GeneMANIA, and LinkedOmics; and the result was verified using human tissues. RESULTS The expression of AURKA and AURKB were upregulated in BC in subgroup analyses based on tumor stage (all P < 0.05). BC patients with high AURKA and AURKB expression had a worse overall survival, relapse-free survival, and distant metastasis-free survival (all P < 0.05). Verification experiment revealed that AURKA and AURKB were upregulated in BC ( P < 0.05). AURKA and AURKB were specifically associated with several tumor-associated kinases (polo-like kinase 1 and cyclin-dependent kinase 1), miRNAs (miR-507 and miR-381), and E2F transcription factor 1. Moreover, AURKA and AURKB were correlated with immune cell infiltration. Functional enrichment analysis revealed that AURKA and AURKB were involved in the cell cycle signaling pathway, platinum drug resistance signaling pathway, ErbB signaling pathway, Hippo signaling pathway, and nucleotide-binding and oligomerization domain-like receptor signaling pathway. CONCLUSIONS Aurora kinases AURKA and AURKB could be employed as novel prognostic biomarkers or promising therapeutic targets for BC.
Collapse
Affiliation(s)
- Ting Hu
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, China
| | - Xu Wang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, China
| | - Yun Xia
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, China
| | - Lu Wu
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, China
| | - Yuxi Ma
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, China
| | - Rui Zhou
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, China
| | - Yanxia Zhao
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, China
| |
Collapse
|
4
|
Lan J, Huang J, Tao X, Gao Y, Zhang L, Huang W, Luo J, Liu C, Deng Y, Liu L, Liu X. Evaluation of the TRIP13 level in breast cancer and insights into potential molecular pathways. J Cell Mol Med 2022; 26:2673-2685. [PMID: 35322916 PMCID: PMC9077308 DOI: 10.1111/jcmm.17278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 02/10/2022] [Accepted: 02/27/2022] [Indexed: 11/29/2022] Open
Abstract
TRIP13 is a member of the large superfamily of the AAA + ATPase proteins and is associated with a variety of activities. Emerging evidence has shown that TRIP13 may serve as an oncogene. However, the function of TRIP13 in breast cancer (BC) has not yet been elucidated. Here, a variety of bioinformatic tools and laboratory experiments were combined to analyse the expression patterns, prognostic value and functional network of TRIP13 in BC. Multiple databases and immunohistochemistry (IHC) indicated a higher TRIP13 expression in BC tissue compared with normal tissue. TRIP13 was highly expressed in lung metastatic lesions compared with primary tumours in a 4T1 cell implantation BALB/c mouse model of BC. Kaplan–Meier plots also revealed that high TRIP13 expression correlated with poor survival in patients with BC. Furthermore, gene set enrichment analysis revealed that TRIP13 was primarily enriched in the signalling pathway of PI3K‐AKT‐mTOR. Suppressing TRIP13 could inhibit the expression of related genes, as well as the proliferation and migration of BC cell. Finally, 10 hub genes with a high score of connectivity were filtered from the protein–protein interaction (PPI) network, including MAD2L1, CDC20, CDC5L, CDK1, CCNA2, BUB1B, RAD51, SPO11, KIF11 and AURKB. Thus, TRIP13 may be a promising prognostic biomarker and an effective therapeutic target for BC.
Collapse
Affiliation(s)
- Jin Lan
- Department of General Surgery, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
| | - Jingzhan Huang
- Department of General Surgery, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
| | - Xinyi Tao
- Department of General Surgery, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
| | - Yuan Gao
- Department of General Surgery, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
| | - Longshan Zhang
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Weiqiang Huang
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Junjie Luo
- Department of General Surgery, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
| | - Chuqin Liu
- Department of General Surgery, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
| | - Yunyao Deng
- Department of General Surgery, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
| | - Lixin Liu
- Department of General Surgery, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
| | - Xiaolong Liu
- Department of General Surgery, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
| |
Collapse
|
5
|
Li X, Liu Z, Wei X, Lin J, Yang Q, Xie Y. Comprehensive Analysis of the Expression and Clinical Significance of THO Complex Members in Hepatocellular Carcinoma. Int J Gen Med 2022; 15:2695-2713. [PMID: 35300138 PMCID: PMC8922240 DOI: 10.2147/ijgm.s349925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 02/21/2022] [Indexed: 11/23/2022] Open
Abstract
Background Methods Results Conclusion
Collapse
Affiliation(s)
- Xixi Li
- Department of Hepatobiliary and Pancreatic Surgery, The Second Hospital of Jilin University, Changchun, People’s Republic of China
| | - Zefeng Liu
- Department of Hepatobiliary and Pancreatic Surgery, The Second Hospital of Jilin University, Changchun, People’s Republic of China
| | - Xin Wei
- Department of Hepatobiliary and Pancreatic Surgery, The Second Hospital of Jilin University, Changchun, People’s Republic of China
| | - Jie Lin
- Department of Hepatobiliary and Pancreatic Surgery, The Second Hospital of Jilin University, Changchun, People’s Republic of China
| | - Qiwei Yang
- Medical Research Center, The Second Hospital of Jilin University, Changchun, People’s Republic of China
| | - Yingjun Xie
- Department of Hepatobiliary and Pancreatic Surgery, The Second Hospital of Jilin University, Changchun, People’s Republic of China
- Correspondence: Yingjun Xie, Tel +86 17390069233, Email
| |
Collapse
|
6
|
Enserink JM, Chymkowitch P. Cell Cycle-Dependent Transcription: The Cyclin Dependent Kinase Cdk1 Is a Direct Regulator of Basal Transcription Machineries. Int J Mol Sci 2022; 23:ijms23031293. [PMID: 35163213 PMCID: PMC8835803 DOI: 10.3390/ijms23031293] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 01/22/2022] [Accepted: 01/22/2022] [Indexed: 12/21/2022] Open
Abstract
The cyclin-dependent kinase Cdk1 is best known for its function as master regulator of the cell cycle. It phosphorylates several key proteins to control progression through the different phases of the cell cycle. However, studies conducted several decades ago with mammalian cells revealed that Cdk1 also directly regulates the basal transcription machinery, most notably RNA polymerase II. More recent studies in the budding yeast Saccharomyces cerevisiae have revisited this function of Cdk1 and also revealed that Cdk1 directly controls RNA polymerase III activity. These studies have also provided novel insight into the physiological relevance of this process. For instance, cell cycle-stage-dependent activity of these complexes may be important for meeting the increased demand for various proteins involved in housekeeping, metabolism, and protein synthesis. Recent work also indicates that direct regulation of the RNA polymerase II machinery promotes cell cycle entry. Here, we provide an overview of the regulation of basal transcription by Cdk1, and we hypothesize that the original function of the primordial cell-cycle CDK was to regulate RNAPII and that it later evolved into specialized kinases that govern various aspects of the transcription machinery and the cell cycle.
Collapse
Affiliation(s)
- Jorrit M. Enserink
- Section for Biochemistry and Molecular Biology, Faculty of Mathematics and Natural Sciences, University of Oslo, 0316 Oslo, Norway
- Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, 0379 Oslo, Norway
- Centre for Cancer Cell Reprogramming, Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, 0318 Oslo, Norway
- Correspondence: (J.M.E.); (P.C.)
| | - Pierre Chymkowitch
- Section for Biochemistry and Molecular Biology, Faculty of Mathematics and Natural Sciences, University of Oslo, 0316 Oslo, Norway
- Department of Microbiology, Oslo University Hospital, 0372 Oslo, Norway
- Correspondence: (J.M.E.); (P.C.)
| |
Collapse
|
7
|
Garcia I, Orellana-Muñoz S, Ramos-Alonso L, Andersen AN, Zimmermann C, Eriksson J, Bøe SO, Kaferle P, Papamichos-Chronakis M, Chymkowitch P, Enserink JM. Kel1 is a phosphorylation-regulated noise suppressor of the pheromone signaling pathway. Cell Rep 2021; 37:110186. [PMID: 34965431 DOI: 10.1016/j.celrep.2021.110186] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 11/01/2021] [Accepted: 12/07/2021] [Indexed: 11/26/2022] Open
Abstract
Mechanisms have evolved that allow cells to detect signals and generate an appropriate response. The accuracy of these responses relies on the ability of cells to discriminate between signal and noise. How cells filter noise in signaling pathways is not well understood. Here, we analyze noise suppression in the yeast pheromone signaling pathway and show that the poorly characterized protein Kel1 serves as a major noise suppressor and prevents cell death. At the molecular level, Kel1 prevents spontaneous activation of the pheromone response by inhibiting membrane recruitment of Ste5 and Far1. Only a hypophosphorylated form of Kel1 suppresses signaling, reduces noise, and prevents pheromone-associated cell death, and our data indicate that the MAPK Fus3 contributes to Kel1 phosphorylation. Taken together, Kel1 serves as a phospho-regulated suppressor of the pheromone pathway to reduce noise, inhibit spontaneous activation of the pathway, regulate mating efficiency, and prevent pheromone-associated cell death.
Collapse
Affiliation(s)
- Ignacio Garcia
- Department of Molecular Cell Biology, Institute for Cancer Research, The Norwegian Radium Hospital, Montebello, 0379 Oslo, Norway; Centre for Cancer Cell Reprogramming, Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, 0318 Oslo, Norway
| | - Sara Orellana-Muñoz
- Department of Molecular Cell Biology, Institute for Cancer Research, The Norwegian Radium Hospital, Montebello, 0379 Oslo, Norway; Centre for Cancer Cell Reprogramming, Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, 0318 Oslo, Norway
| | - Lucía Ramos-Alonso
- Section for Biochemistry and Molecular Biology, Faculty of Mathematics and Natural Sciences, University of Oslo, 0316 Oslo, Norway; Department of Microbiology, Oslo University Hospital, 0372 Oslo, Norway
| | - Aram N Andersen
- Department of Molecular Cell Biology, Institute for Cancer Research, The Norwegian Radium Hospital, Montebello, 0379 Oslo, Norway; Centre for Cancer Cell Reprogramming, Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, 0318 Oslo, Norway; Section for Biochemistry and Molecular Biology, Faculty of Mathematics and Natural Sciences, University of Oslo, 0316 Oslo, Norway
| | - Christine Zimmermann
- Institute for Virology, University Medical Center of the Johannes Gutenberg-University, 55131 Mainz, Germany
| | - Jens Eriksson
- Department of Medical Biochemistry and Microbiology, Uppsala University, 752 37 Uppsala, Sweden
| | - Stig Ove Bøe
- Department of Microbiology, Oslo University Hospital, 0372 Oslo, Norway
| | - Petra Kaferle
- Institut Curie, PSL Research University, CNRS, UMR3664, Sorbonne Universities, Paris, France
| | - Manolis Papamichos-Chronakis
- Department of Molecular Physiology and Cell Signalling Institute of Systems, Molecular and Integrative Biology University of Liverpool, L69 7BE Liverpool, UK
| | - Pierre Chymkowitch
- Section for Biochemistry and Molecular Biology, Faculty of Mathematics and Natural Sciences, University of Oslo, 0316 Oslo, Norway; Department of Microbiology, Oslo University Hospital, 0372 Oslo, Norway
| | - Jorrit M Enserink
- Department of Molecular Cell Biology, Institute for Cancer Research, The Norwegian Radium Hospital, Montebello, 0379 Oslo, Norway; Centre for Cancer Cell Reprogramming, Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, 0318 Oslo, Norway; Section for Biochemistry and Molecular Biology, Faculty of Mathematics and Natural Sciences, University of Oslo, 0316 Oslo, Norway.
| |
Collapse
|
8
|
Delgado-Román I, Muñoz-Centeno MC. Coupling Between Cell Cycle Progression and the Nuclear RNA Polymerases System. Front Mol Biosci 2021; 8:691636. [PMID: 34409067 PMCID: PMC8365833 DOI: 10.3389/fmolb.2021.691636] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 06/28/2021] [Indexed: 11/13/2022] Open
Abstract
Eukaryotic life is possible due to the multitude of complex and precise phenomena that take place in the cell. Essential processes like gene transcription, mRNA translation, cell growth, and proliferation, or membrane traffic, among many others, are strictly regulated to ensure functional success. Such systems or vital processes do not work and adjusts independently of each other. It is required to ensure coordination among them which requires communication, or crosstalk, between their different elements through the establishment of complex regulatory networks. Distortion of this coordination affects, not only the specific processes involved, but also the whole cell fate. However, the connection between some systems and cell fate, is not yet very well understood and opens lots of interesting questions. In this review, we focus on the coordination between the function of the three nuclear RNA polymerases and cell cycle progression. Although we mainly focus on the model organism Saccharomyces cerevisiae, different aspects and similarities in higher eukaryotes are also addressed. We will first focus on how the different phases of the cell cycle affect the RNA polymerases activity and then how RNA polymerases status impacts on cell cycle. A good example of how RNA polymerases functions impact on cell cycle is the ribosome biogenesis process, which needs the coordinated and balanced production of mRNAs and rRNAs synthesized by the three eukaryotic RNA polymerases. Distortions of this balance generates ribosome biogenesis alterations that can impact cell cycle progression. We also pay attention to those cases where specific cell cycle defects generate in response to repressed synthesis of ribosomal proteins or RNA polymerases assembly defects.
Collapse
Affiliation(s)
- Irene Delgado-Román
- Instituto de Biomedicina de Sevilla, Universidad de Sevilla-CSIC-Hospital Universitario V. Del Rocío, Seville, Spain.,Departamento de Genética, Facultad de Biología, Universidad de Sevilla, Seville, Spain
| | - Mari Cruz Muñoz-Centeno
- Instituto de Biomedicina de Sevilla, Universidad de Sevilla-CSIC-Hospital Universitario V. Del Rocío, Seville, Spain.,Departamento de Genética, Facultad de Biología, Universidad de Sevilla, Seville, Spain
| |
Collapse
|
9
|
Shiota H, Alekseyenko AA, Wang ZA, Filic I, Knox TM, Luong NM, Huang Y, Scott DA, Jones KL, Gokhale PC, Lemieux ME, Cole PA, Kuroda MI, French CA. Chemical Screen Identifies Diverse and Novel Histone Deacetylase Inhibitors as Repressors of NUT Function: Implications for NUT Carcinoma Pathogenesis and Treatment. Mol Cancer Res 2021; 19:1818-1830. [PMID: 34285087 DOI: 10.1158/1541-7786.mcr-21-0259] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 05/23/2021] [Accepted: 07/16/2021] [Indexed: 11/16/2022]
Abstract
NUT carcinoma (NC), characterized most commonly by the BRD4-NUTM1 fusion, is a rare, aggressive variant of squamous carcinoma with no effective treatment. BRD4-NUT drives growth and maintains the poorly differentiated state of NC by activating pro-growth genes such as MYC, through the formation of massive, hyperacetylated, superenhancer-like domains termed megadomains. BRD4-NUT-mediated hyperacetylation of chromatin is facilitated by the chromatin-targeting tandem bromodomains of BRD4, combined with NUT, which recruits the histone acetyltransferase, p300. Here, we developed a high-throughput small-molecule screen to identify inhibitors of transcriptional activation by NUT. In this dCAS9-based GFP-reporter assay, the strongest hits were diverse histone deacetylase (HDAC) inhibitors. Two structurally unrelated HDAC inhibitors, panobinostat and the novel compound, IRBM6, both repressed growth and induced differentiation of NC cells in proportion to their inhibition of NUT transcriptional activity. These two compounds repressed transcription of megadomain-associated oncogenic genes, such as MYC and SOX2, while upregulating pro-differentiation, non-megadomain-associated genes, including JUN, FOS, and key cell-cycle regulators, such as CDKN1A. The transcriptional changes correlate with depletion of BRD4-NUT from megadomains, and redistribution of the p300/CBP-associated chromatin acetylation mark, H3K27ac, away from megadomains toward regular enhancer regions previously populated by H3K27ac. In NC xenograft models, we demonstrated that suppression of tumor growth by panobinostat was comparable with that of bromodomain inhibition, and when combined they improved both survival and growth suppression. IMPLICATIONS: The findings provide mechanistic and preclinical rationale for the use of HDAC inhibitors, alone or combined with other agents, in the treatment of NUT carcinoma.
Collapse
Affiliation(s)
- Hitoshi Shiota
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Artyom A Alekseyenko
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts.,Department of Genetics, Harvard Medical School, Boston, Massachusetts
| | - Zhipeng A Wang
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts.,Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts
| | - Ivona Filic
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Tatiana M Knox
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Nhi M Luong
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Yeying Huang
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - David A Scott
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts.,Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts
| | - Kristen L Jones
- Experimental Therapeutics Core and Belfer Center for Applied Cancer Science, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Prafulla C Gokhale
- Experimental Therapeutics Core and Belfer Center for Applied Cancer Science, Dana-Farber Cancer Institute, Boston, Massachusetts
| | | | - Philip A Cole
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts.,Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts
| | - Mitzi I Kuroda
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts.,Department of Genetics, Harvard Medical School, Boston, Massachusetts
| | - Christopher A French
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts.
| |
Collapse
|
10
|
González-Jiménez A, Campos A, Navarro F, Clemente-Blanco A, Calvo O. Regulation of Eukaryotic RNAPs Activities by Phosphorylation. Front Mol Biosci 2021; 8:681865. [PMID: 34250017 PMCID: PMC8268151 DOI: 10.3389/fmolb.2021.681865] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 06/07/2021] [Indexed: 01/11/2023] Open
Abstract
Evolutionarily conserved kinases and phosphatases regulate RNA polymerase II (RNAPII) transcript synthesis by modifying the phosphorylation status of the carboxyl-terminal domain (CTD) of Rpb1, the largest subunit of RNAPII. Proper levels of Rpb1-CTD phosphorylation are required for RNA co-transcriptional processing and to coordinate transcription with other nuclear processes, such as chromatin remodeling and histone modification. Whether other RNAPII subunits are phosphorylated and influences their role in gene expression is still an unanswered question. Much less is known about RNAPI and RNAPIII phosphorylation, whose subunits do not contain functional CTDs. However, diverse studies have reported that several RNAPI and RNAPIII subunits are susceptible to phosphorylation. Some of these phosphorylation sites are distributed within subunits common to all three RNAPs whereas others are only shared between RNAPI and RNAPIII. This suggests that the activities of all RNAPs might be finely modulated by phosphorylation events and raises the idea of a tight coordination between the three RNAPs. Supporting this view, the transcription by all RNAPs is regulated by signaling pathways that sense different environmental cues to adapt a global RNA transcriptional response. This review focuses on how the phosphorylation of RNAPs might regulate their function and we comment on the regulation by phosphorylation of some key transcription factors in the case of RNAPI and RNAPIII. Finally, we discuss the existence of possible common mechanisms that could coordinate their activities.
Collapse
Affiliation(s)
- Araceli González-Jiménez
- Instituto de Biología Funcional y Genómica, Consejo Superior de Investigaciones Científicas, Universidad de Salamanca, Salamanca, Spain
| | - Adrián Campos
- Instituto de Biología Funcional y Genómica, Consejo Superior de Investigaciones Científicas, Universidad de Salamanca, Salamanca, Spain
| | - Francisco Navarro
- Departamento de Biología Experimental-Genética, Universidad de Jaén, Jaén, Spain.,Centro de Estudios Avanzados en Aceite de Oliva y Olivar, Universidad de Jaén, Jaén, Spain
| | - Andrés Clemente-Blanco
- Instituto de Biología Funcional y Genómica, Consejo Superior de Investigaciones Científicas, Universidad de Salamanca, Salamanca, Spain
| | - Olga Calvo
- Instituto de Biología Funcional y Genómica, Consejo Superior de Investigaciones Científicas, Universidad de Salamanca, Salamanca, Spain
| |
Collapse
|
11
|
Li Y, Zhu L, Hao R, Li Y, Zhao Q, Li S. Systematic expression analysis of the CELSR family reveals the importance of CELSR3 in human lung adenocarcinoma. J Cell Mol Med 2021; 25:4349-4362. [PMID: 33811453 PMCID: PMC8093986 DOI: 10.1111/jcmm.16497] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 03/01/2021] [Accepted: 03/08/2021] [Indexed: 12/16/2022] Open
Abstract
Cadherin EGF LAG seven‐pass G‐type receptors (CELSRs) are involved in the progression of various types of cancer. CELSR3, a crucial signalling molecule in the WNT/PCP pathway, is believed to be associated with tumorigenesis and metastasis. However, its role in lung adenocarcinoma (LUAD) remains unclear. In this paper, we analysed the expression of CELSR family members using the Oncomine, GEPIA and UALCAN databases. We used a Kaplan‐Meier plotter to assess the effect of CELSRs on tumour prognosis. Next, gene ontology (GO), KEGG pathway, miRNA target, kinase target and transcription factor‐target enrichment were analysed by GSEA. Simultaneously, we conducted functional assays including cell viability, colony formation and transwell assays, to determine the oncogenic role of CELSR3 in LUAD. Finally, we used the TIMER and TISIDB databases to analyse the correlation between CELSR3 and immune infiltration and the potential chemokine receptor axis causing immune cell expression. High expression of CELSR3 is in LUAD predicts poor prognosis and early progression of the tumour. KEGG and GO enrichment analysis revealed the functional relationship between CELSR3 and cell adhesion, the cell cycle, and DNA replication. Down‐regulation of CELSR3 suppressed cell proliferation to a significant extent, in addition to inhibiting invasion and migration in LUAD cells. Finally, CELSR3 expression was significantly correlated with the infiltration level of CD8+T cells through the CCL17/CCR4 axis in LUAD. These results indicate that CELSR3 can serve as a prognostic biomarker for determining prognosis and immune infiltration in LUAD.
Collapse
Affiliation(s)
- Yishuai Li
- Department of Thoracic Surgery, The Second Hospital of Hebei Medical University, Shijiazhuang, China.,Department of Thoracic Surgery, Hebei Chest Hospital, Shijiazhuang, China
| | - Longyu Zhu
- Department of Radiotherapy, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Ran Hao
- School of Nursing, Hebei Medical University, Shijiazhuang, China
| | - Yuejun Li
- Department of Oncology, The Third Affiliated Hospital of Hunan University of Chinese Medicine, Zhuzhou, China.,Department of Oncology, The First Affiliated Hospital of Hunan College of Traditional Chinese Medicine, Zhuzhou, China
| | - Qinfei Zhao
- Department of Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Shujun Li
- Department of Thoracic Surgery, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| |
Collapse
|
12
|
Deng J, Zhong F, Gu W, Qiu F. Exploration of Prognostic Biomarkers among Replication Factor C Family in the Hepatocellular Carcinoma. Evol Bioinform Online 2021; 17:1176934321994109. [PMID: 33628006 PMCID: PMC7885030 DOI: 10.1177/1176934321994109] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 01/19/2021] [Indexed: 01/06/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the common cancers with a high incidence and mortality. The human replication factor C (RFC) family contains 5 subunits that play an important role in DNA replication and DNA damage repair. RFCs are abnormally expressed in a variety of cancers; some of them are differentially expressed in HCC tissues and related to tumor growth. However, the expression, prognostic value, and effect targets of the whole RFC family in HCC are still unclear. To address these issues, we performed a multidimensional analysis of RFCs in HCC patients by Oncomine, UALCAN, GEPIA, Human protein atlas, Kaplan-Meier plotter, cBioPortal, GeneMANIA, String, and LinkedOmics. mRNA expression of RFCs was significantly increased in HCC tissues. There was a significant correlation between the expression of RFC2/3/4/5 and tumor stage of HCC patients. Besides, high mRNA expression of RFC2/4 was associated with worse overall survival (OS). Moreover, genetic alterations of RFCs were associated with worse OS in HCC patients. We found that genes co-expressed with RFC2/4 were mainly involved in biological processes, such as chromosome segregation, mitotic cell cycle phase transition, and telomere organization and they activated the cell cycle and spliceosome pathways. The gene set is mainly enriched in cancer-related kinases AURKA, ATR, CDK1, PLK1, and CHEK1. E2F family members were the key transcription factors for RFCs. Our results suggest that differentially expressed RFC2 and RFC4 are potential prognostic biomarkers in HCC and may act on E2F transcription factors and some kinase targets to dysregulate the cell cycle pathway. These efforts may provide new research directions for prognostic biomarkers and therapeutic targets in HCC.
Collapse
Affiliation(s)
- Jianxiong Deng
- Department of Oncology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, P.R. China
| | - Fangyan Zhong
- Department of Oncology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, P.R. China
| | - Weiguo Gu
- Department of Pathology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, P.R. China
| | - Feng Qiu
- Department of Oncology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, P.R. China
| |
Collapse
|
13
|
Tadele DS, Robertson J, Crispin R, Herrera MC, Chlubnová M, Piechaczyk L, Ayuda-Durán P, Singh SK, Gedde-Dahl T, Fløisand Y, Skavland J, Wesche J, Gjertsen BT, Enserink JM. A cell competition-based small molecule screen identifies a novel compound that induces dual c-Myc depletion and p53 activation. J Biol Chem 2021; 296:100179. [PMID: 33303632 PMCID: PMC7948465 DOI: 10.1074/jbc.ra120.015285] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Revised: 11/26/2020] [Accepted: 12/10/2020] [Indexed: 11/08/2022] Open
Abstract
Breakpoint Cluster Region-Abelson kinase (BCR-Abl) is a driver oncogene that causes chronic myeloid leukemia and a subset of acute lymphoid leukemias. Although tyrosine kinase inhibitors provide an effective treatment for these diseases, they generally do not kill leukemic stem cells (LSCs), the cancer-initiating cells that compete with normal hematopoietic stem cells for the bone marrow niche. New strategies to target cancers driven by BCR-Abl are therefore urgently needed. We performed a small molecule screen based on competition between isogenic untransformed cells and BCR-Abl-transformed cells and identified several compounds that selectively impair the fitness of BCR-Abl-transformed cells. Interestingly, systems-level analysis of one of these novel compounds, DJ34, revealed that it induced depletion of c-Myc and activation of p53. DJ34-mediated c-Myc depletion occurred in a wide range of tumor cell types, including lymphoma, lung, glioblastoma, breast cancer, and several forms of leukemia, with primary LSCs being particularly sensitive to DJ34. Further analyses revealed that DJ34 interferes with c-Myc synthesis at the level of transcription, and we provide data showing that DJ34 is a DNA intercalator and topoisomerase II inhibitor. Physiologically, DJ34 induced apoptosis, cell cycle arrest, and cell differentiation. Taken together, we have identified a novel compound that dually targets c-Myc and p53 in a wide variety of cancers, and with particularly strong activity against LSCs.
Collapse
Affiliation(s)
- Dagim Shiferaw Tadele
- Department of Molecular Cell Biology, Institute for Cancer Research, The Norwegian Radium Hospital, Oslo, Norway
| | - Joseph Robertson
- Department of Molecular Cell Biology, Institute for Cancer Research, The Norwegian Radium Hospital, Oslo, Norway
| | - Richard Crispin
- Department of Molecular Cell Biology, Institute for Cancer Research, The Norwegian Radium Hospital, Oslo, Norway
| | - Maria C Herrera
- Section for Biochemistry and Molecular Biology, Faculty of Mathematics and Natural Sciences, University of Oslo, Oslo, Norway
| | - Markéta Chlubnová
- Department of Molecular Cell Biology, Institute for Cancer Research, The Norwegian Radium Hospital, Oslo, Norway
| | - Laure Piechaczyk
- Department of Molecular Cell Biology, Institute for Cancer Research, The Norwegian Radium Hospital, Oslo, Norway
| | - Pilar Ayuda-Durán
- Department of Molecular Cell Biology, Institute for Cancer Research, The Norwegian Radium Hospital, Oslo, Norway
| | - Sachin Kumar Singh
- Department of Tumor Biology, Institute for Cancer Research, The Norwegian Radium Hospital, Oslo, Norway
| | | | - Yngvar Fløisand
- Department of Hematology, Oslo University Hospital, Oslo, Norway
| | - Jørn Skavland
- Precision Oncology Research Group, Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Jørgen Wesche
- Department of Tumor Biology, Institute for Cancer Research, The Norwegian Radium Hospital, Oslo, Norway
| | - Bjørn-Tore Gjertsen
- Precision Oncology Research Group, Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Jorrit M Enserink
- Department of Molecular Cell Biology, Institute for Cancer Research, The Norwegian Radium Hospital, Oslo, Norway.
| |
Collapse
|
14
|
Kong W, Wu Z, Yang M, Zuo X, Yin G, Chen W. LMNB2 is a prognostic biomarker and correlated with immune infiltrates in hepatocellular carcinoma. IUBMB Life 2020; 72:2672-2685. [PMID: 33211382 DOI: 10.1002/iub.2408] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 10/08/2020] [Accepted: 10/13/2020] [Indexed: 12/24/2022]
Abstract
BACKGROUND Previous studies have suggested Lamin B2 (LMNB2) as an oncogene in lung cancer. However, the role of LMNB2 in hepatocellular carcinoma (HCC) remains unclear. METHOD The expression of LMNB2 was compared between HCC samples and non-tumor samples in multiple datasets. In addition, the prognostic value of LMNB2 in HCC was also investigated. Furthermore, the cBioPortal was utilized to analyze the genomic alternation of LMNB2 in HCC. Besides, co-expression genes and functional enrichment analysis were evaluated using LinkedOmics to determine the function of LMNB2. Finally, the correlation between LMNB2 and immune infiltration was assessed using Tumor Immune Estimation Resource (TIMER). RESULTS Elevated LMNB2 expression level was identified in HCC patients in multiple datasets. Moreover, increased levels of LMNB2 were associated with poor overall survival (OS) and disease-free survival (DFS). The functional enrichment analysis revealed that LMNB2 plays an essential role via the cell cycle pathway, spliceosome, hippo-signaling pathway, and metabolic pathways. Besides, copy number variation (CNV) and methylation were significantly associated with LMNB2 expression. Additionally, increased levels of LMNB2 were significantly associated with B cells, CD8+ T cells, CD4+ T cells, macrophages, neutrophils, and dendritic cells. CONCLUSION LMNB2 is a potential HCC prognostic and diagnostic biomarker.
Collapse
Affiliation(s)
- Weihao Kong
- Department of Emergency Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Department of Emergency Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Zihao Wu
- Clinical Pathology Center, The Fourth Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Mingwei Yang
- Department of Radiation Oncology, The First affiliated hospital of Anhui Medical University, Hefei, China
| | - Xiaomin Zuo
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Guanfu Yin
- Department of Medical Record Management, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Wei Chen
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| |
Collapse
|
15
|
Zhang Y, Wang Z, Ma J, Huo J, Li Y, Wang Y, Chen H, Shan L, Ma X. Bioinformatics Identification of the Expression and Clinical Significance of E2F Family in Endometrial Cancer. Front Genet 2020; 11:557188. [PMID: 33329696 PMCID: PMC7672218 DOI: 10.3389/fgene.2020.557188] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 09/30/2020] [Indexed: 11/26/2022] Open
Abstract
Background Besides being one of the most prevalent cancers among women, incidence and mortality rates of endometrial cancer (EC) are still increasing. The E2F family of transcriptional factors is involved in cell differentiation, apoptosis, and inhibition of DNA damage response, thus affecting growth and invasion of tumor cells. Methods We used multiple bioinformatics tools to explore the role of E2F family in endometrial cancer. Results The expression of E2F1/2/3/7/8 was significantly upregulated in endometrial cancer tissues, converse to E2F4, which was downregulated. Methylation downregulates all E2Fs except for E2F2. Accordingly, E2F1/2/3/5/7/8 are potential diagnostic biomarkers for EC. In particular, EC patients displaying upregulated E2F1, and E2F3 expression had a worse overall survival and relapse-free survival. E2F8, E2F7, and E2F1 were the top three, most-frequently altered genes in endometrial cancer. E2F family activates apoptosis pathways, regulates cell cycle, and impairs DNA damage response pathways. Drug-sensitivity analysis demonstrated that the level of E2F2/3/8 negatively correlated with drug resistance. Meanwhile, immune infiltrations analysis revealed that E2F family is associated with recruitment of several immune cells. Enrichment analysis on its part revealed that the E2F family is mainly associated with cell cycle, sequence-specific DNA binding, nuclear transcription factor complex, PI3K-Akt signaling, and p53 signaling pathway. We also identified multiple E2Fs-associated miRNA and kinase targets in endometrial cancer. Conclusion Our study revealed the unique expression signature and clinical significance of E2F family in EC, demonstrating the potential clinical utility of these transcription factors (TF) in endometrial cancer.
Collapse
Affiliation(s)
- YunZheng Zhang
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Zihao Wang
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Jian Ma
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
| | - JiaNing Huo
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
| | - YiBing Li
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
| | - YuShan Wang
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Hao Chen
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
| | - LuHe Shan
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Xiaoxin Ma
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
16
|
Zhou L, Li Y, Li Z, Huang Q. Mining therapeutic and prognostic significance of STATs in renal cell carcinoma with bioinformatics analysis. Genomics 2020; 112:4100-4114. [PMID: 32640276 DOI: 10.1016/j.ygeno.2020.06.032] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2020] [Revised: 06/06/2020] [Accepted: 06/19/2020] [Indexed: 02/05/2023]
Abstract
Renal cell carcinoma is one of the most common malignancies with high morbidity and mortality. STAT proteins play a significant role in cell biological behavior and immune response associated with cancer progression. In our study, the datasets analyzed for the expression and potential functions can be found in several bioinformatics analysis tools. We found that STAT1/2/4/6 were upregulated in RCC while STAT3/5B were downregulated. The expression of STAT2/4/5B were significantly associated with the pathological stage of RCC patients. RCC patients with high expression of STAT2/4 and low/medium expression of STAT5B had a poor overall survival. The function of STATs and the neighboring genes mainly enriched in JAK-STAT signaling pathway and NOD-like receptor signaling pathway. Several transcription factor, kinase, and miRNA targets were identified. Close correlations were obtained between immune cell infiltration and STATs in RCC. Our results have provided novel insights for the selection of immunotherapeutic targets and prognostic biomarkers.
Collapse
Affiliation(s)
- Liangcheng Zhou
- Department of Nephrology, Maoming People's Hospital, Maoming 525000, China.
| | - Yuwu Li
- Department of Urology, Gaozhou People's Hospital, Maoming, 525200, China
| | - Zuwei Li
- Department of Urology, Gaozhou People's Hospital, Maoming, 525200, China.
| | - Qinying Huang
- Department of Ophthalmology, Shantou University Medical college, Shantou 515041, China
| |
Collapse
|
17
|
Lin Y, Liang R, Qiu Y, Lv Y, Zhang J, Qin G, Yuan C, Liu Z, Li Y, Zou D, Mao Y. Expression and gene regulation network of RBM8A in hepatocellular carcinoma based on data mining. Aging (Albany NY) 2020; 11:423-447. [PMID: 30670676 PMCID: PMC6366983 DOI: 10.18632/aging.101749] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Accepted: 12/25/2018] [Indexed: 12/11/2022]
Abstract
RNA binding motif protein 8A (RBM8A) is an RNA binding protein in a core component of the exon junction complex. Abnormal RBM8A expression is associated with carcinogenesis. We used sequencing data from the Cancer Genome Atlas database and Gene Expression Omnibus, analyzed RBM8A expression and gene regulation networks in hepatocellular carcinoma (HCC). Expression was analyzed using OncomineTM and Gene Expression Profiling Interactive Analysis tools, while RBM8A alterations and related functional networks were identified using cBioPortal. LinkedOmics was used to identify differential gene expression with RBM8A and to analyze Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathways. Gene enrichment analysis examined target networks of kinases, miRNAs and transcription factors. We found that RBM8A is overexpressed and the RBM8A gene often amplified in HCC. Expression of this gene is linked to functional networks involving the ribosome and RNA metabolic signaling pathways. Functional network analysis suggested that RBM8A regulates the spliceosome, ribosome, DNA replication and cell cycle signaling via pathways involving several cancer-related kinases, miRNAs and E2F Transcription Factor 1. Our results demonstrate that data mining efficiently reveals information about RBM8A expression and potential regulatory networks in HCC, laying a foundation for further study of the role of RBM8A in carcinogenesis.
Collapse
Affiliation(s)
- Yan Lin
- Department of Medical Oncology, Affiliated Tumor Hospital of Guangxi Medical University, Nanning, Guangxi 530021, People's Republic of China
| | - Rong Liang
- Department of Medical Oncology, Affiliated Tumor Hospital of Guangxi Medical University, Nanning, Guangxi 530021, People's Republic of China
| | - Yufen Qiu
- Maternal and Child Health Hospital and Obstetrics and Gynecology Hospital of Guangxi Zhuang Autonomous Region, Guangxi 530021, People's Republic of China
| | - Yufeng Lv
- Department of Medical Oncology, Affiliated Langdong Hospital of Guangxi Medical University, Nanning, Guangxi 530021, People's Republic of China
| | - Jinyan Zhang
- Department of Medical Oncology, Affiliated Tumor Hospital of Guangxi Medical University, Nanning, Guangxi 530021, People's Republic of China
| | - Gang Qin
- The Fifth Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, People's Republic of China
| | - Chunling Yuan
- Department of Medical Oncology, Affiliated Tumor Hospital of Guangxi Medical University, Nanning, Guangxi 530021, People's Republic of China
| | - Zhihui Liu
- Department of Medical Oncology, Affiliated Tumor Hospital of Guangxi Medical University, Nanning, Guangxi 530021, People's Republic of China
| | - Yongqiang Li
- Department of Medical Oncology, Affiliated Tumor Hospital of Guangxi Medical University, Nanning, Guangxi 530021, People's Republic of China
| | - Donghua Zou
- The Fifth Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, People's Republic of China
| | - Yingwei Mao
- Department of Biology, Pennsylvania State University, University Park, PA 16802, USA
| |
Collapse
|
18
|
Pérez-Posada A, Dudin O, Ocaña-Pallarès E, Ruiz-Trillo I, Ondracka A. Cell cycle transcriptomics of Capsaspora provides insights into the evolution of cyclin-CDK machinery. PLoS Genet 2020; 16:e1008584. [PMID: 32176685 PMCID: PMC7098662 DOI: 10.1371/journal.pgen.1008584] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 03/26/2020] [Accepted: 12/23/2019] [Indexed: 12/19/2022] Open
Abstract
Progression through the cell cycle in eukaryotes is regulated on multiple levels. The main driver of the cell cycle progression is the periodic activity of cyclin-dependent kinase (CDK) complexes. In parallel, transcription during the cell cycle is regulated by a transcriptional program that ensures the just-in-time gene expression. Many core cell cycle regulators are widely conserved in eukaryotes, among them cyclins and CDKs; however, periodic transcriptional programs are divergent between distantly related species. In addition, many otherwise conserved cell cycle regulators have been lost and independently evolved in yeast, a widely used model organism for cell cycle research. For a better understanding of the evolution of the cell cycle regulation in opisthokonts, we investigated the transcriptional program during the cell cycle of the filasterean Capsaspora owczarzaki, a unicellular species closely related to animals. We developed a protocol for cell cycle synchronization in Capsaspora cultures and assessed gene expression over time across the entire cell cycle. We identified a set of 801 periodic genes that grouped into five clusters of expression over time. Comparison with datasets from other eukaryotes revealed that the periodic transcriptional program of Capsaspora is most similar to that of animal cells. We found that orthologues of cyclin A, B and E are expressed at the same cell cycle stages as in human cells and in the same temporal order. However, in contrast to human cells where these cyclins interact with multiple CDKs, Capsaspora cyclins likely interact with a single ancestral CDK1-3. Thus, the Capsaspora cyclin-CDK system could represent an intermediate state in the evolution of animal-like cyclin-CDK regulation. Overall, our results demonstrate that Capsaspora could be a useful unicellular model system for animal cell cycle regulation.
Collapse
Affiliation(s)
- Alberto Pérez-Posada
- Institut de Biologia Evolutiva (CSIC-Universitat Pompeu Fabra), Barcelona, Catalonia, Spain
| | - Omaya Dudin
- Institut de Biologia Evolutiva (CSIC-Universitat Pompeu Fabra), Barcelona, Catalonia, Spain
| | - Eduard Ocaña-Pallarès
- Institut de Biologia Evolutiva (CSIC-Universitat Pompeu Fabra), Barcelona, Catalonia, Spain
| | - Iñaki Ruiz-Trillo
- Institut de Biologia Evolutiva (CSIC-Universitat Pompeu Fabra), Barcelona, Catalonia, Spain
- Departament de Genètica, Microbiologia i Estadística, Universitat de Barcelona, Barcelona, Catalonia, Spain
- ICREA, Barcelona, Catalonia, Spain
| | - Andrej Ondracka
- Institut de Biologia Evolutiva (CSIC-Universitat Pompeu Fabra), Barcelona, Catalonia, Spain
| |
Collapse
|
19
|
Determinants of Replication-Fork Pausing at tRNA Genes in Saccharomyces cerevisiae. Genetics 2020; 214:825-838. [PMID: 32071194 DOI: 10.1534/genetics.120.303092] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Accepted: 02/12/2020] [Indexed: 12/21/2022] Open
Abstract
Transfer RNA (tRNA) genes are widely studied sites of replication-fork pausing and genome instability in the budding yeast Saccharomyces cerevisiae tRNAs are extremely highly transcribed and serve as constitutive condensin binding sites. tRNA transcription by RNA polymerase III has previously been identified as stimulating replication-fork pausing at tRNA genes, but the nature of the block to replication has not been incontrovertibly demonstrated. Here, we describe a systematic, genome-wide analysis of the contributions of candidates to replication-fork progression at tDNAs in yeast: transcription factor binding, transcription, topoisomerase activity, condensin-mediated clustering, and Rad18-dependent DNA repair. We show that an asymmetric block to replication is maintained even when tRNA transcription is abolished by depletion of one or more subunits of RNA polymerase III. By contrast, analogous depletion of the essential transcription factor TFIIIB removes the obstacle to replication. Therefore, our data suggest that the RNA polymerase III transcription complex itself represents an asymmetric obstacle to replication even in the absence of RNA synthesis. We additionally demonstrate that replication-fork progression past tRNA genes is unaffected by the global depletion of condensin from the nucleus, and can be stimulated by the removal of topoisomerases or Rad18-dependent DNA repair pathways.
Collapse
|
20
|
Płonka M, Wawrzycka D, Wysocki R, Boguta M, Cieśla M. Coupling of RNA polymerase III assembly to cell cycle progression in Saccharomyces cerevisiae. Cell Cycle 2019; 18:500-510. [PMID: 30760101 DOI: 10.1080/15384101.2019.1578134] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Assembly of the RNA polymerases in both yeast and humans is proposed to occur in the cytoplasm prior to their nuclear import. Our previous studies identified a cold-sensitive mutation, rpc128-1007, in the yeast gene encoding the second largest Pol III subunit, Rpc128. rpc128-1007 is associated with defective assembly of Pol III complex and, in consequence, decreased level of tRNA synthesis. Here, we show that rpc128-1007 mutant cells remain largely unbudded and larger than wild type cells. Flow cytometry revealed that most rpc128-1007 mutant cells have G1 DNA content, suggesting that this mutation causes pronounced cell cycle delay in the G1 phase. Increased expression of gene encoding Rbs1, the Pol III assembly/import factor, could counteract G1 arrest observed in the rpc128-1007 mutant and restore wild type morphology of mutant cells. Concomitantly, cells lacking Rbs1 show a mild delay in G1 phase exit, indicating that Rbs1 is required for timely cell cycle progression. Using the double rpc128-1007 maf1Δ mutant in which tRNA synthesis is recovered, we confirmed that the Pol III assembly defect associated with rpc128-1007 is a primary cause of cell cycle arrest. Together our results indicate that impairment of Pol III complex assembly is coupled to cell cycle inhibition in the G1 phase.
Collapse
Affiliation(s)
- Marta Płonka
- a Department of Genetics, Institute of Biochemistry and Biophysics , Polish Academy of Sciences , Warsaw , Poland
| | - Donata Wawrzycka
- b Department of Genetics and Cell Physiology, Institute of Experimental Biology , University of Wrocław , Wrocław , Poland
| | - Robert Wysocki
- b Department of Genetics and Cell Physiology, Institute of Experimental Biology , University of Wrocław , Wrocław , Poland
| | - Magdalena Boguta
- a Department of Genetics, Institute of Biochemistry and Biophysics , Polish Academy of Sciences , Warsaw , Poland
| | - Małgorzata Cieśla
- a Department of Genetics, Institute of Biochemistry and Biophysics , Polish Academy of Sciences , Warsaw , Poland
| |
Collapse
|