1
|
Lazarchuk P, Nguyen MM, Curca CM, Pavlova MN, Oshima J, Sidorova JM. Werner syndrome RECQ helicase participates in and directs maintenance of the protein complexes of constitutive heterochromatin in proliferating human cells. Aging (Albany NY) 2024; null:206132. [PMID: 39422615 DOI: 10.18632/aging.206132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 09/06/2024] [Indexed: 10/19/2024]
Abstract
Werner syndrome of premature aging is caused by mutations in the WRN RECQ helicase/exonuclease, which functions in DNA replication, repair, transcription, and telomere maintenance. How the loss of WRN accelerates aging is not understood in full. Here we show that WRN is necessary for optimal constitutive heterochromatin levels in proliferating human fibroblasts. Locally, WRN deficiency derepresses SATII pericentromeric satellite repeats but does not reduce replication fork progression on SATII repeats. Globally, WRN loss reduces a subset of protein-protein interactions responsible for the organization of constitutive heterochromatin in the nucleus, namely, the interactions involving Lamin B1 and Lamin B receptor, LBR. Both the mRNA level and subcellular distribution of LBR are affected by WRN deficiency, and unlike the former, the latter phenotype does not require WRN catalytic activities. The phenotypes of heterochromatin disruption seen in WRN-deficient proliferating fibroblasts are also observed in WRN-proficient fibroblasts undergoing replicative or oncogene-induced senescence. WRN interacts with histone deacetylase 2, HDAC2; WRN/HDAC2 association is mediated by heterochromatin protein alpha, HP1α, and WRN complexes with HP1α and HDAC2 are downregulated in senescing cells. The data suggest that the effect of WRN loss on heterochromatin is separable from senescence program, but mimics at least some of the heterochromatin changes associated with it.
Collapse
Affiliation(s)
- Pavlo Lazarchuk
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA 98195, USA
| | - Matthew Manh Nguyen
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA 98195, USA
- Present address: Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Crina M Curca
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA 98195, USA
- Present address: Parse Biosciences, Seattle, WA 98109, USA
| | - Maria N Pavlova
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA 98195, USA
| | - Junko Oshima
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA 98195, USA
| | - Julia M Sidorova
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|
2
|
Qian C, Li X, Zhang J, Wang Y. Small Molecular Inhibitors That Target ATM for Drug Discovery: Current Research and Potential Prospective. J Med Chem 2024; 67:14742-14767. [PMID: 39149790 DOI: 10.1021/acs.jmedchem.4c01064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
The protein kinase ataxia telangiectasia mutated (ATM) is a constituent of the phosphatidylinositol 3-kinase-related kinase (PIKK) family, exerting a pivotal influence on diverse cellular processes, notably the signaling of double-strand DNA breaks (DSB) and stress response. The dysregulation of ATM is implicated in the pathogenesis of cancer and other diseases such as neurodegeneration. Hence, ATM is deemed a promising candidate for potential therapeutic interventions across a spectrum of diseases. Presently, while ATM small molecule inhibitors are not commercially available, various selective inhibitors have progressed to the clinical research phase. Specifically, AZD1390, WSD0628, SYH2051, and ZN-B-2262 are under investigation in clinical studies pertaining to glioblastoma multiforme and advanced solid tumors, respectively. In this Perspective, we encapsulate the structure, biological functions, and disease relevance of ATM. Subsequently, we concentrate on the design concepts and structure-activity relationships (SAR) of ATM inhibitors, delineating potential avenues for the development of more efficacious ATM-targeted inhibitors.
Collapse
Affiliation(s)
- Chunlin Qian
- Department of Respiratory and Critical Care Medicine and Targeted Tracer Research and Development Laboratory and Institute of Respiratory Health and State Key Laboratory of Respiratory Health and Multimorbidity and Laboratory of Neuro-system and Multimorbidity, West China Hospital, Sichuan University, Chengdu 610041, Sichuan China
| | - Xiaoxue Li
- Department of Dermatology, West China Hospital, Sichuan University, Chengdu 610041, Sichuan China
| | - Jifa Zhang
- Department of Respiratory and Critical Care Medicine and Targeted Tracer Research and Development Laboratory and Institute of Respiratory Health and State Key Laboratory of Respiratory Health and Multimorbidity and Laboratory of Neuro-system and Multimorbidity, West China Hospital, Sichuan University, Chengdu 610041, Sichuan China
- Frontiers Medical Center, Tianfu Jincheng Laboratory, Chengdu 610212, Sichuan China
| | - Yuxi Wang
- Department of Respiratory and Critical Care Medicine and Targeted Tracer Research and Development Laboratory and Institute of Respiratory Health and State Key Laboratory of Respiratory Health and Multimorbidity and Laboratory of Neuro-system and Multimorbidity, West China Hospital, Sichuan University, Chengdu 610041, Sichuan China
- Frontiers Medical Center, Tianfu Jincheng Laboratory, Chengdu 610212, Sichuan China
| |
Collapse
|
3
|
Ivanov MP, Zecchini H, Hamerlik P. Simultaneous Visualization of R-Loops/RNA:DNA Hybrids and Replication Forks in a DNA Combing Assay. Genes (Basel) 2024; 15:1161. [PMID: 39336752 PMCID: PMC11430951 DOI: 10.3390/genes15091161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 08/22/2024] [Accepted: 08/30/2024] [Indexed: 09/30/2024] Open
Abstract
R-loops, structures that play a crucial role in various biological processes, are integral to gene expression, the maintenance of genome stability, and the formation of epigenomic signatures. When these R-loops are deregulated, they can contribute to the development of serious health conditions, including cancer and neurodegenerative diseases. The detection of R-loops is a complex process that involves several approaches. These include S9.6 antibody- or RNAse H-based immunoprecipitation, non-denaturing bisulfite footprinting, gel electrophoresis, and electron microscopy. Each of these methods offers unique insights into the nature and behavior of R-loops. In our study, we introduce a novel protocol that has been developed based on a single-molecule DNA combing assay. This innovative approach allows for the direct and simultaneous visualization of RNA:DNA hybrids and replication forks, providing a more comprehensive understanding of these structures. Our findings confirm the transcriptional origin of the hybrids, adding to the body of knowledge about their formation. Furthermore, we demonstrate that these hybrids have an inhibitory effect on the progression of replication forks, highlighting their potential impact on DNA replication and cellular function.
Collapse
Affiliation(s)
- Miroslav Penchev Ivanov
- Early Oncology Bioscience, AstraZeneca, Cambridge CB2 0AA, UK;
- The Francis Crick Institute, London NW1 1AT, UK
| | - Heather Zecchini
- Light Microscopy Facility, University of Cambridge, Cancer Research UK Cambridge Institute, Cambridge CB2 0RE, UK;
| | - Petra Hamerlik
- Early Oncology Bioscience, AstraZeneca, Cambridge CB2 0AA, UK;
- Division of Cancer Sciences, University of Manchester, Manchester M13 9PL, UK
| |
Collapse
|
4
|
Larizza L, Colombo EA. Interdependence between Nuclear Pore Gatekeepers and Genome Caretakers: Cues from Genome Instability Syndromes. Int J Mol Sci 2024; 25:9387. [PMID: 39273335 PMCID: PMC11394955 DOI: 10.3390/ijms25179387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 08/24/2024] [Accepted: 08/27/2024] [Indexed: 09/15/2024] Open
Abstract
This review starts off with the first germline homozygous variants of the Nucleoporin 98 gene (NUP98) in siblings whose clinical presentation recalls Rothmund-Thomson (RTS) and Werner (WS) syndromes. The progeroid phenotype caused by a gene associated with haematological malignancies and neurodegenerative disorders primed the search for interplay between caretakers involved in genome instability syndromes and Nuclear Pore Complex (NPC) components. In the context of basic information on NPC architecture and functions, we discuss the studies on the interdependence of caretakers and gatekeepers in WS and Hereditary Fibrosing Poikiloderma (POIKTMP), both entering in differential diagnosis with RTS. In WS, the WRN/WRNIP complex interacts with nucleoporins of the Y-complex and NDC1 altering NPC architecture. In POIKTMP, the mutated FAM111B, recruited by the Y-complex's SEC13 and NUP96, interacts with several Nups safeguarding NPC structure. The linkage of both defective caretakers to the NPC highlights the attempt to activate a repair hub at the nuclear periphery to restore the DNA damage. The two separate WS and POIKTMP syndromes are drawn close by the interaction of their damage sensors with the NPC and by the shared hallmark of short fragile telomeres disclosing a major role of both caretakers in telomere maintenance.
Collapse
Affiliation(s)
- Lidia Larizza
- Experimental Research Laboratory of Medical Cytogenetics and Molecular Genetics, IRCCS Istituto Auxologico Italiano, Via Ariosto 13, 20145 Milan, Italy
| | - Elisa Adele Colombo
- Genetica Medica, Dipartimento di Scienze Della Salute, Università Degli Studi di Milano, 20142 Milano, Italy
| |
Collapse
|
5
|
Orren DK, Machwe A. Response to Replication Stress and Maintenance of Genome Stability by WRN, the Werner Syndrome Protein. Int J Mol Sci 2024; 25:8300. [PMID: 39125869 PMCID: PMC11311767 DOI: 10.3390/ijms25158300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 07/16/2024] [Accepted: 07/25/2024] [Indexed: 08/12/2024] Open
Abstract
Werner syndrome (WS) is an autosomal recessive disease caused by loss of function of WRN. WS is a segmental progeroid disease and shows early onset or increased frequency of many characteristics of normal aging. WRN possesses helicase, annealing, strand exchange, and exonuclease activities and acts on a variety of DNA substrates, even complex replication and recombination intermediates. Here, we review the genetics, biochemistry, and probably physiological functions of the WRN protein. Although its precise role is unclear, evidence suggests WRN plays a role in pathways that respond to replication stress and maintain genome stability particularly in telomeric regions.
Collapse
Affiliation(s)
- David K. Orren
- Department of Toxicology and Cancer Biology, University of Kentucky College of Medicine, Lexington, KY 40536, USA;
- Markey Cancer Center, University of Kentucky, Lexington, KY 40506, USA
| | - Amrita Machwe
- Department of Toxicology and Cancer Biology, University of Kentucky College of Medicine, Lexington, KY 40536, USA;
- Markey Cancer Center, University of Kentucky, Lexington, KY 40506, USA
| |
Collapse
|
6
|
Wulfridge P, Sarma K. Intertwining roles of R-loops and G-quadruplexes in DNA repair, transcription and genome organization. Nat Cell Biol 2024; 26:1025-1036. [PMID: 38914786 DOI: 10.1038/s41556-024-01437-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 05/10/2024] [Indexed: 06/26/2024]
Abstract
R-loops are three-stranded nucleic acid structures that are abundant and widespread across the genome and that have important physiological roles in many nuclear processes. Their accumulation is observed in cancers and neurodegenerative disorders. Recent studies have implicated a function for R-loops and G-quadruplex (G4) structures, which can form on the displaced single strand of R-loops, in three-dimensional genome organization in both physiological and pathological contexts. Here we discuss the interconnected functions of DNA:RNA hybrids and G4s within R-loops, their impact on DNA repair and gene regulatory networks, and their emerging roles in genome organization during development and disease.
Collapse
Affiliation(s)
- Phillip Wulfridge
- Gene Expression and Regulation Program, The Wistar Institute, Philadelphia, PA, USA
- Penn Epigenetics Institute, University of Pennsylvania, Philadelphia, PA, USA
| | - Kavitha Sarma
- Gene Expression and Regulation Program, The Wistar Institute, Philadelphia, PA, USA.
- Penn Epigenetics Institute, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
7
|
Valenzisi P, Marabitti V, Pichierri P, Franchitto A. WRNIP1 prevents transcription-associated genomic instability. eLife 2024; 12:RP89981. [PMID: 38488661 PMCID: PMC10942783 DOI: 10.7554/elife.89981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2024] Open
Abstract
R-loops are non-canonical DNA structures that form during transcription and play diverse roles in various physiological processes. Disruption of R-loop homeostasis can lead to genomic instability and replication impairment, contributing to several human diseases, including cancer. Although the molecular mechanisms that protect cells against such events are not fully understood, recent research has identified fork protection factors and DNA damage response proteins as regulators of R-loop dynamics. In this study, we identify the Werner helicase-interacting protein 1 (WRNIP1) as a novel factor that counteracts transcription-associated DNA damage upon replication perturbation. Loss of WRNIP1 leads to R-loop accumulation, resulting in collisions between the replisome and transcription machinery. We observe co-localization of WRNIP1 with transcription/replication complexes and R-loops after replication perturbation, suggesting its involvement in resolving transcription-replication conflicts. Moreover, WRNIP1-deficient cells show impaired replication restart from transcription-induced fork stalling. Notably, transcription inhibition and RNase H1 overexpression rescue all the defects caused by loss of WRNIP1. Importantly, our findings highlight the critical role of WRNIP1 ubiquitin-binding zinc finger (UBZ) domain in preventing pathological persistence of R-loops and limiting DNA damage, thereby safeguarding genome integrity.
Collapse
Affiliation(s)
- Pasquale Valenzisi
- Section of Mechanisms Biomarkers and Models, Department of Environment and Health, Istituto Superiore di SanitaRomeItaly
| | - Veronica Marabitti
- Section of Mechanisms Biomarkers and Models, Department of Environment and Health, Istituto Superiore di SanitaRomeItaly
| | - Pietro Pichierri
- Section of Mechanisms Biomarkers and Models, Department of Environment and Health, Istituto Superiore di SanitaRomeItaly
| | - Annapaola Franchitto
- Section of Mechanisms Biomarkers and Models, Department of Environment and Health, Istituto Superiore di SanitaRomeItaly
| |
Collapse
|
8
|
Mecca M, Picerno S, Cortellino S. The Killer's Web: Interconnection between Inflammation, Epigenetics and Nutrition in Cancer. Int J Mol Sci 2024; 25:2750. [PMID: 38473997 DOI: 10.3390/ijms25052750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 02/21/2024] [Accepted: 02/23/2024] [Indexed: 03/14/2024] Open
Abstract
Inflammation is a key contributor to both the initiation and progression of tumors, and it can be triggered by genetic instability within tumors, as well as by lifestyle and dietary factors. The inflammatory response plays a critical role in the genetic and epigenetic reprogramming of tumor cells, as well as in the cells that comprise the tumor microenvironment. Cells in the microenvironment acquire a phenotype that promotes immune evasion, progression, and metastasis. We will review the mechanisms and pathways involved in the interaction between tumors, inflammation, and nutrition, the limitations of current therapies, and discuss potential future therapeutic approaches.
Collapse
Affiliation(s)
- Marisabel Mecca
- Laboratory of Preclinical and Translational Research, Centro di Riferimento Oncologico della Basilicata (IRCCS-CROB), 85028 Rionero in Vulture, PZ, Italy
| | - Simona Picerno
- Laboratory of Preclinical and Translational Research, Centro di Riferimento Oncologico della Basilicata (IRCCS-CROB), 85028 Rionero in Vulture, PZ, Italy
| | - Salvatore Cortellino
- Laboratory of Preclinical and Translational Research, Responsible Research Hospital, 86100 Campobasso, CB, Italy
- Scuola Superiore Meridionale (SSM), Clinical and Translational Oncology, 80138 Naples, NA, Italy
- S.H.R.O. Italia Foundation ETS, 10060 Candiolo, TO, Italy
| |
Collapse
|
9
|
Bhattacharjee R, Jolly LA, Corbett MA, Wee IC, Rao SR, Gardner AE, Ritchie T, van Hugte EJH, Ciptasari U, Piltz S, Noll JE, Nazri N, van Eyk CL, White M, Fornarino D, Poulton C, Baynam G, Collins-Praino LE, Snel MF, Nadif Kasri N, Hemsley KM, Thomas PQ, Kumar R, Gecz J. Compromised transcription-mRNA export factor THOC2 causes R-loop accumulation, DNA damage and adverse neurodevelopment. Nat Commun 2024; 15:1210. [PMID: 38331934 PMCID: PMC10853216 DOI: 10.1038/s41467-024-45121-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 01/15/2024] [Indexed: 02/10/2024] Open
Abstract
We implicated the X-chromosome THOC2 gene, which encodes the largest subunit of the highly-conserved TREX (Transcription-Export) complex, in a clinically complex neurodevelopmental disorder with intellectual disability as the core phenotype. To study the molecular pathology of this essential eukaryotic gene, we generated a mouse model based on a hypomorphic Thoc2 exon 37-38 deletion variant of a patient with ID, speech delay, hypotonia, and microcephaly. The Thoc2 exon 37-38 deletion male (Thoc2Δ/Y) mice recapitulate the core phenotypes of THOC2 syndrome including smaller size and weight, and significant deficits in spatial learning, working memory and sensorimotor functions. The Thoc2Δ/Y mouse brain development is significantly impacted by compromised THOC2/TREX function resulting in R-loop accumulation, DNA damage and consequent cell death. Overall, we suggest that perturbed R-loop homeostasis, in stem cells and/or differentiated cells in mice and the patient, and DNA damage-associated functional alterations are at the root of THOC2 syndrome.
Collapse
Affiliation(s)
- Rudrarup Bhattacharjee
- Adelaide Medical School, The University of Adelaide, Adelaide, SA, 5005, Australia
- Robinson Research Institute, The University of Adelaide, Adelaide, SA, 5005, Australia
| | - Lachlan A Jolly
- Robinson Research Institute, The University of Adelaide, Adelaide, SA, 5005, Australia
- School of Biomedicine, The University of Adelaide, Adelaide, SA, 5005, Australia
| | - Mark A Corbett
- Adelaide Medical School, The University of Adelaide, Adelaide, SA, 5005, Australia
- Robinson Research Institute, The University of Adelaide, Adelaide, SA, 5005, Australia
| | - Ing Chee Wee
- Discipline of Anatomy and Pathology, School of Biomedicine, The University of Adelaide, Adelaide, SA, 5005, Australia
| | - Sushma R Rao
- Adelaide Medical School, The University of Adelaide, Adelaide, SA, 5005, Australia
- Proteomics, Metabolomics and MS-imaging Core Facility, South Australian Health and Medical Research Institute, and Adelaide Medical School, The University of Adelaide, Adelaide, SA, 5005, Australia
| | - Alison E Gardner
- Adelaide Medical School, The University of Adelaide, Adelaide, SA, 5005, Australia
- Robinson Research Institute, The University of Adelaide, Adelaide, SA, 5005, Australia
| | - Tarin Ritchie
- Adelaide Medical School, The University of Adelaide, Adelaide, SA, 5005, Australia
- Robinson Research Institute, The University of Adelaide, Adelaide, SA, 5005, Australia
| | - Eline J H van Hugte
- Department of Human Genetics, Radboudumc, Donders Institute for Brain, Cognition, and Behavior, Nijmegen, 6500, HB, the Netherlands
| | - Ummi Ciptasari
- Department of Human Genetics, Radboudumc, Donders Institute for Brain, Cognition, and Behavior, Nijmegen, 6500, HB, the Netherlands
| | - Sandra Piltz
- Robinson Research Institute, The University of Adelaide, Adelaide, SA, 5005, Australia
- School of Biomedicine, The University of Adelaide, Adelaide, SA, 5005, Australia
- South Australian Health and Medical Research Institute, Adelaide, SA, 5000, Australia
| | - Jacqueline E Noll
- School of Biomedicine, Faculty of Health and Medical Sciences, University of Adelaide and Precision Cancer Medicine Theme, Solid Tumour Program, South Australian Health and Medical Research Institute, Adelaide, SA, 5000, Australia
| | - Nazzmer Nazri
- Adelaide Medical School, The University of Adelaide, Adelaide, SA, 5005, Australia
- Childhood Dementia Research Group, College of Medicine and Public Health, Flinders Health & Medical Research Institute, Flinders University, Bedford Park, Adelaide, SA, 5042, Australia
| | - Clare L van Eyk
- Adelaide Medical School, The University of Adelaide, Adelaide, SA, 5005, Australia
- Robinson Research Institute, The University of Adelaide, Adelaide, SA, 5005, Australia
| | - Melissa White
- Robinson Research Institute, The University of Adelaide, Adelaide, SA, 5005, Australia
- School of Biomedicine, The University of Adelaide, Adelaide, SA, 5005, Australia
- South Australian Health and Medical Research Institute, Adelaide, SA, 5000, Australia
| | - Dani Fornarino
- Adelaide Medical School, The University of Adelaide, Adelaide, SA, 5005, Australia
- Robinson Research Institute, The University of Adelaide, Adelaide, SA, 5005, Australia
| | - Cathryn Poulton
- Undiagnosed Diseases Program, Genetic Services of WA, King Edward Memorial Hospital, Subiaco, WA, 6008, Australia
| | - Gareth Baynam
- Undiagnosed Diseases Program, Genetic Services of WA, King Edward Memorial Hospital, Subiaco, WA, 6008, Australia
- Western Australian Register of Developmental Anomalies, King Edward Memorial Hospital, Subiaco, WA, 6008, Australia
- Rare Care Centre, Perth Children's Hospital, Nedlands, WA, 6009, Australia
| | - Lyndsey E Collins-Praino
- Discipline of Anatomy and Pathology, School of Biomedicine, The University of Adelaide, Adelaide, SA, 5005, Australia
| | - Marten F Snel
- Adelaide Medical School, The University of Adelaide, Adelaide, SA, 5005, Australia
- Proteomics, Metabolomics and MS-imaging Core Facility, South Australian Health and Medical Research Institute, and Adelaide Medical School, The University of Adelaide, Adelaide, SA, 5005, Australia
| | - Nael Nadif Kasri
- Department of Human Genetics, Radboudumc, Donders Institute for Brain, Cognition, and Behavior, Nijmegen, 6500, HB, the Netherlands
| | - Kim M Hemsley
- Adelaide Medical School, The University of Adelaide, Adelaide, SA, 5005, Australia
- Childhood Dementia Research Group, College of Medicine and Public Health, Flinders Health & Medical Research Institute, Flinders University, Bedford Park, Adelaide, SA, 5042, Australia
| | - Paul Q Thomas
- Robinson Research Institute, The University of Adelaide, Adelaide, SA, 5005, Australia
- School of Biomedicine, The University of Adelaide, Adelaide, SA, 5005, Australia
- South Australian Health and Medical Research Institute, Adelaide, SA, 5000, Australia
| | - Raman Kumar
- Adelaide Medical School, The University of Adelaide, Adelaide, SA, 5005, Australia
- Robinson Research Institute, The University of Adelaide, Adelaide, SA, 5005, Australia
| | - Jozef Gecz
- Adelaide Medical School, The University of Adelaide, Adelaide, SA, 5005, Australia.
- Robinson Research Institute, The University of Adelaide, Adelaide, SA, 5005, Australia.
| |
Collapse
|
10
|
Wu Z, Qu J, Zhang W, Liu GH. Stress, epigenetics, and aging: Unraveling the intricate crosstalk. Mol Cell 2024; 84:34-54. [PMID: 37963471 DOI: 10.1016/j.molcel.2023.10.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 10/09/2023] [Accepted: 10/11/2023] [Indexed: 11/16/2023]
Abstract
Aging, as a complex process involving multiple cellular and molecular pathways, is known to be exacerbated by various stresses. Because responses to these stresses, such as oxidative stress and genotoxic stress, are known to interplay with the epigenome and thereby contribute to the development of age-related diseases, investigations into how such epigenetic mechanisms alter gene expression and maintenance of cellular homeostasis is an active research area. In this review, we highlight recent studies investigating the intricate relationship between stress and aging, including its underlying epigenetic basis; describe different types of stresses that originate from both internal and external stimuli; and discuss potential interventions aimed at alleviating stress and restoring epigenetic patterns to combat aging or age-related diseases. Additionally, we address the challenges currently limiting advancement in this burgeoning field.
Collapse
Affiliation(s)
- Zeming Wu
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
| | - Jing Qu
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China; State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China.
| | - Weiqi Zhang
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China; China National Center for Bioinformation, Beijing 100101, China; CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China; The Fifth People's Hospital of Chongqing, Chongqing 400062, China.
| | - Guang-Hui Liu
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China; Advanced Innovation Center for Human Brain Protection and National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital Capital Medical University, Beijing 100053, China; Aging Translational Medicine Center, International Center for Aging and Cancer, Xuanwu Hospital, Capital Medical University, Beijing 100053, China.
| |
Collapse
|
11
|
Haji-Seyed-Javadi R, Koyen AE, Rath SK, Madden MZ, Hou Y, Song BS, Kenney AM, Lan L, Yao B, Yu DS. HELZ promotes R loop resolution to facilitate DNA double-strand break repair by homologous recombination. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.14.571747. [PMID: 38168208 PMCID: PMC10760136 DOI: 10.1101/2023.12.14.571747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
R loops are RNA-DNA hybrid containing structures involved in diverse cellular processes, including DNA double-strand break (DSB) repair. R loop homeostasis involving the formation and resolution of R loops is critical for DSB repair, and its dysregulation leads to genome instability. Here we show that the HELZ helicase promotes R loop resolution to facilitate DSB repair by homologous recombination (HR). HELZ depletion causes hypersensitivity to DSB-inducing agents, and HELZ localizes and binds to DSBs. HELZ depletion further leads to genomic instability in a R loop dependent manner and the accumulation of R loops globally and at DSBs. HELZ binds to R loops in response to DSBs and promotes their resolution, thereby facilitating HR to promote genome integrity. Our findings thus define a role for HELZ in promoting the resolution of R loops critical for DSB repair by HR.
Collapse
|
12
|
Li Q, Zhou J, Li S, Zhang W, Du Y, Li K, Wang Y, Sun Q. DNA polymerase ε harmonizes topological states and R-loops formation to maintain genome integrity in Arabidopsis. Nat Commun 2023; 14:7763. [PMID: 38012183 PMCID: PMC10682485 DOI: 10.1038/s41467-023-43680-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 11/16/2023] [Indexed: 11/29/2023] Open
Abstract
Genome topology is tied to R-loop formation and genome stability. However, the regulatory mechanism remains to be elucidated. By establishing a system to sense the connections between R-loops and genome topology states, we show that inhibiting DNA topoisomerase 1 (TOP1i) triggers the global increase of R-loops (called topoR-loops) and DNA damages, which are exacerbated in the DNA damage repair-compromised mutant atm. A suppressor screen identifies a mutation in POL2A, the catalytic subunit of DNA polymerase ε, rescuing the TOP1i-induced topoR-loop accumulation and genome instability in atm. Importantly we find that a highly conserved junction domain between the exonuclease and polymerase domains in POL2A is required for modulating topoR-loops near DNA replication origins and facilitating faithful DNA replication. Our results suggest that DNA replication acts in concert with genome topological states to fine-tune R-loops and thereby maintain genome integrity, revealing a likely conserved regulatory mechanism of TOP1i resistance in chemotherapy for ATM-deficient cancers.
Collapse
Affiliation(s)
- Qin Li
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Jincong Zhou
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China
- Tsinghua-Peking Center for Life Sciences, Beijing, 100084, China
| | - Shuai Li
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China
- Tsinghua-Peking Center for Life Sciences, Beijing, 100084, China
| | - Weifeng Zhang
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China
- Tsinghua-Peking Center for Life Sciences, Beijing, 100084, China
| | - Yingxue Du
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China
- Tsinghua-Peking Center for Life Sciences, Beijing, 100084, China
| | - Kuan Li
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China
- Tsinghua-Peking Center for Life Sciences, Beijing, 100084, China
- Chinese Institute for Brain Research, Beijing, 102206, China
| | - Yingxiang Wang
- College of Life Science, South China Agricultural University, Guangdong Laboratory for Lingnan Morden Agriculture, Guangzhou, 510642, China
- State Key Laboratory of Genetic Engineering, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Qianwen Sun
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China.
- Tsinghua-Peking Center for Life Sciences, Beijing, 100084, China.
| |
Collapse
|
13
|
Yang S, Winstone L, Mondal S, Wu Y. Helicases in R-loop Formation and Resolution. J Biol Chem 2023; 299:105307. [PMID: 37778731 PMCID: PMC10641170 DOI: 10.1016/j.jbc.2023.105307] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 09/21/2023] [Accepted: 09/23/2023] [Indexed: 10/03/2023] Open
Abstract
With the development and wide usage of CRISPR technology, the presence of R-loop structures, which consist of an RNA-DNA hybrid and a displaced single-strand (ss) DNA, has become well accepted. R-loop structures have been implicated in a variety of circumstances and play critical roles in the metabolism of nucleic acid and relevant biological processes, including transcription, DNA repair, and telomere maintenance. Helicases are enzymes that use an ATP-driven motor force to unwind double-strand (ds) DNA, dsRNA, or RNA-DNA hybrids. Additionally, certain helicases have strand-annealing activity. Thus, helicases possess unique positions for R-loop biogenesis: they utilize their strand-annealing activity to promote the hybridization of RNA to DNA, leading to the formation of R-loops; conversely, they utilize their unwinding activity to separate RNA-DNA hybrids and resolve R-loops. Indeed, numerous helicases such as senataxin (SETX), Aquarius (AQR), WRN, BLM, RTEL1, PIF1, FANCM, ATRX (alpha-thalassemia/mental retardation, X-linked), CasDinG, and several DEAD/H-box proteins are reported to resolve R-loops; while other helicases, such as Cas3 and UPF1, are reported to stimulate R-loop formation. Moreover, helicases like DDX1, DDX17, and DHX9 have been identified in both R-loop formation and resolution. In this review, we will summarize the latest understandings regarding the roles of helicases in R-loop metabolism. Additionally, we will highlight challenges associated with drug discovery in the context of targeting these R-loop helicases.
Collapse
Affiliation(s)
- Shizhuo Yang
- Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Lacey Winstone
- Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Sohaumn Mondal
- Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Yuliang Wu
- Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada.
| |
Collapse
|
14
|
Duardo RC, Guerra F, Pepe S, Capranico G. Non-B DNA structures as a booster of genome instability. Biochimie 2023; 214:176-192. [PMID: 37429410 DOI: 10.1016/j.biochi.2023.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 07/04/2023] [Accepted: 07/06/2023] [Indexed: 07/12/2023]
Abstract
Non-canonical secondary structures (NCSs) are alternative nucleic acid structures that differ from the canonical B-DNA conformation. NCSs often occur in repetitive DNA sequences and can adopt different conformations depending on the sequence. The majority of these structures form in the context of physiological processes, such as transcription-associated R-loops, G4s, as well as hairpins and slipped-strand DNA, whose formation can be dependent on DNA replication. It is therefore not surprising that NCSs play important roles in the regulation of key biological processes. In the last years, increasing published data have supported their biological role thanks to genome-wide studies and the development of bioinformatic prediction tools. Data have also highlighted the pathological role of these secondary structures. Indeed, the alteration or stabilization of NCSs can cause the impairment of transcription and DNA replication, modification in chromatin structure and DNA damage. These events lead to a wide range of recombination events, deletions, mutations and chromosomal aberrations, well-known hallmarks of genome instability which are strongly associated with human diseases. In this review, we summarize molecular processes through which NCSs trigger genome instability, with a focus on G-quadruplex, i-motif, R-loop, Z-DNA, hairpin, cruciform and multi-stranded structures known as triplexes.
Collapse
Affiliation(s)
- Renée C Duardo
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum University of Bologna, via Selmi 3, 40126, Bologna, Italy
| | - Federico Guerra
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum University of Bologna, via Selmi 3, 40126, Bologna, Italy
| | - Simona Pepe
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum University of Bologna, via Selmi 3, 40126, Bologna, Italy
| | - Giovanni Capranico
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum University of Bologna, via Selmi 3, 40126, Bologna, Italy.
| |
Collapse
|
15
|
Li F, Zafar A, Luo L, Denning AM, Gu J, Bennett A, Yuan F, Zhang Y. R-Loops in Genome Instability and Cancer. Cancers (Basel) 2023; 15:4986. [PMID: 37894353 PMCID: PMC10605827 DOI: 10.3390/cancers15204986] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 10/04/2023] [Accepted: 10/11/2023] [Indexed: 10/29/2023] Open
Abstract
R-loops are unique, three-stranded nucleic acid structures that primarily form when an RNA molecule displaces one DNA strand and anneals to the complementary DNA strand in a double-stranded DNA molecule. R-loop formation can occur during natural processes, such as transcription, in which the nascent RNA molecule remains hybridized with the template DNA strand, while the non-template DNA strand is displaced. However, R-loops can also arise due to many non-natural processes, including DNA damage, dysregulation of RNA degradation pathways, and defects in RNA processing. Despite their prevalence throughout the whole genome, R-loops are predominantly found in actively transcribed gene regions, enabling R-loops to serve seemingly controversial roles. On one hand, the pathological accumulation of R-loops contributes to genome instability, a hallmark of cancer development that plays a role in tumorigenesis, cancer progression, and therapeutic resistance. On the other hand, R-loops play critical roles in regulating essential processes, such as gene expression, chromatin organization, class-switch recombination, mitochondrial DNA replication, and DNA repair. In this review, we summarize discoveries related to the formation, suppression, and removal of R-loops and their influence on genome instability, DNA repair, and oncogenic events. We have also discussed therapeutical opportunities by targeting pathological R-loops.
Collapse
Affiliation(s)
- Fang Li
- Department of Biochemistry & Molecular Biology, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Alyan Zafar
- Department of Biochemistry & Molecular Biology, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Liang Luo
- Department of Biochemistry & Molecular Biology, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Ariana Maria Denning
- Department of Biochemistry & Molecular Biology, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Jun Gu
- Department of Molecular and Cellular Pharmacology, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Ansley Bennett
- Department of Biochemistry & Molecular Biology, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Fenghua Yuan
- Department of Biochemistry & Molecular Biology, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Yanbin Zhang
- Department of Biochemistry & Molecular Biology, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| |
Collapse
|
16
|
Noto A, Valenzisi P, Fratini F, Kulikowicz T, Sommers JA, Di Feo F, Palermo V, Semproni M, Crescenzi M, Brosh RM, Franchitto A, Pichierri P. PHOSPHORYLATION-DEPENDENT ASSOCIATION OF WRN WITH RPA IS REQUIRED FOR RECOVERY OF REPLICATION FORKS STALLED AT SECONDARY DNA STRUCTURES. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.08.552428. [PMID: 37609214 PMCID: PMC10441285 DOI: 10.1101/2023.08.08.552428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
The WRN protein mutated in the hereditary premature aging disorder Werner syndrome plays a vital role in handling, processing, and restoring perturbed replication forks. One of its most abundant partners, Replication Protein A (RPA), has been shown to robustly enhance WRN helicase activity in specific cases when tested in vitro. However, the significance of RPA-binding to WRN at replication forks in vivo has remained largely unexplored. In this study, we have identified several conserved phosphorylation sites in the acidic domain of WRN that are targeted by Casein Kinase 2 (CK2). Surprisingly, these phosphorylation sites are essential for the interaction between WRN and RPA, both in vitro and in human cells. By characterizing a CK2-unphosphorylatable WRN mutant that lacks the ability to bind RPA, we have determined that the WRN-RPA complex plays a critical role in fork recovery after replication stress whereas the WRN-RPA interaction is not necessary for the processing of replication forks or preventing DNA damage when forks stall or collapse. When WRN fails to bind RPA, fork recovery is impaired, leading to the accumulation of single-stranded DNA gaps in the parental strands, which are further enlarged by the structure-specific nuclease MRE11. Notably, RPA-binding by WRN and its helicase activity are crucial for countering the persistence of G4 structures after fork stalling. Therefore, our findings reveal for the first time a novel role for the WRN-RPA interaction to facilitate fork restart, thereby minimizing G4 accumulation at single-stranded DNA gaps and suppressing accumulation of unreplicated regions that may lead to MUS81-dependent double-strand breaks requiring efficient repair by RAD51 to prevent excessive DNA damage.
Collapse
Affiliation(s)
- Alessandro Noto
- Mechanisms, Biomarkers and Models Section – Genome Stability Group, Department of Environment and Health, Istituto Superiore di Sanità, Viale Regina Elena 299 – 00161 Rome (Italy)
- Helicases and Genomic Integrity Section, Translational Gerontology Branch, National Institute on Aging, NIH, 251 Bayview Blvd, Baltimore, MD 21224 (USA)
| | - Pasquale Valenzisi
- Mechanisms, Biomarkers and Models Section – Genome Stability Group, Department of Environment and Health, Istituto Superiore di Sanità, Viale Regina Elena 299 – 00161 Rome (Italy)
| | - Federica Fratini
- Core Facilities Technical-Scientific Service, Istituto Superiore di Sanità, Viale Regina Elena 299 – 00161 Rome (Italy)
| | - Tomasz Kulikowicz
- Helicases and Genomic Integrity Section, Translational Gerontology Branch, National Institute on Aging, NIH, 251 Bayview Blvd, Baltimore, MD 21224 (USA)
| | - Joshua A. Sommers
- Helicases and Genomic Integrity Section, Translational Gerontology Branch, National Institute on Aging, NIH, 251 Bayview Blvd, Baltimore, MD 21224 (USA)
| | - Flavia Di Feo
- Mechanisms, Biomarkers and Models Section – Genome Stability Group, Department of Environment and Health, Istituto Superiore di Sanità, Viale Regina Elena 299 – 00161 Rome (Italy)
| | - Valentina Palermo
- Mechanisms, Biomarkers and Models Section – Genome Stability Group, Department of Environment and Health, Istituto Superiore di Sanità, Viale Regina Elena 299 – 00161 Rome (Italy)
| | - Maurizio Semproni
- Mechanisms, Biomarkers and Models Section – Genome Stability Group, Department of Environment and Health, Istituto Superiore di Sanità, Viale Regina Elena 299 – 00161 Rome (Italy)
| | - Marco Crescenzi
- Core Facilities Technical-Scientific Service, Istituto Superiore di Sanità, Viale Regina Elena 299 – 00161 Rome (Italy)
| | - Robert M. Brosh
- Helicases and Genomic Integrity Section, Translational Gerontology Branch, National Institute on Aging, NIH, 251 Bayview Blvd, Baltimore, MD 21224 (USA)
| | - Annapaola Franchitto
- Mechanisms, Biomarkers and Models Section – Genome Stability Group, Department of Environment and Health, Istituto Superiore di Sanità, Viale Regina Elena 299 – 00161 Rome (Italy)
| | - Pietro Pichierri
- Mechanisms, Biomarkers and Models Section – Genome Stability Group, Department of Environment and Health, Istituto Superiore di Sanità, Viale Regina Elena 299 – 00161 Rome (Italy)
- Istituto Nazionale di Biostrutture e Biosistemi, Viale delle Medaglie d’Oro 305 – 00134 Rome (Italy)
| |
Collapse
|
17
|
Saha S, Pommier Y. R-loops, type I topoisomerases and cancer. NAR Cancer 2023; 5:zcad013. [PMID: 37600974 PMCID: PMC9984992 DOI: 10.1093/narcan/zcad013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/18/2023] [Accepted: 02/27/2023] [Indexed: 03/06/2023] Open
Abstract
R-loops are abundant and dynamic structures ubiquitously present in human cells both in the nuclear and mitochondrial genomes. They form in cis in the wake of transcription complexes and in trans apart from transcription complexes. In this review, we focus on the relationship between R-loops and topoisomerases, and cancer genomics and therapies. We summarize the topological parameters associated with the formation and resolution of R-loops, which absorb and release high levels of genomic negative supercoiling (Sc-). We review the deleterious consequences of excessive R-loops and rationalize how human type IA (TOP3B) and type IB (TOP1) topoisomerases regulate and resolve R-loops in coordination with helicase and RNase H enzymes. We also review the drugs (topoisomerase inhibitors, splicing inhibitors, G4 stabilizing ligands) and cancer predisposing genes (BRCA1/2, transcription, and splicing genes) known to induce R-loops, and whether stabilizing R-loops and thereby inducing genomic damage can be viewed as a strategy for cancer treatment.
Collapse
Affiliation(s)
- Sourav Saha
- Developmental Therapeutics Branch & Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Yves Pommier
- Developmental Therapeutics Branch & Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| |
Collapse
|
18
|
Zhao Y, Simon M, Seluanov A, Gorbunova V. DNA damage and repair in age-related inflammation. Nat Rev Immunol 2023; 23:75-89. [PMID: 35831609 PMCID: PMC10106081 DOI: 10.1038/s41577-022-00751-y] [Citation(s) in RCA: 98] [Impact Index Per Article: 98.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/07/2022] [Indexed: 02/07/2023]
Abstract
Genomic instability is an important driver of ageing. The accumulation of DNA damage is believed to contribute to ageing by inducing cell death, senescence and tissue dysfunction. However, emerging evidence shows that inflammation is another major consequence of DNA damage. Inflammation is a hallmark of ageing and the driver of multiple age-related diseases. Here, we review the evidence linking DNA damage, inflammation and ageing, highlighting how premature ageing syndromes are associated with inflammation. We discuss the mechanisms by which DNA damage induces inflammation, such as through activation of the cGAS-STING axis and NF-κB activation by ATM. The triggers for activation of these signalling cascades are the age-related accumulation of DNA damage, activation of transposons, cellular senescence and the accumulation of persistent R-loops. We also discuss how epigenetic changes triggered by DNA damage can lead to inflammation and ageing via redistribution of heterochromatin factors. Finally, we discuss potential interventions against age-related inflammation.
Collapse
Affiliation(s)
- Yang Zhao
- Department of Biology, University of Rochester, Rochester, NY, USA.,Department of Physiology, Zhejiang University School of Medicine, Hangzhou, China.,Department of Hepatobiliary and Pancreatic Surgery of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Matthew Simon
- Department of Biology, University of Rochester, Rochester, NY, USA
| | - Andrei Seluanov
- Department of Biology, University of Rochester, Rochester, NY, USA. .,Department of Medicine, University of Rochester, Rochester, NY, USA.
| | - Vera Gorbunova
- Department of Biology, University of Rochester, Rochester, NY, USA. .,Department of Medicine, University of Rochester, Rochester, NY, USA.
| |
Collapse
|
19
|
Khan ES, Danckwardt S. Pathophysiological Role and Diagnostic Potential of R-Loops in Cancer and Beyond. Genes (Basel) 2022; 13:genes13122181. [PMID: 36553448 PMCID: PMC9777984 DOI: 10.3390/genes13122181] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 11/07/2022] [Accepted: 11/14/2022] [Indexed: 11/24/2022] Open
Abstract
R-loops are DNA-RNA hybrids that play multifunctional roles in gene regulation, including replication, transcription, transcription-replication collision, epigenetics, and preserving the integrity of the genome. The aberrant formation and accumulation of unscheduled R-loops can disrupt gene expression and damage DNA, thereby causing genome instability. Recent links between unscheduled R-loop accumulation and the abundance of proteins that modulate R-loop biogenesis have been associated with numerous human diseases, including various cancers. Although R-loops are not necessarily causative for all disease entities described to date, they can perpetuate and even exacerbate the initially disease-eliciting pathophysiology, making them structures of interest for molecular diagnostics. In this review, we discuss the (patho) physiological role of R-loops in health and disease, their surprising diagnostic potential, and state-of-the-art techniques for their detection.
Collapse
Affiliation(s)
- Essak S. Khan
- Posttranscriptional Gene Regulation, Cancer Research and Experimental Hemostasis, University Medical Center Mainz, 55131 Mainz, Germany
- Institute for Clinical Chemistry and Laboratory Medicine, University Medical Center of the Johannes Gutenberg University, 55131 Mainz, Germany
- Center for Thrombosis and Hemostasis (CTH), University Medical Center of the Johannes Gutenberg University, 55131 Mainz, Germany
- German Consortium for Translational Cancer Research (DKTK), DKFZ Frankfurt-Mainz, 60590 Frankfurt am Main, Germany
| | - Sven Danckwardt
- Posttranscriptional Gene Regulation, Cancer Research and Experimental Hemostasis, University Medical Center Mainz, 55131 Mainz, Germany
- Institute for Clinical Chemistry and Laboratory Medicine, University Medical Center of the Johannes Gutenberg University, 55131 Mainz, Germany
- Center for Thrombosis and Hemostasis (CTH), University Medical Center of the Johannes Gutenberg University, 55131 Mainz, Germany
- German Center for Cardiovascular Research (DZHK), Rhine-Main, 55131 Mainz, Germany
- Correspondence:
| |
Collapse
|
20
|
Research on Werner Syndrome: Trends from Past to Present and Future Prospects. Genes (Basel) 2022; 13:genes13101802. [PMID: 36292687 PMCID: PMC9601476 DOI: 10.3390/genes13101802] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 10/02/2022] [Accepted: 10/04/2022] [Indexed: 11/17/2022] Open
Abstract
A rare and autosomal recessive premature aging disorder, Werner syndrome (WS) is characterized by the early onset of aging-associated diseases, including shortening stature, alopecia, bilateral cataracts, skin ulcers, diabetes, osteoporosis, arteriosclerosis, and chromosomal instability, as well as cancer predisposition. WRN, the gene responsible for WS, encodes DNA helicase with a 3′ to 5′ exonuclease activity, and numerous studies have revealed that WRN helicase is involved in the maintenance of chromosome stability through actions in DNA, e.g., DNA replication, repair, recombination, and epigenetic regulation via interaction with DNA repair factors, telomere-binding proteins, histone modification enzymes, and other DNA metabolic factors. However, although these efforts have elucidated the cellular functions of the helicase in cell lines, they have not been linked to the treatment of the disease. Life expectancy has improved for WS patients over the past three decades, and it is hoped that a fundamental treatment for the disease will be developed. Disease-specific induced pluripotent stem (iPS) cells have been established, and these are expected to be used in drug discovery and regenerative medicine for WS patients. In this article, we review trends in research to date and present some perspectives on WS research with regard to the application of pluripotent stem cells. Furthermore, the elucidation of disease mechanisms and drug discovery utilizing the vast amount of scientific data accumulated to date will be discussed.
Collapse
|
21
|
Kamp JA, Lemmens BBLG, Romeijn RJ, González-Prieto R, Olsen J, Vertegaal ACO, van Schendel R, Tijsterman M. THO complex deficiency impairs DNA double-strand break repair via the RNA surveillance kinase SMG-1. Nucleic Acids Res 2022; 50:6235-6250. [PMID: 35670662 PMCID: PMC9226523 DOI: 10.1093/nar/gkac472] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Revised: 05/11/2022] [Accepted: 06/02/2022] [Indexed: 12/25/2022] Open
Abstract
The integrity and proper expression of genomes are safeguarded by DNA and RNA surveillance pathways. While many RNA surveillance factors have additional functions in the nucleus, little is known about the incidence and physiological impact of converging RNA and DNA signals. Here, using genetic screens and genome-wide analyses, we identified unforeseen SMG-1-dependent crosstalk between RNA surveillance and DNA repair in living animals. Defects in RNA processing, due to viable THO complex or PNN-1 mutations, induce a shift in DNA repair in dividing and non-dividing tissues. Loss of SMG-1, an ATM/ATR-like kinase central to RNA surveillance by nonsense-mediated decay (NMD), restores DNA repair and radio-resistance in THO-deficient animals. Mechanistically, we find SMG-1 and its downstream target SMG-2/UPF1, but not NMD per se, to suppress DNA repair by non-homologous end-joining in favour of single strand annealing. We postulate that moonlighting proteins create short-circuits in vivo, allowing aberrant RNA to redirect DNA repair.
Collapse
Affiliation(s)
| | | | - Ron J Romeijn
- Department of Human Genetics, Leiden University Medical Center, Einthovenweg 20, 2333 ZC Leiden, The Netherlands
| | - Román González-Prieto
- Department of Cell & Chemical Biology, Leiden University Medical Center, Einthovenweg 20, 2333 ZC, Leiden, The Netherlands
| | - Jesper V Olsen
- Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Blegdamsvej 3B, DK-2200 Copenhagen, Denmark
| | - Alfred C O Vertegaal
- Department of Cell & Chemical Biology, Leiden University Medical Center, Einthovenweg 20, 2333 ZC, Leiden, The Netherlands
| | - Robin van Schendel
- Department of Human Genetics, Leiden University Medical Center, Einthovenweg 20, 2333 ZC Leiden, The Netherlands
| | | |
Collapse
|
22
|
Pal R, Paul N, Bhattacharya D, Rakshit S, Shanmugam G, Sarkar K. XPG in the Nucleotide Excision Repair and Beyond: a study on the different functional aspects of XPG and its associated diseases. Mol Biol Rep 2022; 49:7995-8006. [PMID: 35596054 DOI: 10.1007/s11033-022-07324-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 12/17/2021] [Accepted: 03/02/2022] [Indexed: 11/26/2022]
Abstract
Several proteins are involved in DNA repair mechanisms attempting to repair damages to the DNA continuously. One such protein is Xeroderma Pigmentosum Complementation Group G (XPG), a significant component in the Nucleotide Excision Repair (NER) pathway. XPG is accountable for making the 3' incision in the NER, while XPF-ERCC4 joins ERCC1 to form the XPF-ERCC1 complex. This complex makes a 5' incision to eliminate bulky DNA lesions. XPG is also known to function as a cofactor in the Base Excision Repair (BER) pathway by increasing hNth1 activity, apart from its crucial involvement in the NER. Reports suggest that XPG also plays a non-catalytic role in the Homologous Recombination Repair (HRR) pathway by forming higher-order complexes with BRCA1, BRCA2, Rad51, and PALB2, further influencing the activity of these molecules. Studies show that, apart from its vital role in repairing DNA damages, XPG is also responsible for R-loop formation, which facilitates exhibiting phenotypes of Werner Syndrome. Though XPG has a role in several DNA repair pathways and molecular mechanisms, it is primarily a NER protein. Unrepaired and prolonged DNA damage leads to genomic instability and facilitates neurological disorders, aging, pigmentation, and cancer susceptibility. This review explores the vital role of XPG in different DNA repair mechanisms which are continuously involved in repairing these damaged sites and its failure leading to XP-G, XP-G/CS complex phenotypes, and cancer progression.
Collapse
Affiliation(s)
- Riasha Pal
- Department of Biotechnology, SRM Institute of Science and Technology, 603203, Kattankulathur, Tamil Nadu, India
| | - Nilanjan Paul
- Department of Biotechnology, SRM Institute of Science and Technology, 603203, Kattankulathur, Tamil Nadu, India
| | - Deep Bhattacharya
- Department of Biotechnology, SRM Institute of Science and Technology, 603203, Kattankulathur, Tamil Nadu, India
| | - Sudeshna Rakshit
- Department of Biotechnology, SRM Institute of Science and Technology, 603203, Kattankulathur, Tamil Nadu, India
| | - Geetha Shanmugam
- Department of Biotechnology, SRM Institute of Science and Technology, 603203, Kattankulathur, Tamil Nadu, India
| | - Koustav Sarkar
- Department of Biotechnology, SRM Institute of Science and Technology, 603203, Kattankulathur, Tamil Nadu, India.
| |
Collapse
|
23
|
Brickner JR, Garzon JL, Cimprich KA. Walking a tightrope: The complex balancing act of R-loops in genome stability. Mol Cell 2022; 82:2267-2297. [PMID: 35508167 DOI: 10.1016/j.molcel.2022.04.014] [Citation(s) in RCA: 103] [Impact Index Per Article: 51.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 03/28/2022] [Accepted: 04/10/2022] [Indexed: 12/14/2022]
Abstract
Although transcription is an essential cellular process, it is paradoxically also a well-recognized cause of genomic instability. R-loops, non-B DNA structures formed when nascent RNA hybridizes to DNA to displace the non-template strand as single-stranded DNA (ssDNA), are partially responsible for this instability. Yet, recent work has begun to elucidate regulatory roles for R-loops in maintaining the genome. In this review, we discuss the cellular contexts in which R-loops contribute to genomic instability, particularly during DNA replication and double-strand break (DSB) repair. We also summarize the evidence that R-loops participate as an intermediate during repair and may influence pathway choice to preserve genomic integrity. Finally, we discuss the immunogenic potential of R-loops and highlight their links to disease should they become pathogenic.
Collapse
Affiliation(s)
- Joshua R Brickner
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Jada L Garzon
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Karlene A Cimprich
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA 94305, USA.
| |
Collapse
|
24
|
Abstract
The XPG/ERCC5 endonuclease was originally identified as the causative gene for Xeroderma Pigmentosum complementation group G. Ever since its discovery, in depth biochemical, structural and cell biological studies have provided detailed mechanistic insight into its function in excising DNA damage in nucleotide excision repair, together with the ERCC1–XPF endonuclease. In recent years, it has become evident that XPG has additional important roles in genome maintenance that are independent of its function in NER, as XPG has been implicated in protecting replication forks by promoting homologous recombination as well as in resolving R-loops. Here, we provide an overview of the multitasking of XPG in genome maintenance, by describing in detail how its activity in NER is regulated and the evidence that points to important functions outside of NER. Furthermore, we present the various disease phenotypes associated with inherited XPG deficiency and discuss current ideas on how XPG deficiency leads to these different types of disease.
Collapse
|
25
|
Marabitti V, Valenzisi P, Lillo G, Malacaria E, Palermo V, Pichierri P, Franchitto A. R-Loop-Associated Genomic Instability and Implication of WRN and WRNIP1. Int J Mol Sci 2022; 23:ijms23031547. [PMID: 35163467 PMCID: PMC8836129 DOI: 10.3390/ijms23031547] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 01/25/2022] [Accepted: 01/25/2022] [Indexed: 02/05/2023] Open
Abstract
Maintenance of genome stability is crucial for cell survival and relies on accurate DNA replication. However, replication fork progression is under constant attack from different exogenous and endogenous factors that can give rise to replication stress, a source of genomic instability and a notable hallmark of pre-cancerous and cancerous cells. Notably, one of the major natural threats for DNA replication is transcription. Encounters or conflicts between replication and transcription are unavoidable, as they compete for the same DNA template, so that collisions occur quite frequently. The main harmful transcription-associated structures are R-loops. These are DNA structures consisting of a DNA–RNA hybrid and a displaced single-stranded DNA, which play important physiological roles. However, if their homeostasis is altered, they become a potent source of replication stress and genome instability giving rise to several human diseases, including cancer. To combat the deleterious consequences of pathological R-loop persistence, cells have evolved multiple mechanisms, and an ever growing number of replication fork protection factors have been implicated in preventing/removing these harmful structures; however, many others are perhaps still unknown. In this review, we report the current knowledge on how aberrant R-loops affect genome integrity and how they are handled, and we discuss our recent findings on the role played by two fork protection factors, the Werner syndrome protein (WRN) and the Werner helicase-interacting protein 1 (WRNIP1) in response to R-loop-induced genome instability.
Collapse
|
26
|
Abstract
RNase H1 has become an essential tool to uncover the physiological and pathological roles of R-loops, three-stranded structures consisting of and RNA-DNA hybrid opposite to a single DNA strand (ssDNA). RNase H1 degrades the RNA portion of the R-loops returning the two DNA strands to double-stranded form (dsDNA). Overexpression of RNase H1 in different systems has helped to address the questions of where R-loops are located, their abundance, and mechanisms of formation, stability, and degradation. In this chapter we review multiple studies that used RNase H1 as an instrument to investigate R-loops multiple functions and their relevance in health and diseases.
Collapse
Affiliation(s)
- Susana M Cerritelli
- Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Kiran Sakhuja
- Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Robert J Crouch
- Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
27
|
Cellular functions of the protein kinase ATM and their relevance to human disease. Nat Rev Mol Cell Biol 2021; 22:796-814. [PMID: 34429537 DOI: 10.1038/s41580-021-00394-2] [Citation(s) in RCA: 116] [Impact Index Per Article: 38.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/18/2021] [Indexed: 02/07/2023]
Abstract
The protein kinase ataxia telangiectasia mutated (ATM) is a master regulator of double-strand DNA break (DSB) signalling and stress responses. For three decades, ATM has been investigated extensively to elucidate its roles in the DNA damage response (DDR) and in the pathogenesis of ataxia telangiectasia (A-T), a human neurodegenerative disease caused by loss of ATM. Although hundreds of proteins have been identified as ATM phosphorylation targets and many important roles for this kinase have been identified, it is still unclear how ATM deficiency leads to the early-onset cerebellar degeneration that is common in all individuals with A-T. Recent studies suggest the existence of links between ATM deficiency and other cerebellum-specific neurological disorders, as well as the existence of broader similarities with more common neurodegenerative disorders. In this Review, we discuss recent structural insights into ATM regulation, and possible aetiologies of A-T phenotypes, including reactive oxygen species, mitochondrial dysfunction, alterations in transcription, R-loop metabolism and alternative splicing, defects in cellular proteostasis and metabolism, and potential pathogenic roles for hyper-poly(ADP-ribosyl)ation.
Collapse
|
28
|
San1 deficiency leads to cardiomyopathy due to excessive R-loop-associated DNA damage and cardiomyocyte hypoplasia. Biochim Biophys Acta Mol Basis Dis 2021; 1867:166237. [PMID: 34339838 DOI: 10.1016/j.bbadis.2021.166237] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 07/22/2021] [Accepted: 07/27/2021] [Indexed: 12/17/2022]
Abstract
R-loops are naturally occurring transcriptional intermediates containing RNA/DNA hybrids. Excessive R-loops cause genomic instability, DNA damage, and replication stress. Senataxin-associated exonuclease (San1) is a protein that interacts with Senataxin (SETX), a helicase resolving R-loops. It remains unknown if R-loops-induced DNA damage plays a role in the heart, especially in the proliferative neonatal cardiomyocytes (CMs). San1-/- mice were generated using the CRISPR/Cas9 technique. The newborn San1-/- mice show no overt phenotype, but their hearts were smaller with larger, yet fewer CMs. CM proliferation was impaired with reduced cell cycle-related transcripts and proteins. S9.6 staining revealed that excessive R-loops accumulated in the nucleus of neonatal San1-/- CMs. Increased γH2AX staining on newborn and adult heart sections exhibited increased DNA damage. Similarly, San1-/- AC16-cardiomyocytes showed cumulative R-loops and DNA damage, leading to the activation of cell cycle checkpoint kinase ATR and PARP1 hyperactivity, arresting G2/M cell-cycle and CM proliferation. Together, the present study uncovers an essential role of San1 in resolving excessive R-loops that lead to DNA damage and repressing CM proliferation, providing new insights into a novel biological function of San1 in the neonatal heart. San1 may serve as a novel therapeutic target for the treatment of hypoplastic cardiac disorders.
Collapse
|
29
|
Crossley MP, Brickner JR, Song C, Zar SMT, Maw SS, Chédin F, Tsai MS, Cimprich KA. Catalytically inactive, purified RNase H1: A specific and sensitive probe for RNA-DNA hybrid imaging. J Cell Biol 2021; 220:212458. [PMID: 34232287 PMCID: PMC8266564 DOI: 10.1083/jcb.202101092] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Revised: 05/24/2021] [Accepted: 06/07/2021] [Indexed: 12/17/2022] Open
Abstract
R-loops are three-stranded nucleic acid structures with both physiological and pathological roles in cells. R-loop imaging generally relies on detection of the RNA-DNA hybrid component of these structures using the S9.6 antibody. We show that the use of this antibody for imaging can be problematic because it readily binds to double-stranded RNA (dsRNA) in vitro and in vivo, giving rise to nonspecific signal. In contrast, purified, catalytically inactive human RNase H1 tagged with GFP (GFP-dRNH1) is a more specific reagent for imaging RNA-DNA hybrids. GFP-dRNH1 binds strongly to RNA-DNA hybrids but not to dsRNA oligonucleotides in fixed human cells and is not susceptible to binding endogenous RNA. Furthermore, we demonstrate that purified GFP-dRNH1 can be applied to fixed cells to detect hybrids after their induction, thereby bypassing the need for cell line engineering. GFP-dRNH1 therefore promises to be a versatile tool for imaging and quantifying RNA-DNA hybrids under a wide range of conditions.
Collapse
Affiliation(s)
- Magdalena P Crossley
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA
| | - Joshua R Brickner
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA
| | - Chenlin Song
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA
| | - Su Mon Thin Zar
- Biological Systems and Engineering, Lawrence Berkeley National Laboratory, Berkeley, CA
| | - Su S Maw
- Biological Systems and Engineering, Lawrence Berkeley National Laboratory, Berkeley, CA
| | - Frédéric Chédin
- Department of Molecular and Cellular Biology and Genome Center, University of California, Davis, Davis, CA
| | - Miaw-Sheue Tsai
- Biological Systems and Engineering, Lawrence Berkeley National Laboratory, Berkeley, CA
| | - Karlene A Cimprich
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA
| |
Collapse
|
30
|
Das T, Pal S, Ganguly A. Human RecQ helicases in transcription-associated stress management: bridging the gap between DNA and RNA metabolism. Biol Chem 2021; 402:617-636. [PMID: 33567180 DOI: 10.1515/hsz-2020-0324] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 01/24/2021] [Indexed: 12/13/2022]
Abstract
RecQ helicases are a highly conserved class of DNA helicases that play crucial role in almost all DNA metabolic processes including replication, repair and recombination. They are able to unwind a wide variety of complex intermediate DNA structures that may result from cellular DNA transactions and hence assist in maintaining genome integrity. Interestingly, a huge number of recent reports suggest that many of the RecQ family helicases are directly or indirectly involved in regulating transcription and gene expression. On one hand, they can remove complex structures like R-loops, G-quadruplexes or RNA:DNA hybrids formed at the intersection of transcription and replication. On the other hand, emerging evidence suggests that they can also regulate transcription by directly interacting with RNA polymerase or recruiting other protein factors that may regulate transcription. This review summarizes the up to date knowledge on the involvement of three human RecQ family proteins BLM, WRN and RECQL5 in transcription regulation and management of transcription associated stress.
Collapse
Affiliation(s)
- Tulika Das
- Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur721302, India
| | - Surasree Pal
- Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur721302, India
| | - Agneyo Ganguly
- Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur721302, India
| |
Collapse
|
31
|
Rinaldi C, Pizzul P, Longhese MP, Bonetti D. Sensing R-Loop-Associated DNA Damage to Safeguard Genome Stability. Front Cell Dev Biol 2021; 8:618157. [PMID: 33505970 PMCID: PMC7829580 DOI: 10.3389/fcell.2020.618157] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 12/02/2020] [Indexed: 12/14/2022] Open
Abstract
DNA transcription and replication are two essential physiological processes that can turn into a threat for genome integrity when they compete for the same DNA substrate. During transcription, the nascent RNA strongly binds the template DNA strand, leading to the formation of a peculiar RNA-DNA hybrid structure that displaces the non-template single-stranded DNA. This three-stranded nucleic acid transition is called R-loop. Although a programed formation of R-loops plays important physiological functions, these structures can turn into sources of DNA damage and genome instability when their homeostasis is altered. Indeed, both R-loop level and distribution in the genome are tightly controlled, and the list of factors involved in these regulatory mechanisms is continuously growing. Over the last years, our knowledge of R-loop homeostasis regulation (formation, stabilization, and resolution) has definitely increased. However, how R-loops affect genome stability and how the cellular response to their unscheduled formation is orchestrated are still not fully understood. In this review, we will report and discuss recent findings about these questions and we will focus on the role of ATM- and Rad3-related (ATR) and Ataxia-telangiectasia-mutated (ATM) kinases in the activation of an R-loop-dependent DNA damage response.
Collapse
Affiliation(s)
- Carlo Rinaldi
- Dipartimento di Biotecnologie e Bioscienze, Università di Milano-Bicocca, Milan, Italy
| | - Paolo Pizzul
- Dipartimento di Biotecnologie e Bioscienze, Università di Milano-Bicocca, Milan, Italy
| | - Maria Pia Longhese
- Dipartimento di Biotecnologie e Bioscienze, Università di Milano-Bicocca, Milan, Italy
| | - Diego Bonetti
- Dipartimento di Biotecnologie e Bioscienze, Università di Milano-Bicocca, Milan, Italy
| |
Collapse
|
32
|
Dhar S, Datta A, Brosh RM. DNA helicases and their roles in cancer. DNA Repair (Amst) 2020; 96:102994. [PMID: 33137625 DOI: 10.1016/j.dnarep.2020.102994] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 09/28/2020] [Indexed: 12/15/2022]
Abstract
DNA helicases, known for their fundamentally important roles in genomic stability, are high profile players in cancer. Not only are there monogenic helicase disorders with a strong disposition to cancer, it is well appreciated that helicase variants are associated with specific cancers (e.g., breast cancer). Flipping the coin, DNA helicases are frequently overexpressed in cancerous tissues and reduction in helicase gene expression results in reduced proliferation and growth capacity, as well as DNA damage induction and apoptosis of cancer cells. The seminal roles of helicases in the DNA damage and replication stress responses, as well as DNA repair pathways, validate their vital importance in cancer biology and suggest their potential values as targets in anti-cancer therapy. In recent years, many laboratories have characterized the specialized roles of helicase to resolve transcription-replication conflicts, maintain telomeres, mediate cell cycle checkpoints, remodel stalled replication forks, and regulate transcription. In vivo models, particularly mice, have been used to interrogate helicase function and serve as a bridge for preclinical studies that may lead to novel therapeutic approaches. In this review, we will summarize our current knowledge of DNA helicases and their roles in cancer, emphasizing the latest developments.
Collapse
Affiliation(s)
- Srijita Dhar
- Laboratory of Molecular Gerontology, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Arindam Datta
- Laboratory of Molecular Gerontology, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Robert M Brosh
- Laboratory of Molecular Gerontology, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA.
| |
Collapse
|
33
|
Ye CJ, Sharpe Z, Heng HH. Origins and Consequences of Chromosomal Instability: From Cellular Adaptation to Genome Chaos-Mediated System Survival. Genes (Basel) 2020; 11:E1162. [PMID: 33008067 PMCID: PMC7601827 DOI: 10.3390/genes11101162] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Revised: 09/22/2020] [Accepted: 09/29/2020] [Indexed: 12/15/2022] Open
Abstract
When discussing chromosomal instability, most of the literature focuses on the characterization of individual molecular mechanisms. These studies search for genomic and environmental causes and consequences of chromosomal instability in cancer, aiming to identify key triggering factors useful to control chromosomal instability and apply this knowledge in the clinic. Since cancer is a phenomenon of new system emergence from normal tissue driven by somatic evolution, such studies should be done in the context of new genome system emergence during evolution. In this perspective, both the origin and key outcome of chromosomal instability are examined using the genome theory of cancer evolution. Specifically, chromosomal instability was linked to a spectrum of genomic and non-genomic variants, from epigenetic alterations to drastic genome chaos. These highly diverse factors were then unified by the evolutionary mechanism of cancer. Following identification of the hidden link between cellular adaptation (positive and essential) and its trade-off (unavoidable and negative) of chromosomal instability, why chromosomal instability is the main player in the macro-cellular evolution of cancer is briefly discussed. Finally, new research directions are suggested, including searching for a common mechanism of evolutionary phase transition, establishing chromosomal instability as an evolutionary biomarker, validating the new two-phase evolutionary model of cancer, and applying such a model to improve clinical outcomes and to understand the genome-defined mechanism of organismal evolution.
Collapse
Affiliation(s)
- Christine J. Ye
- The Division of Hematology/Oncology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA
| | - Zachary Sharpe
- Center for Molecular Medicine and Genomics, Wayne State University School of Medicine, Detroit, MI 48201, USA;
| | - Henry H. Heng
- Center for Molecular Medicine and Genomics, Wayne State University School of Medicine, Detroit, MI 48201, USA;
- Department of Pathology, Wayne State University School of Medicine, Detroit, MI 48201, USA
| |
Collapse
|
34
|
Human XPG nuclease structure, assembly, and activities with insights for neurodegeneration and cancer from pathogenic mutations. Proc Natl Acad Sci U S A 2020; 117:14127-14138. [PMID: 32522879 PMCID: PMC7321962 DOI: 10.1073/pnas.1921311117] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
DNA repair is essential to life and to avoidance of genome instability and cancer. Xeroderma pigmentosum group G (XPG) protein acts in multiple DNA repair pathways, both as an active enzyme and as a scaffold for coordinating with other repair proteins. We present here the structure of the catalytic domain responsible for its DNA binding and nuclease activity. Our analysis provides structure-based hypotheses for how XPG recognizes its bubble DNA substrate and predictions of the structural impacts of XPG disease mutations associated with two phenotypically distinct diseases: xeroderma pigmentosum (XP, skin cancer prone) or Cockayne syndrome (XP/CS, severe progressive developmental defects). Xeroderma pigmentosum group G (XPG) protein is both a functional partner in multiple DNA damage responses (DDR) and a pathway coordinator and structure-specific endonuclease in nucleotide excision repair (NER). Different mutations in the XPG gene ERCC5 lead to either of two distinct human diseases: Cancer-prone xeroderma pigmentosum (XP-G) or the fatal neurodevelopmental disorder Cockayne syndrome (XP-G/CS). To address the enigmatic structural mechanism for these differing disease phenotypes and for XPG’s role in multiple DDRs, here we determined the crystal structure of human XPG catalytic domain (XPGcat), revealing XPG-specific features for its activities and regulation. Furthermore, XPG DNA binding elements conserved with FEN1 superfamily members enable insights on DNA interactions. Notably, all but one of the known pathogenic point mutations map to XPGcat, and both XP-G and XP-G/CS mutations destabilize XPG and reduce its cellular protein levels. Mapping the distinct mutation classes provides structure-based predictions for disease phenotypes: Residues mutated in XP-G are positioned to reduce local stability and NER activity, whereas residues mutated in XP-G/CS have implied long-range structural defects that would likely disrupt stability of the whole protein, and thus interfere with its functional interactions. Combined data from crystallography, biochemistry, small angle X-ray scattering, and electron microscopy unveil an XPG homodimer that binds, unstacks, and sculpts duplex DNA at internal unpaired regions (bubbles) into strongly bent structures, and suggest how XPG complexes may bind both NER bubble junctions and replication forks. Collective results support XPG scaffolding and DNA sculpting functions in multiple DDR processes to maintain genome stability.
Collapse
|
35
|
New insight into the biology of R-loops. Mutat Res 2020; 821:111711. [PMID: 32516653 DOI: 10.1016/j.mrfmmm.2020.111711] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 05/22/2020] [Accepted: 05/23/2020] [Indexed: 11/24/2022]
Abstract
R-loops form when RNA hybridizes with its template DNA generating a three-stranded structure leaving a displaced single strand non-template DNA. During transcription negative supercoiling of DNA behind the advancing RNA polymerase will facilitate the formation of R-loops by the nascent RNA as the DNA is under wound to facilitate transcription. In theory R-loops are classified into pathological and non-pathological depending on the context of its formation. R-loop which are formed normally in various physiological events like in gene regulation and at immunoglobulin class switch regions are considered non-pathological, whereas abnormally stable R-loop which leads to genomic instability are considered pathological. Although pathological R-loop formation is a rare event but once formed completely blocks transcription, mRNA export, elevates mutagenesis, and inhibits gene expression. Hence, R-loop either prevents or induces genomic instability indirectly and are potentially an endogenous source of DNA lesion. Although the existence of R-loop has been reported few decades ago, but only recently we have gained knowledge about its formation and resolution in cells due to the availability of reagents. R-loop biology has generated immense interest in past few years since it connects the important biological processes such as transcription, mRNA splicing, DNA replication, recombination and repair. In this review I will focus on the recent progress made about formation and resolution of R-loop, based on the methodologies that are currently available to study R-loop using biochemical, cell biology and molecular biology approaches.
Collapse
|
36
|
Brambati A, Zardoni L, Nardini E, Pellicioli A, Liberi G. The dark side of RNA:DNA hybrids. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2020; 784:108300. [PMID: 32430097 DOI: 10.1016/j.mrrev.2020.108300] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 02/07/2020] [Accepted: 02/23/2020] [Indexed: 12/15/2022]
Abstract
RNA:DNA hybrids form when nascent transcripts anneal to the DNA template strand or any homologous DNA region. Co-transcriptional RNA:DNA hybrids, organized in R-loop structures together with the displaced non-transcribed strand, assist gene expression, DNA repair and other physiological cellular functions. A dark side of the matter is that RNA:DNA hybrids are also a cause of DNA damage and human diseases. In this review, we summarize recent advances in the understanding of the mechanisms by which the impairment of hybrid turnover promotes DNA damage and genome instability via the interference with DNA replication and DNA double-strand break repair. We also discuss how hybrids could contribute to cancer, neurodegeneration and susceptibility to viral infections, focusing on dysfunctions associated with the anti-R-loop helicase Senataxin.
Collapse
Affiliation(s)
- Alessandra Brambati
- Istituto di Genetica Molecolare Luigi Luca Cavalli-Sforza, CNR, Via Abbiategrasso 207, 27100, Pavia, Italy.
| | - Luca Zardoni
- Istituto di Genetica Molecolare Luigi Luca Cavalli-Sforza, CNR, Via Abbiategrasso 207, 27100, Pavia, Italy; Scuola Universitaria Superiore, IUSS, 27100, Pavia, Italy
| | - Eleonora Nardini
- Istituto di Genetica Molecolare Luigi Luca Cavalli-Sforza, CNR, Via Abbiategrasso 207, 27100, Pavia, Italy
| | - Achille Pellicioli
- Dipartimento di Bioscienze, Università degli Studi di Milano, Milan, Italy
| | - Giordano Liberi
- Istituto di Genetica Molecolare Luigi Luca Cavalli-Sforza, CNR, Via Abbiategrasso 207, 27100, Pavia, Italy; IFOM Foundation, Via Adamello 16, 20139, Milan, Italy.
| |
Collapse
|
37
|
Marabitti V, Lillo G, Malacaria E, Palermo V, Pichierri P, Franchitto A. Checkpoint Defects Elicit a WRNIP1-Mediated Response to Counteract R-Loop-Associated Genomic Instability. Cancers (Basel) 2020; 12:cancers12020389. [PMID: 32046194 PMCID: PMC7072626 DOI: 10.3390/cancers12020389] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 02/03/2020] [Accepted: 02/05/2020] [Indexed: 12/04/2022] Open
Abstract
Conflicts between replication and transcription are a common source of genomic instability, a characteristic of almost all human cancers. Aberrant R-loops can cause a block to replication fork progression. A growing number of factors are involved in the resolution of these harmful structures and many perhaps are still unknown. Here, we reveal that the Werner interacting protein 1 (WRNIP1)-mediated response is implicated in counteracting aberrant R-loop accumulation. Using human cellular models with compromised Ataxia-Telangiectasia and Rad3-Related (ATR)-dependent checkpoint activation, we show that WRNIP1 is stabilized in chromatin and is needed for maintaining genome integrity by mediating the Ataxia Telangiectasia Mutated (ATM)-dependent phosphorylation of Checkpoint kinase 1 (CHK1). Furthermore, we demonstrated that loss of Werner Syndrome protein (WRN) or ATR signaling leads to formation of R-loop-dependent parental ssDNA upon mild replication stress, which is covered by Radiorestistance protein 51 (RAD51). We prove that Werner helicase-interacting protein 1 (WRNIP1) chromatin retention is also required to stabilize the association of RAD51 with ssDNA in proximity of R-loops. Therefore, in these pathological contexts, ATM inhibition or WRNIP1 abrogation is accompanied by increased levels of genomic instability. Overall, our findings suggest a novel function for WRNIP1 in preventing R-loop-driven genome instability, providing new clues to understand the way replication–transcription conflicts are handled.
Collapse
|
38
|
Meng X, Yang S, Camp VJA. The Interplay Between the DNA Damage Response, RNA Processing and Extracellular Vesicles. Front Oncol 2020; 9:1538. [PMID: 32010626 PMCID: PMC6978769 DOI: 10.3389/fonc.2019.01538] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Accepted: 12/19/2019] [Indexed: 12/13/2022] Open
Abstract
RNA processing was recently found to affect DNA damage response. The RNA processing factors THRAP3 and BCLAF1 play critical role in keeping DNA genomic stability by regulating the transcription, mRNA splicing and export of DNA repair proteins BRCA2, PALB2, Rad51, FANCD2, and FANCL in response to DNA damage. RNA processing factors THRAP3 and BCLAF1 play critical roles in maintaining DNA genomic stability. These factors regulate transcription, mRNA splicing and nuclear RNA export of DNA repair proteins BRCA2, PALB2, Rad51, FANCD2, and FANCL in response to DNA damage. Splicing factors SRSF10 and Sam68 were found to control the DNA damage agent-induced mRNA splicing of transcripts including BCLAF1, BRCA1, BCL2L1, CASP8, CHK2, and RBBP8 to regulate apoptosis, cell-cycle transition and DNA repair. Splicing factors and RNA binding proteins (RBPs) were also found to play a critical role in DNA/RNA hybrids (R-loops) formed during transcription and RNA processing to prevent RNA-induced genome instability. At the same time, DNA repair proteins FANCI and FANCD2 were found to regulate the nuclear localization of splicing factors SF3B1 in the DNA damage response. In addition, tumor-derived extracellular vesicles (Evs) enhanced by chemotherapeutic agents in cancer were found to promote cancer metastasis and drug resistance. Inhibiting Evs from cancer cells significantly reduced cancer metastasis and drug resistance. Furthermore, cross-talk between the DNA damage response and the immune response was observed including the enhancement of the efficacy of immune checkpoint blockade by PARP inhibitors and the effect of PD-L1 on mRNA stability of various mRNAs involved in DNA damage response by acting as a novel RNA binding protein to increase drug resistance in cancer cells. This review will introduce recent progress on the interplay of the DNA damage response, the RNA processing and the extracellular vesicles mediated metastasis.
Collapse
Affiliation(s)
- Xiangbing Meng
- Department of Pathology, Carver College of Medicine, University of Iowa, Iowa City, IA, United States
- Holden Comprehensive Cancer Center, Carver College of Medicine, University of Iowa, Iowa City, IA, United States
| | - Shujie Yang
- Department of Pathology, Carver College of Medicine, University of Iowa, Iowa City, IA, United States
- Holden Comprehensive Cancer Center, Carver College of Medicine, University of Iowa, Iowa City, IA, United States
| | - Vanessa J. A. Camp
- Department of Pathology, Carver College of Medicine, University of Iowa, Iowa City, IA, United States
| |
Collapse
|
39
|
Pugliese GM, Salaris F, Palermo V, Marabitti V, Morina N, Rosa A, Franchitto A, Pichierri P. Inducible SMARCAL1 knockdown in iPSC reveals a link between replication stress and altered expression of master differentiation genes. Dis Model Mech 2019; 12:dmm.039487. [PMID: 31515241 PMCID: PMC6826020 DOI: 10.1242/dmm.039487] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Accepted: 08/30/2019] [Indexed: 12/15/2022] Open
Abstract
Schimke immuno-osseous dysplasia is an autosomal recessive genetic osteochondrodysplasia characterized by dysmorphism, spondyloepiphyseal dysplasia, nephrotic syndrome and frequently T cell immunodeficiency. Several hypotheses have been proposed to explain the pathophysiology of the disease; however, the mechanism by which SMARCAL1 mutations cause the syndrome is elusive. Here, we generated a conditional SMARCAL1 knockdown model in induced pluripotent stem cells (iPSCs) to mimic conditions associated with the severe form the disease. Using multiple cellular endpoints, we characterized this model for the presence of phenotypes linked to the replication caretaker role of SMARCAL1. Our data show that conditional knockdown of SMARCAL1 in human iPSCs induces replication-dependent and chronic accumulation of DNA damage triggering the DNA damage response. Furthermore, they indicate that accumulation of DNA damage and activation of the DNA damage response correlates with increased levels of R-loops and replication-transcription interference. Finally, we provide evidence that SMARCAL1-deficient iPSCs maintain active DNA damage response beyond differentiation, possibly contributing to the observed altered expression of a subset of germ layer-specific master genes. Confirming the relevance of SMARCAL1 loss for the observed phenotypes, they are prevented or rescued after re-expression of wild-type SMARCAL1 in our iPSC model. In conclusion, our conditional SMARCAL1 knockdown model in iPSCs may represent a powerful model when studying pathogenetic mechanisms of severe Schimke immuno-osseous dysplasia.
Collapse
Affiliation(s)
- Giusj Monia Pugliese
- Mechanisms, Biomarkers and Models Unit, Department of Environment and Health, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy
| | - Federico Salaris
- Center for Life Nano Science, Istituto Italiano di Tecnologia, Viale Regina Elena 291, 00161 Rome, Italy.,Department of Biology and Biotechnology Charles Darwin, Sapienza University of Rome, P.le A. Moro 5, 00185 Rome, Italy
| | - Valentina Palermo
- Mechanisms, Biomarkers and Models Unit, Department of Environment and Health, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy
| | - Veronica Marabitti
- Mechanisms, Biomarkers and Models Unit, Department of Environment and Health, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy
| | - Nicolò Morina
- Mechanisms, Biomarkers and Models Unit, Department of Environment and Health, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy
| | - Alessandro Rosa
- Center for Life Nano Science, Istituto Italiano di Tecnologia, Viale Regina Elena 291, 00161 Rome, Italy.,Department of Biology and Biotechnology Charles Darwin, Sapienza University of Rome, P.le A. Moro 5, 00185 Rome, Italy
| | - Annapaola Franchitto
- Mechanisms, Biomarkers and Models Unit, Department of Environment and Health, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy
| | - Pietro Pichierri
- Mechanisms, Biomarkers and Models Unit, Department of Environment and Health, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy .,Istituto Nazionale Biostrutture e Biosistemi, Via delle Medaglie d'Oro, 00136 Rome, Italy
| |
Collapse
|
40
|
Wells JP, White J, Stirling PC. R Loops and Their Composite Cancer Connections. Trends Cancer 2019; 5:619-631. [DOI: 10.1016/j.trecan.2019.08.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 08/29/2019] [Accepted: 08/30/2019] [Indexed: 12/19/2022]
|