1
|
Kumari M, Jaiswal S, Shankar U, Gupta S, Pradeepkumar PI, Kumar A, Nayak D, Yadav V, Yadav P. Characterization of G-quadruplexes in the Helicobacter pylori genome and assessment of therapeutic potential of G4 ligands. Biotechnol Appl Biochem 2024. [PMID: 39041320 DOI: 10.1002/bab.2644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 07/10/2024] [Indexed: 07/24/2024]
Abstract
Helicobacter pylori, a leading human pathogen associated with duodenal ulcer and gastric cancer, presents a significant threat to human health due to increasing antibiotic resistance rates. This study investigates G-quadruplexes (G4s), which are non-canonical secondary structures form in G-rich regions within the H. pylori genome. Extensive research on G4s in eukaryotes has revealed their role in epigenetically regulating cellular processes like gene transcription, DNA replication, and oncogene expression. However, understanding of G4-mediated gene regulation in other organisms, especially bacterial pathogens, remains limited. Although G4 motifs have been extensively studied in a few bacterial species such as Mycobacterium, Streptococci, and Helicobacter, research on G4 motifs in other bacterial species is still sparse. Like in other organisms such as archaea, mammals, and viruses, G4s in H. pylori display a non-random distribution primarily situated within open reading frames of various protein-coding genes. The occurrence of G4s in functional regions of the genome and their conservation across different species indicates that their placement is not random, suggesting an evolutionary pressure to maintain these sequences at specific genomic sites. Moreover, G-quadruplexes show enrichment in specific gene classes, suggesting their potential involvement in regulating the expression of genes related to cell wall/membrane/envelope biogenesis, amino acid transport, and metabolism. This indicates a probable regulatory role for G4s in controlling the expression of genes essential for H. pylori survival and virulence. Biophysical techniques such as Circular Dichroism spectroscopy and Nuclear Magnetic Resonance were used to characterize G4 motifs within selected H. pylori genes. The study revealed that G-quadruplex ligand inhibited the growth of H. pylori, with minimal inhibitory concentrations in the low micromolar range. This suggests that targeting G4 structures could offer a promising approach for developing novel anti-H. pylori drugs.
Collapse
Affiliation(s)
- Monika Kumari
- Department of Microbiology, Central University of Haryana, Mahendergarh, India
| | - Saumya Jaiswal
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Indore, Madhya Pradesh, India
| | - Uma Shankar
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Indore, Madhya Pradesh, India
| | - Sharad Gupta
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Indore, Madhya Pradesh, India
| | | | - Amit Kumar
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Indore, Madhya Pradesh, India
| | - Debasis Nayak
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER), Bhopal, Madhya Pradesh, India
| | - Vikas Yadav
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Puja Yadav
- Department of Microbiology, Central University of Haryana, Mahendergarh, India
| |
Collapse
|
2
|
Saad M, Zhang R, Cucchiarini A, Mehawej C, Mergny JL, Mroueh M, Faour WH. G-quadruplex forming sequences in the genes coding for cytochrome P450 enzymes and their potential roles in drug metabolism. Biochimie 2023; 214:45-56. [PMID: 37660977 DOI: 10.1016/j.biochi.2023.08.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/23/2023] [Accepted: 08/25/2023] [Indexed: 09/05/2023]
Abstract
The majority of drugs are metabolized by cytochrome P450 (CYP) enzymes, primarily belonging to the CYP1, CYP2 and CYP3 families. Genetic variations are the main cause of inter-individual differences in drug response, which constitutes a major concern in pharmacotherapy. G-quadruplexes (G4s), are non-canonical DNA and RNA secondary structures formed by guanine-rich sequences. G4s have been implicated in cancer and gene regulation. In this study, we investigated putative G4-forming sequences (PQSs) in the CYP genes. Our findings reveal a high density of PQSs in the full genes of CYP family 2. Moreover, we observe an increased density of PQSs in the promoters of CYP family 1 genes compared to non-CYP450 genes. Importantly, stable PQSs were also identified in all studied CYP genes. Subsequently, we assessed the impact of the most frequently reported genetic mutations in the selected genes and the possible effect of these mutations on G4 formation as well as on the thermodynamic stability of predicted G4s. We found that 4 SNPs overlap G4 sequences and lead to mutated DNA and RNA G4 forming sequences in their context. Notably, the mutation in the CYP2C9 gene, which is associated with impaired (S)-warfarin metabolism in patients, alters a G4 sequence. We then demonstrated that at least 10 of the 13 chosen cytochrome P450 G4 candidates form G-quadruplex structures in vitro, using a combination of spectroscopic methods. In conclusion, our findings indicate the potential role of G-quadruplexes in the regulation of cytochrome genes, and emphasize the importance of G-quadruplexes in drug metabolism.
Collapse
Affiliation(s)
- Mona Saad
- Gilbert and Rose-Marie Chagoury School of Medicine, Lebanese American University, Byblos, Lebanon
| | - Rongxin Zhang
- Laboratoire d'Optique et Biosciences, Institut Polytechnique de Paris, CNRS, INSERM, Université Paris-Saclay, 91120, Palaiseau, France; State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, China
| | - Anne Cucchiarini
- Laboratoire d'Optique et Biosciences, Institut Polytechnique de Paris, CNRS, INSERM, Université Paris-Saclay, 91120, Palaiseau, France
| | - Cybel Mehawej
- Department of Human Genetics, Gilbert and Rose-Marie Chagoury School of Medicine, Lebanese American University, Byblos, Lebanon
| | - Jean-Louis Mergny
- Laboratoire d'Optique et Biosciences, Institut Polytechnique de Paris, CNRS, INSERM, Université Paris-Saclay, 91120, Palaiseau, France.
| | - Mohamad Mroueh
- School of Pharmacy, Department of Pharmaceutical Sciences, Lebanese American University, Byblos, Lebanon
| | - Wissam H Faour
- Gilbert and Rose-Marie Chagoury School of Medicine, Lebanese American University, Byblos, Lebanon.
| |
Collapse
|
3
|
Saad M, Mehawej C, Faour WH. Analysis of G-quadruplex forming sequences in podocytes-marker genes and their potential roles in inherited glomerular diseases. Heliyon 2023; 9:e20233. [PMID: 37809648 PMCID: PMC10559976 DOI: 10.1016/j.heliyon.2023.e20233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 08/04/2023] [Accepted: 09/14/2023] [Indexed: 10/10/2023] Open
Abstract
Nephrotic Syndrome is the most widespread pediatric kidney disorder. Genetic alterations in podocyte genes are thought to be responsible for the disease. G-quadruplexes are non-conventional guanine-rich DNA and RNA structures, which are commonly found in regulatory regions. This study examined the potential G-quadruplexes forming sequences in the promoters and gene bodies of podocyte-marker genes. High G-quadruplexes density was found in the vascular endothelial growth facto, cluster of differentiation-151, integrin subunit beta-4, metalloendopeptidase, Wilms tumor-1, integrin subunit beta-3, synaptopodin, and nephrin promoters. Vascular endothelial growth facto, cluster of differentiation-151 and integrin subunit beta-4 had the highest G-quadruplexes density in their gene bodies and promoters. Additionally, highly stable G-quadruplexes forming sequences were identified within all podocyte-marker genes. Furthermore, it is hypothesized that Wilms tumor-1 is capable of controlling the transcription of podocalyxin by binding to two possible G-quadruplexes forming motifs. We next analyzed the most frequently reported genetic mutations in the selected genes for their effect on DNA G-quadruplexes formation, and the thermodynamic stability of predicted RNA G-quadruplexes, using RNAfold. Importantly, the missense mutation c.121_122del in the nephrin gene reported in patients with NS type 1 affected DNA G-quadruplexes formation in this region as well as the thermodynamic stability of the corresponding RNA G-quadruplexes. Overall, we report the potential regulatory roles of G-quadruplexes in the etiology of nephrotic syndrome and their possible use as drug targets to treat kidney diseases.
Collapse
Affiliation(s)
- Mona Saad
- Gilbert and Rose-Marie Chagoury School of Medicine, Lebanese American University, Byblos, Lebanon
| | - Cybel Mehawej
- Department of Human Genetics, Gilbert and Rose-Marie Chagoury School of Medicine, Lebanese American University, Byblos, Lebanon
| | - Wissam H. Faour
- Gilbert and Rose-Marie Chagoury School of Medicine, Lebanese American University, Byblos, Lebanon
| |
Collapse
|
4
|
Stefos GC, Theodorou G, Politis I. Genomic distribution and polymorphism of G-quadruplex motifs occupying ovine promoters and enhancers. Mamm Genome 2023:10.1007/s00335-023-09988-x. [PMID: 36964238 PMCID: PMC10382345 DOI: 10.1007/s00335-023-09988-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 03/10/2023] [Indexed: 03/26/2023]
Abstract
G-quadruplexes are non-canonical DNA structures that are formed in regions with short runs of guanines. During the last decade they have gained considerable attention due to their involvement in basic cellular processes, linking them to several physiological processes and pathological conditions. Regulation of gene transcription is among the crucial roles that G-quadruplexes play in the cells. Several ways in which these structures affect transcription have been described, both negatively and positively. Recently, G-quadruplexes have been shown to be implicated in the three-dimensional rearrangement of the chromosomes that enables the interaction of enhancers and gene promoters during regulation of transcription. Sheep is a species for which almost no G-quadruplex-related studies have been conducted and thus research on this species is kept out from the progress that has been made in the G-quadruplex field. In this context, we investigated the DNA sequences with potential to form G-quadruplexes (G4-motifs) in the ovine enhancers and promoters. We describe the distribution of G4-motifs within the regulatory regions which is shown to be enriched in G4-motifs in a way similar to other mammals. Furthermore, our data suggest that G4-motifs promote promoter-enhancer interactions in sheep. The single nucleotide polymorphisms colocalizing with promoter- and enhancer-associated ovine G4-motifs constitute a considerable pool of polymorphism and given the crucial role of these specific G4-motifs on regulation of transcription, we suggest this polymorphism as an interesting target for ovine genetic studies.
Collapse
Affiliation(s)
- Georgios C Stefos
- Laboratory of Animal Breeding and Husbandry, Department of Animal Science, Agricultural University of Athens, 75 Iera Odos, 118 55, Athens, Greece.
| | - Georgios Theodorou
- Laboratory of Animal Breeding and Husbandry, Department of Animal Science, Agricultural University of Athens, 75 Iera Odos, 118 55, Athens, Greece.
| | - Ioannis Politis
- Laboratory of Animal Breeding and Husbandry, Department of Animal Science, Agricultural University of Athens, 75 Iera Odos, 118 55, Athens, Greece
| |
Collapse
|
5
|
SAAD M, Shebaby M, Mehawej C, Faour W. New complementary python codes to locate Single Nucleotide Polymorphisms (SNPs) and Overlapping G-Quadruplex Sequences (G4s). MethodsX 2022; 9:101875. [PMID: 36249933 PMCID: PMC9563633 DOI: 10.1016/j.mex.2022.101875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Accepted: 10/01/2022] [Indexed: 11/07/2022] Open
Abstract
G-quadruplexes (G4s) are non-canonical DNA and RNA secondary structures that control gene regulation. A single nucleotide polymorphism (SNP) is a small genetic variation occurring within a DNA sequence and accounting for the variabilities between individuals. While the majority of SNPs, especially those frequent in the population, are considered as benign genetic variations, few others can lead to diseases. SNPs occurring in G4 sequences were reported to modulate gene regulation. In order to find overlaps between predicted G4 sequences and SNPs located in the genomic regions, we developed two complementary computational python codes (SNP-locator and G4-overlap). The codes map a mutation to the overlapping/closest G4 sequences, based on the genetic variant name and the FASTA format of the corresponding gene. We validated these two codes on a set of 31 SNP variants occurring in cytochromes P450 genes and podocytes-marker genes. Out of 31 SNPs, 28 were accurately located using the mentioned codes.SNP-locator code locates any SNP in promoters, upstream regulatory regions, exons and introns. The SNP-locator code requires the FASTA genomic sequence of the studied gene and the genetic variant nomenclature at the cDNA level. G4-overlap code maps the SNP to the overlapping or the closest G4 sequence.
Collapse
Affiliation(s)
- Mona SAAD
- Gilbert and Rose-Marie Chagoury School of Medicine, Lebanese American University, Byblos, Lebanon
| | - Marc Shebaby
- School of Arts and Sciences, Lebanese American University, Byblos, Lebanon
| | - Cybel Mehawej
- Department of Human Genetics, Gilbert and Rose-Marie Chagoury School of Medicine, Lebanese American University, Byblos, Lebanon
| | - Wissam Faour
- Gilbert and Rose-Marie Chagoury School of Medicine, Lebanese American University, Byblos, Lebanon,Corresponding author.
| |
Collapse
|
6
|
Luo Y, Verga D, Mergny JL. Iso-FRET: an isothermal competition assay to analyze quadruplex formation in vitro. Nucleic Acids Res 2022; 50:e93. [PMID: 35670668 PMCID: PMC9458428 DOI: 10.1093/nar/gkac465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 04/26/2022] [Accepted: 05/16/2022] [Indexed: 11/23/2022] Open
Abstract
Algorithms have been widely used to predict G-quadruplexes (G4s)-prone sequences. However, an experimental validation of these predictions is generally required. We previously reported a high-throughput technique to evidence G4 formation in vitro called FRET-MC. This method, while convenient and reproducible, has one known weakness: its inability to pin point G4 motifs of low thermal stability. As such quadruplexes may still be biologically relevant if formed at physiological temperature, we wanted to develop an independent assay to overcome this limitation. To this aim, we introduced an isothermal version of the competition assay, called iso-FRET, based on a duplex-quadruplex competition and a well-characterized bis-quinolinium G4 ligand, PhenDC3. G4-forming competitors act as decoys for PhenDC3, lowering its ability to stabilize the G4-forming motif reporter oligonucleotide conjugated to a fluorescence quencher (37Q). The decrease in available G4 ligand concentration restores the ability of 37Q to hybridize to its FAM-labeled short complementary C-rich strand (F22), leading to a decrease in fluorescence signal. In contrast, when no G4-forming competitor is present, PhenDC3 remains available to stabilize the 37Q quadruplex, preventing the formation of the F22 + 37Q complex. Iso-FRET was first applied to a reference panel of 70 sequences, and then used to investigate 23 different viral sequences.
Collapse
Affiliation(s)
- Yu Luo
- Laboratoire d'Optique et Biosciences, Ecole Polytechnique, CNRS, Inserm, Institut Polytechnique de Paris, 91128 Palaiseau, France.,CNRS UMR9187, INSERM U1196, Université Paris-Saclay, F-91405 Orsay, France
| | - Daniela Verga
- CNRS UMR9187, INSERM U1196, Université Paris-Saclay, F-91405 Orsay, France.,CNRS UMR9187, INSERM U1196, Institut Curie, PSL Research University, F-91405 Orsay, France
| | - Jean-Louis Mergny
- Laboratoire d'Optique et Biosciences, Ecole Polytechnique, CNRS, Inserm, Institut Polytechnique de Paris, 91128 Palaiseau, France
| |
Collapse
|
7
|
Santos T, Miranda A, Imbert L, Monchaud D, Salgado GF, Cabrita EJ, Cruz C. Targeting a G-quadruplex from let-7e pre-miRNA with small molecules and nucleolin. J Pharm Biomed Anal 2022; 215:114757. [PMID: 35462282 DOI: 10.1016/j.jpba.2022.114757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 02/28/2022] [Accepted: 04/03/2022] [Indexed: 10/18/2022]
Abstract
Let-7e precursor microRNA has the potential to adopt a G-quadruplex (rG4) structure and recently, its roles in oncology have been the focus of much attention, as it is now known that let-7e pre-miRNA is frequently dysregulated in cancers. Therefore, it is crucial to unveil and fully characterize its ability to adopt a rG4 structure, which could be stabilized or destabilized by small molecules and proteins such as nucleolin, a protein that is deeply associated with miRNA biogenesis. Herein, by combining a set of different methods such as circular dichroism (CD), nuclear magnetic resonance (NMR), UV spectroscopy (thermal difference spectra (TDS) and isothermal difference spectra (IDS)) and polyacrylamide gel electrophoresis (PAGE), we demonstrate the formation of the rG4 structure found in let-7e pre-miRNA sequence in the presence of K+ (5'-GGGCUGAGGUAGGAGG-3'). The ability of eight small molecules (or ligands) to bind to and stabilize this rG4 structure was also fully assessed. The dissociation constants for each RNA G-quadruplex/ligand complex, determined by surface plasmon resonance (SPR), ranged in the 10-6 to 10-9 M range. Lastly, the binding of the rG4 structure to nucleolin in the presence and absence of ligands was evaluated via CD, SPR, PAGE and confocal microscopy. The small molecules 360 A and PDS demonstrated attractive properties to targetthe rG4 structure of let-7e pre-miRNA and control its biology. Our findings also highlighted that the interaction of TMPyP4 with the G-quadruplex of let-7e precursor miRNA could block the formation of the complex between the rG4 and nucleolin. Overall, this study introduces an approach to target the rG4 found in let-7e pre-miRNA which opens up a new opportunity to control the microRNA biogenesis.
Collapse
Affiliation(s)
- Tiago Santos
- CICS-UBI - Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior, Av. Infante D. Henrique, Covilhã 6200-506, Portugal
| | - André Miranda
- CICS-UBI - Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior, Av. Infante D. Henrique, Covilhã 6200-506, Portugal
| | - Lionel Imbert
- Univ. Grenoble Alpes, CNRS, CEA, Institut de Biologie Structurale (IBS), Grenoble, France; Univ. Grenoble Alpes, CNRS, CEA, EMBL Integrated Structural Biology Grenoble (ISBG), Grenoble, France
| | - David Monchaud
- Institut de Chimie Moléculaire de l'Université de Bourgogne (ICMUB), CNRS UMR 6302, UBFC Dijon, Dijon 21078, France
| | - Gilmar F Salgado
- ARNA Laboratory, Université de Bordeaux, Inserm U1212, CNRS UMR 5320, IECB, Pessac 33607, France
| | - Eurico J Cabrita
- UCIBIO, REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Caparica 2829-516, Portugal; Associate Laboratory i4HB - Institute for Health and Bioeconomy, NOVA School of Science and Technology, NOVA University Lisbon, Caparica 2819-516, Portugal
| | - Carla Cruz
- CICS-UBI - Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior, Av. Infante D. Henrique, Covilhã 6200-506, Portugal.
| |
Collapse
|
8
|
Santos T, Lopes-Nunes J, Alexandre D, Miranda A, Figueiredo J, Silva MS, Mergny JL, Cruz C. Stabilization of a DNA aptamer by ligand binding. Biochimie 2022; 200:8-18. [PMID: 35550917 DOI: 10.1016/j.biochi.2022.05.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 04/03/2022] [Accepted: 05/05/2022] [Indexed: 12/17/2022]
Abstract
G-rich aptamers such as AS1411 are small oligonucleotides that present several benefits comparatively to monoclonal antibodies, since they are easier to manufacture and store, have small size and do not stimulate an immune response. We analyzed AT11-B1, a modified sequence of AT11 (itself a modified version of AS1411), in which one thymine was removed from the bulge region. We studied G-quadruplex (G4) formation/stabilization using PhenDC3, PDS, BRACO-19, TMPyP4 and 360A ligands by different biophysical techniques, namely circular dichroism (CD), Förster resonance energy transfer (FRET-melting) and nuclear magnetic resonance (NMR). The CD spectra showed that AT11-B1 adopts a predominant G4 of parallel topology when the buffer contains KCl or when ligands are added. PhenDC3 induced a ΔTm of 30 °C or more of the G4 structure as shown by CD- and FRET-melting experiments. The ligands demonstrate high affinity for AT11-B1 G4 and the NMR studies revealed that the AT11-B1 G4 involves four G-tetrad layers. The in silico studies suggest that all ligands bind AT11-B1 G4, namely, by stacking interactions, except PDS that may bind to the loop/groove interface. In addition, molecular dynamics simulations revealed that nucleolin (NCL) interacts with the AT11-B1 G4 structure through the RNA binding domain (RBD) 2 and the 12-residue linker between RBD1,2. Moreover, AT11-B1 G4 was internalized into a NCL-positive tongue squamous cell carcinoma cell line. In a nutshell, this study may help the identification of the ligands scaffolds to bind and stabilize AT11-B1, improving the targeting towards NCL that is overexpressed in cancer cells.
Collapse
Affiliation(s)
- Tiago Santos
- CICS-UBI - Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior, Av. Infante D. Henrique, Covilhã, Portugal
| | - Jéssica Lopes-Nunes
- CICS-UBI - Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior, Av. Infante D. Henrique, Covilhã, Portugal
| | - Daniela Alexandre
- CICS-UBI - Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior, Av. Infante D. Henrique, Covilhã, Portugal
| | - André Miranda
- CICS-UBI - Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior, Av. Infante D. Henrique, Covilhã, Portugal
| | - Joana Figueiredo
- CICS-UBI - Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior, Av. Infante D. Henrique, Covilhã, Portugal
| | - Micael S Silva
- CICS-UBI - Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior, Av. Infante D. Henrique, Covilhã, Portugal
| | - Jean-Louis Mergny
- Institute of Biophysics of the CAS, v.v.i, Královopolská 135, 612 65, Brno, Czech Republic; Laboratoire d'Optique et Biosciences, Ecole Polytechnique, CNRS, INSERM, Institut Polytechnique de Paris, 91128, Palaiseau, France
| | - Carla Cruz
- CICS-UBI - Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior, Av. Infante D. Henrique, Covilhã, Portugal.
| |
Collapse
|
9
|
Vannutelli A, Perreault JP, Ouangraoua A. G-quadruplex occurrence and conservation: more than just a question of guanine–cytosine content. NAR Genom Bioinform 2022; 4:lqac010. [PMID: 35261973 PMCID: PMC8896161 DOI: 10.1093/nargab/lqac010] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 12/06/2021] [Accepted: 02/25/2022] [Indexed: 12/14/2022] Open
Abstract
G-quadruplexes are motifs found in DNA and RNA that can fold into tertiary structures. Until now, they have been studied experimentally mainly in humans and a few other species. Recently, predictions have been made with bacterial and archaeal genomes. Nevertheless, a global comparison of predicted G4s (pG4s) across and within the three living kingdoms has not been addressed. In this study, we aimed to predict G4s in genes and transcripts of all kingdoms of living organisms and investigated the differences in their distributions. The relation of the predictions with GC content was studied. It appears that GC content is not the only parameter impacting G4 predictions and abundance. The distribution of pG4 densities varies depending on the class of transcripts and the group of species. Indeed, we have observed that, in coding transcripts, there are more predicted G4s than expected for eukaryotes but not for archaea and bacteria, while in noncoding transcripts, there are as many or fewer predicted G4s in all species groups. We even noticed that some species with the same GC content presented different pG4 profiles. For instance, Leishmania major and Chlamydomonas reinhardtii both have 60% of GC content, but the former has a pG4 density of 0.07 and the latter 1.16.
Collapse
Affiliation(s)
- Anaïs Vannutelli
- Department of Computer Science, Faculté des sciences, Université de Sherbrooke, QC, J1K 2R1, Canada
- Department of Biochemistry and Functional Genomics, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, QC J1E 4K8, Canada
| | - Jean-Pierre Perreault
- Department of Computer Science, Faculté des sciences, Université de Sherbrooke, QC, J1K 2R1, Canada
| | - Aïda Ouangraoua
- Department of Computer Science, Faculté des sciences, Université de Sherbrooke, QC, J1K 2R1, Canada
| |
Collapse
|
10
|
Negoro H, Chatziantonio C, Razzaque MS. Therapeutic potential of 5-aminolevulinic acid and sodium-ferrous citrate for viral insults: relevance to the COVID-19 crisis. Expert Rev Anti Infect Ther 2021; 20:657-661. [DOI: 10.1080/14787210.2022.2020097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Hideyuki Negoro
- Department of Project Design, The Graduate School of Project Design, Tokyo, Japan
- Inserm UMR S 1155- Sorbonne University, Tenon Hospital, Paris, France
| | | | - Mohammed S. Razzaque
- Department of Pathology, Lake Erie College of Osteopathic Medicine, Erie, PA, USA
| |
Collapse
|
11
|
Scalabrin M, Nadai M, Tassinari M, Lago S, Doria F, Frasson I, Freccero M, Richter SN. Selective Recognition of a Single HIV-1 G-Quadruplex by Ultrafast Small-Molecule Screening. Anal Chem 2021; 93:15243-15252. [PMID: 34762806 PMCID: PMC8613737 DOI: 10.1021/acs.analchem.0c04106] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 10/18/2021] [Indexed: 12/05/2022]
Abstract
G-quadruplexes (G4s) are implicated in pathological processes such as cancer and infective diseases. Their targeting with G4-ligands has shown therapeutic capacity. Most of the current G4-ligands are planar molecules, do not discriminate among G4s, and have poor druglike properties. The available methods to identify compounds selective for one single G4 are often time-consuming. Here, we describe the development, validation, and application of an affinity-selection mass spectrometry method that employs unlabeled G4 oligonucleotides as targets and allows testing of up to 320 unmodified small molecules in a single tube. As a proof of concept, this method was applied to screen a library of 40 000 druglike molecules against two G4s, transcriptional regulators of the HIV-1 LTR promoter. We identified nonplanar pyrazolopyrimidines that selectively recognize and stabilize the major HIV-1 LTR G4 possibly by fitting and binding through H-bonding in its unique binding pocket. The compounds inhibit LTR promoter activity and HIV-1 replication. We propose this method to prompt the fast development of new G4-based therapeutics.
Collapse
Affiliation(s)
- Matteo Scalabrin
- Department
of Molecular Medicine, University of Padua, 35121 Padua, Italy
| | - Matteo Nadai
- Department
of Molecular Medicine, University of Padua, 35121 Padua, Italy
| | - Martina Tassinari
- Department
of Molecular Medicine, University of Padua, 35121 Padua, Italy
| | - Sara Lago
- Department
of Molecular Medicine, University of Padua, 35121 Padua, Italy
| | - Filippo Doria
- Department
of Chemistry, University of Pavia, 27100 Pavia, Italy
| | - Ilaria Frasson
- Department
of Molecular Medicine, University of Padua, 35121 Padua, Italy
| | - Mauro Freccero
- Department
of Chemistry, University of Pavia, 27100 Pavia, Italy
| | - Sara N. Richter
- Department
of Molecular Medicine, University of Padua, 35121 Padua, Italy
| |
Collapse
|
12
|
Santos T, Salgado GF, Cabrita EJ, Cruz C. G-Quadruplexes and Their Ligands: Biophysical Methods to Unravel G-Quadruplex/Ligand Interactions. Pharmaceuticals (Basel) 2021; 14:769. [PMID: 34451866 PMCID: PMC8401999 DOI: 10.3390/ph14080769] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Revised: 07/31/2021] [Accepted: 08/03/2021] [Indexed: 12/12/2022] Open
Abstract
Progress in the design of G-quadruplex (G4) binding ligands relies on the availability of approaches that assess the binding mode and nature of the interactions between G4 forming sequences and their putative ligands. The experimental approaches used to characterize G4/ligand interactions can be categorized into structure-based methods (circular dichroism (CD), nuclear magnetic resonance (NMR) spectroscopy and X-ray crystallography), affinity and apparent affinity-based methods (surface plasmon resonance (SPR), isothermal titration calorimetry (ITC) and mass spectrometry (MS)), and high-throughput methods (fluorescence resonance energy transfer (FRET)-melting, G4-fluorescent intercalator displacement assay (G4-FID), affinity chromatography and microarrays. Each method has unique advantages and drawbacks, which makes it essential to select the ideal strategies for the biological question being addressed. The structural- and affinity and apparent affinity-based methods are in several cases complex and/or time-consuming and can be combined with fast and cheap high-throughput approaches to improve the design and development of new potential G4 ligands. In recent years, the joint use of these techniques permitted the discovery of a huge number of G4 ligands investigated for diagnostic and therapeutic purposes. Overall, this review article highlights in detail the most commonly used approaches to characterize the G4/ligand interactions, as well as the applications and types of information that can be obtained from the use of each technique.
Collapse
Affiliation(s)
- Tiago Santos
- CICS-UBI—Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal;
| | - Gilmar F. Salgado
- ARNA Laboratory, Université de Bordeaux, Inserm U1212, CNRS UMR 5320, IECB, 33607 Pessac, France;
| | - Eurico J. Cabrita
- UCIBIO, REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal;
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, NOVA School of Science and Technology, NOVA University Lisbon, 2819-516 Caparica, Portugal
| | - Carla Cruz
- CICS-UBI—Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal;
| |
Collapse
|
13
|
Yang X, Cheema J, Zhang Y, Deng H, Duncan S, Umar MI, Zhao J, Liu Q, Cao X, Kwok CK, Ding Y. RNA G-quadruplex structures exist and function in vivo in plants. Genome Biol 2020; 21:226. [PMID: 32873317 PMCID: PMC7466424 DOI: 10.1186/s13059-020-02142-9] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 08/08/2020] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Guanine-rich sequences are able to form complex RNA structures termed RNA G-quadruplexes in vitro. Because of their high stability, RNA G-quadruplexes are proposed to exist in vivo and are suggested to be associated with important biological relevance. However, there is a lack of direct evidence for RNA G-quadruplex formation in living eukaryotic cells. Therefore, it is unclear whether any purported functions are associated with the specific sequence content or the formation of an RNA G-quadruplex structure. RESULTS Using rG4-seq, we profile the landscape of those guanine-rich regions with the in vitro folding potential in the Arabidopsis transcriptome. We find a global enrichment of RNA G-quadruplexes with two G-quartets whereby the folding potential is strongly influenced by RNA secondary structures. Using in vitro and in vivo RNA chemical structure profiling, we determine that hundreds of RNA G-quadruplex structures are strongly folded in both Arabidopsis and rice, providing direct evidence of RNA G-quadruplex formation in living eukaryotic cells. Subsequent genetic and biochemical analyses show that RNA G-quadruplex folding is able to regulate translation and modulate plant growth. CONCLUSIONS Our study reveals the existence of RNA G-quadruplex in vivo and indicates that RNA G-quadruplex structures act as important regulators of plant development and growth.
Collapse
Affiliation(s)
- Xiaofei Yang
- Department of Cell and Developmental Biology, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
| | - Jitender Cheema
- Department of Cell and Developmental Biology, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
| | - Yueying Zhang
- Department of Cell and Developmental Biology, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
| | - Hongjing Deng
- Department of Cell and Developmental Biology, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Beijing, 100101, China
| | - Susan Duncan
- Department of Cell and Developmental Biology, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
| | - Mubarak Ishaq Umar
- Department of Chemistry, City University of Hong Kong, Kowloon Tong, Hong Kong SAR, China
| | - Jieyu Zhao
- Department of Chemistry, City University of Hong Kong, Kowloon Tong, Hong Kong SAR, China
| | - Qi Liu
- Department of Cell and Developmental Biology, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
- Present Address: School of Life Sciences, University of Sussex, Brighton, BN1 9QG, UK
| | - Xiaofeng Cao
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China.
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Chun Kit Kwok
- Department of Chemistry, City University of Hong Kong, Kowloon Tong, Hong Kong SAR, China.
- Shenzhen Research Institute of City University of Hong Kong, Shenzhen, 518057, China.
| | - Yiliang Ding
- Department of Cell and Developmental Biology, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK.
| |
Collapse
|
14
|
Gazanion E, Lacroix L, Alberti P, Gurung P, Wein S, Cheng M, Mergny JL, Gomes AR, Lopez-Rubio JJ. Genome wide distribution of G-quadruplexes and their impact on gene expression in malaria parasites. PLoS Genet 2020; 16:e1008917. [PMID: 32628663 PMCID: PMC7365481 DOI: 10.1371/journal.pgen.1008917] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 07/16/2020] [Accepted: 06/08/2020] [Indexed: 12/15/2022] Open
Abstract
Mechanisms of transcriptional control in malaria parasites are still not fully understood. The positioning patterns of G-quadruplex (G4) DNA motifs in the parasite's AT-rich genome, especially within the var gene family which encodes virulence factors, and in the vicinity of recombination hotspots, points towards a possible regulatory role of G4 in gene expression and genome stability. Here, we carried out the most comprehensive genome-wide survey, to date, of G4s in the Plasmodium falciparum genome using G4Hunter, which identifies G4 forming sequences (G4FS) considering their G-richness and G-skewness. We show an enrichment of G4FS in nucleosome-depleted regions and in the first exon of var genes, a pattern that is conserved within the closely related Laverania Plasmodium parasites. Under G4-stabilizing conditions, i.e., following treatment with pyridostatin (a high affinity G4 ligand), we show that a bona fide G4 found in the non-coding strand of var promoters modulates reporter gene expression. Furthermore, transcriptional profiling of pyridostatin-treated parasites, shows large scale perturbations, with deregulation affecting for instance the ApiAP2 family of transcription factors and genes involved in ribosome biogenesis. Overall, our study highlights G4s as important DNA secondary structures with a role in Plasmodium gene expression regulation, sub-telomeric recombination and var gene biology.
Collapse
Affiliation(s)
- Elodie Gazanion
- MIVEGEC UMR IRD 224, CNRS 5290, Montpellier University, Montpellier, France
| | - Laurent Lacroix
- IBENS, Ecole Normale Supérieure, CNRS, Inserm, PSL Research University, Paris, France
| | - Patrizia Alberti
- "Structure and Instability of Genomes" laboratory, Muséum National d'Histoire Naturelle (MNHN), Inserm U1154, CNRS UMR 7196, Paris, France
| | - Pratima Gurung
- Laboratory of Pathogen-Host Interactions (LPHI), UMR5235, CNRS, Montpellier University, Montpellier, France
| | - Sharon Wein
- Laboratory of Pathogen-Host Interactions (LPHI), UMR5235, CNRS, Montpellier University, Montpellier, France
| | - Mingpan Cheng
- ARNA Laboratory, IECB, CNRS UMR5320, INSERM U1212, Bordeaux University, Pessac, France
| | - Jean-Louis Mergny
- ARNA Laboratory, IECB, CNRS UMR5320, INSERM U1212, Bordeaux University, Pessac, France
- Institute of Biophysics of the Czech Academy of Sciences, Czech Republic
- Laboratoire d’Optique et Biosciences, Ecole Polytechnique, CNRS, INSERM, Institut Polytechnique de Paris, France
| | - Ana Rita Gomes
- Laboratory of Pathogen-Host Interactions (LPHI), UMR5235, CNRS, Montpellier University, Montpellier, France
| | - Jose-Juan Lopez-Rubio
- MIVEGEC UMR IRD 224, CNRS 5290, Montpellier University, Montpellier, France
- Laboratory of Pathogen-Host Interactions (LPHI), UMR5235, CNRS, Montpellier University, Montpellier, France
| |
Collapse
|
15
|
Reina C, Cavalieri V. Epigenetic Modulation of Chromatin States and Gene Expression by G-Quadruplex Structures. Int J Mol Sci 2020; 21:E4172. [PMID: 32545267 PMCID: PMC7312119 DOI: 10.3390/ijms21114172] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 06/07/2020] [Accepted: 06/10/2020] [Indexed: 02/07/2023] Open
Abstract
G-quadruplexes are four-stranded helical nucleic acid structures formed by guanine-rich sequences. A considerable number of studies have revealed that these noncanonical structural motifs are widespread throughout the genome and transcriptome of numerous organisms, including humans. In particular, G-quadruplexes occupy strategic locations in genomic DNA and both coding and noncoding RNA molecules, being involved in many essential cellular and organismal functions. In this review, we first outline the fundamental structural features of G-quadruplexes and then focus on the concept that these DNA and RNA structures convey a distinctive layer of epigenetic information that is critical for the complex regulation, either positive or negative, of biological activities in different contexts. In this framework, we summarize and discuss the proposed mechanisms underlying the functions of G-quadruplexes and their interacting factors. Furthermore, we give special emphasis to the interplay between G-quadruplex formation/disruption and other epigenetic marks, including biochemical modifications of DNA bases and histones, nucleosome positioning, and three-dimensional organization of chromatin. Finally, epigenetic roles of RNA G-quadruplexes in post-transcriptional regulation of gene expression are also discussed. Undoubtedly, the issues addressed in this review take on particular importance in the field of comparative epigenetics, as well as in translational research.
Collapse
Affiliation(s)
- Chiara Reina
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties (PROMISE), University of Palermo, 90127 Palermo, Italy;
| | - Vincenzo Cavalieri
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, 90128 Palermo, Italy
| |
Collapse
|
16
|
Meeting report: Seventh International Meeting on Quadruplex Nucleic Acids (Changchun, P.R. China, September 6–9, 2019). Biochimie 2020; 168:100-109. [DOI: 10.1016/j.biochi.2019.10.019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Accepted: 10/31/2019] [Indexed: 12/24/2022]
|
17
|
Identification of putative G-quadruplex DNA structures in S. pombe genome by quantitative PCR stop assay. DNA Repair (Amst) 2019; 82:102678. [DOI: 10.1016/j.dnarep.2019.102678] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 07/08/2019] [Accepted: 07/26/2019] [Indexed: 12/31/2022]
|