1
|
Ito T, Kubiura-Ichimaru M, Miura F, Tajima S, Surani MA, Ito T, Yamaguchi S, Tada M. DNMT1 can induce primary germ layer differentiation through de novo DNA methylation. Genes Cells 2024; 29:549-566. [PMID: 38811355 PMCID: PMC11447926 DOI: 10.1111/gtc.13130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 05/12/2024] [Accepted: 05/14/2024] [Indexed: 05/31/2024]
Abstract
DNA methyltransferases and Ten-Eleven Translocation (TET) proteins regulate the DNA methylation and demethylation cycles during mouse embryonic development. Although DNMT1 mainly plays a role in the maintenance of DNA methylation after DNA replication, it is also reported to possess de novo methyltransferase capacity. However, its physiological significance remains unclear. Here, we demonstrate that full-length DNMT1 (FL) and a mutant lacking the N-terminus necessary for its maintenance activity (602) confer the differentiation potential of mouse Dnmt1, Dnmt3a, and Dnmt3b (Dnmts-TKO) embryonic stem cells (ESCs). Both FL and 602 inhibit the spontaneous differentiation of Dnmts-TKO ESCs in the undifferentiated state. Dnmts-TKO ESCs showed loss of DNA methylation and de-repression of primitive endoderm-related genes, but these defects were partially restored in Dnmts-TKO + FL and Dnmts-TKO + 602 ESCs. Upon differentiation, Dnmts-TKO + FL ESCs show increased 5mC and 5hmC levels across chromosomes, including pericentromeric regions. In contrast, Dnmts-TKO + 602 ESCs didn't accumulate 5mC, and sister chromatids showed 5hmC asynchronously. Furthermore, in comparison with DNMT1_602, DNMT1_FL effectively promoted commitment to the epiblast-like cells and beyond, driving cell-autonomous mesendodermal and germline differentiation through embryoid body-based methods. With precise target selectivity achieved by its N-terminal region, DNMT1 may play a role in gene regulation leading to germline development.
Collapse
Affiliation(s)
- Takamasa Ito
- Stem Cells & Reprogramming Laboratory, Department of Biology, Faculty of Science, Toho University, Chiba, Japan
| | - Musashi Kubiura-Ichimaru
- Stem Cells & Reprogramming Laboratory, Department of Biology, Faculty of Science, Toho University, Chiba, Japan
| | - Fumihito Miura
- Department of Biochemistry, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan
| | - Shoji Tajima
- Laboratory of Epigenetics Institute for Protein Research, Osaka University, Suita, Japan
| | - M Azim Surani
- Wellcome Trust Cancer Research UK Gurdon Institute, Tennis Court Road, University of Cambridge, Cambridge, UK
| | - Takashi Ito
- Department of Biochemistry, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan
| | - Shinpei Yamaguchi
- Stem Cells & Reprogramming Laboratory, Department of Biology, Faculty of Science, Toho University, Chiba, Japan
| | - Masako Tada
- Stem Cells & Reprogramming Laboratory, Department of Biology, Faculty of Science, Toho University, Chiba, Japan
| |
Collapse
|
2
|
Sekine H, Takeda H, Takeda N, Kishino A, Anzawa H, Isagawa T, Ohta N, Murakami S, Iwaki H, Kato N, Kimura S, Liu Z, Kato K, Katsuoka F, Yamamoto M, Miura F, Ito T, Takahashi M, Izumi Y, Fujita H, Yamagata H, Bamba T, Akaike T, Suzuki N, Kinoshita K, Motohashi H. PNPO-PLP axis senses prolonged hypoxia in macrophages by regulating lysosomal activity. Nat Metab 2024; 6:1108-1127. [PMID: 38822028 PMCID: PMC11599045 DOI: 10.1038/s42255-024-01053-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 04/18/2024] [Indexed: 06/02/2024]
Abstract
Oxygen is critical for all metazoan organisms on the earth and impacts various biological processes in physiological and pathological conditions. While oxygen-sensing systems inducing acute hypoxic responses, including the hypoxia-inducible factor pathway, have been identified, those operating in prolonged hypoxia remain to be elucidated. Here we show that pyridoxine 5'-phosphate oxidase (PNPO), which catalyses bioactivation of vitamin B6, serves as an oxygen sensor and regulates lysosomal activity in macrophages. Decreased PNPO activity under prolonged hypoxia reduced an active form of vitamin B6, pyridoxal 5'-phosphate (PLP), and inhibited lysosomal acidification, which in macrophages led to iron dysregulation, TET2 protein loss and delayed resolution of the inflammatory response. Among PLP-dependent metabolism, supersulfide synthesis was suppressed in prolonged hypoxia, resulting in the lysosomal inhibition and consequent proinflammatory phenotypes of macrophages. The PNPO-PLP axis creates a distinct layer of oxygen sensing that gradually shuts down PLP-dependent metabolism in response to prolonged oxygen deprivation.
Collapse
Affiliation(s)
- Hiroki Sekine
- Department of Medical Biochemistry, Tohoku University Graduate School of Medicine, Sendai, Japan.
| | - Haruna Takeda
- Department of Medical Biochemistry, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Norihiko Takeda
- Division of Cardiology and Metabolism, Center for Molecular Medicine, Jichi Medical University, Shimotsuke, Japan
- Department of Cardiovascular Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Akihiro Kishino
- Department of Gene Expression Regulation, IDAC, Tohoku University, Sendai, Japan
| | - Hayato Anzawa
- Department of System Bioinformatics, Graduate School of Information Sciences, Tohoku University, Sendai, Japan
- Department of Integrative Genomics, Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan
| | - Takayuki Isagawa
- Division of Cardiology and Metabolism, Center for Molecular Medicine, Jichi Medical University, Shimotsuke, Japan
- Data Science Center, Jichi Medical University, Shimotsuke, Japan
| | - Nao Ohta
- Department of Medical Biochemistry, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Shohei Murakami
- Department of Medical Biochemistry, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Hideya Iwaki
- Department of Gene Expression Regulation, IDAC, Tohoku University, Sendai, Japan
| | - Nobufumi Kato
- Department of Gene Expression Regulation, IDAC, Tohoku University, Sendai, Japan
| | - Shu Kimura
- Department of Gene Expression Regulation, IDAC, Tohoku University, Sendai, Japan
| | - Zun Liu
- Department of Gene Expression Regulation, IDAC, Tohoku University, Sendai, Japan
| | - Koichiro Kato
- Division of Oxygen Biology, United Centers for Advanced Research and Translational Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Fumiki Katsuoka
- Department of Integrative Genomics, Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan
| | - Masayuki Yamamoto
- Department of Integrative Genomics, Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan
- Department of Biochemistry and Molecular Biology, Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan
| | - Fumihito Miura
- Department of Biochemistry, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan
| | - Takashi Ito
- Department of Biochemistry, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan
| | - Masatomo Takahashi
- Division of Metabolomics, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Yoshihiro Izumi
- Division of Metabolomics, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Hiroyuki Fujita
- Advanced Research Laboratory, Canon Medical Systems Corporation, Otawara, Japan
| | - Hitoshi Yamagata
- Advanced Research Laboratory, Canon Medical Systems Corporation, Otawara, Japan
| | - Takeshi Bamba
- Division of Metabolomics, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Takaaki Akaike
- Department of Environmental Medicine and Molecular Toxicology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Norio Suzuki
- Division of Oxygen Biology, United Centers for Advanced Research and Translational Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Kengo Kinoshita
- Department of System Bioinformatics, Graduate School of Information Sciences, Tohoku University, Sendai, Japan
- Department of Integrative Genomics, Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan
- Advanced Research Laboratory, Canon Medical Systems Corporation, Otawara, Japan
| | - Hozumi Motohashi
- Department of Medical Biochemistry, Tohoku University Graduate School of Medicine, Sendai, Japan.
- Department of Gene Expression Regulation, IDAC, Tohoku University, Sendai, Japan.
| |
Collapse
|
3
|
Yamaguchi K, Chen X, Rodgers B, Miura F, Bashtrykov P, Bonhomme F, Salinas-Luypaert C, Haxholli D, Gutekunst N, Aygenli BÖ, Ferry L, Kirsh O, Laisné M, Scelfo A, Ugur E, Arimondo PB, Leonhardt H, Kanemaki MT, Bartke T, Fachinetti D, Jeltsch A, Ito T, Defossez PA. Non-canonical functions of UHRF1 maintain DNA methylation homeostasis in cancer cells. Nat Commun 2024; 15:2960. [PMID: 38580649 PMCID: PMC10997609 DOI: 10.1038/s41467-024-47314-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Accepted: 03/25/2024] [Indexed: 04/07/2024] Open
Abstract
DNA methylation is an essential epigenetic chromatin modification, and its maintenance in mammals requires the protein UHRF1. It is yet unclear if UHRF1 functions solely by stimulating DNA methylation maintenance by DNMT1, or if it has important additional functions. Using degron alleles, we show that UHRF1 depletion causes a much greater loss of DNA methylation than DNMT1 depletion. This is not caused by passive demethylation as UHRF1-depleted cells proliferate more slowly than DNMT1-depleted cells. Instead, bioinformatics, proteomics and genetics experiments establish that UHRF1, besides activating DNMT1, interacts with DNMT3A and DNMT3B and promotes their activity. In addition, we show that UHRF1 antagonizes active DNA demethylation by TET2. Therefore, UHRF1 has non-canonical roles that contribute importantly to DNA methylation homeostasis; these findings have practical implications for epigenetics in health and disease.
Collapse
Affiliation(s)
- Kosuke Yamaguchi
- Université Paris Cité, CNRS, Epigenetics and Cell Fate, Paris, France.
| | - Xiaoying Chen
- Université Paris Cité, CNRS, Epigenetics and Cell Fate, Paris, France
| | - Brianna Rodgers
- Université Paris Cité, CNRS, Epigenetics and Cell Fate, Paris, France
| | - Fumihito Miura
- Department of Biochemistry, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan
| | - Pavel Bashtrykov
- Institute of Biochemistry and Technical Biochemistry, Department of Biochemistry, University of Stuttgart, Stuttgart, Germany
| | - Frédéric Bonhomme
- Institut Pasteur, Université Paris Cité, Epigenetic Chemical Biology, CNRS, UMR 3523, Chem4Life, Paris, France
| | | | - Deis Haxholli
- Faculty of Biology and Center for Molecular Biosystems (BioSysM), Human Biology and BioImaging, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Nicole Gutekunst
- Institute of Biochemistry and Technical Biochemistry, Department of Biochemistry, University of Stuttgart, Stuttgart, Germany
| | | | - Laure Ferry
- Université Paris Cité, CNRS, Epigenetics and Cell Fate, Paris, France
| | - Olivier Kirsh
- Université Paris Cité, CNRS, Epigenetics and Cell Fate, Paris, France
| | - Marthe Laisné
- Université Paris Cité, CNRS, Epigenetics and Cell Fate, Paris, France
| | - Andrea Scelfo
- Institut Curie, PSL Research University, CNRS, UMR 144, Paris, France
| | - Enes Ugur
- Faculty of Biology and Center for Molecular Biosystems (BioSysM), Human Biology and BioImaging, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Paola B Arimondo
- Institut Pasteur, Université Paris Cité, Epigenetic Chemical Biology, CNRS, UMR 3523, Chem4Life, Paris, France
| | - Heinrich Leonhardt
- Faculty of Biology and Center for Molecular Biosystems (BioSysM), Human Biology and BioImaging, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Masato T Kanemaki
- Department of Chromosome Science, National Institute of Genetics, Research Organization of Information and Systems (ROIS), Mishima, Shizuoka, Japan
- Graduate Institute for Advanced Studies, SOKENDAI, Mishima, Shizuoka, Japan
- Department of Biological Science, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Till Bartke
- Institute of Functional Epigenetics, Helmholtz Zentrum München, Neuherberg, Germany
| | | | - Albert Jeltsch
- Institute of Biochemistry and Technical Biochemistry, Department of Biochemistry, University of Stuttgart, Stuttgart, Germany
| | - Takashi Ito
- Department of Biochemistry, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan
| | | |
Collapse
|
4
|
Cheng JC, Swarup N, Wong DTW, Chia D. A review on the impact of single-stranded library preparation on plasma cell-free diversity for cancer detection. Front Oncol 2024; 14:1332004. [PMID: 38511142 PMCID: PMC10951391 DOI: 10.3389/fonc.2024.1332004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 02/07/2024] [Indexed: 03/22/2024] Open
Abstract
In clinical oncology, cell-free DNA (cfDNA) has shown immense potential in its ability to noninvasively detect cancer at various stages and monitor the progression of therapy. Despite the rapid improvements in cfDNA liquid biopsy approaches, achieving the required sensitivity to detect rare tumor-derived cfDNA still remains a challenge. For next-generation sequencing, the perceived presentation of cfDNA is strongly linked to the extraction and library preparation protocols. Conventional double-stranded DNA library preparation (dsDNA-LP) focuses on assessing ~167bp double-stranded mononucleosomal (mncfDNA) and its other oligonucleosomal cell-free DNA counterparts in plasma. However, dsDNA-LP methods fail to include short, single-stranded, or nicked DNA in the final library preparation, biasing the representation of the actual cfDNA populations in plasma. The emergence of single-stranded library preparation (ssDNA-LP) strategies over the past decade has now allowed these other populations of cfDNA to be studied from plasma. With the use of ssDNA-LP, single-stranded, nicked, and ultrashort cfDNA can be comprehensively assessed for its molecular characteristics and clinical potential. In this review, we overview the current literature on applications of ssDNA-LP on plasma cfDNA from a potential cancer liquid biopsy perspective. To this end, we discuss the molecular principles of single-stranded DNA adapter ligation, how library preparation contributes to the understanding of native cfDNA characteristics, and the potential for ssDNA-LP to improve the sensitivity of circulating tumor DNA detection. Additionally, we review the current literature on the newly reported species of plasma ultrashort single-stranded cell-free DNA plasma, which appear biologically distinct from mncfDNA. We conclude with a discussion of future perspectives of ssDNA-LP for liquid biopsy endeavors.
Collapse
Affiliation(s)
- Jordan C. Cheng
- School of Dentistry, University of California, Los Angeles, Los Angeles, CA, United States
- Stanford Cancer Institute, Stanford University, Stanford, CA, United States
| | - Neeti Swarup
- School of Dentistry, University of California, Los Angeles, Los Angeles, CA, United States
| | - David T. W. Wong
- School of Dentistry, University of California, Los Angeles, Los Angeles, CA, United States
| | - David Chia
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| |
Collapse
|
5
|
Maehara H, Kokaji T, Hatano A, Suzuki Y, Matsumoto M, Nakayama KI, Egami R, Tsuchiya T, Ozaki H, Morita K, Shirai M, Li D, Terakawa A, Uematsu S, Hironaka KI, Ohno S, Kubota H, Araki H, Miura F, Ito T, Kuroda S. DNA hypomethylation characterizes genes encoding tissue-dominant functional proteins in liver and skeletal muscle. Sci Rep 2023; 13:19118. [PMID: 37926704 PMCID: PMC10625943 DOI: 10.1038/s41598-023-46393-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 10/31/2023] [Indexed: 11/07/2023] Open
Abstract
Each tissue has a dominant set of functional proteins required to mediate tissue-specific functions. Epigenetic modifications, transcription, and translational efficiency control tissue-dominant protein production. However, the coordination of these regulatory mechanisms to achieve such tissue-specific protein production remains unclear. Here, we analyzed the DNA methylome, transcriptome, and proteome in mouse liver and skeletal muscle. We found that DNA hypomethylation at promoter regions is globally associated with liver-dominant or skeletal muscle-dominant functional protein production within each tissue, as well as with genes encoding proteins involved in ubiquitous functions in both tissues. Thus, genes encoding liver-dominant proteins, such as those involved in glycolysis or gluconeogenesis, the urea cycle, complement and coagulation systems, enzymes of tryptophan metabolism, and cytochrome P450-related metabolism, were hypomethylated in the liver, whereas those encoding-skeletal muscle-dominant proteins, such as those involved in sarcomere organization, were hypomethylated in the skeletal muscle. Thus, DNA hypomethylation characterizes genes encoding tissue-dominant functional proteins.
Collapse
Affiliation(s)
- Hideki Maehara
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-Ku, Tokyo, 113-0033, Japan
| | - Toshiya Kokaji
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-Ku, Tokyo, 113-0033, Japan
- Data Science Center, Nara Institute of Science and Technology, 8916‑5 Takayama, Ikoma, Nara, Japan
| | - Atsushi Hatano
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-Ku, Tokyo, 113-0033, Japan
- Department of Omics and Systems Biology, Graduate School of Medical and Dental Sciences, Niigata University, 757 Ichibancho, Asahimachi-Dori, Chuo-Ku, Niigata City, Niigata, 951-8510, Japan
| | - Yutaka Suzuki
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba, 277-8562, Japan
| | - Masaki Matsumoto
- Department of Omics and Systems Biology, Graduate School of Medical and Dental Sciences, Niigata University, 757 Ichibancho, Asahimachi-Dori, Chuo-Ku, Niigata City, Niigata, 951-8510, Japan
| | - Keiichi I Nakayama
- Department of Molecular and Cellular Biology, Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-Ku, Fukuoka, 812-8582, Japan
| | - Riku Egami
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba, 277-8562, Japan
| | - Takaho Tsuchiya
- Bioinformatics Laboratory, Institute of Medicine, University of Tsukuba, Ibaraki, 305‑8575, Japan
- Center for Artificial Intelligence Research, University of Tsukuba, Ibaraki, 305‑8577, Japan
| | - Haruka Ozaki
- Bioinformatics Laboratory, Institute of Medicine, University of Tsukuba, Ibaraki, 305‑8575, Japan
- Center for Artificial Intelligence Research, University of Tsukuba, Ibaraki, 305‑8577, Japan
| | - Keigo Morita
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-Ku, Tokyo, 113-0033, Japan
| | - Masaki Shirai
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-Ku, Tokyo, 113-0033, Japan
| | - Dongzi Li
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-Ku, Tokyo, 113-0033, Japan
| | - Akira Terakawa
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-Ku, Tokyo, 113-0033, Japan
| | - Saori Uematsu
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba, 277-8562, Japan
| | - Ken-Ichi Hironaka
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-Ku, Tokyo, 113-0033, Japan
| | - Satoshi Ohno
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-Ku, Tokyo, 113-0033, Japan
- Molecular Genetics Research Laboratory, Graduate School of Science, University of Tokyo, 7‑3‑1 Hongo, Bunkyo‑ku, Tokyo, 113‑0033, Japan
- Department of AI Systems Medicine, M&D Data Science Center, Tokyo Medical and Dental University, Tokyo, 113-8510, Japan
| | - Hiroyuki Kubota
- Division of Integrated Omics, Medical Research Center for High Depth Omics, Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-Ku, Fukuoka, Fukuoka, 812-8582, Japan
| | - Hiromitsu Araki
- Department of Biochemistry, Kyushu University Graduate School of Medical Sciences, Fukuoka, 812-8582, Japan
| | - Fumihito Miura
- Department of Biochemistry, Kyushu University Graduate School of Medical Sciences, Fukuoka, 812-8582, Japan
| | - Takashi Ito
- Department of Biochemistry, Kyushu University Graduate School of Medical Sciences, Fukuoka, 812-8582, Japan
| | - Shinya Kuroda
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-Ku, Tokyo, 113-0033, Japan.
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba, 277-8562, Japan.
- Molecular Genetics Research Laboratory, Graduate School of Science, University of Tokyo, 7‑3‑1 Hongo, Bunkyo‑ku, Tokyo, 113‑0033, Japan.
| |
Collapse
|
6
|
Yakhou L, Azogui A, Gupta N, Richard Albert J, Miura F, Ferry L, Yamaguchi K, Battault S, Therizols P, Bonhomme F, Bethuel E, Sarkar A, Greenberg MC, Arimondo P, Cristofari G, Kirsh O, Ito T, Defossez PA. A genetic screen identifies BEND3 as a regulator of bivalent gene expression and global DNA methylation. Nucleic Acids Res 2023; 51:10292-10308. [PMID: 37650637 PMCID: PMC10602864 DOI: 10.1093/nar/gkad719] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 07/20/2023] [Accepted: 08/18/2023] [Indexed: 09/01/2023] Open
Abstract
Epigenetic mechanisms are essential to establish and safeguard cellular identities in mammals. They dynamically regulate the expression of genes, transposable elements and higher-order chromatin structures. Consequently, these chromatin marks are indispensable for mammalian development and alterations often lead to disease, such as cancer. Bivalent promoters are especially important during differentiation and development. Here we used a genetic screen to identify new regulators of a bivalent repressed gene. We identify BEND3 as a regulator of hundreds of bivalent promoters, some of which it represses, and some of which it activates. We show that BEND3 is recruited to a CpG-containg consensus site that is present in multiple copies in many bivalent promoters. Besides having direct effect on the promoters it binds, the loss of BEND3 leads to genome-wide gains of DNA methylation, which are especially marked at regions normally protected by the TET enzymes. DNA hydroxymethylation is reduced in Bend3 mutant cells, possibly as consequence of altered gene expression leading to diminished alpha-ketoglutarate production, thus lowering TET activity. Our results clarify the direct and indirect roles of an important chromatin regulator, BEND3, and, more broadly, they shed light on the regulation of bivalent promoters.
Collapse
Affiliation(s)
- Lounis Yakhou
- Université Paris Cité, CNRS, Epigenetics and Cell Fate, F-75013 Paris, France
| | - Anaelle Azogui
- Université Paris Cité, CNRS, Epigenetics and Cell Fate, F-75013 Paris, France
| | - Nikhil Gupta
- Université Paris Cité, CNRS, Epigenetics and Cell Fate, F-75013 Paris, France
| | | | - Fumihito Miura
- Department of Biochemistry, Kyushu University Graduate School of Medical Sciences, Fukuoka, Fukuoka 812-8582, Japan
| | - Laure Ferry
- Université Paris Cité, CNRS, Epigenetics and Cell Fate, F-75013 Paris, France
| | - Kosuke Yamaguchi
- Université Paris Cité, CNRS, Epigenetics and Cell Fate, F-75013 Paris, France
| | - Sarah Battault
- Université Paris Cité, CNRS, Epigenetics and Cell Fate, F-75013 Paris, France
| | - Pierre Therizols
- Université Paris Cité, CNRS, Epigenetics and Cell Fate, F-75013 Paris, France
| | - Frédéric Bonhomme
- Institut Pasteur, Université Paris Cité, CNRS, Epigenetic Chemical Biology, UMR 3523, F-75724 Paris, France
| | - Elouan Bethuel
- Université Paris Cité, CNRS, Epigenetics and Cell Fate, F-75013 Paris, France
| | - Arpita Sarkar
- Université Côte d’Azur, Inserm, CNRS, IRCAN, Nice, France
| | | | - Paola B Arimondo
- Institut Pasteur, Université Paris Cité, CNRS, Epigenetic Chemical Biology, UMR 3523, F-75724 Paris, France
| | | | - Olivier Kirsh
- Université Paris Cité, CNRS, Epigenetics and Cell Fate, F-75013 Paris, France
| | - Takashi Ito
- Department of Biochemistry, Kyushu University Graduate School of Medical Sciences, Fukuoka, Fukuoka 812-8582, Japan
| | | |
Collapse
|
7
|
Jia H, Miyoshi M, Li X, Furukawa K, Otani L, Shirahige K, Miura F, Ito T, Kato H. The Epigenetic Legacy of Maternal Protein Restriction: Renal Ptger1 DNA Methylation Changes in Hypertensive Rat Offspring. Nutrients 2023; 15:3957. [PMID: 37764741 PMCID: PMC10535296 DOI: 10.3390/nu15183957] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 09/08/2023] [Accepted: 09/11/2023] [Indexed: 09/29/2023] Open
Abstract
Nutrient imbalances during gestation are a risk factor for hypertension in offspring. Although the effects of prenatal nutritional deficiency on the development of hypertension and cardiovascular diseases in adulthood have been extensively documented, its underlying mechanisms remain poorly understood. In this study, we aimed to elucidate the precise role and functional significance of epigenetic modifications in the pathogenesis of hypertension. To this end, we integrated methylome and transcriptome data to identify potential salt-sensitive hypertension genes using the kidneys of stroke-prone spontaneously hypertensive rat (SHRSP) pups exposed to a low-protein diet throughout their fetal life. Maternal protein restriction during gestation led to a positive correlation between DNA hypermethylation of the renal prostaglandin E receptor 1 (Ptger1) CpG island and high mRNA expression of Ptger1 in offspring, which is consistently conserved. Furthermore, post-weaning low-protein or high-protein diets modified the Ptger1 DNA hypermethylation caused by fetal malnutrition. Here, we show that this epigenetic variation in Ptger1 is linked to disease susceptibility established during fetal stages and could be reprogrammed by manipulating the postnatal diet. Thus, our findings clarify the developmental origins connecting the maternal nutritional environment and potential epigenetic biomarkers for offspring hypertension. These findings shed light on hypertension prevention and prospective therapeutic strategies.
Collapse
Affiliation(s)
- Huijuan Jia
- Health Nutrition, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo 113-8657, Japan
| | - Moe Miyoshi
- Health Nutrition, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo 113-8657, Japan
| | - Xuguang Li
- Health Nutrition, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo 113-8657, Japan
| | - Kyohei Furukawa
- Health Nutrition, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo 113-8657, Japan
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya 464-8601, Japan
| | - Lila Otani
- Health Nutrition, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo 113-8657, Japan
| | - Katsuhiko Shirahige
- Research Center for Epigenetic Disease, Institute of Molecular and Cellular Biosciences, The University of Tokyo, Tokyo 113-0032, Japan
| | - Fumihito Miura
- Department of Biochemistry, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Takashi Ito
- Department of Biochemistry, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Hisanori Kato
- Health Nutrition, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo 113-8657, Japan
| |
Collapse
|
8
|
Miura F, Kanzawa-Kiriyama H, Hisano O, Miura M, Shibata Y, Adachi N, Kakuda T, Shinoda KI, Ito T. A highly efficient scheme for library preparation from single-stranded DNA. Sci Rep 2023; 13:13913. [PMID: 37626096 PMCID: PMC10457334 DOI: 10.1038/s41598-023-40890-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 08/17/2023] [Indexed: 08/27/2023] Open
Abstract
Although methods for sequencing library preparation from double-stranded DNA are well established, those from single-stranded DNA (ssDNA) have not been well studied. Further, the existing methods have limitations in efficiency and yield. Therefore, we developed a highly efficient procedure for sequencing library preparation from ssDNA. In this method, the first adaptor tagging of ssDNA is performed using terminal deoxyribonucleotidyl transferase (TdT)-assisted adenylate connector-mediated ssDNA (TACS) ligation, which we reported recently. After complementary strand synthesis using the adaptor-tagged ssDNA, second adaptor tagging via Vaccinia virus topoisomerase I (VTopoI or TOPO)-based adaptor ligation is performed. With additional steps for degradation, repression, and removal of the adaptor dimer, the proposed TACS-TOPO scheme realizes adaptor dimer-free sequencing library preparation from ssDNA samples of 24 pg. The TACS-TOPO scheme was successfully applied to cell-free DNA analysis with amplification-free library preparation from 50 µL of human serum. A modified TACS-TOPO scheme was also applied to DNA extracted from ancient human bones, bringing two to eight times more library yields than those using a conventional library preparation protocol. The procedures for preparing VTopoI and its complex with a double-stranded oligonucleotide adaptor are also described. Overall, the proposed TACS-TOPO scheme can facilitate practical and sensitive sequencing analysis of ssDNA.
Collapse
Affiliation(s)
- Fumihito Miura
- Department of Biochemistry, Kyushu University Graduate School of Medical Sciences, 3-1-1 Maidashi, Higashi-Ku, Fukuoka, 812-8582, Japan.
| | - Hideaki Kanzawa-Kiriyama
- Department of Anthropology, National Museum of Nature and Science, 4-1-1 Amakubo, Tsukuba, Ibaraki, 305-0005, Japan
| | - Osamu Hisano
- Department of Biochemistry, Kyushu University Graduate School of Medical Sciences, 3-1-1 Maidashi, Higashi-Ku, Fukuoka, 812-8582, Japan
- Department of Clinical Radiology, Kyushu University Graduate School of Medical Sciences, 3-1-1 Maidashi, Higashi-Ku, Fukuoka, 812-8582, Japan
| | - Miki Miura
- Department of Biochemistry, Kyushu University Graduate School of Medical Sciences, 3-1-1 Maidashi, Higashi-Ku, Fukuoka, 812-8582, Japan
| | - Yukiko Shibata
- Department of Biochemistry, Kyushu University Graduate School of Medical Sciences, 3-1-1 Maidashi, Higashi-Ku, Fukuoka, 812-8582, Japan
| | - Noboru Adachi
- Department of Legal Medicine, Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, 1110 Shimokato, Chuo, Yamanashi, 409-3898, Japan
| | - Tsuneo Kakuda
- Department of Legal Medicine, Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, 1110 Shimokato, Chuo, Yamanashi, 409-3898, Japan
| | - Ken-Ichi Shinoda
- National Museum of Nature and Science, 4-1-1 Amakubo, Tsukuba, Ibaraki, 305-0005, Japan
| | - Takashi Ito
- Department of Biochemistry, Kyushu University Graduate School of Medical Sciences, 3-1-1 Maidashi, Higashi-Ku, Fukuoka, 812-8582, Japan
| |
Collapse
|
9
|
Gupta N, Yakhou L, Albert JR, Azogui A, Ferry L, Kirsh O, Miura F, Battault S, Yamaguchi K, Laisné M, Domrane C, Bonhomme F, Sarkar A, Delagrange M, Ducos B, Cristofari G, Ito T, Greenberg MVC, Defossez PA. A genome-wide screen reveals new regulators of the 2-cell-like cell state. Nat Struct Mol Biol 2023; 30:1105-1118. [PMID: 37488355 DOI: 10.1038/s41594-023-01038-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 06/19/2023] [Indexed: 07/26/2023]
Abstract
In mammals, only the zygote and blastomeres of the early embryo are totipotent. This totipotency is mirrored in vitro by mouse '2-cell-like cells' (2CLCs), which appear at low frequency in cultures of embryonic stem cells (ESCs). Because totipotency is not completely understood, we carried out a genome-wide CRISPR knockout screen in mouse ESCs, searching for mutants that reactivate the expression of Dazl, a gene expressed in 2CLCs. Here we report the identification of four mutants that reactivate Dazl and a broader 2-cell-like signature: the E3 ubiquitin ligase adaptor SPOP, the Zinc-Finger transcription factor ZBTB14, MCM3AP, a component of the RNA processing complex TREX-2, and the lysine demethylase KDM5C. All four factors function upstream of DPPA2 and DUX, but not via p53. In addition, SPOP binds DPPA2, and KDM5C interacts with ncPRC1.6 and inhibits 2CLC gene expression in a catalytic-independent manner. These results extend our knowledge of totipotency, a key phase of organismal life.
Collapse
Affiliation(s)
- Nikhil Gupta
- Epigenetics and Cell Fate, Université Paris Cité, CNRS, Paris, France.
- Joint AZ CRUK Functional Genomics Centre, The Milner Therapeutics Institute, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge, UK.
| | - Lounis Yakhou
- Epigenetics and Cell Fate, Université Paris Cité, CNRS, Paris, France
| | | | - Anaelle Azogui
- Epigenetics and Cell Fate, Université Paris Cité, CNRS, Paris, France
| | - Laure Ferry
- Epigenetics and Cell Fate, Université Paris Cité, CNRS, Paris, France
| | - Olivier Kirsh
- Epigenetics and Cell Fate, Université Paris Cité, CNRS, Paris, France
| | - Fumihito Miura
- Department of Biochemistry, Kyushu University Graduate School of Medical Sciences, Fukuoka, Fukuoka, Japan
| | - Sarah Battault
- Epigenetics and Cell Fate, Université Paris Cité, CNRS, Paris, France
| | - Kosuke Yamaguchi
- Epigenetics and Cell Fate, Université Paris Cité, CNRS, Paris, France
| | - Marthe Laisné
- Epigenetics and Cell Fate, Université Paris Cité, CNRS, Paris, France
| | - Cécilia Domrane
- Epigenetics and Cell Fate, Université Paris Cité, CNRS, Paris, France
| | - Frédéric Bonhomme
- Epigenetic Chemical Biology, UMR3523, Institut Pasteur, Université Paris Cité, CNRS, Paris, France
| | - Arpita Sarkar
- IRCAN, Université Côte d'Azur, Inserm, CNRS, Nice, France
| | - Marine Delagrange
- High Throughput qPCR Facility, Institut de Biologie de l'École Normale Supérieure (IBENS), Laboratoire de Physique de l'ENS CNRS UMR8023, PSL Research University, Paris, France
| | - Bertrand Ducos
- High Throughput qPCR Facility, Institut de Biologie de l'École Normale Supérieure (IBENS), Laboratoire de Physique de l'ENS CNRS UMR8023, PSL Research University, Paris, France
| | | | - Takashi Ito
- Department of Biochemistry, Kyushu University Graduate School of Medical Sciences, Fukuoka, Fukuoka, Japan
| | | | | |
Collapse
|
10
|
Suzuki T, Komatsu T, Shibata H, Tanioka A, Vargas D, Kawabata-Iwakawa R, Miura F, Masuda S, Hayashi M, Tanimura-Inagaki K, Morita S, Kohmaru J, Adachi K, Tobo M, Obinata H, Hirayama T, Kimura H, Sakai J, Nagasawa H, Itabashi H, Hatada I, Ito T, Inagaki T. Crucial role of iron in epigenetic rewriting during adipocyte differentiation mediated by JMJD1A and TET2 activity. Nucleic Acids Res 2023; 51:6120-6142. [PMID: 37158274 PMCID: PMC10325906 DOI: 10.1093/nar/gkad342] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Revised: 04/10/2023] [Accepted: 04/21/2023] [Indexed: 05/10/2023] Open
Abstract
Iron metabolism is closely associated with the pathogenesis of obesity. However, the mechanism of the iron-dependent regulation of adipocyte differentiation remains unclear. Here, we show that iron is essential for rewriting of epigenetic marks during adipocyte differentiation. Iron supply through lysosome-mediated ferritinophagy was found to be crucial during the early stage of adipocyte differentiation, and iron deficiency during this period suppressed subsequent terminal differentiation. This was associated with demethylation of both repressive histone marks and DNA in the genomic regions of adipocyte differentiation-associated genes, including Pparg, which encodes PPARγ, the master regulator of adipocyte differentiation. In addition, we identified several epigenetic demethylases to be responsible for iron-dependent adipocyte differentiation, with the histone demethylase jumonji domain-containing 1A and the DNA demethylase ten-eleven translocation 2 as the major enzymes. The interrelationship between repressive histone marks and DNA methylation was indicated by an integrated genome-wide association analysis, and was also supported by the findings that both histone and DNA demethylation were suppressed by either the inhibition of lysosomal ferritin flux or the knockdown of iron chaperone poly(rC)-binding protein 2. In summary, epigenetic regulations through iron-dependent control of epigenetic enzyme activities play an important role in the organized gene expression mechanisms of adipogenesis.
Collapse
Affiliation(s)
- Tomohiro Suzuki
- Laboratory of Epigenetics and Metabolism, Institute for Molecular and Cellular Regulation, Gunma University, Gunma371-8512, Japan
| | - Tetsuro Komatsu
- Laboratory of Epigenetics and Metabolism, Institute for Molecular and Cellular Regulation, Gunma University, Gunma371-8512, Japan
| | - Hiroshi Shibata
- Laboratory of Epigenetics and Metabolism, Institute for Molecular and Cellular Regulation, Gunma University, Gunma371-8512, Japan
| | - Akiko Tanioka
- Laboratory of Epigenetics and Metabolism, Institute for Molecular and Cellular Regulation, Gunma University, Gunma371-8512, Japan
| | - Diana Vargas
- Laboratory of Epigenetics and Metabolism, Institute for Molecular and Cellular Regulation, Gunma University, Gunma371-8512, Japan
| | - Reika Kawabata-Iwakawa
- Division of Integrated Oncology Research, Gunma University Initiative for Advanced Research, Gunma University, Gunma371-8511, Japan
| | - Fumihito Miura
- Department of Biochemistry, Kyushu University Graduate School of Medical Sciences, Fukuoka 812-8582, Japan
| | - Shinnosuke Masuda
- Laboratory of Epigenetics and Metabolism, Institute for Molecular and Cellular Regulation, Gunma University, Gunma371-8512, Japan
| | - Mayuko Hayashi
- Laboratory of Epigenetics and Metabolism, Institute for Molecular and Cellular Regulation, Gunma University, Gunma371-8512, Japan
| | - Kyoko Tanimura-Inagaki
- Laboratory of Epigenetics and Metabolism, Institute for Molecular and Cellular Regulation, Gunma University, Gunma371-8512, Japan
- Department of Endocrinology, Metabolism and Nephrology, Graduate School of Medicine, Nippon Medical School, Tokyo 113-8602, Japan
| | - Sumiyo Morita
- Laboratory of Genome Science, Biosignal Genome Resource Center, Institute for Molecular and Cellular Regulation, Gunma University, Gunma371-8512, Japan
| | - Junki Kohmaru
- Institute for Molecular and Cellular Regulation Joint Usage/Research Support Center, Gunma University, Gunma371-8512, Japan
| | - Koji Adachi
- Kaihin Makuhari Laboratory, PerkinElmer Japan Co., Ltd., Chiba261-8501, Japan
| | - Masayuki Tobo
- Institute for Molecular and Cellular Regulation Joint Usage/Research Support Center, Gunma University, Gunma371-8512, Japan
| | - Hideru Obinata
- Education and Research Support Center, Gunma University Graduate School of Medicine, Gunma371-8511, Japan
| | - Tasuku Hirayama
- Laboratory of Pharmaceutical and Medicinal Chemistry, Gifu Pharmaceutical University, Gifu501-1196, Japan
| | - Hiroshi Kimura
- Cell Biology Center, Tokyo Institute of Technology, Kanagawa226-8503, Japan
| | - Juro Sakai
- Division of Metabolic Medicine, Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo153-8904, Japan
- Division of Molecular Physiology and Metabolism, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan
| | - Hideko Nagasawa
- Laboratory of Pharmaceutical and Medicinal Chemistry, Gifu Pharmaceutical University, Gifu501-1196, Japan
| | - Hideyuki Itabashi
- Graduate School of Science and Technology, Gunma University, Gunma376-8515, Japan
| | - Izuho Hatada
- Laboratory of Genome Science, Biosignal Genome Resource Center, Institute for Molecular and Cellular Regulation, Gunma University, Gunma371-8512, Japan
- Viral Vector Core, Gunma University Initiative for Advanced Research, Gunma371-8511, Japan
| | - Takashi Ito
- Department of Biochemistry, Kyushu University Graduate School of Medical Sciences, Fukuoka 812-8582, Japan
| | - Takeshi Inagaki
- Laboratory of Epigenetics and Metabolism, Institute for Molecular and Cellular Regulation, Gunma University, Gunma371-8512, Japan
| |
Collapse
|
11
|
Miura F, Shibata Y, Miura M, Ito T. Post-bisulfite Adaptor Tagging Based on an ssDNA Ligation Technique (tPBAT). Methods Mol Biol 2023; 2577:21-37. [PMID: 36173563 DOI: 10.1007/978-1-0716-2724-2_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Post-bisulfite adaptor tagging (PBAT) is a concept that enables the preparation of an efficient sequencing library from bisulfite-treated DNA, and it also means the protocol implemented the concept. Although the previous PBAT or rPBAT was sensitive enough for single-cell methylome analysis, the protocol had several drawbacks owing to the repeated random priming reactions. To resolve these problems, we developed a unique single-strand DNA ligation technique, termed TACS ligation, and established a new protocol called tPBAT. With tPBAT, the data quality improved, with a longer insert and higher mapping rate than that obtained with rPBAT. In addition, paired-end sequencing and indexing were supported by the default. In this chapter, the tPBAT protocol is introduced, and a thorough description of its application to small samples is provided.
Collapse
Affiliation(s)
- Fumihito Miura
- Department of Biochemistry, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan.
| | - Yukiko Shibata
- Department of Biochemistry, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan
| | - Miki Miura
- Department of Biochemistry, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan
| | - Takashi Ito
- Department of Biochemistry, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan
| |
Collapse
|
12
|
Miura F, Ito T. Post-bisulfite Adaptor Tagging with a Highly Efficient Single-Stranded DNA Ligation Technique. Methods Mol Biol 2023; 2594:45-57. [PMID: 36264487 DOI: 10.1007/978-1-0716-2815-7_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Post-bisulfite adaptor tagging (PBAT) is a procedure for efficiently preparing a sequencing library for whole-genome bisulfite sequencing (WGBS). The original version of the PBAT protocol was highly efficient, such that it helped realize library preparation from samples of limited amounts. However, two rounds of random priming reactions employed in the original protocol limited further improvement of the PBAT protocol in terms of read length and mapping rate. In this chapter, an improved version of the PBAT protocol called tPBAT is described.
Collapse
Affiliation(s)
- Fumihito Miura
- Department of Biochemistry, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan.
| | - Takashi Ito
- Department of Biochemistry, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan
| |
Collapse
|
13
|
Miura F, Miura M, Shibata Y, Furuta Y, Miyamura K, Ino Y, Bayoumi AMA, Oba U, Ito T. Identification, expression, and purification of DNA cytosine 5-methyltransferases with short recognition sequences. BMC Biotechnol 2022; 22:33. [PMID: 36333700 PMCID: PMC9636781 DOI: 10.1186/s12896-022-00765-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 10/25/2022] [Indexed: 11/06/2022] Open
Abstract
Background DNA methyltransferases (MTases) are enzymes that induce methylation, one of the representative epigenetic modifications of DNA, and are also useful tools for analyzing epigenomes. However, regarding DNA cytosine 5-methylation, MTases identified so far have drawbacks in that their recognition sequences overlap with those for intrinsic DNA methylation in mammalian cells and/or that the recognition sequence is too long for fine epigenetic mapping. To identify MTases with short recognition sequences that never overlap with the CG dinucleotide, we systematically investigated the 25 candidate enzymes identified using a database search, which showed high similarity to known cytosine 5-MTases recognizing short sequences. Results We identified MTases with six new recognition sequences, including TCTG, CC, CNG, TCG, GCY, and GGCA. Because the recognition sequence never overlapped with the CG dinucleotide, MTases recognizing the CC dinucleotide were promising. Conclusions In the current study, we established a procedure for producing active CC-methylating MTases and applied it to nucleosome occupancy and methylome sequencing to prove the usefulness of the enzyme for fine epigenetic mapping. MTases that never overlap with CG dinucleotides would allow us to profile multiple epigenomes simultaneously.
Supplementary Information The online version contains supplementary material available at 10.1186/s12896-022-00765-3.
Collapse
Affiliation(s)
- Fumihito Miura
- grid.177174.30000 0001 2242 4849Department of Biochemistry, Kyushu University Graduate School of Medical Sciences, 3-1-1 Maidashi, Higashi-Ku, Fukuoka, 812-8582 Japan
| | - Miki Miura
- grid.177174.30000 0001 2242 4849Department of Biochemistry, Kyushu University Graduate School of Medical Sciences, 3-1-1 Maidashi, Higashi-Ku, Fukuoka, 812-8582 Japan
| | - Yukiko Shibata
- grid.177174.30000 0001 2242 4849Department of Biochemistry, Kyushu University Graduate School of Medical Sciences, 3-1-1 Maidashi, Higashi-Ku, Fukuoka, 812-8582 Japan
| | - Yoshikazu Furuta
- grid.39158.360000 0001 2173 7691Division of Infection and Immunity, Research Center for Zoonosis Control, Hokkaido University, Sapporo, 001-0020 Japan
| | - Keisuke Miyamura
- grid.177174.30000 0001 2242 4849Department of Biochemistry, Kyushu University Graduate School of Medical Sciences, 3-1-1 Maidashi, Higashi-Ku, Fukuoka, 812-8582 Japan
| | - Yuki Ino
- grid.177174.30000 0001 2242 4849Department of Biochemistry, Kyushu University Graduate School of Medical Sciences, 3-1-1 Maidashi, Higashi-Ku, Fukuoka, 812-8582 Japan
| | - Asmaa M. A. Bayoumi
- grid.411806.a0000 0000 8999 4945Department of Biochemistry, Faculty of Pharmacy, Minia University, El-Minia, 61511 Egypt
| | - Utako Oba
- grid.177174.30000 0001 2242 4849Department of Biochemistry, Kyushu University Graduate School of Medical Sciences, 3-1-1 Maidashi, Higashi-Ku, Fukuoka, 812-8582 Japan ,grid.177174.30000 0001 2242 4849Department of Pediatrics, Kyushu University Graduate School of Medical Sciences, 3-1-1 Maidashi, Higashi-Ku, Fukuoka, 812-8582 Japan
| | - Takashi Ito
- grid.177174.30000 0001 2242 4849Department of Biochemistry, Kyushu University Graduate School of Medical Sciences, 3-1-1 Maidashi, Higashi-Ku, Fukuoka, 812-8582 Japan
| |
Collapse
|
14
|
Gong W, Pan X, Xu D, Ji G, Wang Y, Tian Y, Cai J, Li J, Zhang Z, Yuan X. Benchmarking DNA Methylation Analysis of 14 Alignment Algorithms for Whole Genome Bisulfite Sequencing in Mammals. Comput Struct Biotechnol J 2022; 20:4704-4716. [PMID: 36147684 PMCID: PMC9465269 DOI: 10.1016/j.csbj.2022.08.051] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 08/22/2022] [Accepted: 08/22/2022] [Indexed: 01/10/2023] Open
Abstract
Whole genome bisulfite sequencing (WGBS) is an essential technique for methylome studies. Although a series of tools have been developed to overcome the mapping challenges caused by bisulfite treatment, the latest available tools have not been evaluated on the performance of reads mapping as well as on biological insights in multiple mammals. Herein, based on the real and simulated WGBS data of 14.77 billion reads, we undertook 936 mappings to benchmark and evaluate 14 wildly utilized alignment algorithms from reads mapping to biological interpretation in humans, cattle and pigs: Bwa-meth, BSBolt, BSMAP, Walt, Abismal, Batmeth2, Hisat_3n, Hisat_3n_repeat, Bismark-bwt2-e2e, Bismark-his2, BSSeeker2-bwt, BSSeeker2-soap2, BSSeeker2-bwt2-e2e and BSSeeker2-bwt2-local. Specifically, Bwa-meth, BSBolt, BSMAP, Bismark-bwt2-e2e and Walt exhibited higher uniquely mapped reads, mapped precision, recall and F1 score than other nine alignment algorithms, and the influences of distinct alignment algorithms on the methylomes varied considerably at the numbers and methylation levels of CpG sites, the calling of differentially methylated CpGs (DMCs) and regions (DMRs). Moreover, we reported that BSMAP showed the highest accuracy at the detection of CpG coordinates and methylation levels, the calling of DMCs, DMRs, DMR-related genes and signaling pathways. These results suggested that careful selection of algorithms to profile the genome-wide DNA methylation is required, and our works provided investigators with useful information on the choice of alignment algorithms to effectively improve the DNA methylation detection accuracy in mammals.
Collapse
Affiliation(s)
- Wentao Gong
- Guangdong Laboratory of Lingnan Modern Agriculture, National Engineering Research Center for Breeding Swine Industry, Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Xiangchun Pan
- Guangdong Laboratory of Lingnan Modern Agriculture, National Engineering Research Center for Breeding Swine Industry, Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Dantong Xu
- Guangdong Laboratory of Lingnan Modern Agriculture, National Engineering Research Center for Breeding Swine Industry, Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Guanyu Ji
- Shenzhen Gendo Health Technology CO,. Ltd, Shenzhen 518122, China
| | - Yifei Wang
- Guangdong Laboratory of Lingnan Modern Agriculture, National Engineering Research Center for Breeding Swine Industry, Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Yuhan Tian
- Guangdong Laboratory of Lingnan Modern Agriculture, National Engineering Research Center for Breeding Swine Industry, Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Jiali Cai
- Guangdong Laboratory of Lingnan Modern Agriculture, National Engineering Research Center for Breeding Swine Industry, Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Jiaqi Li
- Guangdong Laboratory of Lingnan Modern Agriculture, National Engineering Research Center for Breeding Swine Industry, Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Zhe Zhang
- Guangdong Laboratory of Lingnan Modern Agriculture, National Engineering Research Center for Breeding Swine Industry, Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
- Corresponding authors.
| | - Xiaolong Yuan
- Guangdong Laboratory of Lingnan Modern Agriculture, National Engineering Research Center for Breeding Swine Industry, Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
- Corresponding authors.
| |
Collapse
|
15
|
Oberhofer A, Bronkhorst AJ, Uhlig C, Ungerer V, Holdenrieder S. Tracing the Origin of Cell-Free DNA Molecules through Tissue-Specific Epigenetic Signatures. Diagnostics (Basel) 2022; 12:diagnostics12081834. [PMID: 36010184 PMCID: PMC9406971 DOI: 10.3390/diagnostics12081834] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 07/15/2022] [Accepted: 07/25/2022] [Indexed: 12/11/2022] Open
Abstract
All cell and tissue types constantly release DNA fragments into human body fluids by various mechanisms including programmed cell death, accidental cell degradation and active extrusion. Particularly, cell-free DNA (cfDNA) in plasma or serum has been utilized for minimally invasive molecular diagnostics. Disease onset or pathological conditions that lead to increased cell death alter the contribution of different tissues to the total pool of cfDNA. Because cfDNA molecules retain cell-type specific epigenetic features, it is possible to infer tissue-of-origin from epigenetic characteristics. Recent research efforts demonstrated that analysis of, e.g., methylation patterns, nucleosome occupancy, and fragmentomics determined the cell- or tissue-of-origin of individual cfDNA molecules. This novel tissue-of origin-analysis enables to estimate the contributions of different tissues to the total cfDNA pool in body fluids and find tissues with increased cell death (pathologic condition), expanding the portfolio of liquid biopsies towards a wide range of pathologies and early diagnosis. In this review, we summarize the currently available tissue-of-origin approaches and point out the next steps towards clinical implementation.
Collapse
|
16
|
Pan-cancer methylome analysis for cancer diagnosis and classification of cancer cell of origin. Cancer Gene Ther 2022; 29:428-436. [PMID: 34744163 DOI: 10.1038/s41417-021-00401-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 09/26/2021] [Accepted: 10/14/2021] [Indexed: 02/02/2023]
Abstract
The accurate and early diagnosis and classification of cancer origin from either tissue or liquid biopsy is crucial for selecting the appropriate treatment and reducing cancer-related mortality. Here, we established the CAncer Cell-of-Origin (CACO) methylation panel using the methylation data of the 28 types of cancer in The Cancer Genome Atlas (7950 patients and 707 normal controls) as well as healthy whole blood samples (95 subjects). We showed that the CACO methylation panel had high diagnostic potential with high sensitivity and specificity in the discovery (maximum AUC = 0.998) and validation (maximum AUC = 1.000) cohorts. Moreover, we confirmed that the CACO methylation panel could identify the cancer cell type of origin using the methylation profile from liquid as well as tissue biopsy, including primary, metastatic, and multiregional cancer samples and cancer of unknown primary, independent of the methylation analysis platform and specimen preparation method. Together, the CACO methylation panel can be a powerful tool for the classification and diagnosis of cancer.
Collapse
|
17
|
DNMT3A-dependent DNA methylation is required for spermatogonial stem cells to commit to spermatogenesis. Nat Genet 2022; 54:469-480. [DOI: 10.1038/s41588-022-01040-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 03/01/2022] [Indexed: 01/12/2023]
|
18
|
Furuta Y, Miura F, Ichise T, Nakayama SMM, Ikenaka Y, Zorigt T, Tsujinouchi M, Ishizuka M, Ito T, Higashi H. A GCDGC-specific DNA (cytosine-5) methyltransferase that methylates the GCWGC sequence on both strands and the GCSGC sequence on one strand. PLoS One 2022; 17:e0265225. [PMID: 35312710 PMCID: PMC8936443 DOI: 10.1371/journal.pone.0265225] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Accepted: 02/24/2022] [Indexed: 11/18/2022] Open
Abstract
5-Methylcytosine is one of the major epigenetic marks of DNA in living organisms. Some bacterial species possess DNA methyltransferases that modify cytosines on both strands to produce fully-methylated sites or on either strand to produce hemi-methylated sites. In this study, we characterized a DNA methyltransferase that produces two sequences with different methylation patterns: one methylated on both strands and another on one strand. M.BatI is the orphan DNA methyltransferase of Bacillus anthracis coded in one of the prophages on the chromosome. Analysis of M.BatI modified DNA by bisulfite sequencing revealed that the enzyme methylates the first cytosine in sequences of 5ʹ-GCAGC-3ʹ, 5ʹ-GCTGC-3ʹ, and 5ʹ-GCGGC-3ʹ, but not of 5ʹ-GCCGC-3ʹ. This resulted in the production of fully-methylated 5ʹ-GCWGC-3ʹ and hemi-methylated 5ʹ-GCSGC-3ʹ. M.BatI also showed toxicity when expressed in E. coli, which was caused by a mechanism other than DNA modification activity. Homologs of M.BatI were found in other Bacillus species on different prophage like regions, suggesting the spread of the gene by several different phages. The discovery of the DNA methyltransferase with unique modification target specificity suggested unrevealed diversity of target sequences of bacterial cytosine DNA methyltransferase.
Collapse
Affiliation(s)
- Yoshikazu Furuta
- Division of Infection and Immunity, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan
- * E-mail:
| | - Fumihito Miura
- Department of Biochemistry, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan
| | - Takahiro Ichise
- Laboratory of Toxicology, Department of Environmental Veterinary Sciences, School of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | - Shouta M. M. Nakayama
- Laboratory of Toxicology, Department of Environmental Veterinary Sciences, School of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | - Yoshinori Ikenaka
- Laboratory of Toxicology, Department of Environmental Veterinary Sciences, School of Veterinary Medicine, Hokkaido University, Sapporo, Japan
- Water Research Group, Unit for Environmental Sciences and Management, North-West University, Potchefstroom, South Africa
| | - Tuvshinzaya Zorigt
- Division of Infection and Immunity, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan
| | - Mai Tsujinouchi
- Division of Infection and Immunity, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan
| | - Mayumi Ishizuka
- Laboratory of Toxicology, Department of Environmental Veterinary Sciences, School of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | - Takashi Ito
- Department of Biochemistry, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan
| | - Hideaki Higashi
- Division of Infection and Immunity, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan
| |
Collapse
|
19
|
Whole Genome DNA Methylation Profiling of D2 Medium Spiny Neurons in Mouse Nucleus Accumbens Using Two Independent Library Preparation Methods. Genes (Basel) 2022; 13:genes13020306. [PMID: 35205351 PMCID: PMC8872013 DOI: 10.3390/genes13020306] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 02/01/2022] [Accepted: 02/02/2022] [Indexed: 11/21/2022] Open
Abstract
DNA methylation plays essential roles in various cellular processes. Next-generation sequencing has enabled us to study the functional implication of DNA methylation across the whole genome. However, this approach usually requires a substantial amount of genomic DNA, which limits its application to defined cell types within a discrete brain region. Here, we applied two separate protocols, Accel-NGS Methyl-Seq (AM-seq) and Enzymatic Methyl-seq (EM-seq), to profile the methylome of D2 dopamine receptor-expressing medium spiny neurons (D2-MSNs) in mouse nucleus accumbens (NAc). Using 40 ng DNA extracted from FACS-isolated D2-MSNs, we found that both methods yielded comparably high-quality methylome data. Additionally, we identified numerous unmethylated regions (UMRs) as cell type-specific regulatory regions. By comparing the NAc D2-MSN methylome with the published methylomes of mouse prefrontal cortex excitatory neurons and neural progenitor cells (NPCs), we identified numerous differentially methylated CpG and non-CpG regions. Our study not only presents a comparison of these two low-input DNA whole genome methylation profiling protocols, but also provides a resource of DNA methylome of mouse accumbal D2-MSNs, a neuron type that has critical roles in addiction and other neuropsychiatric disorders.
Collapse
|
20
|
de Sena Brandine G, Smith AD. Fast and memory-efficient mapping of short bisulfite sequencing reads using a two-letter alphabet. NAR Genom Bioinform 2022; 3:lqab115. [PMID: 34988438 PMCID: PMC8693577 DOI: 10.1093/nargab/lqab115] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 10/25/2021] [Accepted: 11/29/2021] [Indexed: 01/03/2023] Open
Abstract
DNA cytosine methylation is an important epigenomic mark with a wide range of functions in many organisms. Whole genome bisulfite sequencing is the gold standard to interrogate cytosine methylation genome-wide. Algorithms used to map bisulfite-converted reads often encode the four-base DNA alphabet with three letters by reducing two bases to a common letter. This encoding substantially reduces the entropy of nucleotide frequencies in the resulting reference genome. Within the paradigm of read mapping by first filtering possible candidate alignments, reduced entropy in the sequence space can increase the required computing effort. We introduce another bisulfite mapping algorithm (abismal), based on the idea of encoding a four-letter DNA sequence as only two letters, one for purines and one for pyrimidines. We show that this encoding can lead to greater specificity compared to existing encodings used to map bisulfite sequencing reads. Through the two-letter encoding, the abismal software tool maps reads in less time and using less memory than most bisulfite sequencing read mapping software tools, while attaining similar accuracy. This allows in silico methylation analysis to be performed in a wider range of computing machines with limited hardware settings.
Collapse
Affiliation(s)
- Guilherme de Sena Brandine
- Quantitative and Computational Biology, University of Southern California. 1050 Child's way, Los Angeles, CA 90007, USA
| | - Andrew D Smith
- Quantitative and Computational Biology, University of Southern California. 1050 Child's way, Los Angeles, CA 90007, USA
| |
Collapse
|
21
|
Au Yeung WK, Sasaki H. Low Input Genome-Wide DNA Methylation Analysis with Minimal Library Amplification. Methods Mol Biol 2022; 2509:233-250. [PMID: 35796967 DOI: 10.1007/978-1-0716-2380-0_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Whole genome bisulfite sequencing (WGBS) is a high-throughput DNA sequencing-based technique that is used to determine genome-wide DNA methylation patterns at base resolution. Library construction by post-bisulfite adaptor tagging (PBAT ) extends the application of WGBS to several hundred cells and minimizes the required number of library amplification cycles. We herein describe a PBAT protocol to prepare WGBS libraries from 200 cells and introduce the outline of a downstream bioinformatic analysis. The prepared library can typically generate 800 million sequencing reads, which is sufficient to cover the human and mouse genomes approximately 15 times, using the Illumina NovaSeq 6000 sequencing system.
Collapse
Affiliation(s)
- Wan Kin Au Yeung
- Division of Epigenomics and Development, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan.
| | - Hiroyuki Sasaki
- Division of Epigenomics and Development, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| |
Collapse
|
22
|
Kerachian MA, Azghandi M, Mozaffari-Jovin S, Thierry AR. Guidelines for pre-analytical conditions for assessing the methylation of circulating cell-free DNA. Clin Epigenetics 2021; 13:193. [PMID: 34663458 PMCID: PMC8525023 DOI: 10.1186/s13148-021-01182-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 10/04/2021] [Indexed: 02/06/2023] Open
Abstract
Methylation analysis of circulating cell-free DNA (cirDNA), as a liquid biopsy, has a significant potential to advance the detection, prognosis, and treatment of cancer, as well as many genetic disorders. The role of epigenetics in disease development has been reported in several hereditary disorders, and epigenetic modifications are regarded as one of the earliest and most significant genomic aberrations that arise during carcinogenesis. Liquid biopsy can be employed for the detection of these epigenetic biomarkers. It consists of isolation (pre-analytical) and detection (analytical) phases. The choice of pre-analytical variables comprising cirDNA extraction and bisulfite conversion methods can affect the identification of cirDNA methylation. Indeed, different techniques give a different return of cirDNA, which confirms the importance of pre-analytical procedures in clinical diagnostics. Although novel techniques have been developed for the simplification of methylation analysis, the process remains complex, as the steps of DNA extraction, bisulfite treatment, and methylation detection are each carried out separately. Recent studies have noted the absence of any standard method for the pre-analytical processing of methylated cirDNA. We have therefore conducted a comprehensive and systematic review of the important pre-analytical and analytical variables and the patient-related factors which form the basis of our guidelines for analyzing methylated cirDNA in liquid biopsy.
Collapse
Affiliation(s)
- Mohammad Amin Kerachian
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
- Department of Medical Genetics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
- Cancer Genetics Research Unit, Reza Radiotherapy and Oncology Center, Mashhad, Iran.
| | - Marjan Azghandi
- Cancer Genetics Research Unit, Reza Radiotherapy and Oncology Center, Mashhad, Iran
- Department of Animal Science, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Sina Mozaffari-Jovin
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Medical Genetics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Alain R Thierry
- IRCM, Institute of Research in Oncology of Montpellier, Montpellier, France.
- INSERM, U1194, Montpellier, France.
- University of Montpellier, Montpellier, France.
- ICM, Regional Institute of Cancer of Montpellier, Montpellier, France.
| |
Collapse
|
23
|
Hisano O, Ito T, Miura F. Short single-stranded DNAs with putative non-canonical structures comprise a new class of plasma cell-free DNA. BMC Biol 2021; 19:225. [PMID: 34649537 PMCID: PMC8518174 DOI: 10.1186/s12915-021-01160-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 09/28/2021] [Indexed: 01/08/2023] Open
Abstract
Background Cell-free DNA (cfDNA), which is extracellular DNA present in the circulating plasma and other body fluids, is currently investigated as a minimally invasive, highly informative biomarker. While nucleosome-sized cfDNA fragments have been investigated intensively, shorter DNA fragments in the plasma have not been studied due to several technical limitations. Results We aimed to investigate the existence of shorter cfDNA fragments in the blood. Using an improved cfDNA purification protocol and a 3′-end-labeling method, we found DNA fragments of approximately 50 nucleotides in length in the human plasma, present at a molar concentration comparable to that of nucleosome-sized fragments. Unfortunately, these short fragments cannot be recovered by widely used cfDNA isolation methods. In addition, they are composed of single-stranded DNA (ssDNA), thus escaping detection in previous studies. Therefore, we established a library-preparation protocol based on our unique ssDNA ligation technique and applied it to the isolated cfDNA. Deep sequencing of these libraries revealed that the short fragments are derived from hundreds of thousands of genomic sites in open chromatin regions and enriched with transcription factor-binding sites. Remarkably, antisense strands of putative G-quadruplex motifs occupy as much as one-third of the peaks by these short fragments. Conclusions We propose a new class of plasma cfDNA composed of short single-stranded fragments that potentially form non-canonical DNA structures. Supplementary Information The online version contains supplementary material available at 10.1186/s12915-021-01160-8.
Collapse
Affiliation(s)
- Osamu Hisano
- Department of Biochemistry, Kyushu University Graduate School of Medical Sciences, 3-1-1 Maidashi, Higashi-Ku, Fukuoka, 812-8582, Japan
| | - Takashi Ito
- Department of Biochemistry, Kyushu University Graduate School of Medical Sciences, 3-1-1 Maidashi, Higashi-Ku, Fukuoka, 812-8582, Japan.
| | - Fumihito Miura
- Department of Biochemistry, Kyushu University Graduate School of Medical Sciences, 3-1-1 Maidashi, Higashi-Ku, Fukuoka, 812-8582, Japan.
| |
Collapse
|
24
|
Lv H, Dao FY, Zhang D, Yang H, Lin H. Advances in mapping the epigenetic modifications of 5-methylcytosine (5mC), N6-methyladenine (6mA), and N4-methylcytosine (4mC). Biotechnol Bioeng 2021; 118:4204-4216. [PMID: 34370308 DOI: 10.1002/bit.27911] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Accepted: 08/06/2021] [Indexed: 12/30/2022]
Abstract
DNA modification plays a pivotal role in regulating gene expression in cell development. As prevalent markers on DNA, 5-methylcytosine (5mC), N6-methyladenine (6mA), and N4-methylcytosine (4mC) can be recognized by specific methyltransferases, facilitating cellular defense and the versatile regulation of gene expression in eukaryotes and prokaryotes. Recent advances in DNA sequencing technology have permitted the positions of different modifications to be resolved at the genome-wide scale, which has led to the discovery of several novel insights into the complexity and functions of multiple methylations. In this review, we summarize differences in the various mapping approaches and discuss their pros and cons with respect to their relative read depths, speeds, and costs. We also discuss the development of future sequencing technologies and strategies for improving the detection resolution of current sequencing technologies. Lastly, we speculate on the potentially instrumental role that these sequencing technologies might play in future research.
Collapse
Affiliation(s)
- Hao Lv
- Key Laboratory for Neuro-Information of Ministry of Education, School of Life Science and Technology, Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu, China
| | - Fu-Ying Dao
- Key Laboratory for Neuro-Information of Ministry of Education, School of Life Science and Technology, Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu, China
| | - Dan Zhang
- Key Laboratory for Neuro-Information of Ministry of Education, School of Life Science and Technology, Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu, China
| | - Hui Yang
- Key Laboratory for Neuro-Information of Ministry of Education, School of Life Science and Technology, Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu, China
| | - Hao Lin
- Key Laboratory for Neuro-Information of Ministry of Education, School of Life Science and Technology, Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
25
|
Transcriptome dynamics during cholesterol-induced transdifferentiation of human coronary artery smooth muscle cells: A Gene Ontology-centric clustering approach. Biochem Biophys Rep 2021; 27:101061. [PMID: 34258396 PMCID: PMC8254084 DOI: 10.1016/j.bbrep.2021.101061] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 06/13/2021] [Accepted: 06/21/2021] [Indexed: 12/13/2022] Open
Abstract
Macrophage-like cells derived from vascular smooth muscle cells (SMCs) play critical roles in atherogenesis, and DNA hydroxymethylation was implicated in transdifferentiation. We examined transcriptomes and (hydroxy)methylomes of human coronary artery SMCs during cholesterol-induced transdifferentiation. A unique approach of exhaustive identification of differentially expressed genes followed by Gene Ontology-centric clustering facilitated deeper understanding of multifaceted modulations of genes involved in extracellular matrix organization, angiogenesis, cell migration, hypoxia response, and cholesterol biosynthesis. Intriguingly, type I interferon response was transiently activated, presumably forming an immuno-metabolic circuit with cholesterol metabolism. Neither global nor DEG-proximal changes were evident in (hydroxy)methylation. These results would not only provide a unique data resource for atherosclerosis research but present a potentially useful approach in transcriptome data interpretation. Cholesterol-induced transcriptome dynamics revealed in human vascular SMCs. Type I interferon response transiently activated in cholesterol-loaded SMCs. Interpretation of transcriptome dynamics facilitated by GO-centric clustering.
Collapse
|
26
|
Yoshioka K, Nagahisa H, Miura F, Araki H, Kamei Y, Kitajima Y, Seko D, Nogami J, Tsuchiya Y, Okazaki N, Yonekura A, Ohba S, Sumita Y, Chiba K, Ito K, Asahina I, Ogawa Y, Ito T, Ohkawa Y, Ono Y. Hoxa10 mediates positional memory to govern stem cell function in adult skeletal muscle. SCIENCE ADVANCES 2021; 7:7/24/eabd7924. [PMID: 34108202 PMCID: PMC8189581 DOI: 10.1126/sciadv.abd7924] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 04/21/2021] [Indexed: 05/04/2023]
Abstract
Muscle stem cells (satellite cells) are distributed throughout the body and have heterogeneous properties among muscles. However, functional topographical genes in satellite cells of adult muscle remain unidentified. Here, we show that expression of Homeobox-A (Hox-A) cluster genes accompanied with DNA hypermethylation of the Hox-A locus was robustly maintained in both somite-derived muscles and their associated satellite cells in adult mice, which recapitulates their embryonic origin. Somite-derived satellite cells were clearly separated from cells derived from cranial mesoderm in Hoxa10 expression. Hoxa10 inactivation led to genomic instability and mitotic catastrophe in somite-derived satellite cells in mice and human. Satellite cell-specific Hoxa10 ablation in mice resulted in a decline in the regenerative ability of somite-derived muscles, which were unobserved in cranial mesoderm-derived muscles. Thus, our results show that Hox gene expression profiles instill the embryonic history in satellite cells as positional memory, potentially modulating region-specific pathophysiology in adult muscles.
Collapse
Affiliation(s)
- Kiyoshi Yoshioka
- Department of Muscle Development and Regeneration, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto 860-0811, Japan
- Musculoskeletal Molecular Biology Research Group, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki 852-8588, Japan
- Department of Molecular Bone Biology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki 852-8588, Japan
| | - Hiroshi Nagahisa
- Department of Muscle Development and Regeneration, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto 860-0811, Japan
| | - Fumihito Miura
- Department of Biochemistry, Kyushu University Graduate School of Medical Sciences, Fukuoka 812-8582, Japan
| | - Hiromitsu Araki
- Department of Biochemistry, Kyushu University Graduate School of Medical Sciences, Fukuoka 812-8582, Japan
| | - Yasutomi Kamei
- Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, Kyoto 606-8522, Japan
| | - Yasuo Kitajima
- Department of Muscle Development and Regeneration, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto 860-0811, Japan
- Musculoskeletal Molecular Biology Research Group, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki 852-8588, Japan
| | - Daiki Seko
- Department of Muscle Development and Regeneration, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto 860-0811, Japan
- Musculoskeletal Molecular Biology Research Group, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki 852-8588, Japan
- Department of Molecular Bone Biology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki 852-8588, Japan
| | - Jumpei Nogami
- Division of Transcriptomics, Medical Institute of Bioregulation, Kyushu University, Fukuoka 812-8582, Japan
| | - Yoshifumi Tsuchiya
- Department of Muscle Development and Regeneration, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto 860-0811, Japan
- Musculoskeletal Molecular Biology Research Group, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki 852-8588, Japan
| | - Narihiro Okazaki
- Department of Orthopaedic Surgery, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki 852-8501, Japan
| | - Akihiko Yonekura
- Department of Orthopaedic Surgery, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki 852-8501, Japan
| | - Seigo Ohba
- Department of Regenerative Oral Surgery, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki 852-8501, Japan
| | - Yoshinori Sumita
- Department of Regenerative Oral Surgery, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki 852-8501, Japan
| | - Ko Chiba
- Department of Orthopaedic Surgery, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki 852-8501, Japan
| | - Kosei Ito
- Department of Molecular Bone Biology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki 852-8588, Japan
| | - Izumi Asahina
- Department of Regenerative Oral Surgery, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki 852-8501, Japan
| | - Yoshihiro Ogawa
- Department of Medicine and Bioregulatory Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Takashi Ito
- Department of Biochemistry, Kyushu University Graduate School of Medical Sciences, Fukuoka 812-8582, Japan
| | - Yasuyuki Ohkawa
- Division of Transcriptomics, Medical Institute of Bioregulation, Kyushu University, Fukuoka 812-8582, Japan
| | - Yusuke Ono
- Department of Muscle Development and Regeneration, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto 860-0811, Japan.
- Musculoskeletal Molecular Biology Research Group, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki 852-8588, Japan
- Center for Metabolic Regulation of Healthy Aging, Kumamoto University, Kumamoto 860-0811, Japan
| |
Collapse
|
27
|
Laufer BI, Gomez JA, Jianu JM, LaSalle JM. Stable DNMT3L overexpression in SH-SY5Y neurons recreates a facet of the genome-wide Down syndrome DNA methylation signature. Epigenetics Chromatin 2021; 14:13. [PMID: 33750431 PMCID: PMC7942011 DOI: 10.1186/s13072-021-00387-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 02/23/2021] [Indexed: 12/15/2022] Open
Abstract
Background Down syndrome (DS) is characterized by a genome-wide profile of differential DNA methylation that is skewed towards hypermethylation in most tissues, including brain, and includes pan-tissue differential methylation. The molecular mechanisms involve the overexpression of genes related to DNA methylation on chromosome 21. Here, we stably overexpressed the chromosome 21 gene DNA methyltransferase 3L (DNMT3L) in the human SH-SY5Y neuroblastoma cell line and assayed DNA methylation at over 26 million CpGs by whole genome bisulfite sequencing (WGBS) at three different developmental phases (undifferentiated, differentiating, and differentiated). Results DNMT3L overexpression resulted in global CpG and CpG island hypermethylation as well as thousands of differentially methylated regions (DMRs). The DNMT3L DMRs were skewed towards hypermethylation and mapped to genes involved in neurodevelopment, cellular signaling, and gene regulation. Consensus DNMT3L DMRs showed that cell lines clustered by genotype and then differentiation phase, demonstrating sets of common genes affected across neuronal differentiation. The hypermethylated DNMT3L DMRs from all pairwise comparisons were enriched for regions of bivalent chromatin marked by H3K4me3 as well as differentially methylated sites from previous DS studies of diverse tissues. In contrast, the hypomethylated DNMT3L DMRs from all pairwise comparisons displayed a tissue-specific profile enriched for regions of heterochromatin marked by H3K9me3 during embryonic development. Conclusions Taken together, these results support a mechanism whereby regions of bivalent chromatin that lose H3K4me3 during neuronal differentiation are targeted by excess DNMT3L and become hypermethylated. Overall, these findings demonstrate that DNMT3L overexpression during neurodevelopment recreates a facet of the genome-wide DS DNA methylation signature by targeting known genes and gene clusters that display pan-tissue differential methylation in DS. Supplementary Information The online version contains supplementary material available at 10.1186/s13072-021-00387-7.
Collapse
Affiliation(s)
- Benjamin I Laufer
- Department of Medical Microbiology and Immunology, School of Medicine, University of California, Davis, CA, 95616, USA.,Genome Center, University of California, Davis, CA, 95616, USA.,MIND Institute, University of California, Davis, CA, 95616, USA
| | - J Antonio Gomez
- Department of Medical Microbiology and Immunology, School of Medicine, University of California, Davis, CA, 95616, USA.,Genome Center, University of California, Davis, CA, 95616, USA.,MIND Institute, University of California, Davis, CA, 95616, USA
| | - Julia M Jianu
- Department of Medical Microbiology and Immunology, School of Medicine, University of California, Davis, CA, 95616, USA.,Genome Center, University of California, Davis, CA, 95616, USA.,MIND Institute, University of California, Davis, CA, 95616, USA
| | - Janine M LaSalle
- Department of Medical Microbiology and Immunology, School of Medicine, University of California, Davis, CA, 95616, USA. .,Genome Center, University of California, Davis, CA, 95616, USA. .,MIND Institute, University of California, Davis, CA, 95616, USA.
| |
Collapse
|
28
|
Kara N, Krueger F, Rugg-Gunn P, Houseley J. Genome-wide analysis of DNA replication and DNA double-strand breaks using TrAEL-seq. PLoS Biol 2021; 19:e3000886. [PMID: 33760805 PMCID: PMC8021198 DOI: 10.1371/journal.pbio.3000886] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 04/05/2021] [Accepted: 02/17/2021] [Indexed: 02/07/2023] Open
Abstract
Faithful replication of the entire genome requires replication forks to copy large contiguous tracts of DNA, and sites of persistent replication fork stalling present a major threat to genome stability. Understanding the distribution of sites at which replication forks stall, and the ensuing fork processing events, requires genome-wide methods that profile replication fork position and the formation of recombinogenic DNA ends. Here, we describe Transferase-Activated End Ligation sequencing (TrAEL-seq), a method that captures single-stranded DNA 3' ends genome-wide and with base pair resolution. TrAEL-seq labels both DNA breaks and replication forks, providing genome-wide maps of replication fork progression and fork stalling sites in yeast and mammalian cells. Replication maps are similar to those obtained by Okazaki fragment sequencing; however, TrAEL-seq is performed on asynchronous populations of wild-type cells without incorporation of labels, cell sorting, or biochemical purification of replication intermediates, rendering TrAEL-seq far simpler and more widely applicable than existing replication fork direction profiling methods. The specificity of TrAEL-seq for DNA 3' ends also allows accurate detection of double-strand break sites after the initiation of DNA end resection, which we demonstrate by genome-wide mapping of meiotic double-strand break hotspots in a dmc1Δ mutant that is competent for end resection but not strand invasion. Overall, TrAEL-seq provides a flexible and robust methodology with high sensitivity and resolution for studying DNA replication and repair, which will be of significant use in determining mechanisms of genome instability.
Collapse
Affiliation(s)
- Neesha Kara
- Epigenetics Programme, Babraham Institute, Cambridge, United Kingdom
| | - Felix Krueger
- Babraham Bioinformatics, Babraham Institute, Cambridge, United Kingdom
| | - Peter Rugg-Gunn
- Epigenetics Programme, Babraham Institute, Cambridge, United Kingdom
| | - Jonathan Houseley
- Epigenetics Programme, Babraham Institute, Cambridge, United Kingdom
| |
Collapse
|
29
|
Kuribayashi W, Oshima M, Itokawa N, Koide S, Nakajima-Takagi Y, Yamashita M, Yamazaki S, Rahmutulla B, Miura F, Ito T, Kaneda A, Iwama A. Limited rejuvenation of aged hematopoietic stem cells in young bone marrow niche. J Exp Med 2021; 218:e20192283. [PMID: 33231616 PMCID: PMC7690939 DOI: 10.1084/jem.20192283] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 09/17/2020] [Accepted: 10/19/2020] [Indexed: 12/19/2022] Open
Abstract
Hematopoietic stem cells (HSCs) exhibit functional alterations, such as reduced regenerative capacity and myeloid-biased differentiation, with age. The HSC niche, which is essential for the maintenance of HSCs, also undergoes marked changes with aging. However, it has been technically challenging to directly evaluate the contribution of niche aging to age-associated HSC alterations without niche-damaging myeloablation in HSC transplantation assays. We herein transplanted an excess of aged HSCs into young mice without preconditioning. Although aged HSCs successfully engrafted in the intact young bone marrow niche, they poorly regenerated downstream progenitors and exhibited persistent myeloid-biased differentiation, resulting in no significant functional rejuvenation. Transcriptome and methylome analyses revealed that the young niche largely restored the transcriptional profile of aged HSCs, but not their DNA methylation profiles. Therefore, the restoration of the young niche is insufficient for rejuvenating HSC functions, highlighting a key role for age-associated cell-intrinsic defects in HSC aging.
Collapse
Affiliation(s)
- Wakako Kuribayashi
- Department of Cellular and Molecular Medicine, Graduate School of Medicine, Chiba University, Chiba, Japan
- Division of Stem Cell and Molecular Medicine, Center for Stem Cell Biology and Regenerative Medicine, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Motohiko Oshima
- Division of Stem Cell and Molecular Medicine, Center for Stem Cell Biology and Regenerative Medicine, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Naoki Itokawa
- Department of Cellular and Molecular Medicine, Graduate School of Medicine, Chiba University, Chiba, Japan
- Division of Stem Cell and Molecular Medicine, Center for Stem Cell Biology and Regenerative Medicine, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Shuhei Koide
- Division of Stem Cell and Molecular Medicine, Center for Stem Cell Biology and Regenerative Medicine, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Yaeko Nakajima-Takagi
- Division of Stem Cell and Molecular Medicine, Center for Stem Cell Biology and Regenerative Medicine, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Masayuki Yamashita
- Division of Stem Cell and Molecular Medicine, Center for Stem Cell Biology and Regenerative Medicine, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Satoshi Yamazaki
- Division of Stem Cell Biology, Center for Stem Cell Biology and Regenerative Medicine, The Institute of Medical Science, University of Tokyo, Tokyo, Japan
- Laboratory of Stem Cell Therapy, Faculty of Medicine, University of Tsukuba, Ibaraki, Japan
| | - Bahityar Rahmutulla
- Department of Molecular Oncology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Fumihito Miura
- Department of Biochemistry, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan
| | - Takashi Ito
- Department of Biochemistry, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan
| | - Atsushi Kaneda
- Department of Molecular Oncology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Atsushi Iwama
- Department of Cellular and Molecular Medicine, Graduate School of Medicine, Chiba University, Chiba, Japan
- Division of Stem Cell and Molecular Medicine, Center for Stem Cell Biology and Regenerative Medicine, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
30
|
Yin Y, Li J, Li J, Lee M, Zhao S, Guo L, Li J, Zhang M, Huang Y, Li XN, Deng Z, Sun D. LiBis: an ultrasensitive alignment augmentation for low-input bisulfite sequencing. Brief Bioinform 2020; 22:6034045. [PMID: 33316060 DOI: 10.1093/bib/bbaa332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 10/18/2020] [Accepted: 10/25/2020] [Indexed: 11/14/2022] Open
Abstract
The cell-free DNA (cfDNA) methylation profile in liquid biopsy has been utilized to diagnose early-stage disease and estimate therapy response. However, typical clinical procedures are capable of purifying only very small amounts of cfDNA. Whole-genome bisulfite sequencing (WGBS) is the gold standard for measuring DNA methylation; however, WGBS using small amounts of fragmented DNA introduces a critical challenge for data analysis, namely a low-mapping ratio. The resulting low sequencing depth and low coverage of CpG sites genome-wide is a bottleneck for the clinical application of cfDNA-based WGBS assays. We developed LiBis (Low-input Bisulfite Sequencing), a novel method for low-input WGBS data alignment. By dynamically clipping initially unmapped reads and remapping clipped fragments, we judiciously rescued those reads and uniquely aligned them to the genome. By substantially increasing the mapping ratio by up to 88%, LiBis dramatically improved the number of informative CpGs and the precision in quantifying the methylation status of individual CpG sites. LiBis significantly improved the cost efficiency of low-input WGBS experiments by dynamically removing contamination introduced by random priming. The high sensitivity and cost effectiveness afforded by LiBis for low-input samples will allow the discovery of genetic and epigenetic features suitable for downstream analysis and biomarker identification using liquid biopsy.
Collapse
Affiliation(s)
- Yue Yin
- Texas A&M University College of Medicine
| | - Jia Li
- Texas A&M University College of Medicine
| | - Jin Li
- Texas A&M University College of Medicine
| | | | | | | | | | | | - Yun Huang
- Texas A&M University College of Medicine
| | - Xiao-Nan Li
- Northwestern University Feinberg School of Medicine
| | | | | |
Collapse
|
31
|
Ren C, Ren L, Yan J, Bai Z, Zhang L, Zhang H, Xie Y, Li X. Cadmium causes hepatopathy by changing the status of DNA methylation in the metabolic pathway. Toxicol Lett 2020; 340:101-113. [PMID: 33338565 DOI: 10.1016/j.toxlet.2020.12.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 11/17/2020] [Accepted: 12/12/2020] [Indexed: 01/19/2023]
Abstract
Toxicity caused by the heavy metal Cadmium leads to liver diseases; this finding has generated interest among researchers. We detected DNA methylation using Whole Genome Bisulfite Sequencing (WGBS) to study the relationship between Cadmium exposure and liver damage. Forty-eight Sprague-Dawley rats were randomly divided into six groups, and given normal saline or 2.5, 5, 10, 20, and 40 mg/kg body weight per day CdCl2 by gavage. Twelve weeks later, their liver tissues were collected for pathological examination and DNA extraction. Increased exposure to Cadmium led to a reduction in the amount of weight gain as well as pathological degeneration and necrosis of liver cells of the rats. Using WGBS, we found that DNA methylation changes in the high-dose exposure group were more remarkable, and most of the changes occurred in the gene promoter region. GO enrichment analysis showed that the genes were enriched in the biological process of "response to stimulus." KEGG analysis revealed that metabolic pathways, like MAPK, PI3K-Akt and cAMP, had the largest number of enriched genes. Using Integrative Genomics Viewer (IGV), the demethylation of F2rl3 after Cadmium poisoning was established. This finding may explain why there are changes in liver metabolism after Cadmium poisoning.
Collapse
Affiliation(s)
- Chenghui Ren
- The First School of Clinical Medical, Lanzhou University, Lanzhou, 730000, Gansu, People's Republic of China
| | - Longfei Ren
- The First School of Clinical Medical, Lanzhou University, Lanzhou, 730000, Gansu, People's Republic of China; Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, 730000, Gansu, People's Republic of China; Hepatopancreatobiliary Surgery Institute of Gansu Province, Medical College Cancer Center of Lanzhou University, Lanzhou, 730000, Gansu, People's Republic of China
| | - Jun Yan
- The First School of Clinical Medical, Lanzhou University, Lanzhou, 730000, Gansu, People's Republic of China; Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, 730000, Gansu, People's Republic of China; Key Laboratory of Biotherapy and Regenerative Medicine of Gansu Province, Lanzhou, 730000, Gansu, People's Republic of China; Hepatopancreatobiliary Surgery Institute of Gansu Province, Medical College Cancer Center of Lanzhou University, Lanzhou, 730000, Gansu, People's Republic of China
| | - Zhongtian Bai
- The First School of Clinical Medical, Lanzhou University, Lanzhou, 730000, Gansu, People's Republic of China; Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, 730000, Gansu, People's Republic of China; Key Laboratory of Biotherapy and Regenerative Medicine of Gansu Province, Lanzhou, 730000, Gansu, People's Republic of China; Hepatopancreatobiliary Surgery Institute of Gansu Province, Medical College Cancer Center of Lanzhou University, Lanzhou, 730000, Gansu, People's Republic of China
| | - Lei Zhang
- The First School of Clinical Medical, Lanzhou University, Lanzhou, 730000, Gansu, People's Republic of China; Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, 730000, Gansu, People's Republic of China; Hepatopancreatobiliary Surgery Institute of Gansu Province, Medical College Cancer Center of Lanzhou University, Lanzhou, 730000, Gansu, People's Republic of China
| | - Honglong Zhang
- The First School of Clinical Medical, Lanzhou University, Lanzhou, 730000, Gansu, People's Republic of China
| | - Ye Xie
- The First School of Clinical Medical, Lanzhou University, Lanzhou, 730000, Gansu, People's Republic of China
| | - Xun Li
- The First School of Clinical Medical, Lanzhou University, Lanzhou, 730000, Gansu, People's Republic of China; Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, 730000, Gansu, People's Republic of China; Key Laboratory of Biotherapy and Regenerative Medicine of Gansu Province, Lanzhou, 730000, Gansu, People's Republic of China; Hepatopancreatobiliary Surgery Institute of Gansu Province, Medical College Cancer Center of Lanzhou University, Lanzhou, 730000, Gansu, People's Republic of China.
| |
Collapse
|
32
|
Galardi F, De Luca F, Romagnoli D, Biagioni C, Moretti E, Biganzoli L, Di Leo A, Migliaccio I, Malorni L, Benelli M. Cell-Free DNA-Methylation-Based Methods and Applications in Oncology. Biomolecules 2020; 10:E1677. [PMID: 33334040 PMCID: PMC7765488 DOI: 10.3390/biom10121677] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 12/07/2020] [Accepted: 12/14/2020] [Indexed: 12/11/2022] Open
Abstract
Liquid biopsy based on cell-free DNA (cfDNA) enables non-invasive dynamic assessment of disease status in patients with cancer, both in the early and advanced settings. The analysis of DNA-methylation (DNAm) from cfDNA samples holds great promise due to the intrinsic characteristics of DNAm being more prevalent, pervasive, and cell- and tumor-type specific than genomics, for which established cfDNA assays already exist. Herein, we report on recent advances on experimental strategies for the analysis of DNAm in cfDNA samples. We describe the main steps of DNAm-based analysis workflows, including pre-analytics of cfDNA samples, DNA treatment, assays for DNAm evaluation, and methods for data analysis. We report on protocols, biomolecular techniques, and computational strategies enabling DNAm evaluation in the context of cfDNA analysis, along with practical considerations on input sample requirements and costs. We provide an overview on existing studies exploiting cell-free DNAm biomarkers for the detection and monitoring of cancer in early and advanced settings, for the evaluation of drug resistance, and for the identification of the cell-of-origin of tumors. Finally, we report on DNAm-based tests approved for clinical use and summarize their performance in the context of liquid biopsy.
Collapse
Affiliation(s)
- Francesca Galardi
- «Sandro Pitigliani» Translational Research Unit, Hospital of Prato, 59100 Prato, Italy; (F.G.); (F.D.L.); (I.M.); (L.M.)
| | - Francesca De Luca
- «Sandro Pitigliani» Translational Research Unit, Hospital of Prato, 59100 Prato, Italy; (F.G.); (F.D.L.); (I.M.); (L.M.)
| | - Dario Romagnoli
- Bioinformatics Unit, Hospital of Prato, 59100 Prato, Italy; (D.R.); (C.B.)
| | - Chiara Biagioni
- Bioinformatics Unit, Hospital of Prato, 59100 Prato, Italy; (D.R.); (C.B.)
- «Sandro Pitigliani» Medical Oncology Department, Hospital of Prato, 59100 Prato, Italy; (E.M.); (L.B.); (A.D.L.)
| | - Erica Moretti
- «Sandro Pitigliani» Medical Oncology Department, Hospital of Prato, 59100 Prato, Italy; (E.M.); (L.B.); (A.D.L.)
| | - Laura Biganzoli
- «Sandro Pitigliani» Medical Oncology Department, Hospital of Prato, 59100 Prato, Italy; (E.M.); (L.B.); (A.D.L.)
| | - Angelo Di Leo
- «Sandro Pitigliani» Medical Oncology Department, Hospital of Prato, 59100 Prato, Italy; (E.M.); (L.B.); (A.D.L.)
| | - Ilenia Migliaccio
- «Sandro Pitigliani» Translational Research Unit, Hospital of Prato, 59100 Prato, Italy; (F.G.); (F.D.L.); (I.M.); (L.M.)
| | - Luca Malorni
- «Sandro Pitigliani» Translational Research Unit, Hospital of Prato, 59100 Prato, Italy; (F.G.); (F.D.L.); (I.M.); (L.M.)
- «Sandro Pitigliani» Medical Oncology Department, Hospital of Prato, 59100 Prato, Italy; (E.M.); (L.B.); (A.D.L.)
| | - Matteo Benelli
- Bioinformatics Unit, Hospital of Prato, 59100 Prato, Italy; (D.R.); (C.B.)
| |
Collapse
|
33
|
Laufer BI, Hwang H, Jianu JM, Mordaunt CE, Korf IF, Hertz-Picciotto I, LaSalle JM. Low-pass whole genome bisulfite sequencing of neonatal dried blood spots identifies a role for RUNX1 in Down syndrome DNA methylation profiles. Hum Mol Genet 2020; 29:3465-3476. [PMID: 33001180 PMCID: PMC7788293 DOI: 10.1093/hmg/ddaa218] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 09/16/2020] [Accepted: 09/25/2020] [Indexed: 12/17/2022] Open
Abstract
Neonatal dried blood spots (NDBS) are a widely banked sample source that enables retrospective investigation into early life molecular events. Here, we performed low-pass whole genome bisulfite sequencing (WGBS) of 86 NDBS DNA to examine early life Down syndrome (DS) DNA methylation profiles. DS represents an example of genetics shaping epigenetics, as multiple array-based studies have demonstrated that trisomy 21 is characterized by genome-wide alterations to DNA methylation. By assaying over 24 million CpG sites, thousands of genome-wide significant (q < 0.05) differentially methylated regions (DMRs) that distinguished DS from typical development and idiopathic developmental delay were identified. Machine learning feature selection refined these DMRs to 22 loci. The DS DMRs mapped to genes involved in neurodevelopment, metabolism, and transcriptional regulation. Based on comparisons with previous DS methylation studies and reference epigenomes, the hypermethylated DS DMRs were significantly (q < 0.05) enriched across tissues while the hypomethylated DS DMRs were significantly (q < 0.05) enriched for blood-specific chromatin states. A ~28 kb block of hypermethylation was observed on chromosome 21 in the RUNX1 locus, which encodes a hematopoietic transcription factor whose binding motif was the most significantly enriched (q < 0.05) overall and specifically within the hypomethylated DMRs. Finally, we also identified DMRs that distinguished DS NDBS based on the presence or absence of congenital heart disease (CHD). Together, these results not only demonstrate the utility of low-pass WGBS on NDBS samples for epigenome-wide association studies, but also provide new insights into the early life mechanisms of epigenomic dysregulation resulting from trisomy 21.
Collapse
Affiliation(s)
- Benjamin I Laufer
- Department of Medical Microbiology and Immunology, School of Medicine, University of California, Davis, CA 95616, USA.,Genome Center, University of California, Davis, CA 95616, USA.,MIND Institute, University of California, Davis, CA 95616, USA
| | - Hyeyeon Hwang
- Department of Medical Microbiology and Immunology, School of Medicine, University of California, Davis, CA 95616, USA.,Genome Center, University of California, Davis, CA 95616, USA.,MIND Institute, University of California, Davis, CA 95616, USA
| | - Julia M Jianu
- Department of Medical Microbiology and Immunology, School of Medicine, University of California, Davis, CA 95616, USA.,Genome Center, University of California, Davis, CA 95616, USA.,MIND Institute, University of California, Davis, CA 95616, USA
| | - Charles E Mordaunt
- Department of Medical Microbiology and Immunology, School of Medicine, University of California, Davis, CA 95616, USA.,Genome Center, University of California, Davis, CA 95616, USA.,MIND Institute, University of California, Davis, CA 95616, USA
| | - Ian F Korf
- Genome Center, University of California, Davis, CA 95616, USA.,Department of Molecular and Cellular Biology, College of Biological Sciences, University of California, Davis, CA 95616, USA
| | - Irva Hertz-Picciotto
- MIND Institute, University of California, Davis, CA 95616, USA.,Department of Public Health Sciences, School of Medicine, University of California, Davis, CA 95616, USA
| | - Janine M LaSalle
- Department of Medical Microbiology and Immunology, School of Medicine, University of California, Davis, CA 95616, USA.,Genome Center, University of California, Davis, CA 95616, USA.,MIND Institute, University of California, Davis, CA 95616, USA
| |
Collapse
|
34
|
Sangatsuda Y, Miura F, Araki H, Mizoguchi M, Hata N, Kuga D, Hatae R, Akagi Y, Amemiya T, Fujioka Y, Arai Y, Yoshida A, Shibata T, Yoshimoto K, Iihara K, Ito T. Base-resolution methylomes of gliomas bearing histone H3.3 mutations reveal a G34 mutant-specific signature shared with bone tumors. Sci Rep 2020; 10:16162. [PMID: 32999376 PMCID: PMC7527345 DOI: 10.1038/s41598-020-73116-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Accepted: 09/11/2020] [Indexed: 12/19/2022] Open
Abstract
Two recurrent mutations, K27M and G34R/V, in H3F3A, encoding non-canonical histone H3.3, are reported in pediatric and young adult gliomas, whereas G34W mutation is prevalent in bone tumors. In contrast to K27M mutation, it remains elusive how G34 mutations affect the epigenome. Here we performed whole-genome bisulfite sequencing of four G34R-mutated gliomas and the G34V-mutated glioma cell line KNS-42 for comparison with gliomas harboring K27M and no mutations in H3F3A and with G34W-mutated bone tumors. G34R-mutated gliomas exhibited lower global methylation levels, similar CpG island (CGI) methylation levels, and compromised hypermethylation of telomere-proximal CGIs, compared to the other two glioma subgroups. Hypermethylated regions specific to G34R-mutated gliomas were enriched for CGIs, including those of OLIG1, OLIG2, and canonical histone genes in the HIST1 cluster. They were notably hypermethylated in osteosarcomas with, but not without, G34W mutation. Independent component analysis revealed that G34 mutation-specific components shared a significant similarity between glioma and osteosarcoma, suggesting that G34 mutations exert characteristic methylomic effects regardless of the tumor tissue-of-origin. CRISPR/Cas9-mediated disruption of G34V-allele in KNS-42 cells led to demethylation of a subset of CGIs hypermethylated in G34R-mutated gliomas. These findings will provide a basis for elucidating epigenomic roles of G34 oncohistone in tumorigenesis.
Collapse
Affiliation(s)
- Yuhei Sangatsuda
- Department of Biochemistry, Kyushu University Graduate School of Medical Sciences, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan.,Department of Neurosurgery, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan
| | - Fumihito Miura
- Department of Biochemistry, Kyushu University Graduate School of Medical Sciences, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Hiromitsu Araki
- Department of Biochemistry, Kyushu University Graduate School of Medical Sciences, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Masahiro Mizoguchi
- Department of Neurosurgery, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan
| | - Nobuhiro Hata
- Department of Neurosurgery, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan
| | - Daisuke Kuga
- Department of Neurosurgery, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan
| | - Ryusuke Hatae
- Department of Neurosurgery, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan
| | - Yojiro Akagi
- Department of Neurosurgery, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan
| | - Takeo Amemiya
- Department of Neurosurgery, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan
| | - Yutaka Fujioka
- Department of Neurosurgery, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan
| | - Yasuhito Arai
- Division of Cancer Genomics, National Cancer Center Research Institute, Tokyo, Japan
| | - Akihiko Yoshida
- Department of Diagnostic Pathology, National Cancer Center Hospital, Tokyo, Japan
| | - Tatsuhiro Shibata
- Division of Cancer Genomics, National Cancer Center Research Institute, Tokyo, Japan
| | - Koji Yoshimoto
- Department of Neurosurgery, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan.,Department of Neurosurgery, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Koji Iihara
- Department of Neurosurgery, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan
| | - Takashi Ito
- Department of Biochemistry, Kyushu University Graduate School of Medical Sciences, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan.
| |
Collapse
|
35
|
NSD1-deposited H3K36me2 directs de novo methylation in the mouse male germline and counteracts Polycomb-associated silencing. Nat Genet 2020; 52:1088-1098. [PMID: 32929285 DOI: 10.1038/s41588-020-0689-z] [Citation(s) in RCA: 85] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 08/10/2020] [Indexed: 12/12/2022]
Abstract
De novo DNA methylation (DNAme) in mammalian germ cells is dependent on DNMT3A and DNMT3L. However, oocytes and spermatozoa show distinct patterns of DNAme. In mouse oocytes, de novo DNAme requires the lysine methyltransferase (KMTase) SETD2, which deposits H3K36me3. We show here that SETD2 is dispensable for de novo DNAme in the male germline. Instead, the lysine methyltransferase NSD1, which broadly deposits H3K36me2 in euchromatic regions, plays a critical role in de novo DNAme in prospermatogonia, including at imprinted genes. However, males deficient in germline NSD1 show a more severe defect in spermatogenesis than Dnmt3l-/- males. Notably, unlike DNMT3L, NSD1 safeguards a subset of genes against H3K27me3-associated transcriptional silencing. In contrast, H3K36me2 in oocytes is predominantly dependent on SETD2 and coincides with H3K36me3. Furthermore, females with NSD1-deficient oocytes are fertile. Thus, the sexually dimorphic pattern of DNAme in mature mouse gametes is orchestrated by distinct profiles of H3K36 methylation.
Collapse
|
36
|
Tanaka S, Ise W, Inoue T, Ito A, Ono C, Shima Y, Sakakibara S, Nakayama M, Fujii K, Miura I, Sharif J, Koseki H, Koni PA, Raman I, Li QZ, Kubo M, Fujiki K, Nakato R, Shirahige K, Araki H, Miura F, Ito T, Kawakami E, Baba Y, Kurosaki T. Tet2 and Tet3 in B cells are required to repress CD86 and prevent autoimmunity. Nat Immunol 2020; 21:950-961. [PMID: 32572241 DOI: 10.1038/s41590-020-0700-y] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Accepted: 05/04/2020] [Indexed: 12/15/2022]
Abstract
A contribution of epigenetic modifications to B cell tolerance has been proposed but not directly tested. Here we report that deficiency of ten-eleven translocation (Tet) DNA demethylase family members Tet2 and Tet3 in B cells led to hyperactivation of B and T cells, autoantibody production and lupus-like disease in mice. Mechanistically, in the absence of Tet2 and Tet3, downregulation of CD86, which normally occurs following chronic exposure of self-reactive B cells to self-antigen, did not take place. The importance of dysregulated CD86 expression in Tet2- and Tet3-deficient B cells was further demonstrated by the restriction, albeit not complete, on aberrant T and B cell activation following anti-CD86 blockade. Tet2- and Tet3-deficient B cells had decreased accumulation of histone deacetylase 1 (HDAC1) and HDAC2 at the Cd86 locus. Thus, our findings suggest that Tet2- and Tet3-mediated chromatin modification participates in repression of CD86 on chronically stimulated self-reactive B cells, which contributes, at least in part, to preventing autoimmunity.
Collapse
Affiliation(s)
- Shinya Tanaka
- Laboratory of Lymphocyte Differentiation, WPI Immunology Frontier Research Center, Osaka University, Suita, Japan.,Division of Immunology and Genome Biology, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan.,Division of Molecular Pathology, Research Institute for Biomedical Science, Tokyo University of Science, Noda, Japan
| | - Wataru Ise
- Laboratory of Lymphocyte Differentiation, WPI Immunology Frontier Research Center, Osaka University, Suita, Japan
| | - Takeshi Inoue
- Laboratory of Lymphocyte Differentiation, WPI Immunology Frontier Research Center, Osaka University, Suita, Japan
| | - Ayako Ito
- Laboratory of Lymphocyte Differentiation, WPI Immunology Frontier Research Center, Osaka University, Suita, Japan
| | - Chisato Ono
- Division of Immunology and Genome Biology, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Yoshihito Shima
- Laboratory of Thermo-Therapeutics for Vascular Dysfunction, Osaka University, Suita, Japan
| | - Shuhei Sakakibara
- Laboratory of Immune Regulation, WPI Immunology Frontier Research Center, Osaka University, Suita, Japan
| | - Manabu Nakayama
- Laboratory of Medical Omics Research, Kazusa DNA Research Institute, Kisarazu, Japan
| | - Kentaro Fujii
- Laboratory of Lymphocyte Differentiation, WPI Immunology Frontier Research Center, Osaka University, Suita, Japan
| | - Ikuo Miura
- Technology and Development Team for Mouse Phenotype Analysis, RIKEN BioResource Research Center, Tsukuba, Japan
| | - Jafar Sharif
- Laboratory of Developmental Genetics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Haruhiko Koseki
- Laboratory of Developmental Genetics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan.,Advanced Research Departments, Graduate School of Medicine, Chiba University, Chiba, Japan
| | | | - Indu Raman
- Microarray Core Facility, Department of Immunology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Quan-Zhen Li
- Microarray Core Facility, Department of Immunology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Masato Kubo
- Division of Molecular Pathology, Research Institute for Biomedical Science, Tokyo University of Science, Noda, Japan.,Laboratory for Cytokine Regulation, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Katsunori Fujiki
- Institute of Quantitative Biosciences, The University of Tokyo, Tokyo, Japan
| | - Ryuichiro Nakato
- Institute of Quantitative Biosciences, The University of Tokyo, Tokyo, Japan
| | - Katsuhiko Shirahige
- Institute of Quantitative Biosciences, The University of Tokyo, Tokyo, Japan
| | - Hiromitsu Araki
- Department of Biochemistry, Kyushu University Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Fumihito Miura
- Department of Biochemistry, Kyushu University Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Takashi Ito
- Department of Biochemistry, Kyushu University Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Eiryo Kawakami
- Medical Sciences Innovation Hub Program, RIKEN, Yokohama, Japan.,Department of Artificial Intelligence Medicine, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Yoshihiro Baba
- Laboratory of Lymphocyte Differentiation, WPI Immunology Frontier Research Center, Osaka University, Suita, Japan. .,Division of Immunology and Genome Biology, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan.
| | - Tomohiro Kurosaki
- Laboratory of Lymphocyte Differentiation, WPI Immunology Frontier Research Center, Osaka University, Suita, Japan. .,Laboratory of Lymphocyte Differentiation, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan.
| |
Collapse
|
37
|
Understanding metabolic adaptation by using bacterial laboratory evolution and trans-omics analysis. Biophys Rev 2020; 12:677-682. [PMID: 32394353 DOI: 10.1007/s12551-020-00695-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 04/28/2020] [Indexed: 12/16/2022] Open
Abstract
Many diseases such as metabolic syndrome, cancer, inflammatory diseases, and pathological phenomena can be understood as an adaptive reconstitution of the metabolic state (metabolic adaptation). One of the effective approaches to reveal the property of metabolic networks is using model organisms such as microorganisms that are easier to experiment with than higher organisms. Using the laboratory evolution approach, we can elucidate the evolutionary dynamics in various stress environments, which provide us an understanding of the metabolic adaptation. In addition, the integration of omics data and phenotypic data enables us to clarify the genetic and phenotypic alterations during adaptation. In this review, we describe our recent studies on bacterial laboratory evolution and the omics approach to clarify the stress adaptation process. We have also obtained high-dimensional phenotypic data using our automated culture system. By combining these genomic and transcriptomic data within high-throughput phenotypic data, we can discuss the complex trans-omics network of metabolic adaptation.
Collapse
|
38
|
2SBP: overview of the trans-omics session-measure × analyze metabolic adaptation of biological systems-at the 2019 BSJ Meeting in Miyazaki. Biophys Rev 2020; 12:299-300. [PMID: 32124241 DOI: 10.1007/s12551-020-00660-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Elucidation of the molecular mechanism underlying the metabolic adaptation is critical to understand homeostasis of life. This review provides the concept, experimental and computational methods, to deal with this issue using "trans-omics" approaches.
Collapse
|