1
|
Pfeiffer P, Nilsson J, Gallud A, Baladi T, Le HN, Bood M, Lemurell M, Dahlén A, Grøtli M, Esbjörner E, Wilhelmsson L. Metabolic RNA labeling in non-engineered cells following spontaneous uptake of fluorescent nucleoside phosphate analogues. Nucleic Acids Res 2024; 52:10102-10118. [PMID: 39162218 PMCID: PMC11417403 DOI: 10.1093/nar/gkae722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 07/04/2024] [Accepted: 08/07/2024] [Indexed: 08/21/2024] Open
Abstract
RNA and its building blocks play central roles in biology and have become increasingly important as therapeutic agents and targets. Hence, probing and understanding their dynamics in cells is important. Fluorescence microscopy offers live-cell spatiotemporal monitoring but requires labels. We present two fluorescent adenine analogue nucleoside phosphates which show spontaneous uptake and accumulation in cultured human cells, likely via nucleoside transporters, and show their potential utilization as cellular RNA labels. Upon uptake, one nucleotide analogue, 2CNqAXP, localizes to the cytosol and the nucleus. We show that it could then be incorporated into de novo synthesized cellular RNA, i.e. it was possible to achieve metabolic fluorescence RNA labeling without using genetic engineering to enhance incorporation, uptake-promoting strategies, or post-labeling through bio-orthogonal chemistries. By contrast, another nucleotide analogue, pAXP, only accumulated outside of the nucleus and was rapidly excreted. Consequently, this analogue did not incorporate into RNA. This difference in subcellular accumulation and retention results from a minor change in nucleobase chemical structure. This demonstrates the importance of careful design of nucleoside-based drugs, e.g. antivirals to direct their subcellular localization, and shows the potential of fine-tuning fluorescent base analogue structures to enhance the understanding of the function of such drugs.
Collapse
Affiliation(s)
- Pauline Pfeiffer
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, Kemivägen 10, SE-41296 Gothenburg, Sweden
| | - Jesper R Nilsson
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, Kemivägen 10, SE-41296 Gothenburg, Sweden
- LanteRNA (Stealth Labels Biotech AB), c/o Chalmers Ventures AB, Vera Sandbergs allé 8, SE-41296 Gothenburg, Sweden
| | - Audrey Gallud
- Department of Life Sciences, Chalmers University of Technology, Kemivägen 10, SE-41296 Gothenburg, Sweden
- Advanced Drug Delivery, Pharmaceutical Sciences, BioPharmaceuticals R&D, AstraZeneca, SE-43181 Gothenburg, Sweden
| | - Tom Baladi
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, Kemivägen 10, SE-41296 Gothenburg, Sweden
- Oligonucleotide Discovery, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Hoang-Ngoan Le
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, Kemivägen 10, SE-41296 Gothenburg, Sweden
- Oligonucleotide Discovery, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Mattias Bood
- Oligonucleotide Discovery, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
- Department of Chemistry and Molecular Biology, University of Gothenburg, P.O. Box 462, SE-40530 Gothenburg, Sweden
| | - Malin Lemurell
- Medicinal Chemistry, Research and Early Development, Cardiovascular, Renal and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Anders Dahlén
- Oligonucleotide Discovery, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Morten Grøtli
- Department of Chemistry and Molecular Biology, University of Gothenburg, P.O. Box 462, SE-40530 Gothenburg, Sweden
| | - Elin K Esbjörner
- Department of Life Sciences, Chalmers University of Technology, Kemivägen 10, SE-41296 Gothenburg, Sweden
| | - L Marcus Wilhelmsson
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, Kemivägen 10, SE-41296 Gothenburg, Sweden
| |
Collapse
|
2
|
Luma L, Pursteiner JC, Fischer T, Hegger R, Burghardt I, Wachtveitl J, Heckel A. Dark times: iminothioindoxyl- C-nucleoside fluorescence quenchers with defined location and minimal perturbation in DNA. Chem Sci 2024:d4sc05175k. [PMID: 39268213 PMCID: PMC11388086 DOI: 10.1039/d4sc05175k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 08/30/2024] [Indexed: 09/15/2024] Open
Abstract
Fluorescence quenchers for application in DNA - like the BHQ family - tend to be large molecules which need to be attached, often post-synthetically, via long linkers. In this study, we present two new iminothioindoxyl-C-nucleosidic quenchers which are very compact, feature a native backbone and can be introduced into DNA via regular solid-phase synthesis. Especially with dT as juxtaposed nucleobase, they have a defined location and orientation in a DNA duplex with minimal perturbation of the structure and hence interaction capabilities. Depending on the nature of the fluorophore, they can be used for orientation-(un)specific FRET studies. Their Förster radius is smaller than the one of BHQ-2. This makes these quenchers ideal for sophisticated studies using conditional quenching in the range between 470 and 670 nm in DNA.
Collapse
Affiliation(s)
- Larita Luma
- Goethe University Frankfurt, Institute for Organic Chemistry and Chemical Biology Max-von-Laue-Str. 7 60438 Frankfurt Germany
| | - Judith C Pursteiner
- Goethe University Frankfurt, Institute for Organic Chemistry and Chemical Biology Max-von-Laue-Str. 7 60438 Frankfurt Germany
| | - Tobias Fischer
- Goethe University Frankfurt, Institute for Physical and Theoretical Chemistry Max-von-Laue-Str. 7 60438 Frankfurt Germany
| | - Rainer Hegger
- Goethe University Frankfurt, Institute for Physical and Theoretical Chemistry Max-von-Laue-Str. 7 60438 Frankfurt Germany
| | - Irene Burghardt
- Goethe University Frankfurt, Institute for Physical and Theoretical Chemistry Max-von-Laue-Str. 7 60438 Frankfurt Germany
| | - Josef Wachtveitl
- Goethe University Frankfurt, Institute for Physical and Theoretical Chemistry Max-von-Laue-Str. 7 60438 Frankfurt Germany
| | - Alexander Heckel
- Goethe University Frankfurt, Institute for Organic Chemistry and Chemical Biology Max-von-Laue-Str. 7 60438 Frankfurt Germany
| |
Collapse
|
3
|
Hurter F, Halbritter ALJ, Ahmad IM, Braun M, Sigurdsson ST, Wachtveitl J. Förster resonance energy transfer within the neomycin aptamer. Phys Chem Chem Phys 2024; 26:7157-7165. [PMID: 38348887 DOI: 10.1039/d3cp05728c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
Förster resonance energy transfer (FRET) measurements between two dyes is a powerful method to interrogate both structure and dynamics of biopolymers. The intensity of a fluorescence signal in a FRET measurement is dependent on both the distance and the relative orientation of the dyes. The latter can at the same time both complicate the analysis and give more detailed information. Here we present a detailed spectroscopic study of the energy transfer between the rigid FRET labels Çmf (donor) and tCnitro (quencher/acceptor) within the neomycin aptamer N1. The energy transfer originates from multiple emitting states of the donor and occurs on a low picosecond to nanosecond time-scale. To fully characterize the energy transfer, ultrafast transient absorption measurements were performed in conjunction with static fluorescence and time-correlated single photon counting (TCSPC) measurements, showing a clear distance dependence of both signal intensity and lifetime. Using a known NMR structure of the ligand-bound neomycin aptamer, the distance between the two labels was used to estimate κ2 and, therefore, make qualitative statements about the change in orientation after ligand binding with unprecedented temporal and spatial resolution. The advantages and potential applications of absorption-based methods using rigid labels for the characterization of FRET processes are discussed.
Collapse
Affiliation(s)
- Florian Hurter
- Institute of Physical and Theoretical Chemistry, Goethe University Frankfurt, Main, Max-von-Laue-Str. 7, Frankfurt 60438, Germany.
| | - Anna-Lena J Halbritter
- Science Institute, University of Iceland, Dunhaga 3, Reykjavik 107, Iceland
- Department of Chemistry, Ludwig-Maximilians-University (LMU), Munich, Germany
| | - Iram M Ahmad
- Science Institute, University of Iceland, Dunhaga 3, Reykjavik 107, Iceland
| | - Markus Braun
- Institute of Physical and Theoretical Chemistry, Goethe University Frankfurt, Main, Max-von-Laue-Str. 7, Frankfurt 60438, Germany.
| | | | - Josef Wachtveitl
- Institute of Physical and Theoretical Chemistry, Goethe University Frankfurt, Main, Max-von-Laue-Str. 7, Frankfurt 60438, Germany.
| |
Collapse
|
4
|
Sundar Rajan V, Wypijewska Del Nogal A, Levin S, Wilhelmsson LM, Westerlund F. Exploring the conformational dynamics of the SARS-CoV-2 SL4 hairpin by combining optical tweezers and base analogues. NANOSCALE 2024; 16:752-764. [PMID: 38087988 PMCID: PMC10763987 DOI: 10.1039/d3nr04110g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 12/06/2023] [Indexed: 01/04/2024]
Abstract
The parasitic nature of the SARS-CoV-2 virus demands selective packaging of its RNA genome (gRNA) from the abundance of other nucleic acids present in infected cells. Despite increasing evidence that stem-loop 4 (SL4) of the gRNA 5' UTR is involved in the initiation of this process by binding the nucleocapsid (N) protein, little is known about its conformational dynamics. Here, we unravel the stability, dynamics and (un)folding pathways of SL4 using optical tweezers and a base analogue, tCO, that provides a local and subtle increase in base stacking without perturbing hydrogen bonding. We find that SL4 (un)folds mainly in a single step or through an intermediate, encompassing nucleotides from the central U bulge to the hairpin loop. Due to an upper-stem CU mismatch, SL4 is prone to misfold, the extent of which can be tuned by incorporating tCO at different positions. Our study contributes to a better understanding of SARS-CoV-2 packaging and the design of drugs targeting SL4. We also highlight the generalizability of using base analogues in optical tweezers experiments for probing intramolecular states and conformational transitions of various nucleic acids at the level of single molecules and with base-pair resolution.
Collapse
Affiliation(s)
- Vinoth Sundar Rajan
- Division of Chemical Biology, Department of Life Sciences, Chalmers University of Technology, Gothenburg, SE-412 96, Sweden.
- Division of Chemistry and Biochemistry, Department of Chemistry and Chemical Engineering, Chalmers University of Technology, Gothenburg, SE-412 96, Sweden.
| | - Anna Wypijewska Del Nogal
- Division of Chemistry and Biochemistry, Department of Chemistry and Chemical Engineering, Chalmers University of Technology, Gothenburg, SE-412 96, Sweden.
| | - Sune Levin
- Division of Chemical Biology, Department of Life Sciences, Chalmers University of Technology, Gothenburg, SE-412 96, Sweden.
| | - L Marcus Wilhelmsson
- Division of Chemistry and Biochemistry, Department of Chemistry and Chemical Engineering, Chalmers University of Technology, Gothenburg, SE-412 96, Sweden.
| | - Fredrik Westerlund
- Division of Chemical Biology, Department of Life Sciences, Chalmers University of Technology, Gothenburg, SE-412 96, Sweden.
| |
Collapse
|
5
|
Liu MH, Yu WT, Zhao NN, Qiu JG, Jiang BH, Zhang Y, Zhang CY. Development of a N 6-methyladenosine-directed single quantum dot-based biosensor for sensitive detection of METTL3/14 complex activity in breast cancer tissues. Anal Chim Acta 2023; 1279:341796. [PMID: 37827689 DOI: 10.1016/j.aca.2023.341796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 08/31/2023] [Accepted: 09/06/2023] [Indexed: 10/14/2023]
Abstract
The METTL3/14 complex is an important RNA N6-Methyladenosine (m6A) methyltransferase in organisms, and the abnormal METTL3/14 complex activity is associated with the pathogenesis and various cancers. Sensitive detection of METTL3/14 complex is essential to tumor pathogenesis study, cancer diagnosis, and anti-cancer drug discovery. However, traditional methods for METTL3/14 complex assay suffer from poor specificity, costly antibodies, unstable RNA substrates, and low sensitivity. Herein, we construct a single quantum dot (QD)-based förster resonance energy transfer (FRET) biosensor for sensitive detection of METTL3/14 complex activity. In the presence of METTL3/14 complex, it catalyzes the methylation of adenine in the substrate probe, leading to the formation of m6A that protects the substrate probes from MazF-mediated cleavage. The hybridization of methylated DNA substrate with biotinylated capture probe initiates polymerization reaction to obtain a biotinylated double-stranded DNA (dsDNA) with the incorporation of numerous Cy5 fluorophores. Subsequently, the Cy5-incorporated dsDNA can self-assembly onto the 605QD surface to form the 605QD-dsDNA-Cy5 nanostructure, causing FRET between 605QD donor and Cy5 acceptor. This biosensor has excellent sensitivity with a limit of detection (LOD) of 3.11 × 10-17 M, and it can measure the METTL3/14 complex activity in a single cell. Moreover, this biosensor can be used to evaluate the METTL3/14 complex kinetic parameters and screen potential inhibitors. Furthermore, it can differentiate the METTL3/14 complex expression in healthy human tissues and breast cancer patient tissues, providing a powerful tool for cancer pathogenesis study, clinical diagnosis, prognosis monitoring, and drug discovery.
Collapse
Affiliation(s)
- Ming-Hao Liu
- Translational Medicine Center, The First Affiliated Hospital of Zhengzhou University, The Academy of Medical Sciences, Zhengzhou University, Zhengzhou, 450052, China; College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan, 250014, China; College of Chemistry and Chemical Engineering, Qilu Normal University, Jinan, 250200, China
| | - Wan-Tong Yu
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan, 250014, China
| | - Ning-Ning Zhao
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan, 250014, China
| | - Jian-Ge Qiu
- Translational Medicine Center, The First Affiliated Hospital of Zhengzhou University, The Academy of Medical Sciences, Zhengzhou University, Zhengzhou, 450052, China
| | - Bing-Hua Jiang
- Translational Medicine Center, The First Affiliated Hospital of Zhengzhou University, The Academy of Medical Sciences, Zhengzhou University, Zhengzhou, 450052, China.
| | - Yan Zhang
- College of Chemistry and Chemical Engineering, Qilu Normal University, Jinan, 250200, China.
| | - Chun-Yang Zhang
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, China.
| |
Collapse
|
6
|
Contribution of smFRET to Chromatin Research. BIOPHYSICA 2023. [DOI: 10.3390/biophysica3010007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Abstract
Chromatins are structural components of chromosomes and consist of DNA and histone proteins. The structure, dynamics, and function of chromatins are important in regulating genetic processes. Several different experimental and theoretical tools have been employed to understand chromatins better. In this review, we will focus on the literatures engrossed in understanding of chromatins using single-molecule Förster resonance energy transfer (smFRET). smFRET is a single-molecule fluorescence microscopic technique that can furnish information regarding the distance between two points in space. This has been utilized to efficiently unveil the structural details of chromatins.
Collapse
|
7
|
Steinmetzger C, Höbartner C. Probing of Fluorogenic RNA Aptamers via Supramolecular Förster Resonance Energy Transfer with a Universal Fluorescent Nucleobase Analog. Methods Mol Biol 2023; 2570:155-173. [PMID: 36156781 DOI: 10.1007/978-1-0716-2695-5_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Fluorogenic RNA aptamers are synthetic RNAs that have been evolved by in vitro selection methods to bind and light up conditionally fluorescent organic ligands. Compared with other probes for RNA detection, they are less invasive than hybridization-based methods (FISH, molecular beacons) and are considerably smaller than fluorescent protein-recruiting systems (MS2, Pumilio variants). Fluorogenic aptamers have therefore found widespread use as genetically encodable tags for RNA detection in live cells and have also been used in combination with riboswitches to construct versatile metabolite sensors for in vitro use. Their success builds on a fundamental understanding of their three-dimensional structure to explain the mechanisms of ligand interaction and to rationally design functional aptamer devices. In this protocol, we describe a supramolecular FRET-based structure probing method for fluorogenic aptamers that exploits distance- and orientation-dependent energy transfer efficiencies between site-specifically incorporated fluorescent nucleoside analogs and non-covalently bound ligands, exemplified by 4-cyanoindol riboside (4CI) and the DMHBI+-binding RNA aptamer Chili. This method yields structural restraints that bridge the gap between traditional low-resolution secondary structure probing methods and more elaborate high-resolution methods such as X-ray crystallography and NMR spectroscopy.
Collapse
Affiliation(s)
- Christian Steinmetzger
- Institute of Organic Chemistry, Julius Maximilians University Würzburg, Würzburg, Germany
| | - Claudia Höbartner
- Institute of Organic Chemistry, Julius Maximilians University Würzburg, Würzburg, Germany. .,Center for Nanosystems Chemistry (CNC), Julius Maximilians University Würzburg, Würzburg, Germany.
| |
Collapse
|
8
|
Muraru S, Muraru S, Nitu FR, Ionita M. Recent Efforts and Milestones for Simulating Nucleic Acid FRET Experiments through Computational Methods. J Chem Inf Model 2022; 62:232-239. [PMID: 35014791 DOI: 10.1021/acs.jcim.1c00957] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Computational methods can greatly aid nucleic acid fluorescence experiments by either offering fully detailed atomic insights into the conformations and interactions present in the studied system or by providing accurate simulations of the fundamental parameters. Fluorescence-based optical biosensors show great potential for clinical diagnosis of life-altering diseases with a very high specificity. Many of the designs for such rely on the concept of Förster resonance energy transfer (FRET). Currently, the methods used experimentally make use of theoretical assumptions which fundamentally affect the results. Having a detailed atomistic overview or significant simulated parameters could improve the understanding of the calculations and provide much more accurate outcomes. However, there are many challenges that need to be addressed before standardized computational protocols can be employed. This review is meant to highlight the progress made for computational methods used to simulate FRET experiments for nucleic acid probes. Recent advances have been made in computational tools, such as force field parametrizations and improved protocols. Complementary simulations to experimental data are also comprised in the this review.
Collapse
Affiliation(s)
- Sorin Muraru
- Faculty of Medical Engineering, University Politehnica of Bucharest, Gh. Polizu Street 1-7, 011061 Bucharest, Romania
| | - Sebastian Muraru
- Faculty of Medical Engineering, University Politehnica of Bucharest, Gh. Polizu Street 1-7, 011061 Bucharest, Romania
| | - Florentin Romeo Nitu
- Faculty of Medical Engineering, University Politehnica of Bucharest, Gh. Polizu Street 1-7, 011061 Bucharest, Romania
| | - Mariana Ionita
- Faculty of Medical Engineering, University Politehnica of Bucharest, Gh. Polizu Street 1-7, 011061 Bucharest, Romania.,Advanced Polymer Materials Group, University Polithenica of Bucharest, Gh. Polizu Street 1-7, 011061 Bucharest, Romania
| |
Collapse
|
9
|
Sundar Rajan V, Viader-Godoy X, Lin YL, Dutta U, Ritort F, Westerlund F, Wilhelmsson LM. Mechanical characterization of base analogue modified nucleic acids by force spectroscopy. Phys Chem Chem Phys 2021; 23:14151-14155. [PMID: 34180930 PMCID: PMC8261857 DOI: 10.1039/d1cp01985f] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
We use mechanical unfolding of single DNA hairpins with modified bases to accurately assess intra- and intermolecular forces in nucleic acids. As expected, the modification stabilizes the hybridized hairpin, but we also observe intriguing stacking interactions in the unfolded hairpin. Our study highlights the benefit of using base-modified nucleic acids in force-spectroscopy.
Collapse
Affiliation(s)
- Vinoth Sundar Rajan
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, Sweden. and Department of Biology and Biological Engineering, Chalmers University of Technology, Sweden.
| | - Xavier Viader-Godoy
- Small Biosystems Lab, Condensed Matter Physics Department, Universitat de Barcelona, C/Marti i Franques 1, Barcelona 08028, Spain
| | - Yii-Lih Lin
- Department of Biology and Biological Engineering, Chalmers University of Technology, Sweden.
| | - Uttama Dutta
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, Sweden. and Department of Biology and Biological Engineering, Chalmers University of Technology, Sweden.
| | - Felix Ritort
- Small Biosystems Lab, Condensed Matter Physics Department, Universitat de Barcelona, C/Marti i Franques 1, Barcelona 08028, Spain
| | - Fredrik Westerlund
- Department of Biology and Biological Engineering, Chalmers University of Technology, Sweden.
| | - L Marcus Wilhelmsson
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, Sweden.
| |
Collapse
|
10
|
Nilsson JR, Baladi T, Gallud A, Baždarević D, Lemurell M, Esbjörner EK, Wilhelmsson LM, Dahlén A. Fluorescent base analogues in gapmers enable stealth labeling of antisense oligonucleotide therapeutics. Sci Rep 2021; 11:11365. [PMID: 34059711 PMCID: PMC8166847 DOI: 10.1038/s41598-021-90629-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 05/13/2021] [Indexed: 01/28/2023] Open
Abstract
To expand the antisense oligonucleotide (ASO) fluorescence labeling toolbox beyond covalent conjugation of external dyes (e.g. ATTO-, Alexa Fluor-, or cyanine dyes), we herein explore fluorescent base analogues (FBAs) as a novel approach to endow fluorescent properties to ASOs. Both cytosine and adenine analogues (tC, tCO, 2CNqA, and pA) were incorporated into a 16mer ASO sequence with a 3-10-3 cEt-DNA-cEt (cEt = constrained ethyl) gapmer design. In addition to a comprehensive photophysical characterization, we assess the label-induced effects on the gapmers' RNA affinities, RNA-hybridized secondary structures, and knockdown efficiencies. Importantly, we find practically no perturbing effects for gapmers with single FBA incorporations in the biologically critical gap region and, except for pA, the FBAs do not affect the knockdown efficiencies. Incorporating two cytosine FBAs in the gap is equally well tolerated, while two adenine analogues give rise to slightly reduced knockdown efficiencies and what could be perturbed secondary structures. We furthermore show that the FBAs can be used to visualize gapmers inside live cells using fluorescence microscopy and flow cytometry, enabling comparative assessment of their uptake. This altogether shows that FBAs are functional ASO probes that provide a minimally perturbing in-sequence labeling option for this highly relevant drug modality.
Collapse
Affiliation(s)
- Jesper R Nilsson
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, 412 96, Gothenburg, Sweden
| | - Tom Baladi
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, 412 96, Gothenburg, Sweden.,Medicinal Chemistry, Research and Early Development, Cardiovascular, Renal and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden.,Oligonucleotide Discovery, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Audrey Gallud
- Department of Biology and Biological Engineering, Chalmers University of Technology, 41296, Gothenburg, Sweden.,Advanced Drug Delivery, Pharmaceutical Sciences, R&D, AstraZeneca, Gothenburg, Sweden
| | - Dženita Baždarević
- Bioscience, Research and Early Development, Cardiovascular, Renal and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Malin Lemurell
- Medicinal Chemistry, Research and Early Development, Cardiovascular, Renal and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Elin K Esbjörner
- Department of Biology and Biological Engineering, Chalmers University of Technology, 41296, Gothenburg, Sweden
| | - L Marcus Wilhelmsson
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, 412 96, Gothenburg, Sweden
| | - Anders Dahlén
- Oligonucleotide Discovery, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden.
| |
Collapse
|
11
|
Bood M, Del Nogal AW, Nilsson JR, Edfeldt F, Dahlén A, Lemurell M, Wilhelmsson LM, Grøtli M. Interbase-FRET binding assay for pre-microRNAs. Sci Rep 2021; 11:9396. [PMID: 33931703 PMCID: PMC8087795 DOI: 10.1038/s41598-021-88922-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 04/19/2021] [Indexed: 02/07/2023] Open
Abstract
The aberrant expression of microRNAs (miRs) has been linked to several human diseases. A promising approach for targeting these anomalies is the use of small-molecule inhibitors of miR biogenesis. These inhibitors have the potential to (i) dissect miR mechanisms of action, (ii) discover new drug targets, and (iii) function as new therapeutic agents. Here, we designed Förster resonance energy transfer (FRET)-labeled oligoribonucleotides of the precursor of the oncogenic miR-21 (pre-miR-21) and used them together with a set of aminoglycosides to develop an interbase-FRET assay to detect ligand binding to pre-miRs. Our interbase-FRET assay accurately reports structural changes of the RNA oligonucleotide induced by ligand binding. We demonstrate its application in a rapid, qualitative drug candidate screen by assessing the relative binding affinity between 12 aminoglycoside antibiotics and pre-miR-21. Surface plasmon resonance (SPR) and isothermal titration calorimetry (ITC) were used to validate our new FRET method, and the accuracy of our FRET assay was shown to be similar to the established techniques. With its advantages over SPR and ITC owing to its high sensitivity, small sample size, straightforward technique and the possibility for high-throughput expansion, we envision that our solution-based method can be applied in pre-miRNA–target binding studies.
Collapse
Affiliation(s)
- Mattias Bood
- Department of Chemistry and Molecular Biology, University of Gothenburg, 412 96, Gothenburg, Sweden.,Medicinal Chemistry, Research and Early Development, Cardiovascular, Renal and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Pepparedsleden 1, 431 83, Mölndal, Sweden
| | - Anna Wypijewska Del Nogal
- Department of Chemistry and Chemical Engineering, Chemistry and Biochemistry, Chalmers University of Technology, 412 96, Gothenburg, Sweden
| | - Jesper R Nilsson
- Department of Chemistry and Chemical Engineering, Chemistry and Biochemistry, Chalmers University of Technology, 412 96, Gothenburg, Sweden
| | - Fredrik Edfeldt
- Structure & Biophysics, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Pepparedsleden 1, 431 83, Mölndal, Sweden
| | - Anders Dahlén
- Oligonucleotide Discovery, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Pepparedsleden 1, 431 83, Mölndal, Sweden
| | - Malin Lemurell
- Medicinal Chemistry, Research and Early Development, Cardiovascular, Renal and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Pepparedsleden 1, 431 83, Mölndal, Sweden
| | - L Marcus Wilhelmsson
- Department of Chemistry and Chemical Engineering, Chemistry and Biochemistry, Chalmers University of Technology, 412 96, Gothenburg, Sweden
| | - Morten Grøtli
- Department of Chemistry and Molecular Biology, University of Gothenburg, 412 96, Gothenburg, Sweden.
| |
Collapse
|
12
|
Mak CH, Phan ENH. Diagrammatic approaches to RNA structures with trinucleotide repeats. Biophys J 2021; 120:2343-2354. [PMID: 33887227 PMCID: PMC8390803 DOI: 10.1016/j.bpj.2021.04.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 04/07/2021] [Accepted: 04/09/2021] [Indexed: 11/30/2022] Open
Abstract
Trinucleotide repeat expansion disorders are associated with the overexpansion of (CNG) repeats on the genome. Messenger RNA transcripts of sequences with greater than 60–100 (CNG) tandem units have been implicated in trinucleotide repeat expansion disorder pathogenesis. In this work, we develop a diagrammatic theory to study the structural diversity of these (CNG)n RNA sequences. Representing structural elements on the chain’s conformation by a set of graphs and employing elementary diagrammatic methods, we have formulated a renormalization procedure to re-sum these graphs and arrive at a closed-form expression for the ensemble partition function. With a simple approximation for the renormalization and applied to extended (CNG)n sequences, this theory can comprehensively capture an infinite set of conformations with any number and any combination of duplexes, hairpins, multiway junctions, and quadruplexes. To quantify the diversity of different (CNG)n ensembles, the analytical equations derived from the diagrammatic theory were solved numerically to derive equilibrium estimates for the secondary structural contents of the chains. The results suggest that the structural ensembles of (CNG)n repeat sequence with n ∼60 are surprisingly diverse, and the distribution is sensitive to the ability of the N nucleotide to make noncanonical pairs and whether the (CNG)n sequence can sustain stable quadruplexes. The results show how perturbations in the form of biases on the stabilities of the various structural motifs, duplexes, junctions, helices, and quadruplexes could affect the secondary structures of the chains and how these structures may switch when they are perturbed.
Collapse
Affiliation(s)
- Chi H Mak
- Department of Chemistry, Center of Applied Mathematical Sciences and Department of Quantitative and Computational Biology, University of Southern California, Los Angeles, California.
| | - Ethan N H Phan
- Department of Chemistry, University of Southern California, Los Angeles, California
| |
Collapse
|
13
|
Baladi T, Nilsson JR, Gallud A, Celauro E, Gasse C, Levi-Acobas F, Sarac I, Hollenstein MR, Dahlén A, Esbjörner EK, Wilhelmsson LM. Stealth Fluorescence Labeling for Live Microscopy Imaging of mRNA Delivery. J Am Chem Soc 2021; 143:5413-5424. [PMID: 33797236 PMCID: PMC8154517 DOI: 10.1021/jacs.1c00014] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
![]()
Methods for tracking
RNA inside living cells without perturbing
their natural interactions and functions are critical within biology
and, in particular, to facilitate studies of therapeutic RNA delivery.
We present a stealth labeling approach that can efficiently, and with
high fidelity, generate RNA transcripts, through enzymatic incorporation
of the triphosphate of tCO, a fluorescent tricyclic cytosine
analogue. We demonstrate this by incorporation of tCO in
up to 100% of the natural cytosine positions of a 1.2 kb mRNA encoding
for the histone H2B fused to GFP (H2B:GFP). Spectroscopic characterization
of this mRNA shows that the incorporation rate of tCO is
similar to cytosine, which allows for efficient labeling and controlled
tuning of labeling ratios for different applications. Using live cell
confocal microscopy and flow cytometry, we show that the tCO-labeled mRNA is efficiently translated into H2B:GFP inside human
cells. Hence, we not only develop the use of fluorescent base analogue
labeling of nucleic acids in live-cell microscopy but also, importantly,
show that the resulting transcript is translated into the correct
protein. Moreover, the spectral properties of our transcripts and
their translation product allow for their straightforward, simultaneous
visualization in live cells. Finally, we find that chemically transfected
tCO-labeled RNA, unlike a state-of-the-art fluorescently
labeled RNA, gives rise to expression of a similar amount of protein
as its natural counterpart, hence representing a methodology for studying
natural, unperturbed processing of mRNA used in RNA therapeutics and
in vaccines, like the ones developed against SARS-CoV-2.
Collapse
Affiliation(s)
- Tom Baladi
- Department of Chemistry and Chemical Engineering, Chemistry and Biochemistry, Chalmers University of Technology, SE-41296 Gothenburg, Sweden.,Medicinal Chemistry, Research and Early Development, Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Jesper R Nilsson
- Department of Chemistry and Chemical Engineering, Chemistry and Biochemistry, Chalmers University of Technology, SE-41296 Gothenburg, Sweden
| | - Audrey Gallud
- Department of Biology and Biological Engineering, Chemical Biology, Chalmers University of Technology, SE-41296 Gothenburg, Sweden
| | - Emanuele Celauro
- Department of Biology and Biological Engineering, Chemical Biology, Chalmers University of Technology, SE-41296 Gothenburg, Sweden
| | - Cécile Gasse
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, 91057 Evry, France
| | - Fabienne Levi-Acobas
- Department of Structural Biology and Chemistry, Laboratory for Bioorganic Chemistry of Nucleic Acids, CNRS UMR3523, Institut Pasteur, 28, Rue du Docteur Roux, 75724 Paris CEDEX 15, France
| | - Ivo Sarac
- Department of Structural Biology and Chemistry, Laboratory for Bioorganic Chemistry of Nucleic Acids, CNRS UMR3523, Institut Pasteur, 28, Rue du Docteur Roux, 75724 Paris CEDEX 15, France
| | - Marcel R Hollenstein
- Department of Structural Biology and Chemistry, Laboratory for Bioorganic Chemistry of Nucleic Acids, CNRS UMR3523, Institut Pasteur, 28, Rue du Docteur Roux, 75724 Paris CEDEX 15, France
| | - Anders Dahlén
- Medicinal Chemistry, Research and Early Development, Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Elin K Esbjörner
- Department of Biology and Biological Engineering, Chemical Biology, Chalmers University of Technology, SE-41296 Gothenburg, Sweden
| | - L Marcus Wilhelmsson
- Department of Chemistry and Chemical Engineering, Chemistry and Biochemistry, Chalmers University of Technology, SE-41296 Gothenburg, Sweden
| |
Collapse
|
14
|
Recognition of non-CpG repeats in Alu and ribosomal RNAs by the Z-RNA binding domain of ADAR1 induces A-Z junctions. Nat Commun 2021; 12:793. [PMID: 33542240 PMCID: PMC7862695 DOI: 10.1038/s41467-021-21039-0] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 01/07/2021] [Indexed: 12/11/2022] Open
Abstract
Adenosine-to-inosine (A-to-I) editing of eukaryotic cellular RNAs is essential for protection against auto-immune disorders. Editing is carried out by ADAR1, whose innate immune response-specific cytoplasmic isoform possesses a Z-DNA binding domain (Zα) of unknown function. Zα also binds to CpG repeats in RNA, which are a hallmark of Z-RNA formation. Unexpectedly, Zα has been predicted — and in some cases even shown — to bind to specific regions within mRNA and rRNA devoid of such repeats. Here, we use NMR, circular dichroism, and other biophysical approaches to demonstrate and characterize the binding of Zα to mRNA and rRNA fragments. Our results reveal a broad range of RNA sequences that bind to Zα and adopt Z-RNA conformations. Binding is accompanied by destabilization of neighboring A-form regions which is similar in character to what has been observed for B-Z-DNA junctions. The binding of Zα to non-CpG sequences is specific, cooperative and occurs with an affinity in the low micromolar range. This work allows us to propose a model for how Zα could influence the RNA binding specificity of ADAR1. ADAR1 is an interferon-induced enzyme that catalyzes editing of adenine to inosine across the transcriptome as part of the immune response. Here the authors establish how ADAR1 recognizes non-CpG RNA sequences to facilitate the formation of A-Z junctions.
Collapse
|
15
|
McKenzie LK, El-Khoury R, Thorpe JD, Damha MJ, Hollenstein M. Recent progress in non-native nucleic acid modifications. Chem Soc Rev 2021; 50:5126-5164. [DOI: 10.1039/d0cs01430c] [Citation(s) in RCA: 76] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
While Nature harnesses RNA and DNA to store, read and write genetic information, the inherent programmability, synthetic accessibility and wide functionality of these nucleic acids make them attractive tools for use in a vast array of applications.
Collapse
Affiliation(s)
- Luke K. McKenzie
- Institut Pasteur
- Department of Structural Biology and Chemistry
- Laboratory for Bioorganic Chemistry of Nucleic Acids
- CNRS UMR3523
- 75724 Paris Cedex 15
| | | | | | | | - Marcel Hollenstein
- Institut Pasteur
- Department of Structural Biology and Chemistry
- Laboratory for Bioorganic Chemistry of Nucleic Acids
- CNRS UMR3523
- 75724 Paris Cedex 15
| |
Collapse
|
16
|
Wypijewska Del Nogal A, Füchtbauer AF, Bood M, Nilsson JR, Wranne MS, Sarangamath S, Pfeiffer P, Rajan VS, El-Sagheer AH, Dahlén A, Brown T, Grøtli M, Wilhelmsson LM. Getting DNA and RNA out of the dark with 2CNqA: a bright adenine analogue and interbase FRET donor. Nucleic Acids Res 2020; 48:7640-7652. [PMID: 32558908 PMCID: PMC7641321 DOI: 10.1093/nar/gkaa525] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 05/15/2020] [Accepted: 06/09/2020] [Indexed: 12/16/2022] Open
Abstract
With the central role of nucleic acids there is a need for development of fluorophores that facilitate the visualization of processes involving nucleic acids without perturbing their natural properties and behaviour. Here, we incorporate a new analogue of adenine, 2CNqA, into both DNA and RNA, and evaluate its nucleobase-mimicking and internal fluorophore capacities. We find that 2CNqA displays excellent photophysical properties in both nucleic acids, is highly specific for thymine/uracil, and maintains and slightly stabilises the canonical conformations of DNA and RNA duplexes. Moreover, the 2CNqA fluorophore has a quantum yield in single-stranded and duplex DNA ranging from 10% to 44% and 22% to 32%, respectively, and a slightly lower one (average 12%) inside duplex RNA. In combination with a comparatively strong molar absorptivity for this class of compounds, the resulting brightness of 2CNqA inside double-stranded DNA is the highest reported for a fluorescent base analogue. The high, relatively sequence-independent quantum yield in duplexes makes 2CNqA promising as a nucleic acid label and as an interbase Förster resonance energy transfer (FRET) donor. Finally, we report its excellent spectral overlap with the interbase FRET acceptors qAnitro and tCnitro, and demonstrate that these FRET pairs enable conformation studies of DNA and RNA.
Collapse
Affiliation(s)
- Anna Wypijewska Del Nogal
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, Gothenburg SE-412 96, Sweden
| | - Anders F Füchtbauer
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, Gothenburg SE-412 96, Sweden.,Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg SE-412 96, Sweden
| | - Mattias Bood
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg SE-412 96, Sweden.,Medicinal Chemistry, Research and EarlyDevelopment, Cardiovascular, Renal and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Pepparedsleden 1, Mölndal, SE-431 83, Sweden
| | - Jesper R Nilsson
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, Gothenburg SE-412 96, Sweden
| | - Moa S Wranne
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, Gothenburg SE-412 96, Sweden
| | - Sangamesh Sarangamath
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, Gothenburg SE-412 96, Sweden
| | - Pauline Pfeiffer
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, Gothenburg SE-412 96, Sweden
| | - Vinoth Sundar Rajan
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, Gothenburg SE-412 96, Sweden
| | - Afaf H El-Sagheer
- Chemistry Branch, Faculty of Petroleum and Mining Engineering, Suez University, Suez 43721, Egypt
| | - Anders Dahlén
- Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Pepparedsleden 1, Mölndal, SE-431 83, Sweden
| | - Tom Brown
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Oxford OX1 3TA, UK
| | - Morten Grøtli
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg SE-412 96, Sweden
| | - L Marcus Wilhelmsson
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, Gothenburg SE-412 96, Sweden
| |
Collapse
|
17
|
Hirashima S, Sugiyama H, Park S. Construction of a FRET System in a Double-Stranded DNA Using Fluorescent Thymidine and Cytidine Analogs. J Phys Chem B 2020; 124:8794-8800. [DOI: 10.1021/acs.jpcb.0c06879] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Shingo Hirashima
- Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo, Kyoto 606-8502, Japan
| | - Hiroshi Sugiyama
- Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo, Kyoto 606-8502, Japan
- Institute for Integrated Cell-Material Science (WPI-iCeMS), Kyoto University, Sakyo, Kyoto 606-8501, Japan
| | - Soyoung Park
- Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo, Kyoto 606-8502, Japan
| |
Collapse
|
18
|
Steinmetzger C, Bäuerlein C, Höbartner C. Supramolecular Fluorescence Resonance Energy Transfer in Nucleobase‐Modified Fluorogenic RNA Aptamers. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201916707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
| | - Carmen Bäuerlein
- Institute of Organic ChemistryUniversity of Würzburg Am Hubland 97074 Würzburg Germany
| | - Claudia Höbartner
- Institute of Organic ChemistryUniversity of Würzburg Am Hubland 97074 Würzburg Germany
| |
Collapse
|
19
|
Steinmetzger C, Bäuerlein C, Höbartner C. Supramolecular Fluorescence Resonance Energy Transfer in Nucleobase-Modified Fluorogenic RNA Aptamers. Angew Chem Int Ed Engl 2020; 59:6760-6764. [PMID: 32052536 PMCID: PMC7187157 DOI: 10.1002/anie.201916707] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 02/11/2020] [Indexed: 12/14/2022]
Abstract
RNA aptamers form compact tertiary structures and bind their ligands in specific binding sites. Fluorescence-based strategies reveal information on structure and dynamics of RNA aptamers. Herein, we report the incorporation of the universal emissive nucleobase analog 4-cyanoindole into the fluorogenic RNA aptamer Chili, and its application as a donor for supramolecular FRET to the bound ligands DMHBI+ or DMHBO+ . The photophysical properties of the new nucleobase-ligand-FRET pair revealed structural restraints for the overall RNA aptamer organization and identified nucleotide positions suitable for FRET-based readout of ligand binding. This strategy is generally suitable for binding-site mapping and may also be applied for responsive aptamer devices.
Collapse
Affiliation(s)
| | - Carmen Bäuerlein
- Institute of Organic ChemistryUniversity of WürzburgAm Hubland97074WürzburgGermany
| | - Claudia Höbartner
- Institute of Organic ChemistryUniversity of WürzburgAm Hubland97074WürzburgGermany
| |
Collapse
|