1
|
Ostrowski MS, Yang MG, McNally CP, Abdulhay NJ, Wang S, Renduchintala K, Irkliyenko I, Biran A, Chew BTL, Midha AD, Wong EV, Sandoval J, Jain IH, Groth A, Nora EP, Goodarzi H, Ramani V. The single-molecule accessibility landscape of newly replicated mammalian chromatin. Cell 2025; 188:237-252.e19. [PMID: 39549698 DOI: 10.1016/j.cell.2024.10.039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 07/15/2024] [Accepted: 10/21/2024] [Indexed: 11/18/2024]
Abstract
We present replication-aware single-molecule accessibility mapping (RASAM), a method to nondestructively measure replication status and protein-DNA interactions on chromatin genome-wide. Using RASAM, we uncover a genome-wide state of single-molecule "hyperaccessibility" post-replication that resolves over several hours. Combining RASAM with cellular models for rapid protein degradation, we demonstrate that histone chaperone CAF-1 reduces nascent chromatin accessibility by filling single-molecular "gaps" and generating closely spaced dinucleosomes on replicated DNA. At cis-regulatory elements, we observe unique modes by which nascent chromatin hyperaccessibility resolves: at CCCTC-binding factor (CTCF)-binding sites, CTCF and nucleosomes compete, reducing CTCF occupancy and motif accessibility post-replication; at active transcription start sites, high chromatin accessibility is maintained, implying rapid re-establishment of nucleosome-free regions. Our study introduces a new paradigm for studying replicated chromatin fiber organization. More broadly, we uncover a unique organization of newly replicated chromatin that must be reset by active processes, providing a substrate for epigenetic reprogramming.
Collapse
Affiliation(s)
- Megan S Ostrowski
- Gladstone Institute for Data Science & Biotechnology, San Francisco, CA 94158, USA
| | - Marty G Yang
- Gladstone Institute for Data Science & Biotechnology, San Francisco, CA 94158, USA
| | - Colin P McNally
- Gladstone Institute for Data Science & Biotechnology, San Francisco, CA 94158, USA; UCSF Department of Biochemistry & Biophysics, San Francisco, CA 94158, USA
| | - Nour J Abdulhay
- Gladstone Institute for Data Science & Biotechnology, San Francisco, CA 94158, USA; UCSF Department of Biochemistry & Biophysics, San Francisco, CA 94158, USA
| | - Simai Wang
- Gladstone Institute for Data Science & Biotechnology, San Francisco, CA 94158, USA
| | | | - Iryna Irkliyenko
- Gladstone Institute for Data Science & Biotechnology, San Francisco, CA 94158, USA
| | - Alva Biran
- Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Brandon T L Chew
- Gladstone Institute of Cardiovascular Disease, San Francisco, CA 94158, USA
| | - Ayush D Midha
- Gladstone Institute of Cardiovascular Disease, San Francisco, CA 94158, USA
| | - Emily V Wong
- UCSF Department of Biochemistry & Biophysics, San Francisco, CA 94158, USA
| | - Jonathan Sandoval
- Department of Cellular and Molecular Pharmacology, UCSF, San Francisco, CA 94158, USA
| | - Isha H Jain
- Gladstone Institute of Cardiovascular Disease, San Francisco, CA 94158, USA
| | - Anja Groth
- Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, 2200 Copenhagen, Denmark; Department of Cellular and Molecular Medicine (ICMM), University of Copenhagen, 2200 Copenhagen, Denmark
| | - Elphège P Nora
- UCSF Department of Biochemistry & Biophysics, San Francisco, CA 94158, USA; Cardiovascular Research Institute, UCSF, San Francisco, CA 94158, USA; Chan-Zuckerberg BioHub, San Francisco, CA 94158, USA
| | - Hani Goodarzi
- UCSF Department of Biochemistry & Biophysics, San Francisco, CA 94158, USA; Chan-Zuckerberg BioHub, San Francisco, CA 94158, USA; Helen Diller Cancer Research Center, UCSF, San Francisco, CA 94158, USA; Bakar Computational Health Sciences Institute, UCSF, San Francisco, CA 94158, USA
| | - Vijay Ramani
- Gladstone Institute for Data Science & Biotechnology, San Francisco, CA 94158, USA; UCSF Department of Biochemistry & Biophysics, San Francisco, CA 94158, USA; Helen Diller Cancer Research Center, UCSF, San Francisco, CA 94158, USA; Bakar Computational Health Sciences Institute, UCSF, San Francisco, CA 94158, USA.
| |
Collapse
|
2
|
Corin A, Nora EP, Ramani V. Beyond genomic weaving: molecular roles for CTCF outside cohesin loop extrusion. Curr Opin Genet Dev 2024; 90:102298. [PMID: 39709822 DOI: 10.1016/j.gde.2024.102298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 11/22/2024] [Accepted: 11/29/2024] [Indexed: 12/24/2024]
Abstract
CCCTC-binding factor (CTCF) is a key regulator of 3D genome organization and transcriptional activity. Beyond its well-characterized role in facilitating cohesin-mediated loop extrusion, CTCF exhibits several cohesin-independent activities relevant to chromatin structure and various nuclear processes. These functions include patterning of nucleosome arrangement and chromatin accessibility through interactions with ATP-dependent chromatin remodelers. In addition to influencing transcription, DNA replication, and DNA repair in ways that are separable from its role in loop extrusion, CTCF also interacts with RNA and contributes to RNA splicing and condensation of transcriptional activators. Here, we review recent insight into cohesin-independent activities of CTCF, highlighting its multifaceted roles in chromatin biology and transcriptional regulation.
Collapse
Affiliation(s)
- Aaron Corin
- Tetrad Graduate Program, University of California, San Francisco, San Francisco, CA, USA; Gladstone Institute for Data Science and Biotechnology, Gladstone Institutes, San Francisco, CA, USA; Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, USA
| | - Elphège P Nora
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, USA; Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA, USA; Chan-Zuckerberg Biohub, San Francisco, CA, USA.
| | - Vijay Ramani
- Gladstone Institute for Data Science and Biotechnology, Gladstone Institutes, San Francisco, CA, USA; Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, USA.
| |
Collapse
|
3
|
Cao J, Ren R, Li X, Zhang X, Sun Y, Tian X, Liu R, Liu X, Ruan Y, Li G, Zhao S. Virus Infection Induces Immune Gene Activation with CTCF-anchored Enhancers and Chromatin Interactions in Pig Genome. GENOMICS, PROTEOMICS & BIOINFORMATICS 2024; 22:qzae062. [PMID: 39312688 PMCID: PMC11725346 DOI: 10.1093/gpbjnl/qzae062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 02/29/2024] [Indexed: 09/25/2024]
Abstract
Chromatin organization is important for gene transcription in pig genome. However, its three-dimensional (3D) structure and dynamics are much less investigated than those in human. Here, we applied the long-read chromatin interaction analysis by paired-end tag sequencing (ChIA-PET) method to map the whole-genome chromatin interactions mediated by CCCTC-binding factor (CTCF) and RNA polymerase II (RNAPII) in porcine macrophage cells before and after polyinosinic-polycytidylic acid [Poly(I:C)] induction. Our results reveal that Poly(I:C) induction impacts the 3D genome organization in the 3D4/21 cells at the fine-scale chromatin loop level rather than at the large-scale domain level. Furthermore, our findings underscore the pivotal role of CTCF-anchored chromatin interactions in reshaping chromatin architecture during immune responses. Knockout of the CTCF-binding locus further confirms that the CTCF-anchored enhancers are associated with the activation of immune genes via long-range interactions. Notably, the ChIA-PET data also support the spatial relationship between single nucleotide polymorphisms (SNPs) and related gene transcription in 3D genome aspect. Our findings in this study provide new clues and potential targets to explore key elements related to diseases in pigs and are also likely to shed light on elucidating chromatin organization and dynamics underlying the process of mammalian infectious diseases.
Collapse
Affiliation(s)
- Jianhua Cao
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
- Key Laboratory of Swine Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan 430070, China
| | - Ruimin Ren
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Xiaolong Li
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Xiaoqian Zhang
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Yan Sun
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Xiaohuan Tian
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Ru Liu
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Xiangdong Liu
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
- Key Laboratory of Swine Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan 430070, China
| | - Yijun Ruan
- Life Sciences Institute, Zhejiang University, Hangzhou 310058, China
| | - Guoliang Li
- Key Laboratory of Smart Farming for Agricultural Animals, College of Informatics, Huazhong Agricultural University, Wuhan 430070, China
- Engineering Research Center of Intelligent Technology for Agriculture, Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Shuhong Zhao
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
- Key Laboratory of Swine Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
4
|
Tan M, Sun S, Liu Y, Perreault AA, Phanstiel DH, Dou L, Pang B. Targeting the 3D genome by anthracyclines for chemotherapeutic effects. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.15.614434. [PMID: 39463926 PMCID: PMC11507702 DOI: 10.1101/2024.10.15.614434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
The chromatins are folded into three-dimensional (3D) structures inside cells, which coordinates the regulation of gene transcription by the non-coding regulatory elements. Aberrant chromatin 3D folding has been shown in many diseases, such as acute myeloid leukemia (AML), and may contribute to tumorigenesis. The anthracycline topoisomerase II inhibitors can induce histone eviction and DNA damage. We performed genome-wide high-resolution mapping of the chemotherapeutic effects of various clinically used anthracycline drugs. ATAC-seq was used to profile the histone eviction effects of different anthracyclines. TOP2A ChIP-seq was used to profile the potential DNA damage regions. Integrated analyses show that different anthracyclines have distinct target selectivity on epigenomic regions, based on their respective ATAC-seq and ChIP-seq profiles. We identified the underlying molecular mechanism that unique anthracycline variants selectively target chromatin looping anchors via disrupting CTCF binding, suggesting an additional potential therapeutic effect on the 3D genome. We further performed Hi-C experiments, and data from K562 cells treated with the selective anthracycline drugs indicate that the 3D chromatin organization is disrupted. Furthermore, AML patients receiving anthracycline drugs showed altered chromatin structures around potential looping anchors, which linked to distinct clinical outcomes. Our data indicate that anthracyclines are potent and selective epigenomic targeting drugs and can target the 3D genome for anticancer therapy, which could be used for personalized medicine to treat tumors with aberrant 3D chromatin structures.
Collapse
|
5
|
Sahrhage M, Paul NB, Beißbarth T, Haubrock M. The importance of DNA sequence for nucleosome positioning in transcriptional regulation. Life Sci Alliance 2024; 7:e202302380. [PMID: 38830772 PMCID: PMC11147951 DOI: 10.26508/lsa.202302380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 05/15/2024] [Accepted: 05/16/2024] [Indexed: 06/05/2024] Open
Abstract
Nucleosome positioning is a key factor for transcriptional regulation. Nucleosomes regulate the dynamic accessibility of chromatin and interact with the transcription machinery at every stage. Influences to steer nucleosome positioning are diverse, and the according importance of the DNA sequence in contrast to active chromatin remodeling has been the subject of long discussion. In this study, we evaluate the functional role of DNA sequence for all major elements along the process of transcription. We developed a random forest classifier based on local DNA structure that assesses the sequence-intrinsic support for nucleosome positioning. On this basis, we created a simple data resource that we applied genome-wide to the human genome. In our comprehensive analysis, we found a special role of DNA in mediating the competition of nucleosomes with cis-regulatory elements, in enabling steady transcription, for positioning of stable nucleosomes in exons, and for repelling nucleosomes during transcription termination. In contrast, we relate these findings to concurrent processes that generate strongly positioned nucleosomes in vivo that are not mediated by sequence, such as energy-dependent remodeling of chromatin.
Collapse
Affiliation(s)
- Malte Sahrhage
- Department of Medical Bioinformatics, University Medical Center, Göttingen, Germany
| | - Niels Benjamin Paul
- Department of Medical Bioinformatics, University Medical Center, Göttingen, Germany
- Department of Cardiology and Pneumology, University Medical Center, Göttingen, Germany
| | - Tim Beißbarth
- Department of Medical Bioinformatics, University Medical Center, Göttingen, Germany
| | - Martin Haubrock
- Department of Medical Bioinformatics, University Medical Center, Göttingen, Germany
| |
Collapse
|
6
|
Aljahani A, Mauksch C, Oudelaar AM. The relationship between nucleosome positioning and higher-order genome folding. Curr Opin Cell Biol 2024; 89:102398. [PMID: 38991477 DOI: 10.1016/j.ceb.2024.102398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 05/23/2024] [Accepted: 06/18/2024] [Indexed: 07/13/2024]
Abstract
Eukaryotic genomes are organized into 3D structures, which range from small-scale nucleosome arrays to large-scale chromatin domains. These structures have an important role in the regulation of transcription and other nuclear processes. Despite advances in our understanding of the properties, functions, and underlying mechanisms of genome structures, there are many open questions about the interplay between these structures across scales. In particular, it is not well understood if and how 1D features of nucleosome arrays influence large-scale 3D genome folding patterns. In this review, we discuss recent studies that address these questions and summarize our current understanding of the relationship between nucleosome positioning and higher-order genome folding.
Collapse
Affiliation(s)
- Abrar Aljahani
- Max Planck Institute for Multidisciplinary Sciences, Genome Organization and Regulation, Göttingen, Germany; University of Göttingen, Göttingen, Germany
| | - Clemens Mauksch
- Max Planck Institute for Multidisciplinary Sciences, Genome Organization and Regulation, Göttingen, Germany; University of Göttingen, Göttingen, Germany
| | - A Marieke Oudelaar
- Max Planck Institute for Multidisciplinary Sciences, Genome Organization and Regulation, Göttingen, Germany.
| |
Collapse
|
7
|
Schwaiger M, Mohn F, Bühler M, Kaaij LJT. guidedNOMe-seq quantifies chromatin states at single allele resolution for hundreds of custom regions in parallel. BMC Genomics 2024; 25:732. [PMID: 39075377 PMCID: PMC11288131 DOI: 10.1186/s12864-024-10625-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 07/15/2024] [Indexed: 07/31/2024] Open
Abstract
Since the introduction of next generation sequencing technologies, the field of epigenomics has evolved rapidly. However, most commonly used assays are enrichment-based methods and thus only semi-quantitative. Nucleosome occupancy and methylome sequencing (NOMe-seq) allows for quantitative inference of chromatin states with single locus resolution, but this requires high sequencing depth and is therefore prohibitively expensive to routinely apply to organisms with large genomes. To overcome this limitation, we introduce guidedNOMe-seq, where we combine NOMe profiling with large scale sgRNA synthesis and Cas9-mediated region-of-interest (ROI) liberation. To facilitate quantitative comparisons between multiple samples, we additionally develop an R package to standardize differential analysis of any type of NOMe-seq data. We extensively benchmark guidedNOMe-seq in a proof-of-concept study, dissecting the interplay of ChAHP and CTCF on chromatin. In summary we present a cost-effective, scalable, and customizable target enrichment extension to the existing NOMe-seq protocol allowing genome-scale quantification of nucleosome occupancy and transcription factor binding at single allele resolution.
Collapse
Affiliation(s)
- Michaela Schwaiger
- Friedrich Miescher Institute for Biomedical Research, Basel, 4056, Switzerland
- Swiss Institute of Bioinformatics, Basel, 4056, Switzerland
| | - Fabio Mohn
- Friedrich Miescher Institute for Biomedical Research, Basel, 4056, Switzerland
| | - Marc Bühler
- Friedrich Miescher Institute for Biomedical Research, Basel, 4056, Switzerland
- University of Basel, Basel, 4003, Switzerland
| | - Lucas J T Kaaij
- Center for Molecular Medicine, University Medical Center Utrecht, Utrecht, 3584 CG, The Netherlands.
| |
Collapse
|
8
|
Rimoldi M, Wang N, Zhang J, Villar D, Odom DT, Taipale J, Flicek P, Roller M. DNA methylation patterns of transcription factor binding regions characterize their functional and evolutionary contexts. Genome Biol 2024; 25:146. [PMID: 38844976 PMCID: PMC11155190 DOI: 10.1186/s13059-024-03218-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 03/15/2024] [Indexed: 06/10/2024] Open
Abstract
BACKGROUND DNA methylation is an important epigenetic modification which has numerous roles in modulating genome function. Its levels are spatially correlated across the genome, typically high in repressed regions but low in transcription factor (TF) binding sites and active regulatory regions. However, the mechanisms establishing genome-wide and TF binding site methylation patterns are still unclear. RESULTS Here we use a comparative approach to investigate the association of DNA methylation to TF binding evolution in mammals. Specifically, we experimentally profile DNA methylation and combine this with published occupancy profiles of five distinct TFs (CTCF, CEBPA, HNF4A, ONECUT1, FOXA1) in the liver of five mammalian species (human, macaque, mouse, rat, dog). TF binding sites are lowly methylated, but they often also have intermediate methylation levels. Furthermore, biding sites are influenced by the methylation status of CpGs in their wider binding regions even when CpGs are absent from the core binding motif. Employing a classification and clustering approach, we extract distinct and species-conserved patterns of DNA methylation levels at TF binding regions. CEBPA, HNF4A, ONECUT1, and FOXA1 share the same methylation patterns, while CTCF's differ. These patterns characterize alternative functions and chromatin landscapes of TF-bound regions. Leveraging our phylogenetic framework, we find DNA methylation gain upon evolutionary loss of TF occupancy, indicating coordinated evolution. Furthermore, each methylation pattern has its own evolutionary trajectory reflecting its genomic contexts. CONCLUSIONS Our epigenomic analyses indicate a role for DNA methylation in TF binding changes across species including that specific DNA methylation profiles characterize TF binding and are associated with their regulatory activity, chromatin contexts, and evolutionary trajectories.
Collapse
Affiliation(s)
- Martina Rimoldi
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SD, UK
| | - Ning Wang
- Department of Medical Biochemistry and Biophysics, Division of Functional Genomics and Systems Biology, Karolinska Institutet, Stockholm, SE, 141 83, Sweden
| | - Jilin Zhang
- Department of Medical Biochemistry and Biophysics, Division of Functional Genomics and Systems Biology, Karolinska Institutet, Stockholm, SE, 141 83, Sweden
| | - Diego Villar
- Cancer Research UK Cambridge Institute, University of Cambridge, Robinson Way, Cambridge, 0RE, CB2, UK
- Present Address Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, E1 2AT, UK
| | - Duncan T Odom
- Cancer Research UK Cambridge Institute, University of Cambridge, Robinson Way, Cambridge, 0RE, CB2, UK
- Present address Division of Regulatory Genomics and Cancer Evolution, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, Heidelberg, 69120, Germany
| | - Jussi Taipale
- Department of Medical Biochemistry and Biophysics, Division of Functional Genomics and Systems Biology, Karolinska Institutet, Stockholm, SE, 141 83, Sweden
- Applied Tumor Genomics Research Program, Research Programs Unit, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Department of Biochemistry, University of Cambridge, Cambridge, CB2 1GA, UK
| | - Paul Flicek
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SD, UK.
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SD, UK.
- Department of Genetics, University of Cambridge, Cambridge, CB2 3EH, UK.
| | - Maša Roller
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SD, UK.
| |
Collapse
|
9
|
Shtumpf M, Jeong S, Bikova M, Mamayusupova H, Ruje L, Teif VB. Aging clock based on nucleosome reorganisation derived from cell-free DNA. Aging Cell 2024; 23:e14100. [PMID: 38337183 PMCID: PMC11113261 DOI: 10.1111/acel.14100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 01/18/2024] [Accepted: 01/19/2024] [Indexed: 02/12/2024] Open
Abstract
Aging induces systematic changes in the distribution of nucleosomes, which affect gene expression programs. Here we reconstructed nucleosome maps based on cell-free DNA (cfDNA) extracted from blood plasma using four cohorts of people of different ages. We show that nucleosomes tend to be separated by larger genomic distances in older people, and age correlates with the nucleosome repeat length (NRL). Furthermore, we developed the first aging clock based on cfDNA nucleosomics. Machine learning based on cfDNA distance distributions allowed predicting person's age with the median absolute error of 3-3.5 years.
Collapse
Affiliation(s)
| | - Seihee Jeong
- School of Life SciencesUniversity of EssexColchesterUK
| | - Milena Bikova
- School of Life SciencesUniversity of EssexColchesterUK
| | | | - Luminita Ruje
- School of Life SciencesUniversity of EssexColchesterUK
| | | |
Collapse
|
10
|
Jacob DR, Guiblet WM, Mamayusupova H, Shtumpf M, Ciuta I, Ruje L, Gretton S, Bikova M, Correa C, Dellow E, Agrawal SP, Shafiei N, Drobysevskaja A, Armstrong CM, Lam JDG, Vainshtein Y, Clarkson CT, Thorn GJ, Sohn K, Pradeepa MM, Chandrasekharan S, Brooke GN, Klenova E, Zhurkin VB, Teif VB. Nucleosome reorganisation in breast cancer tissues. Clin Epigenetics 2024; 16:50. [PMID: 38561804 PMCID: PMC10986098 DOI: 10.1186/s13148-024-01656-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 03/11/2024] [Indexed: 04/04/2024] Open
Abstract
BACKGROUND Nucleosome repositioning in cancer is believed to cause many changes in genome organisation and gene expression. Understanding these changes is important to elucidate fundamental aspects of cancer. It is also important for medical diagnostics based on cell-free DNA (cfDNA), which originates from genomic DNA regions protected from digestion by nucleosomes. RESULTS We have generated high-resolution nucleosome maps in paired tumour and normal tissues from the same breast cancer patients using MNase-assisted histone H3 ChIP-seq and compared them with the corresponding cfDNA from blood plasma. This analysis has detected single-nucleosome repositioning at key regulatory regions in a patient-specific manner and common cancer-specific patterns across patients. The nucleosomes gained in tumour versus normal tissue were particularly informative of cancer pathways, with ~ 20-fold enrichment at CpG islands, a large fraction of which marked promoters of genes encoding DNA-binding proteins. The tumour tissues were characterised by a 5-10 bp decrease in the average distance between nucleosomes (nucleosome repeat length, NRL), which is qualitatively similar to the differences between pluripotent and differentiated cells. This effect was correlated with gene activity, differential DNA methylation and changes in local occupancy of linker histone variants H1.4 and H1X. CONCLUSIONS Our study offers a novel resource of high-resolution nucleosome maps in breast cancer patients and reports for the first time the effect of systematic decrease of NRL in paired tumour versus normal breast tissues from the same patient. Our findings provide a new mechanistic understanding of nucleosome repositioning in tumour tissues that can be valuable for patient diagnostics, stratification and monitoring.
Collapse
Affiliation(s)
- Divya R Jacob
- School of Life Sciences, University of Essex, Wivenhoe Park, Colchester, CO4 3SQ, UK
| | - Wilfried M Guiblet
- Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Hulkar Mamayusupova
- School of Life Sciences, University of Essex, Wivenhoe Park, Colchester, CO4 3SQ, UK
| | - Mariya Shtumpf
- School of Life Sciences, University of Essex, Wivenhoe Park, Colchester, CO4 3SQ, UK
| | - Isabella Ciuta
- School of Life Sciences, University of Essex, Wivenhoe Park, Colchester, CO4 3SQ, UK
| | - Luminita Ruje
- School of Life Sciences, University of Essex, Wivenhoe Park, Colchester, CO4 3SQ, UK
| | - Svetlana Gretton
- School of Life Sciences, University of Essex, Wivenhoe Park, Colchester, CO4 3SQ, UK
- School of Engineering, Arts, Science and Technology, University of Suffolk, James Hehir Building, University Avenue, Ipswich, Suffolk, IP3 0FS, UK
| | - Milena Bikova
- School of Life Sciences, University of Essex, Wivenhoe Park, Colchester, CO4 3SQ, UK
| | - Clark Correa
- School of Life Sciences, University of Essex, Wivenhoe Park, Colchester, CO4 3SQ, UK
| | - Emily Dellow
- School of Life Sciences, University of Essex, Wivenhoe Park, Colchester, CO4 3SQ, UK
| | - Shivam P Agrawal
- School of Life Sciences, University of Essex, Wivenhoe Park, Colchester, CO4 3SQ, UK
| | - Navid Shafiei
- School of Life Sciences, University of Essex, Wivenhoe Park, Colchester, CO4 3SQ, UK
| | | | - Chris M Armstrong
- School of Life Sciences, University of Essex, Wivenhoe Park, Colchester, CO4 3SQ, UK
| | - Jonathan D G Lam
- School of Life Sciences, University of Essex, Wivenhoe Park, Colchester, CO4 3SQ, UK
| | - Yevhen Vainshtein
- Fraunhofer-Institut für Grenzflächen- und Bioverfahrenstechnik IGB, Nobelstraße 12, 70569, Stuttgart, Germany
| | - Christopher T Clarkson
- School of Life Sciences, University of Essex, Wivenhoe Park, Colchester, CO4 3SQ, UK
- University College London, Gower St, Bloomsbury, London, WC1E 6BT, UK
| | - Graeme J Thorn
- School of Life Sciences, University of Essex, Wivenhoe Park, Colchester, CO4 3SQ, UK
- Barts Cancer Institute, Queen Mary University of London, Charterhouse Square, London, EC1M 6BQ, UK
| | - Kai Sohn
- Fraunhofer-Institut für Grenzflächen- und Bioverfahrenstechnik IGB, Nobelstraße 12, 70569, Stuttgart, Germany
| | - Madapura M Pradeepa
- School of Life Sciences, University of Essex, Wivenhoe Park, Colchester, CO4 3SQ, UK
- Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, E1 2AT, UK
| | - Sankaran Chandrasekharan
- Colchester General Hospital, East Suffolk and North Essex NHS Foundation Trust, Turner Road, Colchester, CO4 5JL, UK
| | - Greg N Brooke
- School of Life Sciences, University of Essex, Wivenhoe Park, Colchester, CO4 3SQ, UK
| | - Elena Klenova
- School of Life Sciences, University of Essex, Wivenhoe Park, Colchester, CO4 3SQ, UK
| | - Victor B Zhurkin
- Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA.
| | - Vladimir B Teif
- School of Life Sciences, University of Essex, Wivenhoe Park, Colchester, CO4 3SQ, UK.
| |
Collapse
|
11
|
Oberbeckmann E, Quililan K, Cramer P, Oudelaar AM. In vitro reconstitution of chromatin domains shows a role for nucleosome positioning in 3D genome organization. Nat Genet 2024; 56:483-492. [PMID: 38291333 PMCID: PMC10937381 DOI: 10.1038/s41588-023-01649-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 12/15/2023] [Indexed: 02/01/2024]
Abstract
Eukaryotic genomes are organized into chromatin domains. The molecular mechanisms driving the formation of these domains are difficult to dissect in vivo and remain poorly understood. Here we reconstitute Saccharomyces cerevisiae chromatin in vitro and determine its 3D organization at subnucleosome resolution by micrococcal nuclease-based chromosome conformation capture and molecular dynamics simulations. We show that regularly spaced and phased nucleosome arrays form chromatin domains in vitro that resemble domains in vivo. This demonstrates that neither loop extrusion nor transcription is required for basic domain formation in yeast. In addition, we find that the boundaries of reconstituted domains correspond to nucleosome-free regions and that insulation strength scales with their width. Finally, we show that domain compaction depends on nucleosome linker length, with longer linkers forming more compact structures. Together, our results demonstrate that regular nucleosome positioning is important for the formation of chromatin domains and provide a proof-of-principle for bottom-up 3D genome studies.
Collapse
Affiliation(s)
- Elisa Oberbeckmann
- Max Planck Institute for Multidisciplinary Sciences, Department of Molecular Biology, Göttingen, Germany.
| | - Kimberly Quililan
- Max Planck Institute for Multidisciplinary Sciences, Genome Organization and Regulation, Göttingen, Germany
- The Francis Crick Institute, London, UK
| | - Patrick Cramer
- Max Planck Institute for Multidisciplinary Sciences, Department of Molecular Biology, Göttingen, Germany
| | - A Marieke Oudelaar
- Max Planck Institute for Multidisciplinary Sciences, Genome Organization and Regulation, Göttingen, Germany.
| |
Collapse
|
12
|
Wang C, Manders F, Groh L, Oldenkamp R, Logie C. Corticosteroid-induced chromatin loop dynamics at the FKBP5 gene. Ann N Y Acad Sci 2023; 1529:109-119. [PMID: 37796452 DOI: 10.1111/nyas.15064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/06/2023]
Abstract
FKBP5 is a 115-kb-long glucocorticoid-inducible gene implicated in psychiatric disorders. To investigate the complexities of chromatin interaction frequencies at the FKBP5 topologically associated domain (TAD), we deployed 15 one-to-all chromatin capture viewpoints near gene promoters, enhancers, introns, and CTCF-loop anchors. This revealed a "one-TAD-one-gene" structure encompassing the FKBP5 promoter and its enhancers. The FKBP5 promoter and its two glucocorticoid-stimulated enhancers roam the entire TAD while displaying subtle cell type-specific interactomes. The FKBP5 TAD consists of two nested CTCF loops that are coordinated by one CTCF site in the eighth intron of FKBP5 and another beyond its polyadenylation site, 61 kb further. Loop extension correlates with transcription increases through the intronic CTCF site. This is efficiently compensated for, since the short loop is restored even under high transcription regimes. The boundaries of the FKBP5 TAD consist of divergent CTCF site patterns, harbor multiple smaller genes, and are resilient to glucocorticoid stimulation. Interestingly, both FKBP5 TAD boundaries harbor H3K27me3-marked heterochromatin blocks that may reinforce them. We propose that cis-acting genetic and epigenetic polymorphisms underlying FKBP5 expression variation are likely to reside within a 240-kb region that consists of the FKBP5 TAD, its left sub-TAD, and both its boundaries.
Collapse
Affiliation(s)
- Cheng Wang
- Department of Molecular Biology, Radboud Institute for Molecular Science, Faculty of Science, Radboud University, Nijmegen, The Netherlands
| | - Freek Manders
- Department of Molecular Biology, Radboud Institute for Molecular Science, Faculty of Science, Radboud University, Nijmegen, The Netherlands
- Gendx, Utrecht, The Netherlands
| | - Laszlo Groh
- Department of Molecular Biology, Radboud Institute for Molecular Science, Faculty of Science, Radboud University, Nijmegen, The Netherlands
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC, Amsterdam, The Netherlands
| | - Roel Oldenkamp
- Department of Molecular Biology, Radboud Institute for Molecular Science, Faculty of Science, Radboud University, Nijmegen, The Netherlands
- Division of Cell Biology, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Colin Logie
- Department of Molecular Biology, Radboud Institute for Molecular Science, Faculty of Science, Radboud University, Nijmegen, The Netherlands
| |
Collapse
|
13
|
Xu H, Yi X, Fan X, Wu C, Wang W, Chu X, Zhang S, Dong X, Wang Z, Wang J, Zhou Y, Zhao K, Yao H, Zheng N, Wang J, Chen Y, Plewczynski D, Sham PC, Chen K, Huang D, Li MJ. Inferring CTCF-binding patterns and anchored loops across human tissues and cell types. PATTERNS (NEW YORK, N.Y.) 2023; 4:100798. [PMID: 37602215 PMCID: PMC10436006 DOI: 10.1016/j.patter.2023.100798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 01/25/2023] [Accepted: 06/20/2023] [Indexed: 08/22/2023]
Abstract
CCCTC-binding factor (CTCF) is a transcription regulator with a complex role in gene regulation. The recognition and effects of CTCF on DNA sequences, chromosome barriers, and enhancer blocking are not well understood. Existing computational tools struggle to assess the regulatory potential of CTCF-binding sites and their impact on chromatin loop formation. Here we have developed a deep-learning model, DeepAnchor, to accurately characterize CTCF binding using high-resolution genomic/epigenomic features. This has revealed distinct chromatin and sequence patterns for CTCF-mediated insulation and looping. An optimized implementation of a previous loop model based on DeepAnchor score excels in predicting CTCF-anchored loops. We have established a compendium of CTCF-anchored loops across 52 human tissue/cell types, and this suggests that genomic disruption of these loops could be a general mechanism of disease pathogenesis. These computational models and resources can help investigate how CTCF-mediated cis-regulatory elements shape context-specific gene regulation in cell development and disease progression.
Collapse
Affiliation(s)
- Hang Xu
- Department of Epidemiology and Biostatistics, Key Laboratory of Prevention and Control of Human Major Diseases (Ministry of Education), National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin Medical University, Tianjin 300070, China
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A∗STAR), Singapore 138648, Singapore
| | - Xianfu Yi
- Department of Bioinformatics, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Xutong Fan
- Department of Bioinformatics, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Chengyue Wu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Wei Wang
- Department of Epidemiology and Biostatistics, Key Laboratory of Prevention and Control of Human Major Diseases (Ministry of Education), National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin Medical University, Tianjin 300070, China
| | - Xinlei Chu
- Department of Epidemiology and Biostatistics, Key Laboratory of Prevention and Control of Human Major Diseases (Ministry of Education), National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin Medical University, Tianjin 300070, China
| | - Shijie Zhang
- Department of Pharmacology, Tianjin Key Laboratory of Inflammation Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Xiaobao Dong
- Department of Genetics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Zhao Wang
- Department of Pharmacology, Tianjin Key Laboratory of Inflammation Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Jianhua Wang
- Department of Bioinformatics, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Yao Zhou
- Department of Bioinformatics, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Ke Zhao
- Department of Pharmacology, Tianjin Key Laboratory of Inflammation Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Hongcheng Yao
- Centre for PanorOmic Sciences-Genomics and Bioinformatics Cores, The University of Hong Kong, Hong Kong 999077, China
| | - Nan Zheng
- Department of Network Security and Informatization, Tianjin Medical University, Tianjin 300070, China
| | - Junwen Wang
- Department of Health Sciences Research and Center for Individualized Medicine, Mayo Clinic, Scottsdale, AZ 85259, USA
| | - Yupeng Chen
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Dariusz Plewczynski
- Faculty of Mathematics and Information Science, Warsaw University of Technology, Warsaw, Poland
| | - Pak Chung Sham
- Centre for PanorOmic Sciences-Genomics and Bioinformatics Cores, The University of Hong Kong, Hong Kong 999077, China
| | - Kexin Chen
- Department of Epidemiology and Biostatistics, Key Laboratory of Prevention and Control of Human Major Diseases (Ministry of Education), National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin Medical University, Tianjin 300070, China
| | - Dandan Huang
- Wuxi School of Medicine, Jiangnan University, Wuxi 214122, China
| | - Mulin Jun Li
- Department of Epidemiology and Biostatistics, Key Laboratory of Prevention and Control of Human Major Diseases (Ministry of Education), National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin Medical University, Tianjin 300070, China
- Department of Bioinformatics, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| |
Collapse
|
14
|
Kadam S, Kumari K, Manivannan V, Dutta S, Mitra MK, Padinhateeri R. Predicting scale-dependent chromatin polymer properties from systematic coarse-graining. Nat Commun 2023; 14:4108. [PMID: 37433821 PMCID: PMC10336007 DOI: 10.1038/s41467-023-39907-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 06/30/2023] [Indexed: 07/13/2023] Open
Abstract
Simulating chromatin is crucial for predicting genome organization and dynamics. Although coarse-grained bead-spring polymer models are commonly used to describe chromatin, the relevant bead dimensions, elastic properties, and the nature of inter-bead potentials are unknown. Using nucleosome-resolution contact probability (Micro-C) data, we systematically coarse-grain chromatin and predict quantities essential for polymer representation of chromatin. We compute size distributions of chromatin beads for different coarse-graining scales, quantify fluctuations and distributions of bond lengths between neighboring regions, and derive effective spring constant values. Unlike the prevalent notion, our findings argue that coarse-grained chromatin beads must be considered as soft particles that can overlap, and we derive an effective inter-bead soft potential and quantify an overlap parameter. We also compute angle distributions giving insights into intrinsic folding and local bendability of chromatin. While the nucleosome-linker DNA bond angle naturally emerges from our work, we show two populations of local structural states. The bead sizes, bond lengths, and bond angles show different mean behavior at Topologically Associating Domain (TAD) boundaries and TAD interiors. We integrate our findings into a coarse-grained polymer model and provide quantitative estimates of all model parameters, which can serve as a foundational basis for all future coarse-grained chromatin simulations.
Collapse
Affiliation(s)
- Sangram Kadam
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, 400076, India.
| | - Kiran Kumari
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, 400076, India
| | - Vinoth Manivannan
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, 400076, India
| | - Shuvadip Dutta
- Department of Physics, Indian Institute of Technology Bombay, Mumbai, 400076, India
| | - Mithun K Mitra
- Department of Physics, Indian Institute of Technology Bombay, Mumbai, 400076, India
| | - Ranjith Padinhateeri
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, 400076, India.
- Sunita Sanghi Centre of Aging and Neurodegenerative Diseases, Indian Institute of Technology Bombay, Mumbai, 400076, India.
| |
Collapse
|
15
|
Dunjić M, Jonas F, Yaakov G, More R, Mayshar Y, Rais Y, Orenbuch AH, Cheng S, Barkai N, Stelzer Y. Histone exchange sensors reveal variant specific dynamics in mouse embryonic stem cells. Nat Commun 2023; 14:3791. [PMID: 37365167 DOI: 10.1038/s41467-023-39477-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 06/15/2023] [Indexed: 06/28/2023] Open
Abstract
Eviction of histones from nucleosomes and their exchange with newly synthesized or alternative variants is a central epigenetic determinant. Here, we define the genome-wide occupancy and exchange pattern of canonical and non-canonical histone variants in mouse embryonic stem cells by genetically encoded exchange sensors. While exchange of all measured variants scales with transcription, we describe variant-specific associations with transcription elongation and Polycomb binding. We found considerable exchange of H3.1 and H2B variants in heterochromatin and repeat elements, contrasting the occupancy and little exchange of H3.3 in these regions. This unexpected association between H3.3 occupancy and exchange of canonical variants is also evident in active promoters and enhancers, and further validated by reduced H3.1 dynamics following depletion of H3.3-specific chaperone, HIRA. Finally, analyzing transgenic mice harboring H3.1 or H3.3 sensors demonstrates the vast potential of this system for studying histone exchange and its impact on gene expression regulation in vivo.
Collapse
Affiliation(s)
- Marko Dunjić
- Department of Molecular Cell Biology, Weizmann Institute of Science, 7610001, Rehovot, Israel
| | - Felix Jonas
- Department of Molecular Genetics, Weizmann Institute of Science, 7610001, Rehovot, Israel
| | - Gilad Yaakov
- Department of Molecular Genetics, Weizmann Institute of Science, 7610001, Rehovot, Israel
| | - Roye More
- Department of Molecular Cell Biology, Weizmann Institute of Science, 7610001, Rehovot, Israel
| | - Yoav Mayshar
- Department of Molecular Cell Biology, Weizmann Institute of Science, 7610001, Rehovot, Israel
| | - Yoach Rais
- Department of Molecular Cell Biology, Weizmann Institute of Science, 7610001, Rehovot, Israel
| | | | - Saifeng Cheng
- Department of Molecular Cell Biology, Weizmann Institute of Science, 7610001, Rehovot, Israel
| | - Naama Barkai
- Department of Molecular Genetics, Weizmann Institute of Science, 7610001, Rehovot, Israel
| | - Yonatan Stelzer
- Department of Molecular Cell Biology, Weizmann Institute of Science, 7610001, Rehovot, Israel.
| |
Collapse
|
16
|
Bomber ML, Wang J, Liu Q, Barnett KR, Layden HM, Hodges E, Stengel KR, Hiebert SW. Human SMARCA5 is continuously required to maintain nucleosome spacing. Mol Cell 2023; 83:507-522.e6. [PMID: 36630954 PMCID: PMC9974918 DOI: 10.1016/j.molcel.2022.12.018] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 12/07/2022] [Accepted: 12/16/2022] [Indexed: 01/12/2023]
Abstract
Genetic models suggested that SMARCA5 was required for DNA-templated events including transcription, DNA replication, and DNA repair. We engineered a degron tag into the endogenous alleles of SMARCA5, a catalytic component of the imitation switch complexes in three different human cell lines to define the effects of rapid degradation of this key regulator. Degradation of SMARCA5 was associated with a rapid increase in global nucleosome repeat length, which may allow greater chromatin compaction. However, there were few changes in nascent transcription within the first 6 h of degradation. Nevertheless, we demonstrated a requirement for SMARCA5 to control nucleosome repeat length at G1/S and during the S phase. SMARCA5 co-localized with CTCF and H2A.Z, and we found a rapid loss of CTCF DNA binding and disruption of nucleosomal phasing around CTCF binding sites. This spatiotemporal analysis indicates that SMARCA5 is continuously required for maintaining nucleosomal spacing.
Collapse
Affiliation(s)
- Monica L Bomber
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Jing Wang
- Department of Biostatistics, Vanderbilt University School of Medicine, Nashville, TN 37203, USA; Center for Quantitative Sciences, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Qi Liu
- Department of Biostatistics, Vanderbilt University School of Medicine, Nashville, TN 37203, USA; Center for Quantitative Sciences, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Kelly R Barnett
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Hillary M Layden
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Emily Hodges
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Kristy R Stengel
- Department of Cell Biology, Albert Einstein College of Medicine, New York, NY, USA.
| | - Scott W Hiebert
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37232, USA; Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, TN 37232, USA.
| |
Collapse
|
17
|
Low-affinity CTCF binding drives transcriptional regulation whereas high-affinity binding encompasses architectural functions. iScience 2023; 26:106106. [PMID: 36852270 PMCID: PMC9958374 DOI: 10.1016/j.isci.2023.106106] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 10/14/2022] [Accepted: 01/27/2023] [Indexed: 02/05/2023] Open
Abstract
CTCF is a DNA-binding protein which plays critical roles in chromatin structure organization and transcriptional regulation; however, little is known about the functional determinants of different CTCF-binding sites (CBS). Using a conditional mouse model, we have identified one set of CBSs that are lost upon CTCF depletion (lost CBSs) and another set that persists (retained CBSs). Retained CBSs are more similar to the consensus CTCF-binding sequence and usually span tandem CTCF peaks. Lost CBSs are enriched at enhancers and promoters and associate with active chromatin marks and higher transcriptional activity. In contrast, retained CBSs are enriched at TAD and loop boundaries. Integration of ChIP-seq and RNA-seq data has revealed that retained CBSs are located at the boundaries between distinct chromatin states, acting as chromatin barriers. Our results provide evidence that transient, lost CBSs are involved in transcriptional regulation, whereas retained CBSs are critical for establishing higher-order chromatin architecture.
Collapse
|
18
|
Attou A, Zülske T, Wedemann G. Cohesin and CTCF complexes mediate contacts in chromatin loops depending on nucleosome positions. Biophys J 2022; 121:4788-4799. [PMID: 36325618 PMCID: PMC9811664 DOI: 10.1016/j.bpj.2022.10.044] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 09/12/2022] [Accepted: 10/28/2022] [Indexed: 11/06/2022] Open
Abstract
The spatial organization of the eukaryotic genome plays an important role in regulating transcriptional activity. In the nucleus, chromatin forms loops that assemble into fundamental units called topologically associating domains that facilitate or inhibit long-range contacts. These loops are formed and held together by the ring-shaped cohesin protein complex, and this can involve binding of CCCTC-binding factor (CTCF). High-resolution conformation capture experiments provide the frequency at which two DNA fragments physically associate in three-dimensional space. However, technical limitations of this approach, such as low throughput, low resolution, or noise in contact maps, make data interpretation and identification of chromatin intraloop contacts, e.g., between distal regulatory elements and their target genes, challenging. Herein, an existing coarse-grained model of chromatin at single-nucleosome resolution was extended by integrating potentials describing CTCF and cohesin. We performed replica-exchange Monte Carlo simulations with regularly spaced nucleosomes and experimentally determined nucleosome positions in the presence of cohesin-CTCF, as well as depleted systems as controls. In fully extruded loops caused by the presence of cohesin and CTCF, the number of contacts within the formed loops was increased. The number and types of these contacts were impacted by the nucleosome distribution and loop size. Microloops were observed within cohesin-mediated loops due to thermal fluctuations without additional influence of other factors, and the number, size, and shape of microloops were determined by nucleosome distribution and loop size. Nucleosome positions directly affect the spatial structure and contact probability within a loop, with presumed consequences for transcriptional activity.
Collapse
Affiliation(s)
- Aymen Attou
- Competence Center Bioinformatics, Institute for Applied Computer Science, Hochschule Stralsund, Stralsund, Germany
| | - Tilo Zülske
- Competence Center Bioinformatics, Institute for Applied Computer Science, Hochschule Stralsund, Stralsund, Germany
| | - Gero Wedemann
- Competence Center Bioinformatics, Institute for Applied Computer Science, Hochschule Stralsund, Stralsund, Germany.
| |
Collapse
|
19
|
Basu A, Bobrovnikov DG, Cieza B, Arcon JP, Qureshi Z, Orozco M, Ha T. Deciphering the mechanical code of the genome and epigenome. Nat Struct Mol Biol 2022; 29:1178-1187. [PMID: 36471057 PMCID: PMC10142808 DOI: 10.1038/s41594-022-00877-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Accepted: 10/18/2022] [Indexed: 12/12/2022]
Abstract
Diverse DNA-deforming processes are impacted by the local mechanical and structural properties of DNA, which in turn depend on local sequence and epigenetic modifications. Deciphering this mechanical code (that is, this dependence) has been challenging due to the lack of high-throughput experimental methods. Here we present a comprehensive characterization of the mechanical code. Utilizing high-throughput measurements of DNA bendability via loop-seq, we quantitatively established how the occurrence and spatial distribution of dinucleotides, tetranucleotides and methylated CpG impact DNA bendability. We used our measurements to develop a physical model for the sequence and methylation dependence of DNA bendability. We validated the model by performing loop-seq on mouse genomic sequences around transcription start sites and CTCF-binding sites. We applied our model to test the predictions of all-atom molecular dynamics simulations and to demonstrate that sequence and epigenetic modifications can mechanically encode regulatory information in diverse contexts.
Collapse
Affiliation(s)
- Aakash Basu
- Department of Biosciences, Durham University, Durham, UK. .,Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| | - Dmitriy G Bobrovnikov
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Basilio Cieza
- Department of Biophysics, Johns Hopkins University, Baltimore, MD, USA
| | - Juan Pablo Arcon
- Institute for Research in Biomedicine (IRB Barcelona), Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Zan Qureshi
- Department of Biophysics, Johns Hopkins University, Baltimore, MD, USA
| | - Modesto Orozco
- Institute for Research in Biomedicine (IRB Barcelona), Barcelona Institute of Science and Technology, Barcelona, Spain.,Department of Biochemistry and Biomedicine, Universitat de Barcelona, Barcelona, Spain
| | - Taekjip Ha
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD, USA. .,Department of Biophysics, Johns Hopkins University, Baltimore, MD, USA. .,Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA. .,Howard Hughes Medical Institute, Baltimore, MD, USA.
| |
Collapse
|
20
|
Kumari K, Ravi Prakash J, Padinhateeri R. Heterogeneous interactions and polymer entropy decide organization and dynamics of chromatin domains. Biophys J 2022; 121:2794-2812. [PMID: 35672951 PMCID: PMC9382282 DOI: 10.1016/j.bpj.2022.06.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Revised: 04/28/2022] [Accepted: 06/01/2022] [Indexed: 11/02/2022] Open
Abstract
Chromatin is known to be organized into multiple domains of varying sizes and compaction. While these domains are often imagined as static structures, they are highly dynamic and show cell-to-cell variability. Since processes such as gene regulation and DNA replication occur in the context of these domains, it is important to understand their organization, fluctuation, and dynamics. To simulate chromatin domains, one requires knowledge of interaction strengths among chromatin segments. Here, we derive interaction-strength parameters from experimentally known contact maps and use them to predict chromatin organization and dynamics. Taking two domains on the human chromosome as examples, we investigate its three-dimensional organization, size/shape fluctuations, and dynamics of different segments within a domain, accounting for hydrodynamic effects. Considering different cell types, we quantify changes in interaction strengths and chromatin shape fluctuations in different epigenetic states. Perturbing the interaction strengths systematically, we further investigate how epigenetic-like changes can alter the spatio-temporal nature of the domains. Our results show that heterogeneous weak interactions are crucial in determining the organization of the domains. Computing effective stiffness and relaxation times, we investigate how perturbations in interactions affect the solid- and liquid-like nature of chromatin domains. Quantifying dynamics of chromatin segments within a domain, we show how the competition between polymer entropy and interaction energy influence the timescales of loop formation and maintenance of stable loops.
Collapse
Affiliation(s)
- Kiran Kumari
- IITB-Monash Research Academy, Indian Institute of Technology Bombay, Mumbai, Maharashtra, 400076, India; Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, Maharashtra 400076, India; Department of Chemical Engineering, Monash University, Melbourne, VIC 3800, Australia.
| | - J Ravi Prakash
- Department of Chemical Engineering, Monash University, Melbourne, VIC 3800, Australia.
| | - Ranjith Padinhateeri
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, Maharashtra 400076, India.
| |
Collapse
|
21
|
Kumar A, Lyu Y, Yanagihashi Y, Chantarasrivong C, Majerciak V, Salemi M, Wang KH, Inagaki T, Chuang F, Davis RR, Tepper CG, Nakano K, Izumiya C, Shimoda M, Nakajima KI, Merleev A, Zheng ZM, Campbell M, Izumiya Y. KSHV episome tethering sites on host chromosomes and regulation of latency-lytic switch by CHD4. Cell Rep 2022; 39:110788. [PMID: 35545047 PMCID: PMC9153692 DOI: 10.1016/j.celrep.2022.110788] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 02/11/2022] [Accepted: 04/14/2022] [Indexed: 12/25/2022] Open
Abstract
Kaposi sarcoma-associated herpesvirus (KSHV) establishes a latent infection in the cell nucleus, but where KSHV episomal genomes are tethered and the mechanisms underlying KSHV lytic reactivation are unclear. Here, we study the nuclear microenvironment of KSHV episomes and show that the KSHV latency-lytic replication switch is regulated via viral long non-coding (lnc)RNA-CHD4 (chromodomain helicase DNA binding protein 4) interaction. KSHV episomes localize with CHD4 and ADNP proteins, components of the cellular ChAHP complex. The CHD4 and ADNP proteins occupy the 5'-region of the highly inducible lncRNAs and terminal repeats of the KSHV genome together with latency-associated nuclear antigen (LANA). Viral lncRNA binding competes with CHD4 DNA binding, and KSHV reactivation sequesters CHD4 from the KSHV genome, which is also accompanied by detachment of KSHV episomes from host chromosome docking sites. We propose a model in which robust KSHV lncRNA expression determines the latency-lytic decision by regulating LANA/CHD4 binding to KSHV episomes.
Collapse
Affiliation(s)
- Ashish Kumar
- Department of Dermatology School of Medicine, University of California Davis (UC Davis), Sacramento, CA 95817, USA
| | - Yuanzhi Lyu
- Department of Dermatology School of Medicine, University of California Davis (UC Davis), Sacramento, CA 95817, USA
| | | | | | - Vladimir Majerciak
- Tumor Virus RNA Biology Section, HIV Dynamics and Replication Program, National Cancer Institute, NIH, Frederick, MD 21702, USA
| | - Michelle Salemi
- Genome Center, Proteomics Core, Genome and Biomedical Sciences Facility, UC Davis, Davis, CA 95616, USA
| | - Kang-Hsin Wang
- Department of Dermatology School of Medicine, University of California Davis (UC Davis), Sacramento, CA 95817, USA
| | - Tomoki Inagaki
- Department of Dermatology School of Medicine, University of California Davis (UC Davis), Sacramento, CA 95817, USA
| | - Frank Chuang
- Department of Biochemistry and Molecular Medicine, School of Medicine, UC Davis, Sacramento, CA 95817, USA
| | - Ryan R Davis
- Department of Pathology and Laboratory Medicine, School of Medicine, UC Davis, Sacramento, CA 95817, USA
| | - Clifford G Tepper
- Department of Biochemistry and Molecular Medicine, School of Medicine, UC Davis, Sacramento, CA 95817, USA; Viral Oncology and Pathogen-Associated Malignancies Initiative, UC Davis Comprehensive Cancer Center, Sacramento, CA 95817, USA
| | - Kazushi Nakano
- Lifescience Division, Lifematics, Osaka, Osaka 541-0046, Japan
| | - Chie Izumiya
- Department of Dermatology School of Medicine, University of California Davis (UC Davis), Sacramento, CA 95817, USA
| | - Michiko Shimoda
- Department of Dermatology School of Medicine, University of California Davis (UC Davis), Sacramento, CA 95817, USA; Viral Oncology and Pathogen-Associated Malignancies Initiative, UC Davis Comprehensive Cancer Center, Sacramento, CA 95817, USA
| | - Ken-Ichi Nakajima
- Department of Dermatology School of Medicine, University of California Davis (UC Davis), Sacramento, CA 95817, USA
| | - Alexander Merleev
- Department of Dermatology School of Medicine, University of California Davis (UC Davis), Sacramento, CA 95817, USA
| | - Zhi-Ming Zheng
- Tumor Virus RNA Biology Section, HIV Dynamics and Replication Program, National Cancer Institute, NIH, Frederick, MD 21702, USA
| | - Mel Campbell
- Department of Dermatology School of Medicine, University of California Davis (UC Davis), Sacramento, CA 95817, USA.
| | - Yoshihiro Izumiya
- Department of Dermatology School of Medicine, University of California Davis (UC Davis), Sacramento, CA 95817, USA; Department of Biochemistry and Molecular Medicine, School of Medicine, UC Davis, Sacramento, CA 95817, USA; Viral Oncology and Pathogen-Associated Malignancies Initiative, UC Davis Comprehensive Cancer Center, Sacramento, CA 95817, USA.
| |
Collapse
|
22
|
Aljahani A, Hua P, Karpinska MA, Quililan K, Davies JOJ, Oudelaar AM. Analysis of sub-kilobase chromatin topology reveals nano-scale regulatory interactions with variable dependence on cohesin and CTCF. Nat Commun 2022; 13:2139. [PMID: 35440598 PMCID: PMC9019034 DOI: 10.1038/s41467-022-29696-5] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Accepted: 03/28/2022] [Indexed: 01/01/2023] Open
Abstract
Enhancers and promoters predominantly interact within large-scale topologically associating domains (TADs), which are formed by loop extrusion mediated by cohesin and CTCF. However, it is unclear whether complex chromatin structures exist at sub-kilobase-scale and to what extent fine-scale regulatory interactions depend on loop extrusion. To address these questions, we present an MNase-based chromosome conformation capture (3C) approach, which has enabled us to generate the most detailed local interaction data to date (20 bp resolution) and precisely investigate the effects of cohesin and CTCF depletion on chromatin architecture. Our data reveal that cis-regulatory elements have distinct internal nano-scale structures, within which local insulation is dependent on CTCF, but which are independent of cohesin. In contrast, we find that depletion of cohesin causes a subtle reduction in longer-range enhancer-promoter interactions and that CTCF depletion can cause rewiring of regulatory contacts. Together, our data show that loop extrusion is not essential for enhancer-promoter interactions, but contributes to their robustness and specificity and to precise regulation of gene expression.
Collapse
Affiliation(s)
- Abrar Aljahani
- Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Peng Hua
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China
| | | | - Kimberly Quililan
- Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - James O J Davies
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK.
| | - A Marieke Oudelaar
- Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany.
| |
Collapse
|
23
|
DNA sequence-dependent formation of heterochromatin nanodomains. Nat Commun 2022; 13:1861. [PMID: 35387992 PMCID: PMC8986797 DOI: 10.1038/s41467-022-29360-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Accepted: 03/03/2022] [Indexed: 01/08/2023] Open
Abstract
The mammalian epigenome contains thousands of heterochromatin nanodomains (HNDs) marked by di- and trimethylation of histone H3 at lysine 9 (H3K9me2/3), which have a typical size of 3–10 nucleosomes. However, what governs HND location and extension is only partly understood. Here, we address this issue by introducing the chromatin hierarchical lattice framework (ChromHL) that predicts chromatin state patterns with single-nucleotide resolution. ChromHL is applied to analyse four HND types in mouse embryonic stem cells that are defined by histone methylases SUV39H1/2 or GLP, transcription factor ADNP or chromatin remodeller ATRX. We find that HND patterns can be computed from PAX3/9, ADNP and LINE1 sequence motifs as nucleation sites and boundaries that are determined by DNA sequence (e.g. CTCF binding sites), cooperative interactions between nucleosomes as well as nucleosome-HP1 interactions. Thus, ChromHL rationalizes how patterns of H3K9me2/3 are established and changed via the activity of protein factors in processes like cell differentiation. The ability to predict epigenetic regulation is an important challenge in biology. Here the authors describe heterochromatin nanodomains (HNDs) and compare four different types of H3K9me2/3-marked HNDs in mouse embryonic stem cells. They further develop a computational framework to predict genome-wide HND maps from DNA sequence and protein concentrations, at single-nucleotide resolution.
Collapse
|
24
|
Oiwa NN, Li K, Cordeiro CE, Heermann DW. Prediction and comparative analysis of CTCF binding sites based on a first principle approach. Phys Biol 2022; 19. [PMID: 35290214 DOI: 10.1088/1478-3975/ac5dca] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 03/09/2022] [Indexed: 11/12/2022]
Abstract
We calculated the patterns for the CCCTC transcription factor (CTCF) binding sites across many genomes on a first principle approach. The validation of the first principle method was done on the human as well as on the mouse genome. The predicted human CTCF binding sites are consistent with the consensus sequence, ChIP-seq data for the K562 cell, nucleosome positions for IMR90 cell as well as the CTCF binding sites in the mouse HOXA gene. The analysis of Homo sapiens, Mus musculus, Sus scrofa, Capra hircus and Drosophila melanogaster whole genomes shows: binding sites are organized in cluster-like groups, where two consecutive sites obey a power-law with coefficient ranging from to 0.3292 0.0068 to 0.5409 0.0064; the distance between these groups varies from 18.08 0.52kbp to 42.1 2.0kbp. The genome of Aedes aegypti does not show a power law, but 19.9% of binding sites are 144 4 and 287 5bp distant of each other. We run negative tests, confirming the under-representation of CTCF binding sites in Caenorhabditis elegans, Plasmodium falciparum and Arabidopsis thaliana complete genomes.
Collapse
Affiliation(s)
- Nestor Norio Oiwa
- Theoretical Physics, Heidelberg University, Philosophenweg 19, Heidelberg, Baden-Württemberg, 69120, GERMANY
| | - Kunhe Li
- Theoretical Physics, Heidelberg University, Philosophenweg 19, Heidelberg, 69117, GERMANY
| | - Claudette E Cordeiro
- Department of Physics, Universidade Federal Fluminense, Avenida Atlantica s/n, Gragoatal, Niteroi, Rio de Janeiro, 24220-900, BRAZIL
| | - Dieter W Heermann
- Theoretical Physics, Heidelberg University, Philosophenweg 19, Heidelberg, 69120, GERMANY
| |
Collapse
|
25
|
NucPosDB: a database of nucleosome positioning in vivo and nucleosomics of cell-free DNA. Chromosoma 2022; 131:19-28. [PMID: 35061087 PMCID: PMC8776978 DOI: 10.1007/s00412-021-00766-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 11/24/2021] [Accepted: 12/20/2021] [Indexed: 01/25/2023]
Abstract
Nucleosome positioning is involved in many gene regulatory processes happening in the cell, and it may change as cells differentiate or respond to the changing microenvironment in a healthy or diseased organism. One important implication of nucleosome positioning in clinical epigenetics is its use in the “nucleosomics” analysis of cell-free DNA (cfDNA) for the purpose of patient diagnostics in liquid biopsies. The rationale for this is that the apoptotic nucleases that digest chromatin of the dying cells mostly cut DNA between nucleosomes. Thus, the short pieces of DNA in body fluids reflect the positions of nucleosomes in the cells of origin. Here, we report a systematic nucleosomics database — NucPosDB — curating published nucleosome positioning datasets in vivo as well as datasets of sequenced cell-free DNA (cfDNA) that reflect nucleosome positioning in situ in the cells of origin. Users can select subsets of the database by a number of criteria and then obtain raw or processed data. NucPosDB also reports the originally determined regions with stable nucleosome occupancy across several individuals with a given condition. An additional section provides a catalogue of computational tools for the analysis of nucleosome positioning or cfDNA experiments and theoretical algorithms for the prediction of nucleosome positioning preferences from DNA sequence. We provide an overview of the field, describe the structure of the database in this context, and demonstrate data variability using examples of different medical conditions. NucPosDB is useful both for the analysis of fundamental gene regulation processes and the training of computational models for patient diagnostics based on cfDNA. The database currently curates ~ 400 publications on nucleosome positioning in cell lines and in situ as well as cfDNA from > 10,000 patients and healthy volunteers. For open-access cfDNA datasets as well as key MNase-seq datasets in human cells, NucPosDB allows downloading processed mapped data in addition to the regions with stable nucleosome occupancy. NucPosDB is available at https://generegulation.org/nucposdb/.
Collapse
|
26
|
Ratner L. Epigenetic Regulation of Human T-Cell Leukemia Virus Gene Expression. Microorganisms 2021; 10:84. [PMID: 35056532 PMCID: PMC8781281 DOI: 10.3390/microorganisms10010084] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 07/08/2021] [Accepted: 07/13/2021] [Indexed: 11/17/2022] Open
Abstract
Viral and cellular gene expression are regulated by epigenetic alterations, including DNA methylation, histone modifications, nucleosome positioning, and chromatin looping. Human T-cell leukemia virus type 1 (HTLV-1) is a pathogenic retrovirus associated with inflammatory disorders and T-cell lymphoproliferative malignancy. The transforming activity of HTLV-1 is driven by the viral oncoprotein Tax, which acts as a transcriptional activator of the cAMP response element-binding protein (CREB) and nuclear factor kappa B (NFκB) pathways. The epigenetic effects of Tax and the induction of lymphoproliferative malignancy include alterations in DNA methylation and histone modifications. In addition, alterations in nucleosome positioning and DNA looping also occur in HTLV-1-induced malignant cells. A mechanistic definition of these effects will pave the way to new therapies for HTLV-1-associated disorders.
Collapse
Affiliation(s)
- Lee Ratner
- Department of Medicine, Division of Molecular Oncology, Washington University School of Medicine, Box 8069, 660 S Euclid Ave, St. Louis, MO 63110, USA
| |
Collapse
|
27
|
Hedley JG, Teif VB, Kornyshev AA. Nucleosome-induced homology recognition in chromatin. J R Soc Interface 2021; 18:20210147. [PMID: 34129789 PMCID: PMC8205524 DOI: 10.1098/rsif.2021.0147] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 05/04/2021] [Indexed: 02/07/2023] Open
Abstract
One of the least understood properties of chromatin is the ability of its similar regions to recognize each other through weak interactions. Theories based on electrostatic interactions between helical macromolecules suggest that the ability to recognize sequence homology is an innate property of the non-ideal helical structure of DNA. However, this theory does not account for the nucleosomal packing of DNA. Can homologous DNA sequences recognize each other while wrapped up in the nucleosomes? Can structural homology arise at the level of nucleosome arrays? Here, we present a theoretical model for the recognition potential well between chromatin fibres sliding against each other. This well is different from the one predicted for bare DNA; the minima in energy do not correspond to literal juxtaposition, but are shifted by approximately half the nucleosome repeat length. The presence of this potential well suggests that nucleosome positioning may induce mutual sequence recognition between chromatin fibres and facilitate the formation of chromatin nanodomains. This has implications for nucleosome arrays enclosed between CTCF-cohesin boundaries, which may form stiffer stem-like structures instead of flexible entropically favourable loops. We also consider switches between chromatin states, e.g. through acetylation/deacetylation of histones, and discuss nucleosome-induced recognition as a precursory stage of genetic recombination.
Collapse
Affiliation(s)
- Jonathan G. Hedley
- Department of Chemistry, Faculty of Natural Sciences, Imperial College London, Molecular Sciences Research Hub, White City Campus, Wood Lane, London W12 0BZ, UK
| | - Vladimir B. Teif
- School of Life Sciences, University of Essex, Wivenhoe Park, Colchester CO4 3SQ, UK
| | - Alexei A. Kornyshev
- Department of Chemistry, Faculty of Natural Sciences, Imperial College London, Molecular Sciences Research Hub, White City Campus, Wood Lane, London W12 0BZ, UK
| |
Collapse
|
28
|
Papale A, Holcman D. Chromatin stability generated by stochastic binding and unbinding of cross-linkers at looping sites revealed by Markov models. Phys Biol 2021; 18:046006. [PMID: 33871383 DOI: 10.1088/1478-3975/abf93a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 03/16/2021] [Indexed: 11/11/2022]
Abstract
Chromatin loops inside the nucleus can be stable for a very long time, which remains poorly understood. Such a time is crucial for chromatin organization maintenance and stability. We explore here several physical scenarios, where loop maintenance is due to diffusing cross-linkers (cohesin stabilized by two CTCF molecules) that can bind and unbind at the base of chromatin loops. Using a Markov chain approach to coarse-grain the binding and unbinding, we consider that a stable loop disappears when the last cross-linker is unbound. We derive expressions for this last passage time that we use to quantify the loop stability for various parameters, such as the chemical rate constant or the number of cross-linkers. The present analysis suggests that the balance between binding and unbinding events regulates the number of cross-linkers in place, based on a positive feed-back mechanism that stabilizes the loop over long-time. To conclude, we found that short- and long-lasting stable loops can vary from minutes to the entire cell cycle lifetime, when the number of cross-linkers increases from 1 to 10. This result suggests that a large spectrum of loop time scales is expected with such a few numbers of cross-linkers per local binding sites.
Collapse
Affiliation(s)
- Andrea Papale
- Group of Computational Biology and Applied Mathematics, Ecole Normale Supérieure, IBENS, Université PSL, 75005 Paris, France
| | - David Holcman
- Group of Computational Biology and Applied Mathematics, Ecole Normale Supérieure, IBENS, Université PSL, 75005 Paris, France
- Churchill College, University of Cambridge, CB30DS, United Kingdom
| |
Collapse
|
29
|
At the Crossroad of Gene Regulation and Genome Organization: Potential Roles for ATP-Dependent Chromatin Remodelers in the Regulation of CTCF-Mediated 3D Architecture. BIOLOGY 2021; 10:biology10040272. [PMID: 33801596 PMCID: PMC8066914 DOI: 10.3390/biology10040272] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 03/20/2021] [Accepted: 03/25/2021] [Indexed: 02/07/2023]
Abstract
Simple Summary The way DNA is packaged in the nucleus of a cell is important for when and how genes are expressed. There are many levels of packaging, and new techniques have revealed that long-range interactions are important for both promoting and restricting the transcription of genes. Some long-range interactions are mediated by physical loops in the genome where, like a rubber band, the ring-shaped cohesin complex loops sections of DNA bound by CCCTC-binding factor (CTCF). Both cohesin and CTCF act on DNA, and increasing evidence indicates that their function is inhibited by nucleosomes bound to the DNA. In this review, we summarize the current knowledge of how individual chromatin remodelers, which utilize ATP to move nucleosomes on DNA, facilitate or inhibit cohesin/CTCF-dependent looping interactions. Abstract In higher order organisms, the genome is assembled into a protein-dense structure called chromatin. Chromatin is spatially organized in the nucleus through hierarchical folding, which is tightly regulated both in cycling cells and quiescent cells. Assembly and folding are not one-time events in a cell’s lifetime; rather, they are subject to dynamic shifts to allow changes in transcription, DNA replication, or DNA damage repair. Chromatin is regulated at many levels, and recent tools have permitted the elucidation of specific factors involved in the maintenance and regulation of the three-dimensional (3D) genome organization. In this review/perspective, we aim to cover the potential, but relatively unelucidated, crosstalk between 3D genome architecture and the ATP-dependent chromatin remodelers with a specific focus on how the architectural proteins CTCF and cohesin are regulated by chromatin remodeling.
Collapse
|
30
|
Nucleosome Positioning and Spacing: From Mechanism to Function. J Mol Biol 2021; 433:166847. [PMID: 33539878 DOI: 10.1016/j.jmb.2021.166847] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Revised: 01/16/2021] [Accepted: 01/22/2021] [Indexed: 02/08/2023]
Abstract
Eukaryotes associate their genomes with histone proteins, forming nucleosome particles. Nucleosomes regulate and protect the genetic information. They often assemble into evenly spaced arrays of nucleosomes. These regular nucleosome arrays cover significant portions of the genome, in particular over genes. The presence of these evenly spaced nucleosome arrays is highly conserved throughout the entire eukaryotic domain. Here, we review the mechanisms behind the establishment of this primary structure of chromatin with special emphasis on the biogenesis of evenly spaced nucleosome arrays. We highlight the roles that transcription, nucleosome remodelers, DNA sequence, and histone density play towards the formation of evenly spaced nucleosome arrays and summarize our current understanding of their cellular functions. We end with key unanswered questions that remain to be explored to obtain an in-depth understanding of the biogenesis and function of the nucleosome landscape.
Collapse
|
31
|
Hansen AS. CTCF as a boundary factor for cohesin-mediated loop extrusion: evidence for a multi-step mechanism. Nucleus 2020; 11:132-148. [PMID: 32631111 PMCID: PMC7566886 DOI: 10.1080/19491034.2020.1782024] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 06/01/2020] [Accepted: 06/05/2020] [Indexed: 01/10/2023] Open
Abstract
Mammalian genome structure is closely linked to function. At the scale of kilobases to megabases, CTCF and cohesin organize the genome into chromatin loops. Mechanistically, cohesin is proposed to extrude chromatin loops bidirectionally until it encounters occupied CTCF DNA-binding sites. Curiously, loops form predominantly between CTCF binding sites in a convergent orientation. How CTCF interacts with and blocks cohesin extrusion in an orientation-specific manner has remained a mechanistic mystery. Here, we review recent papers that have shed light on these processes and suggest a multi-step interaction between CTCF and cohesin. This interaction may first involve a pausing step, where CTCF halts cohesin extrusion, followed by a stabilization step of the CTCF-cohesin complex, resulting in a chromatin loop. Finally, we discuss our own recent studies on an internal RNA-Binding Region (RBRi) in CTCF to elucidate its role in regulating CTCF clustering, target search mechanisms and chromatin loop formation and future challenges.
Collapse
Affiliation(s)
- Anders S. Hansen
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| |
Collapse
|
32
|
Maji A, Padinhateeri R, Mitra MK. The Accidental Ally: Nucleosome Barriers Can Accelerate Cohesin-Mediated Loop Formation in Chromatin. Biophys J 2020; 119:2316-2325. [PMID: 33181117 PMCID: PMC7732762 DOI: 10.1016/j.bpj.2020.10.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 09/21/2020] [Accepted: 10/13/2020] [Indexed: 01/26/2023] Open
Abstract
An important question in the context of the three-dimensional organization of chromosomes is the mechanism of formation of large loops between distant basepairs. Recent experiments suggest that the formation of loops might be mediated by loop extrusion factor proteins such as cohesin. Experiments on cohesin have shown that cohesins walk diffusively on the DNA and that nucleosomes act as obstacles to the diffusion, lowering the permeability and hence reducing the effective diffusion constant. An estimation of the times required to form the loops of typical sizes seen in Hi-C experiments using these low-effective-diffusion constants leads to times that are unphysically large. The puzzle then is the following: how does a cohesin molecule diffusing on the DNA backbone achieve speeds necessary to form the large loops seen in experiments? We propose a simple answer to this puzzle and show that although at low densities, nucleosomes act as barriers to cohesin diffusion, beyond a certain concentration they can reduce loop formation times because of a subtle interplay between the nucleosome size and the mean linker length. This effect is further enhanced on considering stochastic binding kinetics of nucleosomes on the DNA backbone and leads to predictions of lower loop formation times than might be expected from a naive obstacle picture of nucleosomes.
Collapse
Affiliation(s)
- Ajoy Maji
- Department of Physics, Indian Institute of Technology Bombay, Mumbai, India
| | - Ranjith Padinhateeri
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, India
| | - Mithun K Mitra
- Department of Physics, Indian Institute of Technology Bombay, Mumbai, India.
| |
Collapse
|
33
|
Magaña-Acosta M, Valadez-Graham V. Chromatin Remodelers in the 3D Nuclear Compartment. Front Genet 2020; 11:600615. [PMID: 33329746 PMCID: PMC7673392 DOI: 10.3389/fgene.2020.600615] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Accepted: 10/07/2020] [Indexed: 12/15/2022] Open
Abstract
Chromatin remodeling complexes (CRCs) use ATP hydrolysis to maintain correct expression profiles, chromatin stability, and inherited epigenetic states. More than 20 CRCs have been described to date, which encompass four large families defined by their ATPase subunits. These complexes and their subunits are conserved from yeast to humans through evolution. Their activities depend on their catalytic subunits which through ATP hydrolysis provide the energy necessary to fulfill cellular functions such as gene transcription, DNA repair, and transposon silencing. These activities take place at the first levels of chromatin compaction, and CRCs have been recognized as essential elements of chromatin dynamics. Recent studies have demonstrated an important role for these complexes in the maintenance of higher order chromatin structure. In this review, we present an overview of the organization of the genome within the cell nucleus, the different levels of chromatin compaction, and importance of the architectural proteins, and discuss the role of CRCs and how their functions contribute to the dynamics of the 3D genome organization.
Collapse
Affiliation(s)
- Mauro Magaña-Acosta
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| | - Viviana Valadez-Graham
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| |
Collapse
|
34
|
Huning L, Kunkel GR. The ubiquitous transcriptional protein ZNF143 activates a diversity of genes while assisting to organize chromatin structure. Gene 2020; 769:145205. [PMID: 33031894 DOI: 10.1016/j.gene.2020.145205] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 09/24/2020] [Accepted: 09/29/2020] [Indexed: 10/23/2022]
Abstract
Zinc Finger Protein 143 (ZNF143) is a pervasive C2H2 zinc-finger transcriptional activator protein regulating the efficiency of eukaryotic promoter regions. ZNF143 is able to activate transcription at both protein coding genes and small RNA genes transcribed by either RNA polymerase II or RNA polymerase III. Target genes regulated by ZNF143 are involved in an array of different cellular processes including both cancer and development. Although a key player in regulating eukaryotic genes, the molecular mechanism by with ZNF143 binds and activates genes transcribed by two different polymerases is still relatively unknown. In addition to its role as a transcriptional regulator, recent genomics experiments have implicated ZNF143 as a potential co-factor involved in chromatin looping and establishing higher order structure within the genome. This review focuses primarily on possible activation mechanisms of promoters by ZNF143, with less emphasis on the role of ZNF143 in cancer and development, and its function in establishing higher order chromatin contacts within the genome.
Collapse
Affiliation(s)
- Laura Huning
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843-2128, USA
| | - Gary R Kunkel
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843-2128, USA.
| |
Collapse
|
35
|
Parmar JJ, Padinhateeri R. Nucleosome positioning and chromatin organization. Curr Opin Struct Biol 2020; 64:111-118. [PMID: 32731156 DOI: 10.1016/j.sbi.2020.06.021] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 05/31/2020] [Accepted: 06/23/2020] [Indexed: 11/24/2022]
Abstract
In our cells, DNA is folded and packed with the help of many proteins into chromatin whose basic unit is a nucleosome-DNA wrapped around octamer of histone proteins. The chain of nucleosomes is further folded and arranged into many layers and has a dynamic organization. How does the complex chromatin organization emerge from interactions among DNA, histones, and non-histone proteins have been a question of great interest. Here we review recent literature that investigated how nucleosome positioning and nucleosome-mediated interactions drive chromatin organization. Unlike our earlier understanding, chromatin is organized into 3D domains of various sizes having irregularly organized nucleosomes. These domains emerge due to heterogeneous nucleosome positioning and diverse inter-nucleosome interactions that vary in space and time.
Collapse
Affiliation(s)
- Jyotsana J Parmar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai 400 076, India
| | - Ranjith Padinhateeri
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai 400 076, India.
| |
Collapse
|
36
|
Teif VB, Gould TJ, Clarkson CT, Boyd L, Antwi EB, Ishaque N, Olins AL, Olins DE. Linker histone epitopes are hidden by in situ higher-order chromatin structure. Epigenetics Chromatin 2020; 13:26. [PMID: 32505195 PMCID: PMC7276084 DOI: 10.1186/s13072-020-00345-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2019] [Accepted: 05/13/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Histone H1 is the most mobile histone in the cell nucleus. Defining the positions of H1 on chromatin in situ, therefore, represents a challenge. Immunoprecipitation of formaldehyde-fixed and sonicated chromatin, followed by DNA sequencing (xChIP-seq), is traditionally the method for mapping histones onto DNA elements. But since sonication fragmentation precedes ChIP, there is a consequent loss of information about chromatin higher-order structure. Here, we present a new method, xxChIP-seq, employing antibody binding to fixed intact in situ chromatin, followed by extensive washing, a second fixation, sonication and immunoprecipitation. The second fixation is intended to prevent the loss of specifically bound antibody during washing and subsequent sonication and to prevent antibody shifting to epitopes revealed by the sonication process. In many respects, xxChIP-seq is comparable to immunostaining microscopy, which also involves interaction of the primary antibody with fixed and permeabilized intact cells. The only epitopes displayed after immunostaining are the "exposed" epitopes, not "hidden" by the fixation of chromatin higher-order structure. Comparison of immunoprecipitated fragments between xChIP-seq versus xxChIP-seq should indicate which epitopes become inaccessible with fixation and identify their associated DNA elements. RESULTS We determined the genomic distribution of histone variants H1.2 and H1.5 in human myeloid leukemia cells HL-60/S4 and compared their epitope exposure by both xChIP-seq and xxChIP-seq, as well as high-resolution microscopy, illustrating the influences of preserved chromatin higher-order structure in situ. We found that xChIP and xxChIP H1 signals are in general negatively correlated, with differences being more pronounced near active regulatory regions. Among the intriguing observations, we find that transcription-related regions and histone PTMs (i.e., enhancers, promoters, CpG islands, H3K4me1, H3K4me3, H3K9ac, H3K27ac and H3K36me3) exhibit significant deficiencies (depletions) in H1.2 and H1.5 xxChIP-seq reads, compared to xChIP-seq. These observations suggest the existence of in situ transcription-related chromatin higher-order structures stabilized by formaldehyde. CONCLUSION Comparison of H1 xxChIP-seq to H1 xChIP-seq allows the development of hypotheses on the chromosomal localization of (stabilized) higher-order structure, indicated by the generation of "hidden" H1 epitopes following formaldehyde crosslinking. Changes in H1 epitope exposure surrounding averaged chromosomal binding sites or epigenetic modifications can also indicate whether these sites have chromatin higher-order structure. For example, comparison between averaged active or inactive promoter regions suggests that both regions can acquire stabilized higher-order structure with hidden H1 epitopes. However, the H1 xChIP-seq comparison cannot define their differences. Application of the xxChIP-seq versus H1 xChIP-seq method is particularly relevant to chromatin-associated proteins, such as linker histones, that play dynamic roles in establishing chromatin higher-order structure.
Collapse
Affiliation(s)
- Vladimir B Teif
- School of Life Sciences, University of Essex, Wivenhoe Park, Colchester, CO4 3SQ, UK.
| | - Travis J Gould
- Department of Physics & Astronomy, Bates College, Lewiston, ME, USA
| | | | - Logan Boyd
- Department of Physics & Astronomy, Bates College, Lewiston, ME, USA.,StarBird Technologies, LLC, Brunswick, ME, USA
| | - Enoch B Antwi
- Division of Theoretical Bioinformatics, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, Heidelberg, 69120, Germany.,Molecular and Cellular Engineering, Centre for Biological Signalling Studies, University of Freiburg, Schänzlestraße 18, Freiburg im Breisgau, 79104 , Germany
| | - Naveed Ishaque
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.,Digital Health Centre, Berlin Institute of Health (BIH), Anna-Louisa-Karsch-Str. 2, Berlin, 10178 , Germany
| | - Ada L Olins
- Department of Pharmaceutical Sciences, College of Pharmacy, University of New England, 716 Stevens Avenue, Portland, ME, 04103, USA
| | - Donald E Olins
- Department of Pharmaceutical Sciences, College of Pharmacy, University of New England, 716 Stevens Avenue, Portland, ME, 04103, USA.
| |
Collapse
|