1
|
Fu J, Wu L, Hu G, Li F, Ge Q, Lu Z, Tu J. Solid-state nanopore analysis on the conformation change of DNA polymerase I induced by a DNA substrate. Analyst 2022; 147:3087-3095. [DOI: 10.1039/d2an00567k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We studied the conformational changes between a Klenow fragment and its monomer complex with a DNA substrate using a SiN nanopore and found that the monomer complex has a tighter structure and transports slower.
Collapse
Affiliation(s)
- Jiye Fu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Linlin Wu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Gang Hu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Fuyao Li
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Qinyu Ge
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Zuhong Lu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Jing Tu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| |
Collapse
|
2
|
Wang Y, Hayatsu M, Fujii T. Extraction of bacterial RNA from soil: challenges and solutions. Microbes Environ 2012; 27:111-21. [PMID: 22791042 PMCID: PMC4036013 DOI: 10.1264/jsme2.me11304] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Detection of bacterial gene expression in soil emerged in the early 1990s and provided information on bacterial responses in their original soil environments. As a key procedure in the detection, extraction of bacterial RNA from soil has attracted much interest, and many methods of soil RNA extraction have been reported in the past 20 years. In addition to various RT-PCR-based technologies, new technologies for gene expression analysis, such as microarrays and high-throughput sequencing technologies, have recently been applied to examine bacterial gene expression in soil. These technologies are driving improvements in RNA extraction protocols. In this mini-review, progress in the extraction of bacterial RNA from soil is summarized with emphasis on the major difficulties in the development of methodologies and corresponding strategies to overcome them.
Collapse
Affiliation(s)
- Yong Wang
- Environmental Biofunction Division, National Institute for Agro-Environmental Sciences, 3-1-3 Kannondai, Tsukuba, Ibaraki 305-8604, Japan.
| | | | | |
Collapse
|
3
|
Gibriel AAY. Options available for labelling nucleic acid samples in DNA microarray-based detection methods. Brief Funct Genomics 2012; 11:311-8. [PMID: 22510454 DOI: 10.1093/bfgp/els015] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
DNA microarrays are considered by many researchers to be the platform of choice for the high-throughput analysis of nucleic acids. Since the past two decades, they have been used constantly as powerful tools in differential gene expression, SNP genotyping, DNA sequencing, gene discovery, disease diagnostic and pathways reconstruction. Several methods have been developed to enable samples of limited amounts of RNA to be quantified. Here we evaluate classical and up-to-date assays made available for labelling those samples. This review also sheds light on the recently developed strategies that ensure high sensitivity such as sample and signal amplification, quantum dot, surface plasmom resonance, nanoparticles and cationinc polythiophenes.
Collapse
Affiliation(s)
- Abdullah A Y Gibriel
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Ahram Canadian University (ACU), P.O. Box 259, Cairo, 11728, Egypt.
| |
Collapse
|
4
|
PCR DNA-array profiling of DNA-binding transcription factor activities in adult mouse tissues. Methods Mol Biol 2011; 687:319-31. [PMID: 20967619 DOI: 10.1007/978-1-60761-944-4_23] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/19/2023]
Abstract
Differential gene expression is tightly controlled by transcription factors (TFs), which bind close to target genes and interact together to activate and coregulate transcription. Bioinformatics analysis of published genome-wide gene expression data has allowed the development of comprehensive models of TFs likely to be active in particular tissues (signature TFs); however, the predicted activities of many of the TFs have not been experimentally confirmed. Here, we describe methods for the parallel analysis of the activities of more than 200 transcription factor proteins, using an advanced oligonucleotide array-based transcription factor assay (OATFA) platform, to assay TF activities in mice. The system uses a PCR-based system to translate cellular levels of target DNA-TF complex into a dye-tagged DNA signal, which is read by the developed microarray. The PCR step introduces semiquantitative amplification of the represented TF binding sequences. Experimental OATFA findings can identify many TF activities, which bioinformatics profiling does not predict. Newly identified TF activities can be confirmed by antibody-ELISA against active TFs. The PCR-based OATFA microarray analysis is a comprehensive method that can be used to reveal transcriptional systems and pathways which may function in different mammalian tissues and cells.
Collapse
|
5
|
Arslan E, Laurenzi IJ. An efficient algorithm for the stochastic simulation of the hybridization of DNA to microarrays. BMC Bioinformatics 2009; 10:411. [PMID: 20003312 PMCID: PMC2805644 DOI: 10.1186/1471-2105-10-411] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2008] [Accepted: 12/10/2009] [Indexed: 11/29/2022] Open
Abstract
Background Although oligonucleotide microarray technology is ubiquitous in genomic research, reproducibility and standardization of expression measurements still concern many researchers. Cross-hybridization between microarray probes and non-target ssDNA has been implicated as a primary factor in sensitivity and selectivity loss. Since hybridization is a chemical process, it may be modeled at a population-level using a combination of material balance equations and thermodynamics. However, the hybridization reaction network may be exceptionally large for commercial arrays, which often possess at least one reporter per transcript. Quantification of the kinetics and equilibrium of exceptionally large chemical systems of this type is numerically infeasible with customary approaches. Results In this paper, we present a robust and computationally efficient algorithm for the simulation of hybridization processes underlying microarray assays. Our method may be utilized to identify the extent to which nucleic acid targets (e.g. cDNA) will cross-hybridize with probes, and by extension, characterize probe robustnessusing the information specified by MAGE-TAB. Using this algorithm, we characterize cross-hybridization in a modified commercial microarray assay. Conclusions By integrating stochastic simulation with thermodynamic prediction tools for DNA hybridization, one may robustly and rapidly characterize of the selectivity of a proposed microarray design at the probe and "system" levels. Our code is available at http://www.laurenzi.net.
Collapse
Affiliation(s)
- Erdem Arslan
- Department of Chemical Engineering, Lehigh University, Bethlehem, PA, USA.
| | | |
Collapse
|
6
|
SUN YM, ZENG LQ, ZHANG Y, WEI L, K R MITCHELSON, ZHANG L, CHENG J. Construction and Application of a Microarray for Profiling Mouse Transcription Factor Activities*. PROG BIOCHEM BIOPHYS 2009. [DOI: 10.3724/sp.j.1206.2008.00399] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
7
|
Zhang D, Bi Z, Li Y, Zheng H, Li L, Ouyang J, Wang B, Bi Y. Sodium Ferulate Modified Gene Expression Profile of Oxidized Low-Density Lipoprotein-Stimulated Human Umbilical Vein Endothelial Cells. J Cardiovasc Pharmacol Ther 2009; 14:302-13. [PMID: 19837969 DOI: 10.1177/1074248409347986] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Oxidized low-density lipoprotein (ox-LDL) is known to trigger vascular injury in atherosclerosis development. Sodium ferulate is an effective component from Chinese medicines with various beneficial cardiovascular pharmacological activities. Here, we investigated the effects of sodium ferulate on the gene expression profile of ox-LDL-stimulated endothelial cells. Cultured human umbilical vein endothelial cells (HUVECs) were treated with ox-LDL (50 μg/mL) in the absence or presence of sodium ferulate (5 μmol/L). Sodium ferulate significantly reduced ox-LDL-induced endothelial cell death as evaluated by cell viability assay. Human oligonucleotide microarray analysis demonstrated that a total of 32 ox-LDL-induced genes were significantly downregulated to control levels by sodium ferulate. These genes included members from families of chemokine, inflammatory factor, growth factor, and nuclear receptor. These data provided an overview of the gene expression profile of endothelial cells in response to ox-LDL and sodium ferulate, and demonstrated that sodium ferulate could regulate the expression of inflammation-related genes in endothelial cells and has the potential to benefit endothelial function in the setting of atherosclerosis.
Collapse
Affiliation(s)
- Dongxian Zhang
- Department of Occupational and Environmental Health, School of Public Health, Wuhan University, Wuhan, Hubei, PR China, Nanyang Medical College, Henan, PR China
| | - Zhuoyue Bi
- School of Pharmacy, Wuhan University, Wuhan, PR China
| | - Yang Li
- Hubei Provincial Center for Disease Control and Prevention, Wuhan, PR China
| | - Hong Zheng
- School of Basic Medical Science, Yunyang Medical College, Hubei, PR China
| | - Li Li
- Department of Occupational and Environmental Health, School of Public Health, Wuhan University, Wuhan, Hubei, PR China
| | - Jingping Ouyang
- Department of Pathology and Pathophysiology, School of Medicine, Wuhan University, Wuhan, PR China
| | - Baohua Wang
- Department of Pathology and Pathophysiology, School of Medicine, Wuhan University, Wuhan, PR China
| | - Yongyi Bi
- Department of Occupational and Environmental Health, School of Public Health, Wuhan University, Wuhan, Hubei, PR China
| |
Collapse
|
8
|
Feng Y, Li X, Sun B, Wang Y, Zhang L, Pan X, Chen X, Wang X, Wang J, Hao X. Evidence for a transcriptional signature of breast cancer. Breast Cancer Res Treat 2009; 122:65-75. [DOI: 10.1007/s10549-009-0505-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2009] [Accepted: 08/06/2009] [Indexed: 12/20/2022]
|
9
|
Jiang M, Li X, Zhang L, Feng H, Zhang Y. Gene expression analysis of Phanerochaete chrysosporium during the transition time from primary growth to secondary metabolism. J Microbiol 2009; 47:308-18. [PMID: 19557348 DOI: 10.1007/s12275-008-0275-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2008] [Accepted: 03/17/2009] [Indexed: 11/28/2022]
Abstract
In order to identify the secondary metabolism-related genes of Phanerochaete chrysosporium growing under pure O2 and nitrogen-limited conditions, 2322 ESTs fragments originated from two suppression-subtractive libraries were analyzed using the cDNA microarray technique. Ten significantly upregulated and 22 significantly downregulated genes were identified in the 72 h cultured mycelia RNA samples (secondary metabolism). According to qPCR, 16 out of the 32 genes were expressed differently in secondary metabolism. Transcripts of secondary metabolism up-regulation genes exhibited homologies to aryl-alcohol dehydrogenase (SShl554), ABC transporter gene (SSH624), chitinase (SSH963), heat shock protein (SSH1193), catalase (SSH317), cytochrome P450 (SSH331), glucosamine-6-phosphate isomerase (SSH611), and alkyl hydroperoxide reductase (SSH362) genes. Ninety-three genes could be classified by Eukaryotic Orthologous Groups (KOG). Among the genes assigned a function, gene expression patterns were different in both secondary metabolism and primary metabolism. In the group of "Cellular Processes and Signaling," most of the genes were from the primary metabolism library. On the other hand, genes from the secondary metabolism library were found mainly in the "Information Storage" and "Processing and Poorly Characterized" groups. Based on the KOG functional assignments, six genes belong to the ubiquitin system, and all of them were from primary metabolism phase. The presence of the H2O2-relevant genes suggested that parts of the genes expressed in 72 h might be involved in the ligninolytic process during secondary metabolism of P. chrysosporium.
Collapse
Affiliation(s)
- Mingfeng Jiang
- College of Life Science, Sichuan University, Chengdu 610064, P. R. China
| | | | | | | | | |
Collapse
|
10
|
|
11
|
Teng Y, Hou Z, Gong J, Liu H, Xie X, Zhang L, Chen X, Qin QW. Whole-genome transcriptional profiles of a novel marine fish iridovirus, Singapore grouper iridovirus (SGIV) in virus-infected grouper spleen cell cultures and in orange-spotted grouper, Epinephulus coioides. Virology 2008; 377:39-48. [PMID: 18555886 DOI: 10.1016/j.virol.2008.04.011] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2007] [Revised: 03/27/2008] [Accepted: 04/07/2008] [Indexed: 11/28/2022]
Abstract
A DNA microarray containing all Singapore grouper iridovirus (SGIV) open reading frames (ORFs) was constructed to map the viral gene transcriptional profiles in virus-infected grouper spleen (GS) cells and in spleen tissues of virus-infected grouper. The results showed that viral genes started to be transcribed as early as 1 h postinfection (p.i.), and followed by a rapid increasing gene expression along with virus infection in cell cultures. The three temporal kinetic classes (15 immediate-early, 89 early and 53 late transcripts) were classified during an in vitro infection by their dependence on de novo protein synthesis and viral DNA replication inhibitors. In SGIV-infected grouper, Epinephulus coioides, most of the viral genes were expressed between 1 and 4 d p.i., and the number and expression levels started to decrease after 5 d p.i. These data were confirmed by real-time RT-PCR. This study provides an experimental basis for investigation of virus-host interactions and the development of control strategies against SGIV infection.
Collapse
Affiliation(s)
- Yong Teng
- State Key Laboratory of Biocontrol, College of Life Sciences, Sun Yat-sen (Zhongshan) University, 135 West Xingang Road, Guangzhou 510275, China
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Appay V, Bosio A, Lokan S, Wiencek Y, Biervert C, Küsters D, Devevre E, Speiser D, Romero P, Rufer N, Leyvraz S. Sensitive gene expression profiling of human T cell subsets reveals parallel post-thymic differentiation for CD4+ and CD8+ lineages. THE JOURNAL OF IMMUNOLOGY 2008; 179:7406-14. [PMID: 18025184 DOI: 10.4049/jimmunol.179.11.7406] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The differentiation of CD4(+) or CD8(+) T cells following priming of naive cells is central in the establishment of the immune response against pathogens or tumors. However, our understanding of this complex process and the significance of the multiple subsets of differentiation remains controversial. Gene expression profiling has opened new directions of investigation in immunobiology. Nonetheless, the need for substantial amount of biological material often limits its application range. In this study, we have developed procedures to perform microarray analysis on amplified cDNA from low numbers of cells, including primary T lymphocytes, and applied this technology to the study of CD4 and CD8 lineage differentiation. Gene expression profiling was performed on samples of 1000 cells from 10 different subpopulations, defining the major stages of post-thymic CD4(+) or CD8(+) T cell differentiation. Surprisingly, our data revealed that while CD4(+) and CD8(+) T cell gene expression programs diverge at early stages of differentiation, they become increasingly similar as cells reach a late differentiation stage. This suggests that functional heterogeneity between Ag experienced CD4(+) and CD8(+) T cells is more likely to be located early during post-thymic differentiation, and that late stages of differentiation may represent a common end in the development of T-lymphocytes.
Collapse
Affiliation(s)
- Victor Appay
- Cellular Immunology Laboratory, Institut National de la Santé et de la Recherche Médical U543, Avenir Group, Hôpital Pitié-Salpêtrière, Université Pierre et Marie Curie-Paris6, Paris, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Zhao Y, Shao W, Wei H, Qiao J, Lu Y, Sun Y, Mitchelson K, Cheng J, Zhou Y. Development of a novel oligonucleotide array-based transcription factor assay platform for genome-wide active transcription factor profiling in Saccharomyces cerevisiae. J Proteome Res 2008; 7:1315-25. [PMID: 18220337 DOI: 10.1021/pr700642g] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Transcription factors (TFs) play a central role in regulating gene expression and in providing interconnecting regulatory networks between related pathway elements. Although single TF assays provide some insights into pathway regulation, a method that allows the parallel investigation of all active TFs is highly desired to elucidate the complex inter-regulated cellular mechanisms. We have developed a novel oligonucleotide array-based transcription factor assay platform for genome-wide active TF profiling of Saccharomyces cerevisiae, which can simultaneously analyze the activities of 93 different TFs. The platform has been validated using 28 purified TFs produced in Escherichia coli, cell extracts from yeast strains overexpressing particular TFs, and by detailed control experiments. We then used the platform to examine the activity changes of all yeast TFs during diauxic shift, and results showed, in good agreement with previous studies, that the Sip4 was induced specifically. Other individual TFs required for growth in synthetic complete medium were also identified. Genome-wide analysis of TF activity is extremely useful in investigating complex gene regulatory networks and for the development of systematic understanding of the complexity of genomic functions. These results obtained in this report demonstrate the validity, and for the first time the utility, of this technology for genome-wide investigation of TF activities.
Collapse
Affiliation(s)
- Yongchao Zhao
- Medical Systems Biology Research Center, Tsinghua University, Beijing 100084, China
| | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Lauss M, Vierlinger K, Weinhaeusel A, Szameit S, Kaserer K, Noehammer C. Comparison of RNA amplification techniques meeting the demands for the expression profiling of clinical cancer samples. Virchows Arch 2007; 451:1019-29. [DOI: 10.1007/s00428-007-0522-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2007] [Revised: 09/27/2007] [Accepted: 09/28/2007] [Indexed: 11/30/2022]
|
15
|
Wang E, Panelli M, Marincola FM. Complementary techniques: RNA amplification for gene profiling analysis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2007; 593:39-53. [PMID: 17265715 DOI: 10.1007/978-0-387-39978-2_5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The study of clinical samples is often limited by the amount of material available. DNA and RNA can be amplified from small specimens and, therefore, used for high-throughput analyses. While precise estimates of the level of DNA concentration in a given specimen is rarely studied (with the exception of relatively crude analyses of gene amplification or loss in cancer specimens), it is critical to know the proportional expression of various RNA transcripts since this proportion governs cell function by modulating the expression of various proteins. In addition, accurate estimates of relative RNA expression in biological conditions portray the reaction of cells to environmental stimuli shedding light on the characteristics of the microenvironment associated with particular physiologic or pathologic conditions. For this reason, the development of technologies for high fidelity messenger RNA amplification have been focused of extreme interest in the past decade with specific aim not only of increasing the abundance of RNA available to study but to accurately maintain the proportionality of expression of various RNA species among each other within a given specimen. This chapter will discuss various approaches to proportional RNA amplification focusing on amplification of the whole transcriptome (all transcripts in a given samples) rather than individual genes. These methods are suitable for high-throughput transcriptional profiling studies.
Collapse
|
16
|
Xu BY, Su W, Liu JH, Wang JB, Jin ZQ. Differentially expressed cDNAs at the early stage of banana ripening identified by suppression subtractive hybridization and cDNA microarray. PLANTA 2007; 226:529-39. [PMID: 17334781 DOI: 10.1007/s00425-007-0502-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2007] [Accepted: 02/14/2007] [Indexed: 05/14/2023]
Abstract
The banana (Musa acuminate L. AAA group) fruit undergoes a postharvest ripening process, which plays an important role in improving the quality and extending the shelf life of bananas. To manipulate postharvest banana ripening, a better understanding of the mechanism of postharvest ripening is necessary. The isolation of mRNA transcripts encoding proteins associated with the ripening process is a powerful tool for this purpose. To isolate differentially expressed genes at the early stage of postharvest banana ripening, a forward suppression subtractive hybridization (SSH) cDNA library was constructed. SSH was performed with cDNA from banana fruit on the day of harvest as the "driver" and cDNA from banana fruit 2 days postharvest (DPH) as the "tester." A total of 289 clones in the SSH library were sequenced. BLASTX results revealed that 191 cDNAs had significant sequence homologies with known sequences in the NCBI database. Of the 191 cDNAs, 138 were singletons, and 53 belonged to divergent clusters containing 2-8 sequences. The identified cDNAs encoded proteins involved in cellular processes such as: metabolism; protein destination and storage; protein synthesis; signal transduction; transport and intracellular traffic; cell structure, growth, and division; transcription and post-transcription; and disease and defense. To characterize differentially expressed cDNAs in the SSH library, cDNA microarray analysis was conducted. A total of 26 cDNAs in the 2-DPH banana fruit were found to be up-regulated and these results were confirmed by using reverse transcriptase-polymerase chain reaction (RT-PCR). The information generated in this study provides new clues to aid in the understanding of banana ripening.
Collapse
Affiliation(s)
- Bi Yu Xu
- State Key Biotechnology Laboratory of Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Hainan province 571101, People's Republic of China
| | | | | | | | | |
Collapse
|
17
|
Novel gene expression patterns along the proximo-distal axis of the mouse embryo before gastrulation. BMC DEVELOPMENTAL BIOLOGY 2007; 7:8. [PMID: 17302988 PMCID: PMC1821012 DOI: 10.1186/1471-213x-7-8] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2006] [Accepted: 02/15/2007] [Indexed: 01/29/2023]
Abstract
BACKGROUND To date, the earliest stage at which the orientation of the anterior-posterior axis in the mouse embryo is distinguishable by asymmetric gene expression is shortly after E5.5. At E5.5, prospective anterior markers are expressed at the distal tip of the embryo, whereas prospective posterior markers are expressed more proximally, close to the boundary with the extraembryonic region. RESULTS To contribute to elucidating the mechanisms underlying the events involved in early patterning of the mouse embryo, we have carried out a microarray screen to identify novel genes that are differentially expressed between the distal and proximal parts of the E5.5 embryo. Secondary screening of resulting candidates by in situ hybridisation at E5.5 and E6.5 revealed novel expression patterns for known and previously uncharacterised genes, including Peg10, Ctsz1, Cubilin, Jarid1b, Ndrg1, Sfmbt2, Gjb5, Talia and Plet1. The previously undescribed gene Talia and recently identified Plet1 are expressed specifically in the distal-most part of the extraembryonic ectoderm, adjacent to the epiblast, and are therefore potential candidates for regulating early patterning events. Talia and the previously described gene XE7 define a gene family highly conserved among metazoans and with a predicted protein structure suggestive of a post-transcriptional regulative function, whilst Plet1 appears to be mammal-specific and of unknown function. CONCLUSION Our approach has allowed us to compare expression between dissected parts of the egg cylinder and has identified multiple genes with novel expression patterns at this developmental stage. These genes are potential candidates for regulating tissue interactions following implantation.
Collapse
|
18
|
Chen W, Fu X, Ge S, Sun T, Zhou G, Han B, Li H, Sheng Z. Profiling of genes differentially expressed in a rat of early and later gestational ages with high-density oligonucleotide DNA array. Wound Repair Regen 2007; 15:147-55. [PMID: 17244330 DOI: 10.1111/j.1524-475x.2006.00195.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The early gestational fetus heals dermal wounds rapidly and scarlessly. This phenomenon appears to be intrinsic to fetal skin and is probably modulated by interplay of many genes. We ventured to study differences in gene expression between earlier gestational skin (EGS) and later gestational skin (LGS) with the aid of high-density oligonucleotide DNA array to explore the molecular mechanism underlying scarless healing. Total RNA was isolated from fetal Wistar rat skin of the scarless (E15) and scar-forming (E18) periods of gestation (term=21.5 days), and purified to mRNAs. Both the mRNAs from EGS and LGS were reversely transcribed to cDNAs, and were labeled with the incorporation of fluorescent dCTP for preparing the hybridization probes through single primer amplification reaction and Klenow labeling methods. The mixed probes were then hybridized to the oligonucleotide DNA arrays that contained 5,705 DNA fragments representing 5,705 rat genes. After highly stringent washing, the microarray was scanned for fluorescent signals to display the differentially expressed genes between two groups of tissues. Among 5,705 rat genes, there were 53 genes (0.93%) with differentially expressed levels between EGS and LGS; 27 genes, including fibroblast growth factor 8 and follistatin, were up-regulated (0.47%); and 26 genes, containing lymphoid enhancer binding factor-1 and beta-catenin, were down-regulated (0.46%) in fetal skin of scarless period vs. scar-forming period. Analyses of genes related to ion channels, growth factors, extracellular matrix and cellular skeleton, and movement confirmed that our molecular data obtained by oligonucleotide DNA array were consistent with the published biochemical and clinical findings of fetal scarless healing. Stronger expression of fibroblast growth factor 8, follistatin, and weaker expression of lymphoid enhancer binding factor-1 and beta-catenin in EGS vs. LGS were also testified with reverse transcription-polymerase chain reaction and Western blotting methods. Oligonucleotide DNA array was a powerful tool for investigating different gene expression between scarless and scar-forming periods of gestation in the rat fetal skin. Many genes were involved in the phenotypic transition from scarless to scar-forming wound repair during gestation. Further analysis of the obtained genes will help to understand the molecular mechanism of fetal scarless healing.
Collapse
Affiliation(s)
- Wei Chen
- Wound Healing and Cell Biology Laboratory, Burns Institute, The First Affiliated Hospital (304 Hospital) of the General Hospital of PLA, Trauma Center of Postgraduate Medical College, Beijing, China
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Boonham N, Tomlinson J, Mumford R. Microarrays for rapid identification of plant viruses. ANNUAL REVIEW OF PHYTOPATHOLOGY 2007; 45:307-28. [PMID: 17691887 DOI: 10.1146/annurev.phyto.45.062806.094349] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Many factors affect the development and application of diagnostic techniques. Plant viruses are an inherently diverse group that, unlike cellular pathogens, possess no nucleotide sequence type (e.g., ribosomal RNA sequences) in common. Detection of plant viruses is becoming more challenging as globalization of trade, particularly in ornamentals, and the potential effects of climate change enhance the movement of viruses and their vectors, transforming the diagnostic landscape. Techniques for assessing seed, other propagation materials and field samples for the presence of specific viruses include biological indexing, electron microscopy, antibody-based detection, including enzyme-linked immunosorbent assay (ELISA), polymerase chain reaction (PCR), and microarray detection. Of these, microarray detection provides the greatest capability for parallel yet specific testing, and can be used to detect individual, or combinations of viruses and, using current approaches, to do so with a sensitivity comparable to ELISA. Methods based on PCR provide the greatest sensitivity among the listed techniques but are limited in parallel detection capability even in "multiplexed" applications. Various aspects of microarray technology, including probe development, array fabrication, assay target preparation, hybridization, washing, scanning, and interpretation are presented and discussed, for both current and developing technology.
Collapse
Affiliation(s)
- Neil Boonham
- Central Science Laboratory, Sand Hutton, York, YO41 1LZ, United Kingdom.
| | | | | |
Collapse
|
20
|
Zhao J, Cao M, Zhang J, Sun Q, Chen Q, Yang ZR. Pathological effects of the mushroom toxin alpha-amanitin on BALB/c mice. Peptides 2006; 27:3047-52. [PMID: 17045701 DOI: 10.1016/j.peptides.2006.08.015] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2006] [Revised: 08/19/2006] [Accepted: 08/21/2006] [Indexed: 11/23/2022]
Abstract
The pathological effects of alpha-amanitin on BALB/c mice after receiving intravenous injection were evaluated by RP-HPLC and mouse genome oligonucleotide microarray. The content of alpha-amanitin in Amanita virosa was about 2833.8 microg/g dry fruiting body. The liver and kidneys showed critical pathological changes after alpha-amanitin poisoning, and sera BUN, Crea, ALT, AST, TBIL and DBIL were the sensitive markers. The compound alpha-amanitin was detected in liver and kidney tissue homogenates by RP-HPLC after 48 h. The results of mouse genome oligonucleotide microarray showed 146 genes' expression changed, which formed the alternant network. The expression of 66 genes decreased, while 80 ones increased with more than two-fold differential expression after 48 h. The compound alpha-amanitin influenced not only RNA polymerase II, but also the expression of its associated genes. The application of mouse oligo chip provided valuable data for further understanding the biological properties and molecular pathogenesis of alpha-amanitin, also might be helpful for screening the curative drug for alpha-amanitin intoxication.
Collapse
Affiliation(s)
- Jian Zhao
- Division of Cancer Biotherapy, State Key Laboratory of Biotherapy, West China Medical School, Sichuan University, Chengdu 610064, PR China
| | | | | | | | | | | |
Collapse
|
21
|
Feng Y, Sun B, Li X, Zhang L, Niu Y, Xiao C, Ning L, Fang Z, Wang Y, Zhang L, Cheng J, Zhang W, Hao X. Differentially expressed genes between primary cancer and paired lymph node metastases predict clinical outcome of node-positive breast cancer patients. Breast Cancer Res Treat 2006; 103:319-29. [PMID: 17123152 DOI: 10.1007/s10549-006-9385-7] [Citation(s) in RCA: 94] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2006] [Accepted: 08/16/2006] [Indexed: 11/29/2022]
Abstract
The axillary lymph node status remains the most valuable prognostic factor for breast cancer patients. However, approximately 20-30% of node-positive patients remain free of distant metastases within 15-30 years. It is important to develop molecular markers that are able to predict for the risk of distant metastasis and to develop patient-tailored therapy strategies. We hypothesize that the lymph node metastases may represent the most metastatic fraction of the primary cancers. Therefore, we sought to identify the differentially expressed genes by microarray between the primary tumors and their paired lymph node metastases samples collected from 26 patients. A set of 79 differentially expressed genes between primary cancers and metastasis samples was identified to correctly separate most of primary cancers from lymph node metastases. And decreased expression of matrix metalloproteinase 2, fibronectin, osteoblast specific factor 2, collagen type XI alpha 1 in lymph node metastases were further confirmed by real-time RT-PCR performed on 30 specimen pairs. This set of genes also classified 35 primary cancers into two groups with different prognosis: "high risk group" and "low risk group." Patients in "high risk group" had a 4.65-fold hazard ratio (95% CI 1.02-21.13, P = 0.047) to develop a distant metastasis within 43 months comparing with the "low risk group." This suggested that the gene signature consisting of 79 differentially expressed genes between primary cancers and lymph node metastases could also predict clinical outcome of node-positive patients, and that the molecular classification based on the gene signature could guide patient-tailored therapy.
Collapse
Affiliation(s)
- Yumei Feng
- Breast Cancer Prevention and Treatment Key Laboratory of Ministry of Education, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Hahnke K, Jacobsen M, Gruetzkau A, Gruen JR, Koch M, Emoto M, Meyer TF, Walduck A, Kaufmann SHE, Mollenkopf HJ. Striptease on glass: validation of an improved stripping procedure for in situ microarrays. J Biotechnol 2006; 128:1-13. [PMID: 17084936 DOI: 10.1016/j.jbiotec.2006.09.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2006] [Revised: 08/22/2006] [Accepted: 09/06/2006] [Indexed: 11/15/2022]
Abstract
Microarrays have rapidly become an indispensable tool for gene analysis. Microarray experiments can be cost prohibitive, however, largely due to the price of the arrays themselves. Whilst different methods for stripping filter arrays on membranes have been established, only very few protocols are published for thermal and chemical stripping of microarrays on glass. Most of these protocols for stripping microarrays on glass were developed in combination with specific surface chemistry and different coatings for covalently immobilizing presynthesized DNA in a deposition process. We have developed a method for stripping commercial in situ microarrays using a multi-step procedure. We present a method that uses mild chemical degradation complemented by enzymatic treatment. We took advantage of the differences in biochemical properties of covalently linked DNA oligonucleotides on in situ synthesized microarrays and the antisense cRNA hybridization probes. The success of stripping protocols for microarrays on glass was critically dependent on the type of arrays, the nature of sample used for hybridization, as well as hybridization and washing conditions. The protocol employs alkali hydrolysis of the cRNA, several enzymatic degradation steps using RNAses and Proteinase K, combined with appropriate washing steps. Stripped arrays were rehybridized using the same protocols as for new microarrays. The stripping method was validated with microarrays from different suppliers and rehybridization of stripped in situ arrays yielded comparable results to hybridizations done on unused, new arrays with no significant loss in precision or accuracy. We show that stripping of commercial in situ arrays is feasible and that reuse of stripped arrays gave similar results compared to unused ones. This was true even for biological samples that show only slight differences in their expression profiles. Our analyses indicate that the stripping procedure does not significantly influence data quality derived from post-primary hybridizations. The method is robust, easy to perform, inexpensive, and results after reuse are of comparable accuracy to new arrays.
Collapse
Affiliation(s)
- Karin Hahnke
- Max Planck Institute for Infection Biology, Microarray Core Facility, Schumannstr. 21/22, 10117 Berlin, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Peano C, Severgnini M, Cifola I, De Bellis G, Battaglia C. Transcriptome amplification methods in gene expression profiling. Expert Rev Mol Diagn 2006; 6:465-80. [PMID: 16706747 DOI: 10.1586/14737159.6.3.465] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The increasing use of microarray expression profiling to study the molecular biology of cancer and the cellular physiology of difficult-to-isolate cell types has led to a need for methods that accurately and precisely amplify small quantities of RNA. The purpose of this review is to provide an overview of the existing methods for transcriptome amplification and to define the parameters for comparing different amplification methods. The authors propose a standardized protocol for the assessment and evaluation of amplification methods, focusing on a new whole-transcriptome amplification kit, which amplifies total RNA into cDNA fragments. Reproducibility and reliability of the method were analyzed and discussed using both quantitative real-time PCR and a high-density oligonucleotide microarray platform.
Collapse
Affiliation(s)
- Clelia Peano
- Institute for Biomedical Technologies, National Research Council, Milan, Italy.
| | | | | | | | | |
Collapse
|
24
|
Nagino K, Nomura O, Takii Y, Myomoto A, Ichikawa M, Nakamura F, Higasa M, Akiyama H, Nobumasa H, Shiojima S, Tsujimoto G. Ultrasensitive DNA chip: gene expression profile analysis without RNA amplification. J Biochem 2006; 139:697-703. [PMID: 16672270 DOI: 10.1093/jb/mvj086] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We have developed a new DNA chip whose substrate has a unique minute columnar array structure made of plastic. The DNA chip exhibits ultrahigh sensitivity, up to 100-fold higher than that of reference DNA chips, which makes it possible to monitor gene expression profiles even with very small amounts of RNA (0.1-0.01 microg of total RNA) without amplification. Differential expression ratios obtained with the new DNA chip were validated against those obtained with quantitative real-time PCR assays. This novel microarray technology would be a powerful tool for monitoring gene expression profiles, especially for clinical diagnosis.
Collapse
Affiliation(s)
- Kunihisa Nagino
- New Frontiers Research Laboratories, Toray Industries, Inc., Kanagawa 248-8555.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Ding Y, Xu L, Chen S, Jovanovic BD, Helenowski IB, Kelly DL, Catalona WJ, Yang XJ, Pins M, Ananthanarayanan V, Bergan RC. Characterization of a method for profiling gene expression in cells recovered from intact human prostate tissue using RNA linear amplification. Prostate Cancer Prostatic Dis 2006; 9:379-91. [PMID: 16786039 DOI: 10.1038/sj.pcan.4500888] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Coupling array technology to laser capture microdissection (LCM) has the potential to yield gene expression profiles of specific cell populations within tissue. However, remaining problems with linear amplification preclude accurate expression profiling when using the low nanogram amounts of RNA recovered after LCM of human tissue. We describe a novel robust method to reliably amplify RNA after LCM, allowing direct probing of 12K gene arrays. The fidelity of amplification was demonstrated by comparing the ability of amplified RNA (aRNA) versus that of native RNA to identify differentially expressed genes between two different cell lines, demonstrating a 99.3% concordance between observations. Array findings were validated by quantitative polymerase chain reaction analysis of a randomly selected subset of 32 genes. Using LCM to recover normal (N=5 subjects) or cancer (N=3) cell populations from intact human prostate tissue, three differentially expressed genes were identified. Independent investigators have previously identified differential expression of two of these three genes, hepsin and beta-microseminoprotein, in prostate cancer. Taken together, the current study demonstrates that accurate gene expression profiling can readily be performed on specific cell populations present within complex tissue. It also demonstrates that this approach efficiently identifies biologically relevant genes.
Collapse
Affiliation(s)
- Y Ding
- Department of Medicine, Division of Hematology/Oncology, Northwestern University Medical School and the Robert H Lurie Cancer Center of Northwestern University, Chicago, IL, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Schüler S, Wenz I, Wiederanders B, Slickers P, Ehricht R. An alternative method to amplify RNA without loss of signal conservation for expression analysis with a proteinase DNA microarray in the ArrayTube format. BMC Genomics 2006; 7:144. [PMID: 16768788 PMCID: PMC1526438 DOI: 10.1186/1471-2164-7-144] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2006] [Accepted: 06/12/2006] [Indexed: 11/30/2022] Open
Abstract
Background Recent developments in DNA microarray technology led to a variety of open and closed devices and systems including high and low density microarrays for high-throughput screening applications as well as microarrays of lower density for specific diagnostic purposes. Beside predefined microarrays for specific applications manufacturers offer the production of custom-designed microarrays adapted to customers' wishes. Array based assays demand complex procedures including several steps for sample preparation (RNA extraction, amplification and sample labelling), hybridization and detection, thus leading to a high variability between several approaches and resulting in the necessity of extensive standardization and normalization procedures. Results In the present work a custom designed human proteinase DNA microarray of lower density in ArrayTube® format was established. This highly economic open platform only requires standard laboratory equipment and allows the study of the molecular regulation of cell behaviour by proteinases. We established a procedure for sample preparation and hybridization and verified the array based gene expression profile by quantitative real-time PCR (QRT-PCR). Moreover, we compared the results with the well established Affymetrix microarray. By application of standard labelling procedures with e.g. Klenow fragment exo-, single primer amplification (SPA) or In Vitro Transcription (IVT) we noticed a loss of signal conservation for some genes. To overcome this problem we developed a protocol in accordance with the SPA protocol, in which we included target specific primers designed individually for each spotted oligomer. Here we present a complete array based assay in which only the specific transcripts of interest are amplified in parallel and in a linear manner. The array represents a proof of principle which can be adapted to other species as well. Conclusion As the designed protocol for amplifying mRNA starts from as little as 100 ng total RNA, it presents an alternative method for detecting even low expressed genes by microarray experiments in a highly reproducible and sensitive manner. Preservation of signal integrity is demonstrated out by QRT-PCR measurements. The little amounts of total RNA necessary for the analyses make this method applicable for investigations with limited material as in clinical samples from, for example, organ or tumour biopsies. Those are arguments in favour of the high potential of our assay compared to established procedures for amplification within the field of diagnostic expression profiling. Nevertheless, the screening character of microarray data must be mentioned, and independent methods should verify the results.
Collapse
Affiliation(s)
- Susann Schüler
- Institute of Biochemistry, Klinikum, Friedrich-Schiller-Universität Jena, Germany
| | - Ingrid Wenz
- Institute of Biochemistry, Klinikum, Friedrich-Schiller-Universität Jena, Germany
| | - B Wiederanders
- Institute of Biochemistry, Klinikum, Friedrich-Schiller-Universität Jena, Germany
| | - P Slickers
- Clondiag chip technologies GmbH Jena, Germany
| | - R Ehricht
- Clondiag chip technologies GmbH Jena, Germany
| |
Collapse
|
27
|
Shearstone JR, Allaire NE, Campos-Rivera J, Rao S, Perrin S. Accurate and precise transcriptional profiles from 50 pg of total RNA or 100 flow-sorted primary lymphocytes. Genomics 2006; 88:111-21. [PMID: 16624518 DOI: 10.1016/j.ygeno.2006.03.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2005] [Revised: 01/20/2006] [Accepted: 03/04/2006] [Indexed: 11/29/2022]
Abstract
We have developed a total RNA amplification and labeling strategy for use with Affymetrix GeneChips. Our protocol, which we denote BIIB, employs two rounds of linear T7 amplification followed by Klenow labeling to generate a biotinylated cDNA. In benchmarking studies using a titration of mouse universal total RNA, BIIB outperformed commercially available kits in terms of sensitivity, accuracy, and amplified target length, while providing equivalent results for technical reproducibility. BIIB maintained 50 and 44% present calls from 100 and 50 pg of total RNA, respectively. Inter- and intrasample precision studies indicated that BIIB produces an unbiased and complete expression profile within a range of 5 ng to 50 pg of starting total RNA. From a panel of spiked exogenous transcripts, we established the BIIB linear detection limit to be 20 absolute copies. Additionally, we demonstrate that BIIB is sensitive enough to detect the stochastic events inherent in a highly diluted sample. Using RNA isolated from whole tissues, we further validated BIIB accuracy and precision by comparison of 224 expression ratios generated by quantitative real-time PCR. The utility of our method is ultimately illustrated by the detection of biologically expected trends in a T cell/B cell titration of 100 primary cells flow sorted from a healthy mouse spleen.
Collapse
Affiliation(s)
- Jeffrey R Shearstone
- Research Molecular Discovery, Biogen Idec, Inc., 14 Cambridge Center, Cambridge, MA 02142, USA.
| | | | | | | | | |
Collapse
|
28
|
Lian X, Wang S, Zhang J, Feng Q, Zhang L, Fan D, Li X, Yuan D, Han B, Zhang Q. Expression profiles of 10,422 genes at early stage of low nitrogen stress in rice assayed using a cDNA microarray. PLANT MOLECULAR BIOLOGY 2006; 60:617-31. [PMID: 16649102 DOI: 10.1007/s11103-005-5441-7] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2005] [Accepted: 07/18/2005] [Indexed: 05/08/2023]
Abstract
Development of crop varieties with high nitrogen use efficiency (NUE) is imperative for sustainable agriculture. Understanding how plant genes respond to low N stress is essential for formulating approaches to manipulating genes for improving NUE. In this study we analyzed the expression profiles of an indica rice cultivar Minghui 63 at seedling stage at 20 min, 1 and 2 h after low N stress with the normal N as the control, using a microarray of 11,494 rice ESTs representing 10,422 unique genes. While no significant difference was detected in the leaf tissue, a total of 471 ESTs were detected as responsive to low N stress in the root tissue with 115 ESTs showing up-regulation and 358 ESTs showing down-regulation. The analysis of expression profiles after low N stress identified following patterns: (1) the genes involved in photosynthesis and energy metabolism were down-regulated rapidly; (2) many of the genes involved in early responses to biotic and abiotic stresses were up-regulated while many other stress responsive genes were down-regulated; (3) regulatory genes including transcription factors and ones involved in signal transduction were both up- and down-regulated; and (4) the genes known to be involved in N uptake and assimilation showed little response to the low N stress. The challenges for future studies are to characterize the functional roles of the low N stress responsive genes in N metabolisms, including the large number of genes presently with unknown functions.
Collapse
Affiliation(s)
- Xingming Lian
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Nygaard V, Hovig E. Options available for profiling small samples: a review of sample amplification technology when combined with microarray profiling. Nucleic Acids Res 2006; 34:996-1014. [PMID: 16473852 PMCID: PMC1363777 DOI: 10.1093/nar/gkj499] [Citation(s) in RCA: 105] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2005] [Revised: 01/24/2006] [Accepted: 01/24/2006] [Indexed: 01/18/2023] Open
Abstract
The possibility of performing microarray analysis on limited material has been demonstrated in a number of publications. In this review we approach the technical aspects of mRNA amplification and several important implicit consequences, for both linear and exponential procedures. Amplification efficiencies clearly allow profiling of extremely small samples. The conservation of transcript abundance is the most important issue regarding the use of sample amplification in combination with microarray analysis, and this aspect has generally been found to be acceptable, although demonstrated to decrease in highly diluted samples. The fact that variability and discrepancies in microarray profiles increase with minute sample sizes has been clearly documented, but for many studies this does appear to have affected the biological conclusions. We suggest that this is due to the data analysis approach applied, and the consequence is the chance of presenting misleading results. We discuss the issue of amplification sensitivity limits in the light of reports on fidelity, published data from reviewed articles and data analysis approaches. These are important considerations to be reflected in the design of future studies and when evaluating biological conclusions from published microarray studies based on extremely low input RNA quantities.
Collapse
Affiliation(s)
- Vigdis Nygaard
- Department of Tumor Biology, Institute for Cancer Research, The Norwegian Radiumhospital Montebello, 0310, Oslo, Norway.
| | | |
Collapse
|
30
|
Fedurco M, Romieu A, Williams S, Lawrence I, Turcatti G. BTA, a novel reagent for DNA attachment on glass and efficient generation of solid-phase amplified DNA colonies. Nucleic Acids Res 2006; 34:e22. [PMID: 16473845 PMCID: PMC1363783 DOI: 10.1093/nar/gnj023] [Citation(s) in RCA: 157] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The tricarboxylate reagent benzene-1,3,5-triacetic acid (BTA) was used to attach 5′-aminated DNA primers and templates on an aminosilanized glass surface for subsequent generation of DNA colonies by in situ solid-phase amplification. We have characterized the derivatized surfaces for the chemical attachment of oligonucleotides and evaluate the properties relevant for the amplification process: surface density, thermal stability towards thermocycling, functionalization reproducibility and storage stability. The derivatization process, first developed for glass slides, was then adapted to microfabricated glass channels containing integrated fluidic connections. This implementation resulted in an important reduction of reaction times, consumption of reagents and process automation. Innovative analytical methods for the characterization of attached DNA were developed for assessing the surface immobilized DNA content after amplification. The results obtained showed that the BTA chemistry is compatible and suitable for forming highly dense arrays of DNA colonies with optimal surface coverage of about 10 million colonies/cm2 from the amplification of initial single-template DNA molecules immobilized. We also demonstrate that the dsDNA colonies generated can be quantitatively processed in situ by restriction enzymes digestion. DNA colonies generated using the BTA reagent can be used for further sequence analysis in an unprecedented parallel fashion for low-cost genomic studies.
Collapse
Affiliation(s)
| | | | | | | | - Gerardo Turcatti
- To whom correspondence should be addressed at EPFL, School of life Sciences, Station 15, AAB013, CH-1015, Lausanne Switzerland. Tel: +4121 693 9666; Fax: +4121 693 9667;
| |
Collapse
|
31
|
Abstract
DNA microarrays have enabled biology researchers to conduct large-scale quantitative experiments. This capacity has produced qualitative changes in the breadth of hypotheses that can be explored. In what has become the dominant mode of use, changes in the transcription rate of nearly all the genes in a genome, taking place in a particular tissue or cell type, can be measured in disease states, during development, and in response to intentional experimental perturbations, such as gene disruptions and drug treatments. The response patterns have helped illuminate mechanisms of disease and identify disease subphenotypes, predict disease progression, assign function to previously unannotated genes, group genes into functional pathways, and predict activities of new compounds. Directed at the genome sequence itself, microarrays have been used to identify novel genes, binding sites of transcription factors, changes in DNA copy number, and variations from a baseline sequence, such as in emerging strains of pathogens or complex mutations in disease-causing human genes. They also serve as a general demultiplexing tool to sort spatially the sequence-tagged products of highly parallel reactions performed in solution. A brief review of microarray platform technology options, and of the process steps involved in complete experiment workflows, is included.
Collapse
|
32
|
Huang Z, Tunnacliffe A. Gene induction by desiccation stress in human cell cultures. FEBS Lett 2005; 579:4973-7. [PMID: 16115627 DOI: 10.1016/j.febslet.2005.07.084] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2005] [Revised: 07/17/2005] [Accepted: 07/30/2005] [Indexed: 11/28/2022]
Abstract
One strategy for investigating desiccation tolerance is to use mammalian cells, which are sensitive to desiccation, as a model for testing putative adaptive mechanisms. However, how mammalian cells themselves respond to desiccation is poorly characterised. Although MAPK signal transduction pathways are activated by desiccation of human cells, hypertonicity-responsive genes AR, BGT1 and SMIT are not significantly induced, although they are proposed to be regulated by physiological changes which should occur during drying. To determine whether a response to desiccation occurs at the transcriptional level in human cells, we performed genome-wide microarray analysis. Twenty upregulated genes, including early stress response and transcription factor genes, were identified, most of which, e.g., EGR1, EGR3, SNAI1, RASD1 and GADD45B, were also induced by hypertonicity, indicating common regulatory mechanisms. Our data suggest that human cells can initiate a complex desiccation stress response distinct from, but overlapping with, that to hypertonic stress.
Collapse
Affiliation(s)
- Zebo Huang
- Institute of Biotechnology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QT, UK
| | | |
Collapse
|
33
|
Wang E. RNA amplification for successful gene profiling analysis. J Transl Med 2005; 3:28. [PMID: 16042807 PMCID: PMC1201175 DOI: 10.1186/1479-5876-3-28] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2005] [Accepted: 07/25/2005] [Indexed: 11/10/2022] Open
Abstract
The study of clinical samples is often limited by the amount of material available to study. While proteins cannot be multiplied in their natural form, DNA and RNA can be amplified from small specimens and used for high-throughput analyses. Therefore, genetic studies offer the best opportunity to screen for novel insights of human pathology when little material is available. Precise estimates of DNA copy numbers in a given specimen are necessary. However, most studies investigate static variables such as the genetic background of patients or mutations within pathological specimens without a need to assess proportionality of expression among different genes throughout the genome. Comparative genomic hybridization of DNA samples represents a crude exception to this rule since genomic amplification or deletion is compared among different specimens directly. For gene expression analysis, however, it is critical to accurately estimate the proportional expression of distinct RNA transcripts since such proportions directly govern cell function by modulating protein expression. Furthermore, comparative estimates of relative RNA expression at different time points portray the response of cells to environmental stimuli, indirectly informing about broader biological events affecting a particular tissue in physiological or pathological conditions. This cognitive reaction of cells is similar to the detection of electroencephalographic patterns which inform about the status of the brain in response to external stimuli. As our need to understand human pathophysiology at the global level increases, the development and refinement of technologies for high fidelity messenger RNA amplification have become the focus of increasing interest during the past decade. The need to increase the abundance of RNA has been met not only for gene specific amplification, but, most importantly for global transcriptome wide, unbiased amplification. Now gene-specific, unbiased transcriptome wide amplification accurately maintains proportionality among all RNA species within a given specimen. This allows the utilization of clinical material obtained with minimally invasive methods such as fine needle aspirates (FNA) or cytological washings for high throughput functional genomics studies. This review provides a comprehensive and updated discussion of the literature in the subject and critically discusses the main approaches, the pitfalls and provides practical suggestions for successful unbiased amplification of the whole transcriptome in clinical samples.
Collapse
Affiliation(s)
- Ena Wang
- Department of Transfusion Medicine, Clinical Center, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
34
|
Nagy ZB, Kelemen JZ, Fehér LZ, Zvara A, Juhász K, Puskás LG. Real-time polymerase chain reaction-based exponential sample amplification for microarray gene expression profiling. Anal Biochem 2005; 337:76-83. [PMID: 15649378 DOI: 10.1016/j.ab.2004.09.044] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2004] [Indexed: 10/26/2022]
Abstract
Conventional approaches to target labeling for gene expression analysis using microarray technology typically require relatively large amounts of RNA, a serious limitation when the available sample is limited. Here we describe an alternative exponential sample amplification method by using quantitative real-time polymerase chain reaction (QRT-PCR) to follow the amplification and eliminate the overamplified cDNA which could distort the quantitative ratio of the starting mRNA population. Probes generated from nonamplified, PCR-amplified, and real-time-PCR-amplified cDNA samples were generated from lipopolysaccharide-treated and nontreated mouse macrophages and hybridized to mouse cDNA microarrays. Signals obtained from the three protocols were compared. Reproducibility and reliability of the methods were determined. The Pearson correlation coefficients for replica experiments were r=0.927 and r=0.687 for QRT-PCR-amplification and PCR-overamplification protocols, respectively. Chi2 test showed that overamplification resulted in major biases in expression ratios, while these alterations could be eliminated by following the cycling status with QRT-PCR. Our exponential sample amplification protocol preserves the original expression ratios and allows unbiased gene expression analysis from minute amounts of starting material.
Collapse
Affiliation(s)
- Zsolt B Nagy
- Laboratory of Functional Genomics, Biological Research Centre, Hungarian Academy of Sciences, P.O. Box 521, Szeged H-6701, Hungary
| | | | | | | | | | | |
Collapse
|
35
|
Boulias K, Katrakili N, Bamberg K, Underhill P, Greenfield A, Talianidis I. Regulation of hepatic metabolic pathways by the orphan nuclear receptor SHP. EMBO J 2005; 24:2624-33. [PMID: 15973435 PMCID: PMC1176456 DOI: 10.1038/sj.emboj.7600728] [Citation(s) in RCA: 115] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2005] [Accepted: 06/03/2005] [Indexed: 01/08/2023] Open
Abstract
SHP (small heterodimer partner) is an important component of the feedback regulatory cascade, which controls the conversion of cholesterol to bile acids. In order to identify the bona fide molecular targets of SHP, we performed global gene expression profiling combined with chromatin immunoprecipitation assays in transgenic mice constitutively expressing SHP in the liver. We demonstrate that SHP affects genes involved in diverse biological pathways, and in particular, several key genes involved in consecutive steps of cholesterol degradation, bile acid conjugation, transport and lipogenic pathways. Sustained expression of SHP leads to the depletion of hepatic bile acid pool and a concomitant accumulation of triglycerides in the liver. The mechanism responsible for this phenotype includes SHP-mediated direct repression of downstream target genes and the bile acid sensor FXRalpha, and an indirect activation of PPARgamma and SREBP-1c genes. We present evidence for the role of altered chromatin configurations in defining distinct gene-specific mechanisms by which SHP mediates differential transcriptional repression. The multiplicity of genes under its control suggests that SHP is a pleiotropic regulator of diverse metabolic pathways.
Collapse
Affiliation(s)
- Konstantinos Boulias
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology Hellas, Herakleion Crete, Greece
| | - Nitsa Katrakili
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology Hellas, Herakleion Crete, Greece
| | | | - Peter Underhill
- MRC Mammalian Genetics Unit, Harwell, Didcot, Oxfordshire, UK
| | - Andy Greenfield
- MRC Mammalian Genetics Unit, Harwell, Didcot, Oxfordshire, UK
| | - Iannis Talianidis
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology Hellas, Herakleion Crete, Greece
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology Hellas, PO Box 1527, Vassilika Vouton, 711 10 Herakleion Crete, Greece. Tel.: +30 2810 391163; Fax: +30 2810 391101; E-mail:
| |
Collapse
|
36
|
A robust method for the amplification of RNA in the sense orientation. BMC Genomics 2005; 6:27. [PMID: 15740627 PMCID: PMC554769 DOI: 10.1186/1471-2164-6-27] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2004] [Accepted: 03/01/2005] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Small quantities of RNA (1-4 microg total RNA) available from biological samples frequently require a single round of amplification prior to analysis, but current amplification strategies have limitations that may restrict their usefulness in downstream genomic applications. The Eberwine amplification method has been extensively validated but is limited by its ability to produce only antisense RNA. Alternatives lack extensive validation and are often confounded by problems with bias or yield attributable to their greater biological and technical complexity. RESULTS To overcome these limitations, we have developed a straightforward and robust protocol for amplification of RNA in the sense orientation. This protocol is based upon Eberwine's method but incorporates elements of more recent amplification techniques while avoiding their complexities. Our technique yields greater than 100-fold amplification, generates long transcript, and produces mRNA that is well suited for use with microarray applications. Microarrays performed with RNA amplified using this protocol demonstrate minimal amplification bias and high reproducibility. CONCLUSION The protocol we describe here is readily adaptable for the production of sense or antisense, labeled or unlabeled RNA from intact or partially-degraded prokaryotic or eukaryotic total RNA. The method outperforms several commercial RNA amplification kits and can be used in conjunction with a variety of microarray platforms, such as cDNA arrays, oligonucleotide arrays, and Affymetrix GeneChip arrays.
Collapse
|
37
|
Player A, Barrett JC, Kawasaki ES. Laser capture microdissection, microarrays and the precise definition of a cancer cell. Expert Rev Mol Diagn 2004; 4:831-40. [PMID: 15525225 DOI: 10.1586/14737159.4.6.831] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Most expression profiling studies of solid tumors have used biopsy samples containing large numbers of contaminating stromal and other cell types, thereby complicating any precise delineation of gene expression in nontumor versus tumor cell types. Combining laser capture microdissection, RNA amplification protocols, microarray technologies and our knowledge of the human genome sequence, it is possible to isolate pure populations of cells or even a single cell and interrogate the expression of thousands of sequences for the purpose of more precisely defining the biology of the tumor cell. Although many of the studies that currently allow for characterization of small sample preparations and single cells were performed utilizing noncancer cell types, and in some cases isolation protocols other than laser capture microdissection, a list of protocols are described that could be used for the expression analysis of individual tumor cells. Application of these experimental approaches to cancer studies may permit a more accurate definition of the biology of the cancer cell, so that ultimately, more specific targeted therapies can be developed.
Collapse
Affiliation(s)
- Audrey Player
- National Cancer Institute, Advanced Technology Center, Microarray Facility, Gaithersburg, MD 20877, USA.
| | | | | |
Collapse
|
38
|
Stylianou IM, Clinton M, Keightley PD, Pritchard C, Tymowska-Lalanne Z, Bünger L, Horvat S. Microarray gene expression analysis of the Fob3b obesity QTL identifies positional candidate gene Sqle and perturbed cholesterol and glycolysis pathways. Physiol Genomics 2004; 20:224-32. [PMID: 15598878 DOI: 10.1152/physiolgenomics.00183.2004] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Obesity-related diseases are poised to become the primary cause of death in developed nations. While a number of monogenic causes of obesity have recently been identified, these are responsible for only a small proportion of human cases of obesity. Quantitative trait locus (QTL) studies using animal models have revealed hundreds of potential loci that affect obesity; however, few have been further analyzed beyond the original QTL scan. We previously mapped four QTL in an F(2) between divergently selected Fat (F) and Lean (L) lines. A QTL of large effect on chromosome 15 (Fob3) was subsequently mapped to a higher resolution into two smaller-effect QTL (Fob3a and Fob3b) using crosses between the F-line and a congenic line containing L-line alleles at the Fob3 QTL region. Here we report the gene expression characterization of Fob3b. Microarray expression analysis using the NIA-NIH 15K cDNA array set containing 14,938 mouse ESTs was employed to identify candidate genes and pathways that are differentially expressed between the F-line and a congenic line containing only the Fob3b QTL (Fob3b-line). Our study suggests squalene epoxidase (Sqle), a cholesterol biosynthesis enzyme, as a strong positional candidate gene for Fob3b. Several other cholesterol biosynthesis pathway genes unlinked to Fob3b were found to be differentially expressed, suggesting that a perturbation of this pathway could be in part responsible for the phenotypic difference between the F-line and Fob3b-line mice.
Collapse
|
39
|
Dumur CI, Garrett CT, Archer KJ, Nasim S, Wilkinson DS, Ferreira-Gonzalez A. Evaluation of a linear amplification method for small samples used on high-density oligonucleotide microarray analysis. Anal Biochem 2004; 331:314-21. [PMID: 15265737 DOI: 10.1016/j.ab.2004.03.040] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2004] [Indexed: 10/26/2022]
Abstract
High-density oligonucleotide microarray analysis has proven to be an excellent approach for gene expression profiling in human cancers. This technique assesses the expression of thousands of genes simultaneously, from at least 5 microg of total RNA per sample per experiment. This total RNA requirement poses a challenge when studying small, unique clinical samples, like biopsies. Recently, a new standardized protocol for small samples was released by Affymetrix, which includes a linear amplification step. To evaluate the impact of such amplification in the gene expression profiling of human ovarian cancer, we compared results obtained from 5 microg and 100 ng of total RNA from the same tumor sample, using the standard Affymetrix protocol and the new linear RNA amplification protocol, respectively. We identified a small bias in gene expression data caused by linear amplification, potentially due to shorter elongation products leading to misclassification of probe sets directed to the middle-5' region of the transcripts. Interestingly, the magnitude of the bias varied when different normalization and expression summary algorithms were used. However, this bias does not affect tumor gene expression profiling. Consequently, linear amplification may be of utility in cases of extremely low RNA recovery from critical and unique samples, such as small biopsies.
Collapse
Affiliation(s)
- Catherine I Dumur
- Department of Pathology, Virginia Commonwealth University, Richmond, VA 23298, USA
| | | | | | | | | | | |
Collapse
|
40
|
Abstract
Functional studies at the level of individual neurons have greatly contributed to our current understanding of basal ganglia function and dysfunction. However, identification of the expressed genes responsible for these distinct neuronal phenotypes is less advanced. Qualitative and quantitative single-cell gene-expression profiling, combined with electrophysiological analysis, allows phenotype-genotype correlations to be made for individual neurons. In this review, progress on gene-expression profiling of individual, functionally characterized basal ganglia neurons is discussed, focusing on ion channels and receptors. In addition, methodological issues are discussed and emerging novel techniques are introduced that will enable a genome-wide comparison of function and gene expression for individual neurons.
Collapse
Affiliation(s)
- Birgit Liss
- Molecular Neurobiology, Institute for Physiology, Philipps-University Marburg, Deutschhausstrasse 2, 35033 Marburg, Germany
| | | |
Collapse
|
41
|
Schneider J, Buneß A, Huber W, Volz J, Kioschis P, Hafner M, Poustka A, Sültmann H. Systematic analysis of T7 RNA polymerase based in vitro linear RNA amplification for use in microarray experiments. BMC Genomics 2004; 5:29. [PMID: 15119961 PMCID: PMC419340 DOI: 10.1186/1471-2164-5-29] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2003] [Accepted: 04/30/2004] [Indexed: 11/10/2022] Open
Abstract
Background The requirement of a large amount of high-quality RNA is a major limiting factor for microarray experiments using biopsies. An average microarray experiment requires 10–100 μg of RNA. However, due to their small size, most biopsies do not yield this amount. Several different approaches for RNA amplification in vitro have been described and applied for microarray studies. In most of these, systematic analyses of the potential bias introduced by the enzymatic modifications are lacking. Results We examined the sources of error introduced by the T7 RNA polymerase based RNA amplification method through hybridisation studies on microarrays and performed statistical analysis of the parameters that need to be evaluated prior to routine laboratory use. The results demonstrate that amplification of the RNA has no systematic influence on the outcome of the microarray experiment. Although variations in differential expression between amplified and total RNA hybridisations can be observed, RNA amplification is reproducible, and there is no evidence that it introduces a large systematic bias. Conclusions Our results underline the utility of the T7 based RNA amplification for use in microarray experiments provided that all samples under study are equally treated.
Collapse
Affiliation(s)
- Jörg Schneider
- Department of Molecular Genome Analysis, German Cancer Research Centre, Heidelberg 69120, Germany
| | - Andreas Buneß
- Department of Molecular Genome Analysis, German Cancer Research Centre, Heidelberg 69120, Germany
| | - Wolfgang Huber
- Department of Molecular Genome Analysis, German Cancer Research Centre, Heidelberg 69120, Germany
| | - Joachim Volz
- Department of Gynecology and Obstetrics, Städtische Kliniken Bielefeld, Bielefeld 33604, Germany
| | - Petra Kioschis
- Institute of Molecular Biology and Cell Culture Technology, Mannheim University of Applied Sciences, Mannheim 68163, Germany
| | - Mathias Hafner
- Institute of Molecular Biology and Cell Culture Technology, Mannheim University of Applied Sciences, Mannheim 68163, Germany
| | - Annemarie Poustka
- Department of Molecular Genome Analysis, German Cancer Research Centre, Heidelberg 69120, Germany
| | - Holger Sültmann
- Department of Molecular Genome Analysis, German Cancer Research Centre, Heidelberg 69120, Germany
| |
Collapse
|
42
|
Petalidis L, Bhattacharyya S, Morris GA, Collins VP, Freeman TC, Lyons PA. Global amplification of mRNA by template-switching PCR: linearity and application to microarray analysis. Nucleic Acids Res 2003; 31:e142. [PMID: 14602935 PMCID: PMC275579 DOI: 10.1093/nar/gng142] [Citation(s) in RCA: 107] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2003] [Revised: 08/22/2003] [Accepted: 09/24/2003] [Indexed: 11/14/2022] Open
Abstract
Conventional approaches to target labelling for expression microarray analysis typically require relatively large amounts of total RNA, a serious limitation when the sample available is small. Here we explore the cycle-dependent amplification characteristics of Template-Switching PCR and validate its use for microarray target labelling. TS-PCR identifies up to 80% of the differentially expressed genes identified by direct labelling using 30-fold less input RNA for the amplification, with the equivalent of 1000-fold less starting material being used for each hybridisation. Moreover, the sensitivity of microarray experiments is increased considerably, allowing the identification of differentially expressed transcripts below the level of detection using targets prepared by direct labelling. We have also validated the fidelity of amplification and show that the amplified material faithfully represents the starting mRNA population. This method outperforms conventional labelling strategies, not only in terms of sensitivity and the identification of differentially expressed genes, but it is also faster and less labour intensive than other amplification protocols.
Collapse
Affiliation(s)
- L Petalidis
- Department of Pathology, University of Cambridge, Addenbrooke's Hospital, Box 231, Cambridge CB2 2QQ, UK
| | | | | | | | | | | |
Collapse
|
43
|
Smith L, Van Hateren N, Willan J, Romero R, Blanco G, Siggers P, Walsh J, Banerjee R, Denny P, Ponting C, Greenfield A. Candidate testis-determining gene, Maestro (Mro), encodes a novel HEAT repeat protein. Dev Dyn 2003; 227:600-7. [PMID: 12889070 DOI: 10.1002/dvdy.10342] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Mammalian sex determination depends on the presence or absence of SRY transcripts in the embryonic gonad. Expression of SRY initiates a pathway of gene expression resulting in testis development. Here, we describe a novel gene potentially functioning in this pathway using a cDNA microarray screen for genes exhibiting sexually dimorphic expression during murine gonad development. Maestro (Mro) transcripts are first detected in the developing male gonad before overt testis differentiation. By 12.5 days postcoitus (dpc), Mro transcription is restricted to the developing testis cords and its expression is not germ cell-dependent. No expression is observed in female gonads between 10.5 and 14.5 dpc. Maestro encodes a protein containing HEAT-like repeats that localizes to the nucleolus in cell transfection assays. Maestro maps to a region of mouse chromosome 18 containing a genetic modifier of XX sex reversal. We discuss the possible function of Maestro in light of these data.
Collapse
Affiliation(s)
- Lee Smith
- MRC Mammalian Genetics Unit, Harwell, Didcot, United Kingdom
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Nygaard V, Løland A, Holden M, Langaas M, Rue H, Liu F, Myklebost O, Fodstad Ø, Hovig E, Smith-Sørensen B. Effects of mRNA amplification on gene expression ratios in cDNA experiments estimated by analysis of variance. BMC Genomics 2003; 4:11. [PMID: 12659661 PMCID: PMC153514 DOI: 10.1186/1471-2164-4-11] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2002] [Accepted: 03/23/2003] [Indexed: 12/04/2022] Open
Abstract
BACKGROUND A limiting factor of cDNA microarray technology is the need for a substantial amount of RNA per labeling reaction. Thus, 20-200 micro-grams total RNA or 0.5-2 micro-grams poly (A) RNA is typically required for monitoring gene expression. In addition, gene expression profiles from large, heterogeneous cell populations provide complex patterns from which biological data for the target cells may be difficult to extract. In this study, we chose to investigate a widely used mRNA amplification protocol that allows gene expression studies to be performed on samples with limited starting material. We present a quantitative study of the variation and noise present in our data set obtained from experiments with either amplified or non-amplified material. RESULTS Using analysis of variance (ANOVA) and multiple hypothesis testing, we estimated the impact of amplification on the preservation of gene expression ratios. Both methods showed that the gene expression ratios were not completely preserved between amplified and non-amplified material. We also compared the expression ratios between the two cell lines for the amplified material with expression ratios between the two cell lines for the non-amplified material for each gene. With the aid of multiple t-testing with a false discovery rate of 5%, we found that 10% of the genes investigated showed significantly different expression ratios. CONCLUSION Although the ratios were not fully preserved, amplification may prove to be extremely useful with respect to characterizing low expressing genes.
Collapse
Affiliation(s)
- Vigdis Nygaard
- Department of Tumor Biology, Institute for Cancer Research, The Norwegian Radium Hospital, Montebello, 0310 Oslo, Norway
| | - Anders Løland
- Norwegian Computing Center, P.O. Box 114 Blindern, 0314 Oslo, Norway
| | - Marit Holden
- Norwegian Computing Center, P.O. Box 114 Blindern, 0314 Oslo, Norway
| | - Mette Langaas
- Norwegian Computing Center, P.O. Box 114 Blindern, 0314 Oslo, Norway
- Department of Mathematical Sciences, Norwegian University of Science and Technology, NO-7491, Trondheim, Norway
| | - Håvard Rue
- Norwegian Computing Center, P.O. Box 114 Blindern, 0314 Oslo, Norway
- Department of Mathematical Sciences, Norwegian University of Science and Technology, NO-7491, Trondheim, Norway
| | - Fang Liu
- Department of Tumor Biology, Institute for Cancer Research, The Norwegian Radium Hospital, Montebello, 0310 Oslo, Norway
| | - Ola Myklebost
- Department of Tumor Biology, Institute for Cancer Research, The Norwegian Radium Hospital, Montebello, 0310 Oslo, Norway
| | - Øystein Fodstad
- Department of Tumor Biology, Institute for Cancer Research, The Norwegian Radium Hospital, Montebello, 0310 Oslo, Norway
| | - Eivind Hovig
- Department of Tumor Biology, Institute for Cancer Research, The Norwegian Radium Hospital, Montebello, 0310 Oslo, Norway
| | - Birgitte Smith-Sørensen
- Department of Tumor Biology, Institute for Cancer Research, The Norwegian Radium Hospital, Montebello, 0310 Oslo, Norway
| |
Collapse
|
45
|
Current Awareness on Comparative and Functional Genomics. Comp Funct Genomics 2003. [PMCID: PMC2447368 DOI: 10.1002/cfg.229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
|