1
|
Cruz-Lebrón A, Faiez TS, Hess MM, Sfanos KS. Diet and the microbiome as mediators of prostate cancer risk, progression, and therapy response. Urol Oncol 2025:S1078-1439(24)00781-6. [PMID: 39757039 DOI: 10.1016/j.urolonc.2024.12.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 11/20/2024] [Accepted: 12/01/2024] [Indexed: 01/07/2025]
Abstract
Complex relationships between the human microbiome and cancer are increasingly recognized for cancer sites that harbor commensal microbial communities such as the gut, genitourinary tract, and skin. For organ sites that likely do not contain commensal microbiota, there is still a substantial capacity for the human-associated microbiota to influence disease etiology across the cancer spectrum. We propose such a relationship for prostate cancer, the most commonly diagnosed cancer in males in the United States. This review explores the current evidence for a role for the urinary and gut microbiota in prostate cancer risk, via both direct interactions (prostate infections) and long-distance interactions such as via the metabolism of procarcinogenic or anticarcinogenic dietary metabolites. We further explore a newly recognized role of the gut microbiota in mediating cancer treatment response or resistance either via production of androgens and/or procarcinogenic metabolites or via direct metabolism of anticancer drugs that are used to treat advanced disease. Overall, we present the current state of knowledge relating to how the human microbiome mediates prostate cancer risk, progression, and therapy response, as well as suggest future research directions for the field.
Collapse
Affiliation(s)
- Angélica Cruz-Lebrón
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD
| | | | - Megan M Hess
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Karen S Sfanos
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD; Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD; Department of Urology, Johns Hopkins University School of Medicine, Baltimore, MD.
| |
Collapse
|
2
|
Ma M, Guo B, Lu H, Hong L. SCN4B inhibits the progression of lung adenocarcinoma and is associated with better prognosis. THE CLINICAL RESPIRATORY JOURNAL 2023; 17:1233-1245. [PMID: 37826914 PMCID: PMC10730470 DOI: 10.1111/crj.13709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 09/27/2023] [Indexed: 10/14/2023]
Abstract
INTRODUCTION Lung adenocarcinoma (LUAD) is the major type of non-small cell lung cancer with low a survival rate caused by metastasis. SCN4B encoding voltage-gated sodium channel β subunit is regarded as a metastasis-suppressor gene. We aim to explore how SCN4B influences the progression and prognosis of LUAD. METHODS The gene expression profiles of 585 LUAD samples in TCGA and GSE31210, GSE116959, and GSE72094 datasets from the GEO database were downloaded for analysis. Differentially expressed genes were obtained through the "limma" package. The "clusterProfiler" package was used to conduct GSEA. Survival analysis was conducted via "survival" and "survminer" packages. Transcription factors regulating SCN4B expression were screened by correlation analysis and further predicted by FIMO. Infiltration of immune cells was analyzed by CIBERSORT. ESTIMATE algorithm was used to evaluate the immune-related scores. RESULTS SCN4B expressed higher in normal samples than in LUAD samples and higher in female samples than male samples. One hundred and twenty-six pathways were significantly enriched between high and low SCN4B expression groups. Six transcription factors' expressions were positively related to SCN4B expression, and ChIP-seq data from "Cistrome" verified that TAL1 and ERG might bind to the upstream sequence of SCN4B. SCN4B expression was significantly correlated with activated memory CD4 T cells, resting mast cells, and monocytes. TMB status, three scores based on ESTIMATE algorithm, and expression of three immune checkpoints showed significant differences between SCN4B high- and low-expression groups. SCN4B could be considered as an independent prognostic signature of LUAD patients that higher expression represents a better prognosis. CONCLUSION SCN4B expresses higher in normal samples, and SCN4B is able to be an independent prognostic signature for LUAD patients. TAL1 and ERG may regulate the expression of SCN4B by binding its upstream sequences. Our research is valuable in improving the effectiveness of treatment in LUAD.
Collapse
Affiliation(s)
- Minting Ma
- Department of OncologyThe Fourth Hospital of Hebei Medical UniversityShijiazhuangHebei ProvinceChina
| | - Bin Guo
- Department of Thoracic SurgeryThe Fourth Hospital of Hebei Medical UniversityShijiazhuangHebei ProvinceChina
| | - Hongwei Lu
- Department of OphthalmologyThe Fourth Hospital of Hebei Medical UniversityShijiazhuangHebei ProvinceChina
| | - Lei Hong
- Department of OncologyThe Fourth Hospital of Hebei Medical UniversityShijiazhuangHebei ProvinceChina
| |
Collapse
|
3
|
Greulich BM, Rajendran S, Downing NF, Nicholas TR, Hollenhorst PC. A complex with poly(A)-binding protein and EWS facilitates the transcriptional function of oncogenic ETS transcription factors in prostate cells. J Biol Chem 2023; 299:105453. [PMID: 37956771 PMCID: PMC10704431 DOI: 10.1016/j.jbc.2023.105453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 10/21/2023] [Accepted: 10/25/2023] [Indexed: 11/15/2023] Open
Abstract
The ETS transcription factor ERG is aberrantly expressed in approximately 50% of prostate tumors due to chromosomal rearrangements such as TMPRSS2/ERG. The ability of ERG to drive oncogenesis in prostate epithelial cells requires interaction with distinct coactivators, such as the RNA-binding protein EWS. Here, we find that ERG has both direct and indirect interactions with EWS, and the indirect interaction is mediated by the poly-A RNA-binding protein PABPC1. PABPC1 directly bound both ERG and EWS. ERG expression in prostate cells promoted PABPC1 localization to the nucleus and recruited PABPC1 to ERG/EWS-binding sites in the genome. Knockdown of PABPC1 in prostate cells abrogated ERG-mediated phenotypes and decreased the ability of ERG to activate transcription. These findings define a complex including ERG and the RNA-binding proteins EWS and PABPC1 that represents a potential therapeutic target for ERG-positive prostate cancer and identify a novel nuclear role for PABPC1.
Collapse
Affiliation(s)
| | - Saranya Rajendran
- Medical Sciences Program, Indiana University School of Medicine, Bloomington, Indiana, USA
| | - Nicholas F Downing
- Medical Sciences Program, Indiana University School of Medicine, Bloomington, Indiana, USA
| | - Taylor R Nicholas
- Medical Sciences Program, Indiana University School of Medicine, Bloomington, Indiana, USA
| | - Peter C Hollenhorst
- Medical Sciences Program, Indiana University School of Medicine, Bloomington, Indiana, USA.
| |
Collapse
|
4
|
Bowling GC, Rands MG, Dobi A, Eldhose B. Emerging Developments in ETS-Positive Prostate Cancer Therapy. Mol Cancer Ther 2023; 22:168-178. [PMID: 36511830 DOI: 10.1158/1535-7163.mct-22-0527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 10/26/2022] [Accepted: 12/07/2022] [Indexed: 12/15/2022]
Abstract
Prostate cancer is a global health concern, which has a low survival rate in its advanced stages. Even though second-generation androgen receptor-axis inhibitors serve as the mainstay treatment options, utmost of the metastatic cases progress into castration-resistant prostate cancer after their initial treatment response with poor prognostic outcomes. Hence, there is a dire need to develop effective inhibitors that aim the causal oncogenes tangled in the prostate cancer initiation and progression. Molecular-targeted therapy against E-26 transformation-specific (ETS) transcription factors, particularly ETS-related gene, has gained wide attention as a potential treatment strategy. ETS rearrangements with the male hormone responsive transmembrane protease serine 2 promoter defines a significant number of prostate cancer cases and is responsible for cancer initiation and progression. Notably, inhibition of ETS activity has shown to reduce tumorigenesis, thus highlighting its potential as a clinical therapeutic target. In this review, we recapitulate the various targeted drug approaches, including small molecules, peptidomimetics, nucleic acids, and many others, aimed to suppress ETS activity. Several inhibitors have demonstrated ERG antagonist activity in prostate cancer, but further investigations into their molecular mechanisms and impacts on nontumor ETS-containing tissues is warranted.
Collapse
Affiliation(s)
- Gartrell C Bowling
- School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland.,Center for Prostate Disease Research, Murtha Cancer Center Research Program, Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, Maryland
| | - Mitchell G Rands
- School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland
| | - Albert Dobi
- Center for Prostate Disease Research, Murtha Cancer Center Research Program, Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, Maryland.,Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, Maryland
| | - Binil Eldhose
- Center for Prostate Disease Research, Murtha Cancer Center Research Program, Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, Maryland.,Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, Maryland
| |
Collapse
|
5
|
Khosh Kish E, Choudhry M, Gamallat Y, Buharideen SM, D D, Bismar TA. The Expression of Proto-Oncogene ETS-Related Gene ( ERG) Plays a Central Role in the Oncogenic Mechanism Involved in the Development and Progression of Prostate Cancer. Int J Mol Sci 2022; 23:ijms23094772. [PMID: 35563163 PMCID: PMC9105369 DOI: 10.3390/ijms23094772] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 04/17/2022] [Accepted: 04/22/2022] [Indexed: 02/04/2023] Open
Abstract
The ETS-related gene (ERG) is proto-oncogene that is classified as a member of the ETS transcription factor family, which has been found to be consistently overexpressed in about half of the patients with clinically significant prostate cancer (PCa). The overexpression of ERG can mostly be attributed to the fusion of the ERG and transmembrane serine protease 2 (TMPRSS2) genes, and this fusion is estimated to represent about 85% of all gene fusions observed in prostate cancer. Clinically, individuals with ERG gene fusion are mostly documented to have advanced tumor stages, increased mortality, and higher rates of metastasis in non-surgical cohorts. In the current review, we elucidate ERG’s molecular interaction with downstream genes and the pathways associated with PCa. Studies have documented that ERG plays a central role in PCa progression due to its ability to enhance tumor growth by promoting inflammatory and angiogenic responses. ERG has also been implicated in the epithelial–mesenchymal transition (EMT) in PCa cells, which increases the ability of cancer cells to metastasize. In vivo, research has demonstrated that higher levels of ERG expression are involved with nuclear pleomorphism that prompts hyperplasia and the loss of cell polarity.
Collapse
Affiliation(s)
- Ealia Khosh Kish
- Department of Pathology and Laboratory Medicine, Cumming School of Medicine, University of Calgary, Calgary, AB T2V 1P9, Canada; (E.K.K.); (M.C.); (Y.G.); (S.M.B.); (D.D.)
| | - Muhammad Choudhry
- Department of Pathology and Laboratory Medicine, Cumming School of Medicine, University of Calgary, Calgary, AB T2V 1P9, Canada; (E.K.K.); (M.C.); (Y.G.); (S.M.B.); (D.D.)
| | - Yaser Gamallat
- Department of Pathology and Laboratory Medicine, Cumming School of Medicine, University of Calgary, Calgary, AB T2V 1P9, Canada; (E.K.K.); (M.C.); (Y.G.); (S.M.B.); (D.D.)
- Alberta Precision Laboratories, Calgary, AB T2V 1P9, Canada
| | - Sabrina Marsha Buharideen
- Department of Pathology and Laboratory Medicine, Cumming School of Medicine, University of Calgary, Calgary, AB T2V 1P9, Canada; (E.K.K.); (M.C.); (Y.G.); (S.M.B.); (D.D.)
- Alberta Precision Laboratories, Calgary, AB T2V 1P9, Canada
| | - Dhananjaya D
- Department of Pathology and Laboratory Medicine, Cumming School of Medicine, University of Calgary, Calgary, AB T2V 1P9, Canada; (E.K.K.); (M.C.); (Y.G.); (S.M.B.); (D.D.)
- Alberta Precision Laboratories, Calgary, AB T2V 1P9, Canada
| | - Tarek A. Bismar
- Department of Pathology and Laboratory Medicine, Cumming School of Medicine, University of Calgary, Calgary, AB T2V 1P9, Canada; (E.K.K.); (M.C.); (Y.G.); (S.M.B.); (D.D.)
- Alberta Precision Laboratories, Calgary, AB T2V 1P9, Canada
- Departments of Oncology, Biochemistry and Molecular Biology, Calgary, AB T2V 1P9, Canada
- Tom Baker Cancer Center, Arnie Charbonneau Cancer Institute, Calgary, AB T2V 1P9, Canada
- Correspondence: ; Tel.: +1-403-943-8430; Fax: +1-403-943-3333
| |
Collapse
|
6
|
The Critical Role of Toll-like Receptor-mediated Signaling in Cancer Immunotherapy. MEDICINE IN DRUG DISCOVERY 2022. [DOI: 10.1016/j.medidd.2022.100122] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
|
7
|
Epstein RJ. The secret identities of TMPRSS2: Fertility factor, virus trafficker, inflammation moderator, prostate protector and tumor suppressor. Tumour Biol 2021; 43:159-176. [PMID: 34420994 DOI: 10.3233/tub-211502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
The human TMPRSS2 gene is pathogenetically implicated in both coronaviral lung infection and prostate cancer, suggesting its potential as a drug target in both contexts. SARS-COV-2 spike polypeptides are primed by the host transmembrane TMPRSS2 protease, triggering virus fusion with epithelial cell membranes followed by an endocytotic internalisation process that bypasses normal endosomal activation of cathepsin-mediated innate immunity; viral co-opting of TMPRSS2 thus favors microbial survivability by attenuating host inflammatory responses. In contrast, most early hormone-dependent prostate cancers express TMPRSS2:ERG fusion genes arising from deletions that eliminate the TMPRSS2 coding region while juxtaposing its androgen-inducible promoter and the open reading frame of ERG, upregulating pro-inflammatory ERG while functionally disabling TMPRSS2. Moreover, inflammatory oxidative DNA damage selects for TMPRSS2:ERG-fused cancers, whereas patients treated with antiinflammatory drugs develop fewer of these fusion-dependent tumors. These findings imply that TMPRSS2 protects the prostate by enabling endosomal bypass of pathogens which could otherwise trigger inflammation-induced DNA damage that predisposes to TMPRSS2:ERG fusions. Hence, the high oncogenic selectability of TMPRSS2:ERG fusions may reflect a unique pro-inflammatory synergy between androgenic ERG gain-of-function and fusogenic TMPRSS2 loss-of-function, cautioning against the use of TMPRSS2-inhibitory drugs to prevent or treat early prostate cancer.
Collapse
Affiliation(s)
- Richard J Epstein
- New Hope Cancer Center, Beijing United Hospital, Jiangtai Xi Rd 9-11, Chaoyang, Beijing, China.,Garvan Institute of Medical Research, and UNSW Medical School, St Vincent's Hospital, Victoria St, Darlinghurst, Sydney, Australia
| |
Collapse
|