1
|
Coker JA, Stauffer SR. WD repeat domain 5 (WDR5) inhibitors: a patent review (2016-present). Expert Opin Ther Pat 2025; 35:31-45. [PMID: 39706200 DOI: 10.1080/13543776.2024.2441658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 10/01/2024] [Accepted: 11/25/2024] [Indexed: 12/23/2024]
Abstract
INTRODUCTION WDR5 is an epigenetic scaffolding protein that has attracted significant interest as an anti-cancer drug target, especially in MLL-rearranged leukemias. The most druggable 'WIN-site' on WDR5, which tethers WDR5 to chromatin, has been successfully targeted with multiple classes of exquisitely potent small-molecule protein-protein interaction inhibitors. Earlier progress has also been made on the development of WDR5 degraders and inhibitors at the 'WBM-site' on the opposite face of WDR5. AREAS COVERED Based on an international survey of the patent literature using SciFinder from 2016-2024, herein we provide a comprehensive account of the chemical matter targeting WDR5, with a particular focus on proprietary compounds that are underreported in the existing academic literature. Our survey illuminates challenges for the field to overcome: a broad lack of chemical diversity, confusion about the molecular mechanism of WIN-site inhibitors, a paucity of brain-penetrant scaffolds despite emerging evidence of activity in brain cancers, sparse pharmacokinetic, metabolic, and disposition characterization, and the absence of safety or efficacy data in humans. EXPERT OPINION It is our opinion that the best-in-class WIN-site inhibitors (from the imidazole class) merit advancement into clinical testing, likely against leukemia, which should provide much-needed clarity about the exciting but unproven potential of WDR5 as a next-generation therapeutic target.
Collapse
Affiliation(s)
- Jesse A Coker
- Center for Therapeutics Discovery, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
- Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, OH, USA
| | - Shaun R Stauffer
- Center for Therapeutics Discovery, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
- Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, OH, USA
| |
Collapse
|
2
|
Sasaki M, Kato D, Yoshida H, Shimizu T, Ogiwara H. Efficacy of CBP/p300 Dual Inhibitors against Derepression of KREMEN2 in cBAF-Deficient Cancers. CANCER RESEARCH COMMUNICATIONS 2025; 5:24-38. [PMID: 39625239 PMCID: PMC11701801 DOI: 10.1158/2767-9764.crc-24-0484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 10/28/2024] [Accepted: 11/27/2024] [Indexed: 01/07/2025]
Abstract
SIGNIFICANCE In this study, we clarified that the cBAF subcomplex is deficient in the SWI/SNF complex, resulting in dependency on the CBP/p300 paralog pair. Simultaneous inhibitors of the CBP/p300 paralog pair show promise for cBAF-deficient lung cancer, as well as rare cancers such as malignant rhabdoid tumors, epithelioid sarcomas, and synovial sarcomas.
Collapse
Affiliation(s)
- Mariko Sasaki
- Division of Cancer Therapeutics, National Cancer Center Research Institute, Tokyo, Japan
| | - Daiki Kato
- Cancer Research Unit, Sumitomo Pharma Co., Ltd, Osaka, Japan
| | - Hiroshi Yoshida
- Department of Diagnostic Pathology, National Cancer Center Hospital, Tokyo, Japan
| | | | - Hideaki Ogiwara
- Division of Cancer Therapeutics, National Cancer Center Research Institute, Tokyo, Japan
| |
Collapse
|
3
|
Roden AC. Molecularly Defined Thoracic Neoplasms. Adv Anat Pathol 2024; 31:303-317. [PMID: 38501690 DOI: 10.1097/pap.0000000000000439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2024]
Abstract
Molecularly defined neoplasms are increasingly recognized, given the broader application and performance of molecular studies. These studies allow us to better characterize these neoplasms and learn about their pathogenesis. In the thorax, molecularly defined neoplasms include tumors such as NUT carcinoma, SMARCA4-deficient undifferentiated tumor (DUT), primary pulmonary myxoid sarcoma with EWSR1::CREB1 fusion, hyalinizing clear cell carcinoma, and SMARCB1-deficient neoplasms. Overall, these tumors are rare but are now more often recognized given more widely available immunostains such as NUT (NUT carcinoma), BRG1 (SMARCA4-DUT), and INI-1 (SMARCB1-deficient neoplasm). Furthermore, cytogenetic studies for EWSR1 to support a hyalinizing clear cell carcinoma or primary pulmonary myxoid sarcoma are, in general, easily accessible. This enables pathologists to recognize and diagnose these tumors. The diagnosis of these tumors is important for clinical management and treatment. For instance, clinical trials are available for patients with NUT carcinoma, SMARCA4-DUT, and SMACRB1-deficient neoplasms. Herein, our current knowledge of clinical, morphologic, immunophenotypic, and molecular features of NUT carcinomas, SMARCA4-DUT, primary pulmonary myxoid sarcomas, hyalinizing clear cell carcinoma, and SMARCB1-deficient neoplasms will be reviewed.
Collapse
Affiliation(s)
- Anja C Roden
- Department of Laboratory Medicine and Pathology, Mayo Clinic Rochester, Rochester, MN
| |
Collapse
|
4
|
Meyer CT, Smith BN, Wang J, Teuscher KB, Grieb BC, Howard GC, Silver AJ, Lorey SL, Stott GM, Moore WJ, Lee T, Savona MR, Weissmiller AM, Liu Q, Quaranta V, Fesik SW, Tansey WP. Expanded profiling of WD repeat domain 5 inhibitors reveals actionable strategies for the treatment of hematologic malignancies. Proc Natl Acad Sci U S A 2024; 121:e2408889121. [PMID: 39167600 PMCID: PMC11363251 DOI: 10.1073/pnas.2408889121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 07/25/2024] [Indexed: 08/23/2024] Open
Abstract
WD40 Repeat Domain 5 (WDR5) is a highly conserved nuclear protein that recruits MYC oncoprotein transcription factors to chromatin to stimulate ribosomal protein gene expression. WDR5 is tethered to chromatin via an arginine-binding cavity known as the "WIN" site. Multiple pharmacological inhibitors of the WDR5-interaction site of WDR5 (WINi) have been described, including those with picomolar affinity and oral bioavailability in mice. Thus far, however, WINi have only been shown to be effective against a number of rare cancer types retaining wild-type p53. To explore the full potential of WINi for cancer therapy, we systematically profiled WINi across a panel of cancer cells, alone and in combination with other agents. We report that WINi are unexpectedly active against cells derived from both solid and blood-borne cancers, including those with mutant p53. Among hematologic malignancies, we find that WINi are effective as a single agent against leukemia and diffuse large B cell lymphoma xenograft models, and can be combined with the approved drug venetoclax to suppress disseminated acute myeloid leukemia in vivo. These studies reveal actionable strategies for the application of WINi to treat blood-borne cancers and forecast expanded utility of WINi against other cancer types.
Collapse
Affiliation(s)
- Christian T. Meyer
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado Boulder, Boulder, CO80309
- Duet BioSystems, Nashville, TN37212
| | - Brianna N. Smith
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN37232
| | - Jing Wang
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN37232
- Center for Quantitative Sciences, Vanderbilt University Medical Center, Nashville, TN37232
| | - Kevin B. Teuscher
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN37240
| | - Brian C. Grieb
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN37232
| | - Gregory C. Howard
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN37240
| | - Alexander J. Silver
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN37232
| | - Shelly L. Lorey
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN37240
| | - Gordon M. Stott
- Leidos Biomedical Research, Frederick National Laboratory for Cancer Research, Frederick, MD21701-4907
| | - William J. Moore
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD21702-1201
| | - Taekyu Lee
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN37240
| | - Michael R. Savona
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN37232
| | | | - Qi Liu
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN37232
- Center for Quantitative Sciences, Vanderbilt University Medical Center, Nashville, TN37232
| | - Vito Quaranta
- Duet BioSystems, Nashville, TN37212
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN37240
| | - Stephen W. Fesik
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN37240
- Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, TN37240
- Department of Chemistry, Vanderbilt University, Nashville, TN37240
| | - William P. Tansey
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN37240
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN37240
| |
Collapse
|
5
|
Sasaki M, Kato D, Murakami K, Yoshida H, Takase S, Otsubo T, Ogiwara H. Targeting dependency on a paralog pair of CBP/p300 against de-repression of KREMEN2 in SMARCB1-deficient cancers. Nat Commun 2024; 15:4770. [PMID: 38839769 PMCID: PMC11153594 DOI: 10.1038/s41467-024-49063-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 05/22/2024] [Indexed: 06/07/2024] Open
Abstract
SMARCB1, a subunit of the SWI/SNF chromatin remodeling complex, is the causative gene of rhabdoid tumors and epithelioid sarcomas. Here, we identify a paralog pair of CBP and p300 as a synthetic lethal target in SMARCB1-deficient cancers by using a dual siRNA screening method based on the "simultaneous inhibition of a paralog pair" concept. Treatment with CBP/p300 dual inhibitors suppresses growth of cell lines and tumor xenografts derived from SMARCB1-deficient cells but not from SMARCB1-proficient cells. SMARCB1-containing SWI/SNF complexes localize with H3K27me3 and its methyltransferase EZH2 at the promotor region of the KREMEN2 locus, resulting in transcriptional downregulation of KREMEN2. By contrast, SMARCB1 deficiency leads to localization of H3K27ac, and recruitment of its acetyltransferases CBP and p300, at the KREMEN2 locus, resulting in transcriptional upregulation of KREMEN2, which cooperates with the SMARCA1 chromatin remodeling complex. Simultaneous inhibition of CBP/p300 leads to transcriptional downregulation of KREMEN2, followed by apoptosis induction via monomerization of KREMEN1 due to a failure to interact with KREMEN2, which suppresses anti-apoptotic signaling pathways. Taken together, our findings indicate that simultaneous inhibitors of CBP/p300 could be promising therapeutic agents for SMARCB1-deficient cancers.
Collapse
Affiliation(s)
- Mariko Sasaki
- Division of Cancer Therapeutics, National Cancer Center Research Institute, 5-1-1, Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
| | - Daiki Kato
- Cancer Research Unit, Sumitomo Pharma Co., Ltd, 3-1-98 Kasugade-naka, Konohana-ku, Osaka, 554-0022, Japan
| | - Karin Murakami
- Cancer Research Unit, Sumitomo Pharma Co., Ltd, 3-1-98 Kasugade-naka, Konohana-ku, Osaka, 554-0022, Japan
| | - Hiroshi Yoshida
- Department of Diagnostic Pathology, National Cancer Center Hospital, 5-1-1, Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
| | - Shohei Takase
- Division of Cancer Therapeutics, National Cancer Center Research Institute, 5-1-1, Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
| | - Tsuguteru Otsubo
- Cancer Research Unit, Sumitomo Pharma Co., Ltd, 3-1-98 Kasugade-naka, Konohana-ku, Osaka, 554-0022, Japan
| | - Hideaki Ogiwara
- Division of Cancer Therapeutics, National Cancer Center Research Institute, 5-1-1, Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan.
| |
Collapse
|
6
|
Howard GC, Wang J, Rose KL, Jones C, Patel P, Tsui T, Florian AC, Vlach L, Lorey SL, Grieb BC, Smith BN, Slota MJ, Reynolds EM, Goswami S, Savona MR, Mason FM, Lee T, Fesik S, Liu Q, Tansey WP. Ribosome subunit attrition and activation of the p53-MDM4 axis dominate the response of MLL-rearranged cancer cells to WDR5 WIN site inhibition. eLife 2024; 12:RP90683. [PMID: 38682900 PMCID: PMC11057873 DOI: 10.7554/elife.90683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/01/2024] Open
Abstract
The chromatin-associated protein WD Repeat Domain 5 (WDR5) is a promising target for cancer drug discovery, with most efforts blocking an arginine-binding cavity on the protein called the 'WIN' site that tethers WDR5 to chromatin. WIN site inhibitors (WINi) are active against multiple cancer cell types in vitro, the most notable of which are those derived from MLL-rearranged (MLLr) leukemias. Peptidomimetic WINi were originally proposed to inhibit MLLr cells via dysregulation of genes connected to hematopoietic stem cell expansion. Our discovery and interrogation of small-molecule WINi, however, revealed that they act in MLLr cell lines to suppress ribosome protein gene (RPG) transcription, induce nucleolar stress, and activate p53. Because there is no precedent for an anticancer strategy that specifically targets RPG expression, we took an integrated multi-omics approach to further interrogate the mechanism of action of WINi in human MLLr cancer cells. We show that WINi induce depletion of the stock of ribosomes, accompanied by a broad yet modest translational choke and changes in alternative mRNA splicing that inactivate the p53 antagonist MDM4. We also show that WINi are synergistic with agents including venetoclax and BET-bromodomain inhibitors. Together, these studies reinforce the concept that WINi are a novel type of ribosome-directed anticancer therapy and provide a resource to support their clinical implementation in MLLr leukemias and other malignancies.
Collapse
Affiliation(s)
- Gregory Caleb Howard
- Department of Cell and Developmental Biology, Vanderbilt University School of MedicineNashvilleUnited States
| | - Jing Wang
- Department of Biostatistics, Vanderbilt University Medical CenterNashvilleUnited States
- Center for Quantitative Sciences, Vanderbilt University Medical CenterNashvilleUnited States
| | - Kristie L Rose
- Mass Spectrometry Research Center, Vanderbilt University School of MedicineNashvilleUnited States
- Department of Biochemistry, Vanderbilt University School of MedicineNashvilleUnited States
| | - Camden Jones
- Department of Cell and Developmental Biology, Vanderbilt University School of MedicineNashvilleUnited States
| | - Purvi Patel
- Mass Spectrometry Research Center, Vanderbilt University School of MedicineNashvilleUnited States
| | - Tina Tsui
- Mass Spectrometry Research Center, Vanderbilt University School of MedicineNashvilleUnited States
| | - Andrea C Florian
- Department of Cell and Developmental Biology, Vanderbilt University School of MedicineNashvilleUnited States
| | - Logan Vlach
- Department of Medicine, Vanderbilt University Medical CenterNashvilleUnited States
| | - Shelly L Lorey
- Department of Cell and Developmental Biology, Vanderbilt University School of MedicineNashvilleUnited States
| | - Brian C Grieb
- Department of Medicine, Vanderbilt University Medical CenterNashvilleUnited States
| | - Brianna N Smith
- Department of Medicine, Vanderbilt University Medical CenterNashvilleUnited States
| | - Macey J Slota
- Department of Cell and Developmental Biology, Vanderbilt University School of MedicineNashvilleUnited States
| | - Elizabeth M Reynolds
- Department of Cell and Developmental Biology, Vanderbilt University School of MedicineNashvilleUnited States
| | - Soumita Goswami
- Department of Cell and Developmental Biology, Vanderbilt University School of MedicineNashvilleUnited States
| | - Michael R Savona
- Department of Medicine, Vanderbilt University Medical CenterNashvilleUnited States
| | - Frank M Mason
- Department of Medicine, Vanderbilt University Medical CenterNashvilleUnited States
| | - Taekyu Lee
- Department of Biochemistry, Vanderbilt University School of MedicineNashvilleUnited States
| | - Stephen Fesik
- Department of Biochemistry, Vanderbilt University School of MedicineNashvilleUnited States
- Department of Pharmacology, Vanderbilt University School of MedicineNashvilleUnited States
- Department of Chemistry, Vanderbilt UniversityNashvilleUnited States
| | - Qi Liu
- Department of Biostatistics, Vanderbilt University Medical CenterNashvilleUnited States
- Center for Quantitative Sciences, Vanderbilt University Medical CenterNashvilleUnited States
| | - William P Tansey
- Department of Cell and Developmental Biology, Vanderbilt University School of MedicineNashvilleUnited States
- Department of Biochemistry, Vanderbilt University School of MedicineNashvilleUnited States
| |
Collapse
|
7
|
Howard GC, Wang J, Rose KL, Jones C, Patel P, Tsui T, Florian AC, Vlach L, Lorey SL, Grieb BC, Smith BN, Slota MJ, Reynolds EM, Goswami S, Savona MR, Mason FM, Lee T, Fesik SW, Liu Q, Tansey WP. Ribosome subunit attrition and activation of the p53-MDM4 axis dominate the response of MLL-rearranged cancer cells to WDR5 WIN site inhibition. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.07.26.550648. [PMID: 37546802 PMCID: PMC10402127 DOI: 10.1101/2023.07.26.550648] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/08/2023]
Abstract
The chromatin-associated protein WD Repeat Domain 5 (WDR5) is a promising target for cancer drug discovery, with most efforts blocking an arginine-binding cavity on the protein called the "WIN" site that tethers WDR5 to chromatin. WIN site inhibitors (WINi) are active against multiple cancer cell types in vitro, the most notable of which are those derived from MLL-rearranged (MLLr) leukemias. Peptidomimetic WINi were originally proposed to inhibit MLLr cells via dysregulation of genes connected to hematopoietic stem cell expansion. Our discovery and interrogation of small molecule WIN site inhibitors, however, revealed that they act in MLLr cell lines to suppress ribosome protein gene (RPG) transcription, induce nucleolar stress, and activate p53. Because there is no precedent for an anti-cancer strategy that specifically targets RPG expression, we took an integrated multi-omics approach to further interrogate the mechanism of action of WINi in MLLr cancer cells. We show that WINi induce depletion of the stock of ribosomes, accompanied by a broad yet modest translational choke and changes in alternative mRNA splicing that inactivate the p53 antagonist MDM4. We also show that WINi are synergistic with agents including venetoclax and BET-bromodomain inhibitors. Together, these studies reinforce the concept that WINi are a novel type of ribosome-directed anti-cancer therapy and provide a resource to support their clinical implementation in MLLr leukemias and other malignancies.
Collapse
Affiliation(s)
- Gregory C. Howard
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Jing Wang
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Center for Quantitative Sciences, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | - Kristie Lindsey Rose
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
- Mass Spectrometry Research Center, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Camden Jones
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Purvi Patel
- Mass Spectrometry Research Center, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Tina Tsui
- Mass Spectrometry Research Center, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Andrea C. Florian
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
- Current address: Department of Biology, Belmont University, Nashville, TN 37212, USA
| | - Logan Vlach
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Shelly L. Lorey
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Brian C. Grieb
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Brianna N. Smith
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Macey J. Slota
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
- Current address: Department of Urology, University of California San Francisco, San Francisco CA 94143, USA
| | - Elizabeth M. Reynolds
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Soumita Goswami
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Michael R. Savona
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Frank M. Mason
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Taekyu Lee
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Stephen W. Fesik
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
- Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
- Department of Chemistry, Vanderbilt University, Nashville, TN 37232, USA
| | - Qi Liu
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Center for Quantitative Sciences, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | - William P. Tansey
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| |
Collapse
|
8
|
Weissmiller AM, Fesik SW, Tansey WP. WD Repeat Domain 5 Inhibitors for Cancer Therapy: Not What You Think. J Clin Med 2024; 13:274. [PMID: 38202281 PMCID: PMC10779565 DOI: 10.3390/jcm13010274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 12/14/2023] [Accepted: 12/29/2023] [Indexed: 01/12/2024] Open
Abstract
WDR5 is a conserved nuclear protein that scaffolds the assembly of epigenetic regulatory complexes and moonlights in functions ranging from recruiting MYC oncoproteins to chromatin to facilitating the integrity of mitosis. It is also a high-value target for anti-cancer therapies, with small molecule WDR5 inhibitors and degraders undergoing extensive preclinical assessment. WDR5 inhibitors were originally conceived as epigenetic modulators, proposed to inhibit cancer cells by reversing oncogenic patterns of histone H3 lysine 4 methylation-a notion that persists to this day. This premise, however, does not withstand contemporary inspection and establishes expectations for the mechanisms and utility of WDR5 inhibitors that can likely never be met. Here, we highlight salient misconceptions regarding WDR5 inhibitors as epigenetic modulators and provide a unified model for their action as a ribosome-directed anti-cancer therapy that helps focus understanding of when and how the tumor-inhibiting properties of these agents can best be understood and exploited.
Collapse
Affiliation(s)
- April M. Weissmiller
- Department of Biology, Middle Tennessee State University, Murfreesboro, TN 32132, USA;
| | - Stephen W. Fesik
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37232, USA;
- Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
- Department of Chemistry, Vanderbilt University, Nashville, TN 37232, USA
| | - William P. Tansey
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37232, USA;
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| |
Collapse
|
9
|
Teuscher KB, Mills JJ, Tian J, Han C, Meyers KM, Sai J, South TM, Crow MM, Van Meveren M, Sensintaffar JL, Zhao B, Amporndanai K, Moore WJ, Stott GM, Tansey WP, Lee T, Fesik SW. Structure-Based Discovery of Potent, Orally Bioavailable Benzoxazepinone-Based WD Repeat Domain 5 Inhibitors. J Med Chem 2023; 66:16783-16806. [PMID: 38085679 DOI: 10.1021/acs.jmedchem.3c01529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2023]
Abstract
The chromatin-associated protein WDR5 (WD repeat domain 5) is an essential cofactor for MYC and a conserved regulator of ribosome protein gene transcription. It is also a high-profile target for anti-cancer drug discovery, with proposed utility against both solid and hematological malignancies. We have previously discovered potent dihydroisoquinolinone-based WDR5 WIN-site inhibitors with demonstrated efficacy and safety in animal models. In this study, we sought to optimize the bicyclic core to discover a novel series of WDR5 WIN-site inhibitors with improved potency and physicochemical properties. We identified the 3,4-dihydrobenzo[f][1,4]oxazepin-5(2H)-one core as an alternative scaffold for potent WDR5 inhibitors. Additionally, we used X-ray structural analysis to design partially saturated bicyclic P7 units. These benzoxazepinone-based inhibitors exhibited increased cellular potency and selectivity and favorable physicochemical properties compared to our best-in-class dihydroisoquinolinone-based counterparts. This study opens avenues to discover more advanced WDR5 WIN-site inhibitors and supports their development as novel anti-cancer therapeutics.
Collapse
Affiliation(s)
| | | | - Jianhua Tian
- Molecular Design and Synthesis Center, Vanderbilt Institute of Chemical Biology, Nashville, Tennessee 37232-0142, United States
| | | | | | | | | | | | | | | | | | | | - William J Moore
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, Maryland 21702-1201, United States
| | - Gordon M Stott
- Leidos Biomedical Research, Frederick National Laboratory for Cancer Research, Frederick, Maryland 21701-4907, United States
| | | | | | - Stephen W Fesik
- Department of Chemistry, Vanderbilt University, Nashville, Tennessee 37232-0142, United States
| |
Collapse
|
10
|
Bumpous LA, Moe KC, Wang J, Carver LA, Williams AG, Romer AS, Scobee JD, Maxwell JN, Jones CA, Chung DH, Tansey WP, Liu Q, Weissmiller AM. WDR5 facilitates recruitment of N-MYC to conserved WDR5 gene targets in neuroblastoma cell lines. Oncogenesis 2023; 12:32. [PMID: 37336886 PMCID: PMC10279693 DOI: 10.1038/s41389-023-00477-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 05/11/2023] [Accepted: 06/06/2023] [Indexed: 06/21/2023] Open
Abstract
Collectively, the MYC family of oncoprotein transcription factors is overexpressed in more than half of all malignancies. The ability of MYC proteins to access chromatin is fundamental to their role in promoting oncogenic gene expression programs in cancer and this function depends on MYC-cofactor interactions. One such cofactor is the chromatin regulator WDR5, which in models of Burkitt lymphoma facilitates recruitment of the c-MYC protein to chromatin at genes associated with protein synthesis, allowing for tumor progression and maintenance. However, beyond Burkitt lymphoma, it is unknown whether these observations extend to other cancers or MYC family members, and whether WDR5 can be deemed as a "universal" MYC recruiter. Here, we focus on N-MYC amplified neuroblastoma to determine the extent of colocalization between N-MYC and WDR5 on chromatin while also demonstrating that like c-MYC, WDR5 can facilitate the recruitment of N-MYC to conserved WDR5-bound genes. We conclude based on this analysis that N-MYC and WDR5 colocalize invariantly across cell lines at predicted sites of facilitated recruitment associated with protein synthesis genes. Surprisingly, we also identify N-MYC-WDR5 cobound genes that are associated with DNA repair and cell cycle processes. Dissection of chromatin binding characteristics for N-MYC and WDR5 at all cobound genes reveals that sites of facilitated recruitment are inherently different than most N-MYC-WDR5 cobound sites. Our data reveals that WDR5 acts as a universal MYC recruiter at a small cohort of previously identified genes and highlights novel biological functions that may be coregulated by N-MYC and WDR5 to sustain the neuroblastoma state.
Collapse
Affiliation(s)
- Leigh A Bumpous
- Department of Biology, Middle Tennessee State University, Murfreesboro, TN, 37132, USA
| | - Kylie C Moe
- Department of Biology, Middle Tennessee State University, Murfreesboro, TN, 37132, USA
| | - Jing Wang
- Center for Quantitative Sciences, Vanderbilt University Medical Center, Nashville, TN, 37240, USA
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN, 37240, USA
| | - Logan A Carver
- Department of Biology, Middle Tennessee State University, Murfreesboro, TN, 37132, USA
| | - Alexandria G Williams
- Department of Biology, Middle Tennessee State University, Murfreesboro, TN, 37132, USA
| | - Alexander S Romer
- Department of Biology, Middle Tennessee State University, Murfreesboro, TN, 37132, USA
| | - Jesse D Scobee
- Department of Biology, Middle Tennessee State University, Murfreesboro, TN, 37132, USA
| | - Jack N Maxwell
- Department of Biology, Middle Tennessee State University, Murfreesboro, TN, 37132, USA
| | - Cheyenne A Jones
- Department of Biology, Middle Tennessee State University, Murfreesboro, TN, 37132, USA
| | - Dai H Chung
- Department of Pediatric Surgery, University of Texas Southwestern Medical Center and Children's Health, Dallas, TX, 75234, USA
| | - William P Tansey
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN, 37240, USA
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN, 37240, USA
| | - Qi Liu
- Center for Quantitative Sciences, Vanderbilt University Medical Center, Nashville, TN, 37240, USA
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN, 37240, USA
| | - April M Weissmiller
- Department of Biology, Middle Tennessee State University, Murfreesboro, TN, 37132, USA.
| |
Collapse
|
11
|
Teuscher KB, Chowdhury S, Meyers KM, Tian J, Sai J, Van Meveren M, South TM, Sensintaffar JL, Rietz TA, Goswami S, Wang J, Grieb BC, Lorey SL, Howard GC, Liu Q, Moore WJ, Stott GM, Tansey WP, Lee T, Fesik SW. Structure-based discovery of potent WD repeat domain 5 inhibitors that demonstrate efficacy and safety in preclinical animal models. Proc Natl Acad Sci U S A 2023; 120:e2211297120. [PMID: 36574664 PMCID: PMC9910433 DOI: 10.1073/pnas.2211297120] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 10/30/2022] [Indexed: 12/28/2022] Open
Abstract
WD repeat domain 5 (WDR5) is a core scaffolding component of many multiprotein complexes that perform a variety of critical chromatin-centric processes in the nucleus. WDR5 is a component of the mixed lineage leukemia MLL/SET complex and localizes MYC to chromatin at tumor-critical target genes. As a part of these complexes, WDR5 plays a role in sustaining oncogenesis in a variety of human cancers that are often associated with poor prognoses. Thus, WDR5 has been recognized as an attractive therapeutic target for treating both solid and hematological tumors. Previously, small-molecule inhibitors of the WDR5-interaction (WIN) site and WDR5 degraders have demonstrated robust in vitro cellular efficacy in cancer cell lines and established the therapeutic potential of WDR5. However, these agents have not demonstrated significant in vivo efficacy at pharmacologically relevant doses by oral administration in animal disease models. We have discovered WDR5 WIN-site inhibitors that feature bicyclic heteroaryl P7 units through structure-based design and address the limitations of our previous series of small-molecule inhibitors. Importantly, our lead compounds exhibit enhanced on-target potency, excellent oral pharmacokinetic (PK) profiles, and potent dose-dependent in vivo efficacy in a mouse MV4:11 subcutaneous xenograft model by oral dosing. Furthermore, these in vivo probes show excellent tolerability under a repeated high-dose regimen in rodents to demonstrate the safety of the WDR5 WIN-site inhibition mechanism. Collectively, our results provide strong support for WDR5 WIN-site inhibitors to be utilized as potential anticancer therapeutics.
Collapse
Affiliation(s)
- Kevin B. Teuscher
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN37232-0146
| | - Somenath Chowdhury
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN37232-0146
| | - Kenneth M. Meyers
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN37232-0146
| | - Jianhua Tian
- Molecular Design and Synthesis Center, Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, TN37232-0142
| | - Jiqing Sai
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN37232-0146
| | - Mayme Van Meveren
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN37232-0146
| | - Taylor M. South
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN37232-0146
| | - John L. Sensintaffar
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN37232-0146
| | - Tyson A. Rietz
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN37232-0146
| | - Soumita Goswami
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN37232-0146
| | - Jing Wang
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN37232-0004
- Center for Quantitative Sciences, Vanderbilt University Medical Center, Nashville, TN37232-0004
| | - Brian C. Grieb
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN37232-0146
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN37232-0011
| | - Shelly L. Lorey
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN37232-0146
| | - Gregory C. Howard
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN37232-0146
| | - Qi Liu
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN37232-0004
- Center for Quantitative Sciences, Vanderbilt University Medical Center, Nashville, TN37232-0004
| | - William J. Moore
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD21702-1201
| | - Gordon M. Stott
- Leidos Biomedical Research, Frederick National Laboratory for Cancer Research, Frederick, MD21701-4907
| | - William P. Tansey
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN37232-0146
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN37232-0146
| | - Taekyu Lee
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN37232-0146
| | - Stephen W. Fesik
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN37232-0146
- Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, TN37232-0146
- Department of Chemistry, Vanderbilt University, Nashville, TN37232-0146
| |
Collapse
|
12
|
Jones CA, Tansey WP, Weissmiller AM. Emerging Themes in Mechanisms of Tumorigenesis by SWI/SNF Subunit Mutation. Epigenet Insights 2022; 15:25168657221115656. [PMID: 35911061 PMCID: PMC9329810 DOI: 10.1177/25168657221115656] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 07/06/2022] [Indexed: 11/16/2022] Open
Abstract
The SWI/SNF chromatin remodeling complex uses the energy of ATP hydrolysis to alter contacts between DNA and nucleosomes, allowing regions of the genome to become accessible for biological processes such as transcription. The SWI/SNF chromatin remodeler is also one of the most frequently altered protein complexes in cancer, with upwards of 20% of all cancers carrying mutations in a SWI/SNF subunit. Intense studies over the last decade have probed the molecular events associated with SWI/SNF dysfunction in cancer and common themes are beginning to emerge in how tumor-associated SWI/SNF mutations promote malignancy. In this review, we summarize current understanding of SWI/SNF complexes, their alterations in cancer, and what is known about the impact of these mutations on tumor-relevant transcriptional events. We discuss how enhancer dysregulation is a common theme in SWI/SNF mutant cancers and describe how resultant alterations in enhancer and super-enhancer activity conspire to block development and differentiation while promoting stemness and self-renewal. We also identify a second emerging theme in which SWI/SNF perturbations intersect with potent oncoprotein transcription factors AP-1 and MYC to drive malignant transcriptional programs.
Collapse
Affiliation(s)
- Cheyenne A Jones
- Department of Biology, Middle Tennessee State University, Murfreesboro, TN, USA
| | - William P Tansey
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN, USA.,Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - April M Weissmiller
- Department of Biology, Middle Tennessee State University, Murfreesboro, TN, USA
| |
Collapse
|
13
|
Haberecker M, Bühler MM, Mendieta AP, Guggenberger R, Arnold F, Markert E, Rechsteiner M, Zoche M, Britschgi C, Pauli C. Molecular and immunophenotypic characterization of SMARCB1 (INI1) - deficient intrathoracic Neoplasms. Mod Pathol 2022; 35:1860-1869. [PMID: 35864317 PMCID: PMC9708576 DOI: 10.1038/s41379-022-01133-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 06/20/2022] [Accepted: 06/20/2022] [Indexed: 12/24/2022]
Abstract
The switch/sucrose-non-fermenting (SWI/SNF) complex is an ATP-dependent chromatin remodeling complex that plays important roles in DNA repair, transcription and cell differentiation. This complex consists of multiple subunits and is of particular interest in thoracic malignancies due to frequent subunit alteration of SMARCA4 (BRG1). Much less is known about SMARCB1 (INI1) deficient intrathoracic neoplasms, which are rare, often misclassified and understudied. In a retrospective analysis of 1479 intrathoracic malignant neoplasms using immunohistochemistry for INI1 (SMARCB1) on tissue micro arrays (TMA) and a search through our hospital sarcoma database, we identified in total nine intrathoracic, INI1 deficient cases (n = 9). We characterized these cases further by additional immunohistochemistry, broad targeted genomic analysis, methylation profiling and correlated them with clinical and radiological data. This showed that genomic SMARCB1 together with tumor suppressor alterations drive tumorigenesis in some of these cases, rather than epigenetic changes such as DNA methylation. A proper diagnostic classification, however, remains challenging. Intrathoracic tumors with loss or alteration of SMARCB1 (INI1) are highly aggressive and remain often underdiagnosed due to their rarity, which leads to false diagnostic interpretations. A better understanding of these tumors and proper diagnosis is important for better patient care as clinical trials and more targeted therapeutic options are emerging.
Collapse
Affiliation(s)
- Martina Haberecker
- grid.412004.30000 0004 0478 9977Department of Pathology and Molecular Pathology, University Hospital Zurich, Zurich, Switzerland
| | - Marco Matteo Bühler
- grid.412004.30000 0004 0478 9977Department of Pathology and Molecular Pathology, University Hospital Zurich, Zurich, Switzerland
| | - Alicia Pliego Mendieta
- grid.412004.30000 0004 0478 9977Department of Pathology and Molecular Pathology, University Hospital Zurich, Zurich, Switzerland
| | - Roman Guggenberger
- grid.412004.30000 0004 0478 9977Department of Radiology, University Hospital Zurich, Zurich, Switzerland
| | - Fabian Arnold
- grid.412004.30000 0004 0478 9977Department of Pathology and Molecular Pathology, University Hospital Zurich, Zurich, Switzerland
| | - Eva Markert
- grid.413349.80000 0001 2294 4705Institute of Pathology, Kantonsspital St. Gallen, St. Gallen, Switzerland
| | - Markus Rechsteiner
- grid.412004.30000 0004 0478 9977Department of Pathology and Molecular Pathology, University Hospital Zurich, Zurich, Switzerland
| | - Martin Zoche
- grid.412004.30000 0004 0478 9977Department of Pathology and Molecular Pathology, University Hospital Zurich, Zurich, Switzerland
| | - Christian Britschgi
- grid.412004.30000 0004 0478 9977Department of Medical Oncology and Hematology, University Hospital Zurich, Comprehensive Cancer Center Zurich, Zurich, Switzerland
| | - Chantal Pauli
- Department of Pathology and Molecular Pathology, University Hospital Zurich, Zurich, Switzerland. .,University Zurich, Zurich, Switzerland.
| |
Collapse
|