1
|
Srinivasan N, Mudumba R. Alpha suppression in the context of cross-frequency interactions between fast and intermediate timescales. Phys Life Rev 2024; 51:11-12. [PMID: 39217781 DOI: 10.1016/j.plrev.2024.08.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Accepted: 08/25/2024] [Indexed: 09/04/2024]
Affiliation(s)
| | - Ramya Mudumba
- Department of Cognitive Science, Indian Institute of Technology Kanpur, India
| |
Collapse
|
2
|
Northoff G, Zilio F, Zhang J. Beyond task response-Pre-stimulus activity modulates contents of consciousness. Phys Life Rev 2024; 49:19-37. [PMID: 38492473 DOI: 10.1016/j.plrev.2024.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 03/03/2024] [Indexed: 03/18/2024]
Abstract
The current discussion on the neural correlates of the contents of consciousness (NCCc) focuses mainly on the post-stimulus period of task-related activity. This neglects the substantial impact of the spontaneous or ongoing activity of the brain as manifest in pre-stimulus activity. Does the interaction of pre- and post-stimulus activity shape the contents of consciousness? Addressing this gap in our knowledge, we review and converge two recent lines of findings, that is, pre-stimulus alpha power and pre- and post-stimulus alpha trial-to-trial variability (TTV). The data show that pre-stimulus alpha power modulates post-stimulus activity including specifically the subjective features of conscious contents like confidence and vividness. At the same time, alpha pre-stimulus variability shapes post-stimulus TTV reduction including the associated contents of consciousness. We propose that non-additive rather than merely additive interaction of the internal pre-stimulus activity with the external stimulus in the alpha band is key for contents to become conscious. This is mediated by mechanisms on different levels including neurophysiological, neurocomputational, neurodynamic, neuropsychological and neurophenomenal levels. Overall, considering the interplay of pre-stimulus intrinsic and post-stimulus extrinsic activity across wider timescales, not just evoked responses in the post-stimulus period, is critical for identifying neural correlates of consciousness. This is well in line with both processing and especially the Temporo-spatial theory of consciousness (TTC).
Collapse
Affiliation(s)
- Georg Northoff
- University of Ottawa, Institute of Mental Health Research at the Royal Ottawa Hospital, Ottawa, Canada.
| | - Federico Zilio
- Department of Philosophy, Sociology, Education and Applied Psychology, University of Padua, Padua, Italy
| | - Jianfeng Zhang
- Center for Brain Disorders and Cognitive Sciences, School of Psychology, Shenzhen University, Shenzhen, China.
| |
Collapse
|
3
|
Singhal I, Srinivasan N. Temporal correspondence in perceptual organization: Reciprocal interactions between temporal sensitivity and figure-ground segregation. Psychon Bull Rev 2024; 31:819-827. [PMID: 37726597 DOI: 10.3758/s13423-023-02373-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/21/2023] [Indexed: 09/21/2023]
Abstract
How do visual representations account for time? Is it the case that they represent time by themselves possessing temporal properties (temporal mirroring) or by atemporal markers/tags (temporal tagging)? This question has been asked for the past 5 decades and more, in neuroscience, philosophy, and psychology. To address this debate, we designed a study to test temporal correspondence. We tested whether a temporal property (flicker frequency) could influence figure-ground segregation, and in turn, reciprocally, whether a figure-ground segregation would alter a temporal property (here, temporal resolution). We manipulated flicker frequency of dots on either side of an ambiguous edge in Experiment 1 and asked participants to indicate the figural region. In Experiment 2, we measured temporal sensitivity using a temporal order judgment (TOJ) task in both figural and ground regions. We showed temporal correspondence by showing specifically that figure-ground segregation depends on flicker frequency differences between two regions in ambiguous displays, where slow-flickering regions are seen as figural (Experiment 1). Reciprocally, in Experiment 2, we showed that participants performed a temporal-order judgment task better when the task had to be performed on a region seen as background compared with the same region seen as a figure. We show how relatively slower flickering regions are seen as figural, and correspondingly, seeing a region as figural is associated with a poorer temporal resolution. Our results collectively allow us to demonstrate a tight temporal correspondence in figure-ground perception, which could be explained using the parvocellular and magnocellular pathways, the two major retino-geniculo-cortical pathways.
Collapse
Affiliation(s)
- Ishan Singhal
- Department of Cognitive Science, Indian Institute of Technology Kanpur, Kanpur, 208106, India
| | - Narayanan Srinivasan
- Department of Cognitive Science, Indian Institute of Technology Kanpur, Kanpur, 208106, India.
| |
Collapse
|
4
|
Negro N. (Dis)confirming theories of consciousness and their predictions: towards a Lakatosian consciousness science. Neurosci Conscious 2024; 2024:niae012. [PMID: 38495333 PMCID: PMC10944285 DOI: 10.1093/nc/niae012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 02/02/2024] [Accepted: 02/26/2024] [Indexed: 03/19/2024] Open
Abstract
The neuroscience of consciousness is undergoing a significant empirical acceleration thanks to several adversarial collaborations that intend to test different predictions of rival theories of consciousness. In this context, it is important to pair consciousness science with confirmation theory, the philosophical discipline that explores the interaction between evidence and hypotheses, in order to understand how exactly, and to what extent, specific experiments are challenging or validating theories of consciousness. In this paper, I examine this intricate relationship by adopting a Lakatosian lens. I propose that Lakatos' philosophy of science can aid consciousness scientists to better interpret adversarial collaborations in consciousness science and, more generally, to develop a confirmation-theoretic model of theory-appraisal in this field. I do so by suggesting that such a model be built upon three Lakatos-inspired criteria for assessing the relationship between empirical evidence and theoretical predictions: (i) the model should represent the 'distinction between prediction and accommodation'; (ii) the model should represent the 'structural relevance' of predictions; (iii) the model should represent the 'boldness' of the predictions. I argue that a Lakatosian model of theory-appraisal has both normative and descriptive virtues, and can move the debate forward by acknowledging that theory-appraisal needs to consider the diachronic development of theories, their logical structure, and their relationship with background beliefs and knowledge.
Collapse
Affiliation(s)
- Niccolò Negro
- School of Psychological Sciences, Tel Aviv University, Tel Aviv-Yafo 69978, Israel
| |
Collapse
|
5
|
Vishne G, Gerber EM, Knight RT, Deouell LY. Distinct ventral stream and prefrontal cortex representational dynamics during sustained conscious visual perception. Cell Rep 2023; 42:112752. [PMID: 37422763 PMCID: PMC10530642 DOI: 10.1016/j.celrep.2023.112752] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 05/12/2023] [Accepted: 06/20/2023] [Indexed: 07/11/2023] Open
Abstract
Instances of sustained stationary sensory input are ubiquitous. However, previous work focused almost exclusively on transient onset responses. This presents a critical challenge for neural theories of consciousness, which should account for the full temporal extent of experience. To address this question, we use intracranial recordings from ten human patients with epilepsy to view diverse images of multiple durations. We reveal that, in sensory regions, despite dramatic changes in activation magnitude, the distributed representation of categories and exemplars remains sustained and stable. In contrast, in frontoparietal regions, we find transient content representation at stimulus onset. Our results highlight the connection between the anatomical and temporal correlates of experience. To the extent perception is sustained, it may rely on sensory representations and to the extent perception is discrete, centered on perceptual updating, it may rely on frontoparietal representations.
Collapse
Affiliation(s)
- Gal Vishne
- Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel.
| | - Edden M Gerber
- Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| | - Robert T Knight
- Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA 94720, USA; Department of Psychology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Leon Y Deouell
- Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel; Department of Psychology, The Hebrew University of Jerusalem, Jerusalem 9190501, Israel.
| |
Collapse
|
6
|
Northoff G, Klar P, Bein M, Safron A. As without, so within: how the brain's temporo-spatial alignment to the environment shapes consciousness. Interface Focus 2023; 13:20220076. [PMID: 37065263 PMCID: PMC10102730 DOI: 10.1098/rsfs.2022.0076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 03/02/2023] [Indexed: 04/18/2023] Open
Abstract
Consciousness is constituted by a structure that includes contents as foreground and the environment as background. This structural relation between the experiential foreground and background presupposes a relationship between the brain and the environment, often neglected in theories of consciousness. The temporo-spatial theory of consciousness addresses the brain-environment relation by a concept labelled 'temporo-spatial alignment'. Briefly, temporo-spatial alignment refers to the brain's neuronal activity's interaction with and adaption to interoceptive bodily and exteroceptive environmental stimuli, including their symmetry as key for consciousness. Combining theory and empirical data, this article attempts to demonstrate the yet unclear neuro-phenomenal mechanisms of temporo-spatial alignment. First, we suggest three neuronal layers of the brain's temporo-spatial alignment to the environment. These neuronal layers span across a continuum from longer to shorter timescales. (i) The background layer comprises longer and more powerful timescales mediating topographic-dynamic similarities between different subjects' brains. (ii) The intermediate layer includes a mixture of medium-scaled timescales allowing for stochastic matching between environmental inputs and neuronal activity through the brain's intrinsic neuronal timescales and temporal receptive windows. (iii) The foreground layer comprises shorter and less powerful timescales for neuronal entrainment of stimuli temporal onset through neuronal phase shifting and resetting. Second, we elaborate on how the three neuronal layers of temporo-spatial alignment correspond to their respective phenomenal layers of consciousness. (i) The inter-subjectively shared contextual background of consciousness. (ii) An intermediate layer that mediates the relationship between different contents of consciousness. (iii) A foreground layer that includes specific fast-changing contents of consciousness. Overall, temporo-spatial alignment may provide a mechanism whose different neuronal layers modulate corresponding phenomenal layers of consciousness. Temporo-spatial alignment can provide a bridging principle for linking physical-energetic (free energy), dynamic (symmetry), neuronal (three layers of distinct time-space scales) and phenomenal (form featured by background-intermediate-foreground) mechanisms of consciousness.
Collapse
Affiliation(s)
- Georg Northoff
- Mind, Brain Imaging and Neuroethics Research Unit, TheRoyal's Institute of Mental Health Research, University of Ottawa, Ottawa, ON, Canada K1Z 7K4
- Mental Health Centre, Zhejiang University School of Medicine, Hangzhou 310053, People's Republic of China
- Centre for Cognition and Brain Disorders, Hangzhou Normal University, Hangzhou 310053, People's Republic of China
| | - Philipp Klar
- Medical Faculty, C. & O. Vogt-Institute for Brain Research, Heinrich Heine University of Düsseldorf, 40225 Düsseldorf, Germany
| | - Magnus Bein
- Department of Biology and Department of Psychiatry, McGill University, Quebec, Canada H3A 0G4
| | - Adam Safron
- Center for Psychedelic and Consciousness Research, Department of Psychiatry & Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Cognitive Science Program, Indiana University, Bloomington, IN 47405, USA
- Institute for Advanced Consciousness Studies, Santa Monica, CA 90403, USA
| |
Collapse
|
7
|
Rabuffo G, Sorrentino P, Bernard C, Jirsa V. Spontaneous neuronal avalanches as a correlate of access consciousness. Front Psychol 2022; 13:1008407. [PMID: 36337573 PMCID: PMC9634647 DOI: 10.3389/fpsyg.2022.1008407] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Accepted: 10/04/2022] [Indexed: 09/03/2023] Open
Abstract
Decades of research have advanced our understanding of the biophysical mechanisms underlying consciousness. However, an overarching framework bridging between models of consciousness and the large-scale organization of spontaneous brain activity is still missing. Based on the observation that spontaneous brain activity dynamically switches between epochs of segregation and large-scale integration of information, we hypothesize a brain-state dependence of conscious access, whereby the presence of either segregated or integrated states marks distinct modes of information processing. We first review influential works on the neuronal correlates of consciousness, spontaneous resting-state brain activity and dynamical system theory. Then, we propose a test experiment to validate our hypothesis that conscious access occurs in aperiodic cycles, alternating windows where new incoming information is collected but not experienced, to punctuated short-lived integration events, where conscious access to previously collected content occurs. In particular, we suggest that the integration events correspond to neuronal avalanches, which are collective bursts of neuronal activity ubiquitously observed in electrophysiological recordings. If confirmed, the proposed framework would link the physics of spontaneous cortical dynamics, to the concept of ignition within the global neuronal workspace theory, whereby conscious access manifest itself as a burst of neuronal activity.
Collapse
Affiliation(s)
- Giovanni Rabuffo
- Institut de Neurosciences des Systemes, Aix-Marseille University, Marseille, France
| | | | | | | |
Collapse
|
8
|
Singhal I, Srinivasan N. A wrinkle in and of time: Contraction of felt duration with a single perceptual switch. Cognition 2022; 225:105151. [DOI: 10.1016/j.cognition.2022.105151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Revised: 04/25/2022] [Accepted: 04/26/2022] [Indexed: 11/27/2022]
|
9
|
Linares Gutiérrez D, Schmidt S, Meissner K, Wittmann M. Changes in Subjective Time and Self during Meditation. BIOLOGY 2022; 11:biology11081116. [PMID: 35892973 PMCID: PMC9330740 DOI: 10.3390/biology11081116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 07/13/2022] [Accepted: 07/24/2022] [Indexed: 11/16/2022]
Abstract
Simple Summary Meditation induces an altered state of consciousness, which is often described by meditators as being in the present moment and losing one’s sense of time and self. Few studies have assessed these experiences. We invited 22 experienced meditators to participate in two experimental sessions lasting 20 min each (1) to meditate and (2) to read a story as a control condition. We measured their heart and breathing rates during these two sessions and conducted a metronome task before and after each session. In this task, participants had to group metronome beats into perceptual units, a measure of the duration of the present moment. In comparison to the reading condition, the heart and breathing rates showed a mix of increased as well as decreased bodily activity in the meditation condition. In the meditation condition, participants subjectively perceived their body boundaries less strongly, paid less attention to time, and felt time pass more quickly compared to the control condition. No differences between conditions were apparent for the metronome task. This study is the first to show how the sense of self and time are relatively diminished during meditation. Abstract This study examined the effects of meditative states in experienced meditators on present-moment awareness, subjective time, and self-awareness while assessing meditation-induced changes in heart-rate variability and breathing rate. A sample of 22 experienced meditators who practiced meditation techniques stressing awareness of the present moment (average 20 years of practice) filled out subjective scales pertaining to sense of time and the bodily self and accomplished a metronome task as an operationalization of present-moment awareness before and after a 20 min meditation session (experimental condition) and a 20 min reading session (control condition) according to a within-subject design. A mixed pattern of increased sympathetic and parasympathetic activity was found during meditation regarding heart-rate measures. Breathing intervals were prolonged during meditation. Participants perceived their body boundaries as less salient during meditation than while reading the story; they also felt time passed more quickly and they paid less attention to time during meditation. No significant differences between conditions became apparent for the metronome task. This is probably the first quantitative study to show how the experience of time during a meditation session is altered together with the sense of the bodily self.
Collapse
Affiliation(s)
- Damisela Linares Gutiérrez
- Institute of Frontier Areas of Psychology and Mental Health, 79098 Freiburg, Germany
- Palliative Care Unit, Department of Internal Medicine, Medical Faculty, University of Freiburg, 79106 Freiburg, Germany
| | - Stefan Schmidt
- Institute of Frontier Areas of Psychology and Mental Health, 79098 Freiburg, Germany
- Department of Psychosomatic Medicine and Psychotherapy, Medical Center-University of Freiburg, Medical Faculty, University of Freiburg, 79104 Freiburg, Germany
| | - Karin Meissner
- Division of Integrative Health Promotion, Department of Social Work and Health, Coburg University of Applied Sciences, 96450 Coburg, Germany
| | - Marc Wittmann
- Institute of Frontier Areas of Psychology and Mental Health, 79098 Freiburg, Germany
| |
Collapse
|
10
|
From Shorter to Longer Timescales: Converging Integrated Information Theory (IIT) with the Temporo-Spatial Theory of Consciousness (TTC). ENTROPY 2022; 24:e24020270. [PMID: 35205564 PMCID: PMC8871397 DOI: 10.3390/e24020270] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 01/19/2022] [Accepted: 02/10/2022] [Indexed: 02/01/2023]
Abstract
Time is a key element of consciousness as it includes multiple timescales from shorter to longer ones. This is reflected in our experience of various short-term phenomenal contents at discrete points in time as part of an ongoing, more continuous, and long-term ‘stream of consciousness.’ Can Integrated Information Theory (IIT) account for this multitude of timescales of consciousness? According to the theory, the relevant spatiotemporal scale for consciousness is the one in which the system reaches the maximum cause-effect power; IIT currently predicts that experience occurs on the order of short timescales, namely, between 100 and 300 ms (theta and alpha frequency range). This can well account for the integration of single inputs into a particular phenomenal content. However, such short timescales leave open the temporal relation of specific phenomenal contents to others during the course of the ongoing time, that is, the stream of consciousness. For that purpose, we converge the IIT with the Temporo-spatial Theory of Consciousness (TTC), which, assuming a multitude of different timescales, can take into view the temporal integration of specific phenomenal contents with other phenomenal contents over time. On the neuronal side, this is detailed by considering those neuronal mechanisms driving the non-additive interaction of pre-stimulus activity with the input resulting in stimulus-related activity. Due to their non-additive interaction, the single input is not only integrated with others in the short-term timescales of 100–300 ms (alpha and theta frequencies) (as predicted by IIT) but, at the same time, also virtually expanded in its temporal (and spatial) features; this is related to the longer timescales (delta and slower frequencies) that are carried over from pre-stimulus to stimulus-related activity. Such a non-additive pre-stimulus-input interaction amounts to temporo-spatial expansion as a key mechanism of TTC for the constitution of phenomenal contents including their embedding or nesting within the ongoing temporal dynamic, i.e., the stream of consciousness. In conclusion, we propose converging the short-term integration of inputs postulated in IIT (100–300 ms as in the alpha and theta frequency range) with the longer timescales (in delta and slower frequencies) of temporo-spatial expansion in TTC.
Collapse
|