1
|
Yamazaki H, Matsufuji S, Nishikawa A, Ashida M, Yamaguchi M, Sato M, Tanimura N, Tsujimoto Y, Ubai T, Shoji T. Prosthesis use and the change in activities of daily living following below-knee amputation in patients undergoing hemodialysis. Hemodial Int 2024; 28:107-116. [PMID: 37793912 DOI: 10.1111/hdi.13116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 06/25/2023] [Accepted: 09/21/2023] [Indexed: 10/06/2023]
Abstract
INTRODUCTION Patients undergoing hemodialysis are at an increased risk of peripheral arterial disease, amputation of lower extremities, and decline of activities of daily living. Although a prosthesis is used to support activities of daily living, no previous study reported the association of prosthesis use with the change in activities of daily living following leg amputation in hemodialysis patients. The purpose of this study was to compare the changes in activities of daily living following amputation between those who created a prosthesis and those who did not. METHODS This study was a single-center, retrospective observational study. We screened medical records for hemodialysis patients who underwent below-knee amputation (BKA) and activities of daily living were examined two times with the functional independence measure (FIM) before BKA and at discharge. They were divided into two groups according to the creation of a prosthesis. FINDINGS We identified 28 eligible patients, among whom 12 patients used a prosthesis (prosthesis group), whereas 16 patients did not (non-prosthesis group). The FIM score was significantly decreased following BKA in the non-prosthesis group, whereas it was not significantly changed in the prosthesis group. The change in FIM score was significantly different between the two groups, and the difference remained significant after considering potential confounders. DISCUSSION The results of this study showed that use versus nonuse of a prosthesis was an independent factor associated with changes in activities of daily living in hemodialysis patients following BKA, supporting the important role of a prosthesis in maintaining activities of daily living in hemodialysis patients who need BKA.
Collapse
Affiliation(s)
| | | | - Aina Nishikawa
- Division of Rehabilitation, Inoue Hospital, Suita, Japan
- Department of Rehabilitation, Aijinkai Rehabilitation Hospital, Takatsuki, Japan
| | | | | | - Motohiko Sato
- Division of Orthopedics, Inoue Hospital, Suita, Japan
| | | | | | | | - Tetsuo Shoji
- Department of Vascular Medicine, Osaka Metropolitan University Graduate School of Medicine, Osaka, Japan
- Vascular Science Center for Translational Research, Osaka Metropolitan University Graduate School of Medicine, Osaka, Japan
| |
Collapse
|
2
|
Theodorakopoulou MP, Dipla K, Zafeiridis A, Sarafidis P. Εndothelial and microvascular function in CKD: Evaluation methods and associations with outcomes. Eur J Clin Invest 2021; 51:e13557. [PMID: 33774823 DOI: 10.1111/eci.13557] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 02/19/2021] [Accepted: 03/14/2021] [Indexed: 12/29/2022]
Abstract
BACKGROUND Cardiovascular disease is the major cause of morbidity and mortality in patients with chronic kidney disease (CKD). Endothelial dysfunction, the hallmark of atherosclerosis, is suggested to be involved pathogenetically in cardiovascular and renal disease progression in these patients. METHODS This is a narrative review presenting the techniques and markers used for assessment of microvascular and endothelial function in patients with CKD and discussing findings of the relevant studies on the associations of endothelial dysfunction with co-morbid conditions and outcomes in this population. RESULTS Venous Occlusion Plethysmography was the first method to evaluate microvascular function; subsequently, several relevant techniques have been developed and used in patients with CKD, including brachial Flow-Mediated Dilatation, and more recently, Near-Infrared Spectroscopy and Laser Speckle Contrast Analysis. Furthermore, several circulating biomarkers are commonly used in clinical research. Studies assessing endothelial function using the above techniques and biomarkers suggest that endothelial dysfunction occurs early in CKD and contributes to the target organ damage, cardiovascular events, death and progression towards end-stage kidney disease. CONCLUSIONS Older and newer functional methods and several biomarkers have assessed endothelial dysfunction in CKD; accumulated evidence supports an association of endothelial dysfunction with outcomes. Future research with new, non-invasive and easily applicable methods could further delineate the role of endothelial dysfunction on cardiovascular and renal disease progression in patients with CKD.
Collapse
Affiliation(s)
- Marieta P Theodorakopoulou
- Department of Nephrology, Hippokration Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Konstantina Dipla
- Laboratory of Exercise Physiology and Biochemistry, Department of Physical Education and Sports Science at Serres, Aristotle University of Thessaloniki, Serres, Greece
| | - Andreas Zafeiridis
- Laboratory of Exercise Physiology and Biochemistry, Department of Physical Education and Sports Science at Serres, Aristotle University of Thessaloniki, Serres, Greece
| | - Pantelis Sarafidis
- Department of Nephrology, Hippokration Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| |
Collapse
|
3
|
Mehta A, Tahhan AS, Liu C, Dhindsa DS, Nayak A, Hooda A, Moazzami K, Islam SJ, Rogers SC, Almuwaqqat Z, Mokhtari A, Hesaroieh I, Ko YA, Waller EK, Quyyumi AA. Circulating Progenitor Cells in Patients With Coronary Artery Disease and Renal Insufficiency. JACC Basic Transl Sci 2020; 5:770-782. [PMID: 32875168 PMCID: PMC7452291 DOI: 10.1016/j.jacbts.2020.06.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 06/04/2020] [Accepted: 06/06/2020] [Indexed: 10/26/2022]
Abstract
Patients with coronary artery disease and renal insufficiency (RI) (estimated glomerular filtration rate <60 ml/min/1.73 m2) are at an increased risk of cardiovascular events. The contribution of regenerative capacity, measured as circulating progenitor cell (CPC) counts, to this increased risk is unclear. CPCs were enumerated as cluster of differentiation (CD) 45med+ mononuclear cells expressing CD34+, CD133+, CXCR4+ (chemokine [C-X-C motif] receptor 4), and VEGF2R+ (vascular endothelial growth factor receptor 2) epitopes in 1,281 subjects with coronary artery disease (35% with RI). Patients with RI and low (<median) hematopoietic CPCs (CD34+, CD34+/CD133+, and CD34+/CXCR4+) were at an increased risk of cardiovascular death or myocardial infarction events (hazard ratios: 1.75 to 1.80) during 3.5-year follow-up, while those with RI and high CPCs (>median) were at a similar risk as those without RI.
Collapse
Key Words
- BNP, B-type natriuretic peptide
- CAD, coronary artery disease
- CD, cluster of differentiation
- CI, confidence interval
- CPC, circulating progenitor cell
- CV, cardiovascular
- CXCR4, chemokine (C-X-C motif) receptor 4
- HR, hazard ratio
- IDI, integrated discrimination index
- MI, myocardial infarction
- VEGF2R, vascular endothelial growth factor receptor 2
- coronary artery disease
- eGFR, estimated glomerular filtration rate
- hsTnI, high-sensitivity troponin I
- outcomes
- progenitor cells
- regenerative capacity
- renal insufficiency
Collapse
Affiliation(s)
- Anurag Mehta
- Emory Clinical Cardiovascular Research Institute, Division of Cardiology, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia
| | - Ayman S Tahhan
- Emory Clinical Cardiovascular Research Institute, Division of Cardiology, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia
| | - Chang Liu
- Emory Clinical Cardiovascular Research Institute, Division of Cardiology, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia.,Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, Georgia
| | - Devinder S Dhindsa
- Emory Clinical Cardiovascular Research Institute, Division of Cardiology, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia
| | - Aditi Nayak
- Emory Clinical Cardiovascular Research Institute, Division of Cardiology, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia
| | - Ananya Hooda
- Emory Clinical Cardiovascular Research Institute, Division of Cardiology, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia
| | - Kasra Moazzami
- Emory Clinical Cardiovascular Research Institute, Division of Cardiology, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia
| | - Shabatun J Islam
- Emory Clinical Cardiovascular Research Institute, Division of Cardiology, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia
| | - Steven C Rogers
- Emory Clinical Cardiovascular Research Institute, Division of Cardiology, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia
| | - Zakaria Almuwaqqat
- Emory Clinical Cardiovascular Research Institute, Division of Cardiology, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia
| | - Ali Mokhtari
- Emory Clinical Cardiovascular Research Institute, Division of Cardiology, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia
| | - Iraj Hesaroieh
- Emory Clinical Cardiovascular Research Institute, Division of Cardiology, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia
| | - Yi-An Ko
- Emory Clinical Cardiovascular Research Institute, Division of Cardiology, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia.,Department of Biostatistics and Bioinformatics, Rollins School of Public Health, Emory University, Atlanta, Georgia
| | - Edmund K Waller
- Department of Hematology and Oncology, Winship Cancer Institute, Emory University School of Medicine, Atlanta, Georgia
| | - Arshed A Quyyumi
- Emory Clinical Cardiovascular Research Institute, Division of Cardiology, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia
| |
Collapse
|
4
|
Zafar N, Krishnasamy SS, Shah J, Rai SN, Riggs DW, Bhatnagar A, O’Toole TE. Circulating angiogenic stem cells in type 2 diabetes are associated with glycemic control and endothelial dysfunction. PLoS One 2018; 13:e0205851. [PMID: 30321232 PMCID: PMC6188890 DOI: 10.1371/journal.pone.0205851] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Accepted: 10/02/2018] [Indexed: 01/01/2023] Open
Abstract
Circulating angiogenic cells (CACs) of various described phenotypes participate in the regeneration of the damaged endothelium, but the abundance of these cells is highly influenced by external cues including diabetes. It is not entirely clear which CAC populations are most reflective of endothelial function nor which are impacted by diabetes. To answer these questions, we enrolled a human cohort with variable CVD risk and determined relationships between stratified levels of CACs and indices of diabetes and vascular function. We also determined associations between CAC functional markers and diabetes and identified pro-angiogenic molecules which are impacted by diabetes. We found that subjects with low levels of CD34+/AC133+/CD31+/CD45dim cells (CAC-3) had a significantly higher incidence of diabetes (p = 0.004), higher HbA1c levels (p = 0.049) and higher CVD risk scores. Furthermore, there was an association between low CAC-3 levels and impaired vascular function (p = 0.023). These cells from diabetics had reduced levels of CXCR4 and VEGFR2, while diabetics had higher levels of certain cytokines and pro-angiogenic molecules. These results suggest that quantitative and functional defects of CD34+/AC133+/CD31+/CD45dim cells are associated with diabetes and vascular impairment and that this cell type may be a prognostic indicator of CVD and vascular dysfunction.
Collapse
Affiliation(s)
- Nagma Zafar
- Department of Medicine, Diabetes and Obesity Center, University of Louisville, Louisville, Kentucky, United States of America
- Department of Medicine, Division of General Pediatrics, University of Louisville, Louisville, Kentucky, United States of America
| | - Sathya S. Krishnasamy
- Department of Medicine, Division of Endocrinology, Metabolism and Diabetes University of Louisville, Louisville, Kentucky, United States of America
| | - Jasmit Shah
- Department of Internal Medicine, Aga Khan University, Nairobi, Kenya
| | - Shesh N. Rai
- Department of Bioinformatics and Biostatistics, University of Louisville, Louisville, Kentucky, United States of America
| | - Daniel W. Riggs
- Department of Medicine, Diabetes and Obesity Center, University of Louisville, Louisville, Kentucky, United States of America
- Department of Bioinformatics and Biostatistics, University of Louisville, Louisville, Kentucky, United States of America
- Envirome Institute, University of Louisville, Louisville, Kentucky, United States of America
| | - Aruni Bhatnagar
- Department of Medicine, Diabetes and Obesity Center, University of Louisville, Louisville, Kentucky, United States of America
- Envirome Institute, University of Louisville, Louisville, Kentucky, United States of America
| | - Timothy E. O’Toole
- Department of Medicine, Diabetes and Obesity Center, University of Louisville, Louisville, Kentucky, United States of America
- Envirome Institute, University of Louisville, Louisville, Kentucky, United States of America
- * E-mail:
| |
Collapse
|
5
|
Huuskes BM, DeBuque RJ, Polkinghorne KR, Samuel CS, Kerr PG, Ricardo SD. Endothelial Progenitor Cells and Vascular Health in Dialysis Patients. Kidney Int Rep 2018; 3:205-211. [PMID: 29340332 PMCID: PMC5762957 DOI: 10.1016/j.ekir.2017.09.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2017] [Revised: 09/10/2017] [Accepted: 09/11/2017] [Indexed: 02/06/2023] Open
Affiliation(s)
- Brooke M Huuskes
- Biomedicine Discovery Institute, Department of Anatomy and Developmental Biology, Monash University, Melbourne, Victoria, Australia
| | - Ryan J DeBuque
- Australian Regenerative Medicine Institute, Monash University, Melbourne, Victoria, Australia
| | - Kevan R Polkinghorne
- Department of Nephrology, Monash Medical Centre and Monash University, Melbourne, Victoria, Australia.,School of Public Health and Preventative Medicine, Monash University, Prahan, Melbourne, Australia
| | - Chrishan S Samuel
- Biomedicine Discovery Institute, Department of Pharmacology, Monash University, Melbourne, Victoria, Australia
| | - Peter G Kerr
- Department of Nephrology, Monash Medical Centre and Monash University, Melbourne, Victoria, Australia
| | - Sharon D Ricardo
- Biomedicine Discovery Institute, Department of Anatomy and Developmental Biology, Monash University, Melbourne, Victoria, Australia
| |
Collapse
|
6
|
Abstract
BACKGROUND AND AIMS The pathogenic events responsible for the reduction of endothelial progenitor cell (EPC) number and function seen in patients with chronic renal failure (CRF) are poorly understood. Here we investigate the hypothesis that increased concentrations of urea associated with CRF increase ROS production directly in EPCs, causing abnormalities associated with coronary artery disease risk. METHODS Human EPCs were isolated from peripheral blood mononuclear cells of healthy donors and cultured in the presence or absence of 20 mmol/L urea. RESULTS Urea at concentrations seen in CRF induced ROS production in cultured EPCs. Urea-induced ROS reduced the number of endothelial cell colony forming units, uptake and binding of Dil-Ac-LDL and lectin-1, and the ability to differentiate into CD31- and vascular endothelial growth factor receptor 2-positive cells. Moreover, urea-induced ROS generation accelerated the onset of EPC senescence, leading to a senescence-associated secretory phenotype (SASP). Normalization of mitochondrial ROS production prevented each of these effects of urea. CONCLUSIONS These data suggest that urea itself causes both reduced EPC number and increased EPC dysfunction, thereby contributing to the pathogenesis of cardiovascular disease in CRF patients.
Collapse
|
7
|
Challenges and opportunities for stem cell therapy in patients with chronic kidney disease. Kidney Int 2016; 89:767-78. [PMID: 26924058 DOI: 10.1016/j.kint.2015.11.023] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Revised: 11/10/2015] [Accepted: 11/18/2015] [Indexed: 02/07/2023]
Abstract
Chronic kidney disease (CKD) is a global health care burden affecting billions of individuals worldwide. The kidney has limited regenerative capacity from chronic insults, and for the most common causes of CKD, no effective treatment exists to prevent progression to end-stage kidney failure. Therefore, novel interventions, such as regenerative cell-based therapies, need to be developed for CKD. Given the risk of allosensitization, autologous transplantation of cells to boost regenerative potential is preferred. Therefore, verification of cell function and vitality in CKD patients is imperative. Two cell types have been most commonly applied in regenerative medicine. Endothelial progenitor cells contribute to neovasculogenesis primarily through paracrine angiogenic activity and partly by differentiation into mature endothelial cells in situ. Mesenchymal stem cells also exert paracrine effects, including proangiogenic, anti-inflammatory, and antifibrotic activity. However, in CKD, multiple factors may contribute to reduced cell function, including older age, coexisting cardiovascular disease, diabetes, chronic inflammatory states, and uremia, which may limit the effectiveness of an autologous cell-based therapy approach. This Review highlights current knowledge on stem and progenitor cell function and vitality, aspects of the uremic milieu that may serve as a barrier to therapy, and novel methods to improve stem cell function for potential transplantation.
Collapse
|
8
|
Cianciolo G, La Manna G, Cappuccilli ML, Lanci N, Della Bella E, Cuna V, Dormi A, Todeschini P, Donati G, Alviano F, Costa R, Bagnara GP, Stefoni S. VDR expression on circulating endothelial progenitor cells in dialysis patients is modulated by 25(OH)D serum levels and calcitriol therapy. Blood Purif 2011; 32:161-73. [PMID: 21757895 DOI: 10.1159/000325459] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2010] [Accepted: 02/08/2011] [Indexed: 12/29/2022]
Abstract
BACKGROUND/AIMS Vitamin D deficiency is associated with endothelial dysfunction in uremic patients, possibly by the impairment in the number and function of endothelial progenitor cells (EPCs). In 89 hemodialysis patients, we investigated the factors associated with the number of circulating EPCs (CD34+/CD133+/KDR+ and CD34+/CD133-/KDR+ cells), the presence of VDR and the determinants of VDR expression on EPCs, in particular in calcitriol therapy. METHODS EPC counts, percentages of VDR-positive EPCs and VDR expression were assessed by flow cytometry. Cells isolated from a subgroup of patients were cultured to analyze colony-forming units, specific markers expression and a capillary-like structure formation. RESULTS/CONCLUSIONS Our study demonstrates the presence of VDR on EPCs. In our dialysis patients, the parameters studied on both CD34+/CD133+/KDR+ and CD34+/CD133-/KDR+ cells, in particular VDR expression, seem to be influenced by uremia-related factors, including anemia, inflammation, diabetes, 25(OH)D serum levels and calcitriol therapy.
Collapse
Affiliation(s)
- Giuseppe Cianciolo
- Nephrology Dialysis and Renal Transplantation Unit, S. Orsola University Hospital, Bologna, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Ueno H, Koyama H, Fukumoto S, Tanaka S, Shoji T, Shoji T, Emoto M, Tahara H, Inaba M, Kakiya R, Tabata T, Miyata T, Nishizawa Y. Advanced glycation end products, carotid atherosclerosis, and circulating endothelial progenitor cells in patients with end-stage renal disease. Metabolism 2011; 60:453-9. [PMID: 20494372 DOI: 10.1016/j.metabol.2010.04.001] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2009] [Revised: 02/05/2010] [Accepted: 04/06/2010] [Indexed: 01/22/2023]
Abstract
Numbers of endothelial progenitor cells (EPCs) have been shown to be decreased in subjects with end-stage renal disease (ESRD), the mechanism of which remained poorly understood. In this study, mutual association among circulating EPC levels, carotid atherosclerosis, serum pentosidine, and skin autofluorescence, a recently established noninvasive measure of advanced glycation end products accumulation, was examined in 212 ESRD subjects undergoing hemodialysis. Numbers of circulating EPCs were measured as CD34+ CD133+ CD45(low) VEGFR2+ cells and progenitor cells as CD34+ CD133+ CD45(low) fraction by flow cytometry. Skin autofluorescence was assessed by the autofluorescence reader; and serum pentosidine, by enzyme-linked immunosorbent assay. Carotid atherosclerosis was determined as intimal-medial thickness (IMT) measured by ultrasound. Circulating EPCs were significantly and inversely correlated with skin autofluorescence in ESRD subjects (R = -0.216, P = .002), but not with serum pentosidine (R = -0.079, P = .25). Circulating EPCs tended to be inversely associated with IMT (R = -0.125, P = .069). Intimal-medial thickness was also tended to be correlated positively with skin autofluorescence (R = 0.133, P = .054) and significantly with serum pentosidine (R = 0.159, P = .019). Stepwise multiple regression analyses reveal that skin autofluorescence, but not serum pentosidine and IMT, was independently associated with low circulating EPCs. Of note, skin autofluorescence was also inversely and independently associated with circulating progenitor cells. Thus, tissue accumulated, but not circulating, advanced glycation end products may be a determinant of a decrease in circulating EPCs in ESRD subjects.
Collapse
Affiliation(s)
- Hiroki Ueno
- Department of Metabolism, Endocrinology and Molecular Medicine, Osaka City University Graduate School of Medicine, Osaka 545-8585, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Ueno H, Koyama H, Mima Y, Fukumoto S, Tanaka S, Shoji T, Emoto M, Shoji T, Nishizawa Y, Inaba M. Comparison of the Effect of Cilostazol with Aspirin on Circulating Endothelial Progenitor Cells and Small-Dense LDL Cholesterol in Diabetic Patients with Cerebral Ischemia: A Randomized Controlled Pilot Trial. J Atheroscler Thromb 2011; 18:883-90. [DOI: 10.5551/jat.9225] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
|
11
|
Krieter DH, Fischer R, Merget K, Lemke HD, Morgenroth A, Canaud B, Wanner C. Endothelial progenitor cells in patients on extracorporeal maintenance dialysis therapy. Nephrol Dial Transplant 2010; 25:4023-31. [PMID: 20980359 DOI: 10.1093/ndt/gfq552] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Chronic renal failure patients have a high cardiovascular disease burden, low numbers and impaired function of endothelial progenitor cells (EPCs). We hypothesized that enhanced uraemic toxin removal restores EPCs in haemodialysis patients. METHODS In a prospective, randomized, cross-over trial, 18 patients were subjected to 4 weeks of each low-flux haemodialysis, high-flux haemodialysis and haemodiafiltration differing in uraemic toxin removal. EPCs were determined at baseline and at the end of each 4-week period. A cohort of 16 healthy volunteers served as control. EPCs were studied after culture on fibronectin (CFU-Hill) and collagen-1 (ECFC). RESULTS Dialysis patients had a lower number of ECFCs than in healthy controls (P < 0.001) and a reduced fraction of vital ECFCs (P < 0.05), whereas the formation of endothelial cell colonies (ECCs) was increased (P < 0.05). Different middle molecular uraemic toxin removal had no effects on EPC numbers. The number of prototypical EPCs (CD34( +)/VEGFR2-KDR( +)/CD45( -) ECFCs) was similar between patients and controls. Correlations of plasma C-reactive protein with ECC count, CFU-Hill colony count and CD34( +)/VEGFR2-KDR( +)/CD45( -) subpopulation of both ECFC and CFU-Hill cells were observed. CONCLUSIONS Different middle molecule removal has no effect on EPCs. Reduced vitality and enhanced ECC formation suggest growth induction of impaired EPCs in chronic renal failure and are associated with inflammation.
Collapse
Affiliation(s)
- Detlef H Krieter
- Division of Nephrology, Department of Medicine, University of Würzburg, Würzburg, Germany.
| | | | | | | | | | | | | |
Collapse
|
12
|
Jie KE, Lilien MR, Goossens MHJ, Westerweel PE, Klein MK, Verhaar MC. Reduced endothelial progenitor cells in children with hemodialysis but not predialysis chronic kidney disease. Pediatrics 2010; 126:e990-3. [PMID: 20819900 DOI: 10.1542/peds.2009-3346] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
In adults with chronic kidney disease (CKD), reduced levels of vasculoprotective endothelial progenitor cells (EPCs) may contribute to their increased risk of cardiovascular disease. Children with CKD also show signs of cardiovascular disease. However, to our knowledge, there have been no studies on circulating EPC levels in pediatric patients with CKD. We investigated CD34+KDR+ EPC numbers by using flow cytometry in 15 children with predialysis CKD, 13 children on hemodialysis, and 18 age-matched healthy controls. Children on hemodialysis showed 47% reduced EPC levels compared with controls, whereas no significant difference was found for patients with predialysis CKD. Lower EPC levels were found in patients with higher levels of inflammatory marker high-sensitivity C-reactive protein. Our data show, for the first time, that children on hemodialysis have reduced CD34+KDR+ EPC levels, which potentially contributes to their increased cardiovascular risk. In children with predialysis CKD, a decline in renal function was not associated with reduced EPC levels, which may reflect a capacity for preservation of the endogenous repair system during relatively moderate disturbances of the systemic environment.
Collapse
Affiliation(s)
- Kim E Jie
- Department of Nephrology and Hypertension, Wilhelmina Children's Hospital, F03.227, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, Netherlands
| | | | | | | | | | | |
Collapse
|
13
|
Ueno H, Koyama H, Tabata T, Nishizawa Y. Reply. Nephrol Dial Transplant 2010. [DOI: 10.1093/ndt/gfq039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
14
|
Westerweel PE, Verhaar MC. Differential impact of dialysis modality on circulating endothelial progenitor cells. Nephrol Dial Transplant 2010; 25:1726-7; author reply 1727. [PMID: 20190239 DOI: 10.1093/ndt/gfq038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
15
|
Mohandas R, Segal MS. Endothelial progenitor cells and endothelial vesicles - what is the significance for patients with chronic kidney disease? Blood Purif 2010; 29:158-62. [PMID: 20093822 DOI: 10.1159/000245643] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Endothelial progenitor cells are cells derived from the bone marrow that circulate in the bloodstream and can exhibit phenotypic characteristics of endothelial cells. They are thought to be involved in postnatal vasculogenesis and to potentially help repair injured endothelium. Circulating endothelial cells are mature endothelial cells in the circulation, and endothelial vesicles or microparticles are thought to be derived from the membranes of endothelial cells as a result of injury or activation. Recent research has focused on using these markers of endothelial injury and repair to assess the state of endothelial health. These efforts have been hampered by lack of uniformity in methodology and terminology. Recent developments in flow cytometry techniques have allowed better characterization and definition of these cells. We review the common techniques used to identify and isolate these cells, clinical studies in patients with chronic kidney disease (CKD) where they serve as markers of endothelial health and predictors of outcome, and possible mechanisms of progenitor cell dysfunction in CKD.
Collapse
Affiliation(s)
- Rajesh Mohandas
- Division of Nephrology, University of Florida, Gainesville, Fla., USA
| | | |
Collapse
|