1
|
Jaques DA, Chhabra R, Khatri P, Davenport A. Impact of convective clearance on intra-dialytic potassium removal in chronic dialysis patients. Artif Organs 2024. [PMID: 39377155 DOI: 10.1111/aor.14883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 09/19/2024] [Accepted: 09/23/2024] [Indexed: 10/09/2024]
Abstract
INTRODUCTION Hyperkalemia is frequently encountered and associated with cardio-vascular mortality in chronic hemodialysis (HD) patients. While online hemodiafiltration (OL-HDF) is thought to offer clinical benefit over high-flux HD, the impact of convective clearance on intra-dialytic potassium removal is unknown. METHODS Chronic dialysis patients undergoing outpatient HD or OL-HDF at a single center attached to a university hospital were recruited in a prospective observational study. Spent dialysate along with clinical and biological variables were collected during a single mid-week session. RESULTS We included 141 patients, with 21 treated with HD and 120 with OL-HDF. Mean age was 65.7 ± 15.6 years with 87 (61.7%) men. Mean intra-dialytic potassium removal was 69.9 ± 34.2 mmol. Patients on OL-HDF and HD have similar intra-dialytic potassium removal, with mean values of 69.1 ± 34.2 and 74.3 ± 35.0, respectively. In multivariate analysis, factors associated with intra-dialytic potassium removal were (decreasing order of effect size): dialysate potassium (β -15.5, p < 0.001), pre-HD serum potassium (β 9.1, p < 0.001), and session time (β 7.8, p = 0.003). In OL-HDF patients, substitution flow was not associated with potassium removal. CONCLUSION In chronic dialysis patients, convective therapy provided by OL-HDF does not affect potassium removal when compared with high-flux HD. Moreover, the importance of convective volume is not associated with potassium clearance in OL-HDF. Overall, session length and serum-to-dialysate potassium gradient are the main determinants of potassium clearance regardless of dialysis modality. Those results should inform clinicians on the optimal therapy in chronic dialysis patients in the era of OL-HDF.
Collapse
Affiliation(s)
- David A Jaques
- Division of Nephrology and Hypertension, Geneva University Hospitals, Geneva, Switzerland
| | - Roohi Chhabra
- UCL Department of Renal Medicine, Royal Free Hospital, University College London, London, UK
| | - Priyanka Khatri
- Fast and Chronic Programmes, Alexandra Hospital, Queenstown, Singapore
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Andrew Davenport
- UCL Department of Renal Medicine, Royal Free Hospital, University College London, London, UK
| |
Collapse
|
2
|
Chow CM, Persad AH, Karnik R. Effect of Membrane Permeance and System Parameters on the Removal of Protein-Bound Uremic Toxins in Hemodialysis. Ann Biomed Eng 2024; 52:526-541. [PMID: 37993752 PMCID: PMC10859350 DOI: 10.1007/s10439-023-03397-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 10/25/2023] [Indexed: 11/24/2023]
Abstract
Inadequate clearance of protein-bound uremic toxins (PBUTs) during dialysis is associated with morbidities in chronic kidney disease patients. The development of high-permeance membranes made from materials such as graphene raises the question whether they could enable the design of dialyzers with improved PBUT clearance. Here, we develop device-level and multi-compartment (body) system-level models that account for PBUT-albumin binding (specifically indoxyl sulfate and p-cresyl sulfate) and diffusive and convective transport of toxins to investigate how the overall membrane permeance (or area) and system parameters including flow rates and ultrafiltration affect PBUT clearance in hemodialysis. Our simulation results indicate that, in contrast to urea clearance, PBUT clearance in current dialyzers is mass-transfer limited: Assuming that the membrane resistance is dominant, raising PBUT permeance from 3 × 10-6 to 10-5 m s-1 (or equivalently, 3.3 × increase in membrane area from ~ 2 to ~ 6 m2) increases PBUT removal by 48% (from 22 to 33%, i.e., ~ 0.15 to ~ 0.22 g per session), whereas increasing dialysate flow rates or adding adsorptive species have no substantial impact on PBUT removal unless permeance is above ~ 10-5 m s-1. Our results guide the future development of membranes, dialyzers, and operational parameters that could enhance PBUT clearance and improve patient outcomes.
Collapse
Affiliation(s)
- Chun Man Chow
- Department of Chemical Engineering, Massachusetts Institute of Technology, 25 Ames St, Cambridge, MA, 02142, USA
| | - Aaron H Persad
- Department of Mechanical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Ave, Cambridge, MA, 02139, USA
| | - Rohit Karnik
- Department of Mechanical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Ave, Cambridge, MA, 02139, USA.
| |
Collapse
|
3
|
Fiorentino M, La Fergola F, De Rosa S. Medium cut-off dialyzer for middle molecular uremic toxins in AKI and chronic dialysis. J Nephrol 2024; 37:23-37. [PMID: 37843731 PMCID: PMC10920419 DOI: 10.1007/s40620-023-01771-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 08/18/2023] [Indexed: 10/17/2023]
Abstract
Uremic toxins accumulate in patients affected by renal failure and can deposit in different organs, including the kidneys and heart. Given their physicochemical characteristics, uremic toxins can contribute to organ dysfunction due to several pathobiological actions at cellular and molecular levels. Several uremic compounds have been described in serum and plasma from patients with acute kidney injury (AKI) and kidney failure; they are usually classified based on their molecular size and protein-binding properties. In this scenario, new dialytic approaches have been proposed in the last few years with the aim of improving uremic toxin removal. Recent studies which focused on the use of medium cut-off membranes in patients on chronic hemodialysis have shown a discrete ability to remove β2-microglobulin and other middle molecules, such as kappa and lambda free light chains, complement factor D and α1-microglobulin. However, current evidence is mainly based on the impact on short-term outcomes and, consequently, longer observational studies are necessary to confirm the efficacy and safety of the medium cut-off dialyzer. Here we present the state-of-the-art on the clinical application of medium cut-off membranes in AKI and chronic dialysis patients.
Collapse
Affiliation(s)
- Marco Fiorentino
- Nephrology, Dialysis and Transplantation Unit, Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), University of Bari "Aldo Moro", Bari, Italy
| | - Francesco La Fergola
- Nephrology, Dialysis and Transplantation Unit, Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), University of Bari "Aldo Moro", Bari, Italy
| | - Silvia De Rosa
- Centre for Medical Sciences - CISMed, University of Trento, Via S. Maria Maddalena 1, 38122, Trento, Italy.
- Anesthesia and Intensive Care, Santa Chiara Regional Hospital, APSS Trento, Trento, Italy.
| |
Collapse
|
4
|
Xu Y, Bi WD, Shi YX, Liang XR, Wang HY, Lai XL, Bian XL, Guo ZY. Derivation and elimination of uremic toxins from kidney-gut axis. Front Physiol 2023; 14:1123182. [PMID: 37650112 PMCID: PMC10464841 DOI: 10.3389/fphys.2023.1123182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 07/31/2023] [Indexed: 09/01/2023] Open
Abstract
Uremic toxins are chemicals, organic or inorganic, that accumulate in the body fluids of individuals with acute or chronic kidney disease and impaired renal function. More than 130 uremic solutions are included in the most comprehensive reviews to date by the European Uremic Toxins Work Group, and novel investigations are ongoing to increase this number. Although approaches to remove uremic toxins have emerged, recalcitrant toxins that injure the human body remain a difficult problem. Herein, we review the derivation and elimination of uremic toxins, outline kidney-gut axis function and relative toxin removal methods, and elucidate promising approaches to effectively remove toxins.
Collapse
Affiliation(s)
- Ying Xu
- Department of Nephrology, Changhai Hospital of Naval Medical University, Shanghai, China
| | - Wen-Di Bi
- Brigade One Team, Basic Medical College, Naval Medical University, Shanghai, China
| | - Yu-Xuan Shi
- Department of Nephrology, Changhai Hospital of Naval Medical University, Shanghai, China
| | - Xin-Rui Liang
- Department of Nephrology, Changhai Hospital of Naval Medical University, Shanghai, China
| | - Hai-Yan Wang
- Department of Nephrology, Changhai Hospital of Naval Medical University, Shanghai, China
| | - Xue-Li Lai
- Department of Nephrology, Changhai Hospital of Naval Medical University, Shanghai, China
| | - Xiao-Lu Bian
- Department of Nephrology, Changhai Hospital of Naval Medical University, Shanghai, China
| | - Zhi-Yong Guo
- Department of Nephrology, Changhai Hospital of Naval Medical University, Shanghai, China
| |
Collapse
|
5
|
Caggiano G, Amodio L, Stasi A, Colabufo NA, Colangiulo S, Pesce F, Gesualdo L. Gut-Derived Uremic Toxins in CKD: An Improved Approach for the Evaluation of Serum Indoxyl Sulfate in Clinical Practice. Int J Mol Sci 2023; 24:5142. [PMID: 36982216 PMCID: PMC10049313 DOI: 10.3390/ijms24065142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 02/26/2023] [Accepted: 03/01/2023] [Indexed: 03/10/2023] Open
Abstract
In the past years, indoxyl sulfate has been strongly implicated in kidney disease progression and contributed to cardiovascular morbidity. Moreover, as a result of its elevated albumin affinity rate, indoxyl sulfate is not adequately cleared by extracorporeal therapies. Within this scenario, although LC-MS/MS represents the conventional approach for IS quantification, it requires dedicated equipment and expert skills and does not allow real-time analysis. In this pilot study, we implemented a fast and simple technology designed to determine serum indoxyl sulfate levels that can be integrated into clinical practice. Indoxyl sulfate was detected at the time of enrollment by Tandem MS from 25 HD patients and 20 healthy volunteers. Next, we used a derivatization reaction to transform the serum indoxyl sulfate into Indigo blue. Thanks to the spectral shift to blue, its quantity was measured by the colorimetric assay at a wavelength of 420-450 nm. The spectrophotometric analysis was able to discriminate the levels of IS between healthy subjects and HD patients corresponding to the LC-MS/MS. In addition, we found a strong linear relationship between indoxyl sulfate levels and Indigo levels between the two methods (Tandem MS and spectrophotometry). This innovative method in the assessment of gut-derived indoxyl sulfate could represent a valid tool for clinicians to monitor CKD progression and dialysis efficacy.
Collapse
Affiliation(s)
- Gianvito Caggiano
- Nephrology, Dialysis and Transplantation Unit, Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), University of Bari “Aldo Moro”, 70122 Bari, Italy
| | - Loredana Amodio
- Biofordrug S.R.L., University of Bari Spin-Off, 70019 Triggiano, Italy
| | - Alessandra Stasi
- Nephrology, Dialysis and Transplantation Unit, Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), University of Bari “Aldo Moro”, 70122 Bari, Italy
| | - Nicola Antonio Colabufo
- Biofordrug S.R.L., University of Bari Spin-Off, 70019 Triggiano, Italy
- Department of Pharmacy-Drug Sciences, University of Bari “Aldo Moro”, 70122 Bari, Italy
| | | | - Francesco Pesce
- Nephrology, Dialysis and Transplantation Unit, Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), University of Bari “Aldo Moro”, 70122 Bari, Italy
| | - Loreto Gesualdo
- Nephrology, Dialysis and Transplantation Unit, Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), University of Bari “Aldo Moro”, 70122 Bari, Italy
| |
Collapse
|
6
|
Caggiano G, Stasi A, Franzin R, Fiorentino M, Cimmarusti MT, Deleonardis A, Palieri R, Pontrelli P, Gesualdo L. Fecal Microbiota Transplantation in Reducing Uremic Toxins Accumulation in Kidney Disease: Current Understanding and Future Perspectives. Toxins (Basel) 2023; 15:toxins15020115. [PMID: 36828429 PMCID: PMC9965504 DOI: 10.3390/toxins15020115] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/21/2023] [Accepted: 01/27/2023] [Indexed: 02/04/2023] Open
Abstract
During the past decades, the gut microbiome emerged as a key player in kidney disease. Dysbiosis-related uremic toxins together with pro-inflammatory mediators are the main factors in a deteriorating kidney function. The toxicity of uremic compounds has been well-documented in a plethora of pathophysiological mechanisms in kidney disease, such as cardiovascular injury (CVI), metabolic dysfunction, and inflammation. Accumulating data on the detrimental effect of uremic solutes in kidney disease supported the development of many strategies to restore eubiosis. Fecal microbiota transplantation (FMT) spread as an encouraging treatment for different dysbiosis-associated disorders. In this scenario, flourishing studies indicate that fecal transplantation could represent a novel treatment to reduce the uremic toxins accumulation. Here, we present the state-of-the-art concerning the application of FMT on kidney disease to restore eubiosis and reverse the retention of uremic toxins.
Collapse
|
7
|
Shi Y, Tian H, Wang Y, Shen Y, Zhu Q, Ding F. Improved Dialysis Removal of Protein-Bound Uraemic Toxins with a Combined Displacement and Adsorption Technique. Blood Purif 2021; 51:548-558. [PMID: 34515053 DOI: 10.1159/000518065] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 06/04/2021] [Indexed: 11/19/2022]
Abstract
INTRODUCTION Protein-bound uraemic toxins (PBUTs) are poorly removed by conventional dialytic techniques, given their high plasma protein binding, and thus low, free (dialysable) plasma concentration. Here, we evaluated and compared PBUTs removal among conventional haemodialysis (HD), adsorption-based HD, displacement-based HD, and their 2 combinations both in vitro and in vivo. METHODS The removal of PBUTs, including 3-carboxy-4-methyl-5-propyl-2-furan-propanoic acid (CMPF), p-cresyl sulphate (PCS), indoxyl sulphate (IS), indole-3-acetic acid (3-IAA), and hippuric acid, was first evaluated in an in vitro single-pass HD model. Adsorption consisted of adding 40 g/L bovine serum albumin (Alb) to the dialysate and displacement involved infusing fatty acid (FA) mixtures predialyser. Then, uraemic rats were treated with either conventional HD, Alb-based HD, lipid emulsion infusion-based HD or their combination to calculate the reduction ratio (RR), and the total solute removal (TSR) of solutes after 4 h of therapy. RESULTS In vitro dialysis revealed that FAs infusion prefilter increased the removal of PCS, IS, and 3-IAA 3.23-fold, 3.01-fold, and 2.24-fold, respectively, compared with baseline and increased the fractional removal of CMPF from undetectable at baseline to 14.33 ± 0.24%, with a dialysis efficacy markedly superior to Alb dialysis. In vivo dialysis showed that ω-6 soybean oil-based lipid emulsion administration resulted in higher RRs and more TSRs for PCS, IS, and 3-IAA after 4-h HD than the control, and the corresponding TSR values for PCS and IS were also significantly increased compared to that of Alb dialysis. Finally, the highest dialysis efficacy for highly bound solute removal was always observed with their combination both in vitro and in vivo. CONCLUSIONS The concept of combined displacement- and adsorption-based dialysis may open up new avenues and possibilities in the field of dialysis to further enhance PBUTs removal in end-stage renal disease.
Collapse
Affiliation(s)
- Yuanyuan Shi
- Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China, .,Department of Nephrology, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China,
| | - Huajun Tian
- Department of Nephrology, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Yifeng Wang
- Department of Nephrology, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Yue Shen
- Department of Nephrology, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Qiuyu Zhu
- Department of Nephrology, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Feng Ding
- Department of Nephrology, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| |
Collapse
|
8
|
Yamamoto S, Fuller DS, Komaba H, Nomura T, Massy ZA, Bieber B, Robinson B, Pisoni R, Fukagawa M. Serum total indoxyl sulfate and clinical outcomes in hemodialysis patients: results from the Japan Dialysis Outcomes and Practice Patterns Study. Clin Kidney J 2021; 14:1236-1243. [PMID: 33841868 PMCID: PMC8023193 DOI: 10.1093/ckj/sfaa121] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Accepted: 05/27/2020] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND Uremic toxins are associated with various chronic kidney disease-related comorbidities. Indoxyl sulfate (IS), a protein-bound uremic toxin, reacts with vasculature, accelerating atherosclerosis and/or vascular calcification in animal models. Few studies have examined the relationship of IS with clinical outcomes in a large cohort of hemodialysis (HD) patients. METHODS We included 1170 HD patients from the Japan Dialysis Outcomes and Practice Patterns Study Phase 5 (2012-15). We evaluated the associations of serum total IS (tIS) levels with all-cause mortality and clinical outcomes including cardiovascular (CV)-, infectious- and malignancy-caused events using Cox regressions. RESULTS The median (interquartile range) serum tIS level at baseline was 31.6 μg/mL (22.6-42.0). Serum tIS level was positively associated with dialysis vintage. Median follow-up was 2.8 years (range: 0.01-2.9). We observed 174 deaths (14.9%; crude rate, 0.06/year). Serum tIS level was positively associated with all-cause mortality [adjusted hazard ratio per 10 μg/mL higher, 1.16; 95% confidence interval (CI) 1.04-1.28]. Association with cause-specific death or hospitalization events, per 10 μg/mL higher serum tIS level, was 1.18 (95% CI 1.04-1.34) for infectious events, 1.08 (95% CI 0.97-1.20) for CV events and 1.02 (95% CI 0.87-1.21) for malignancy events after adjusting for covariates including several nutritional markers. CONCLUSIONS In a large cohort study of HD patients, serum tIS level was positively associated with all-cause mortality and infectious events.
Collapse
Affiliation(s)
- Suguru Yamamoto
- Division of Clinical Nephrology and Rheumatology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | | | - Hirotaka Komaba
- Division of Nephrology, Endocrinology and Metabolism, Tokai University School of Medicine, Isehara, Japan
| | | | - Ziad A Massy
- Division of Nephrology, Ambroise Paré University Medical Center, APHP, Boulogne Billancourt, Paris, France
- INSERM U1018, Team 5, Centre de Recherche en Épidémiologie et Santé des Populations, Paris-Saclay University and Paris Ouest-Versailles-Saint-Quentin-en-Yvelines University, Villejuif, France
| | - Brian Bieber
- Arbor Research Collaborative for Health, Ann Arbor, MI, USA
| | - Bruce Robinson
- Arbor Research Collaborative for Health, Ann Arbor, MI, USA
| | - Ronald Pisoni
- Arbor Research Collaborative for Health, Ann Arbor, MI, USA
| | - Masafumi Fukagawa
- Division of Nephrology, Endocrinology and Metabolism, Tokai University School of Medicine, Isehara, Japan
| |
Collapse
|
9
|
Magnani S, Atti M. Uremic Toxins and Blood Purification: A Review of Current Evidence and Future Perspectives. Toxins (Basel) 2021; 13:toxins13040246. [PMID: 33808345 PMCID: PMC8066023 DOI: 10.3390/toxins13040246] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 03/25/2021] [Accepted: 03/26/2021] [Indexed: 12/15/2022] Open
Abstract
Accumulation of uremic toxins represents one of the major contributors to the rapid progression of chronic kidney disease (CKD), especially in patients with end-stage renal disease that are undergoing dialysis treatment. In particular, protein-bound uremic toxins (PBUTs) seem to have an important key pathophysiologic role in CKD, inducing various cardiovascular complications. The removal of uremic toxins from the blood with dialytic techniques represents a proved approach to limit the CKD-related complications. However, conventional dialysis mainly focuses on the removal of water-soluble compounds of low and middle molecular weight, whereas PBTUs are strongly protein-bound, thus not efficiently eliminated. Therefore, over the years, dialysis techniques have been adapted by improving membranes structures or using combined strategies to maximize PBTUs removal and eventually prevent CKD-related complications. Recent findings showed that adsorption-based extracorporeal techniques, in addition to conventional dialysis treatment, may effectively adsorb a significant amount of PBTUs during the course of the sessions. This review is focused on the analysis of the current state of the art for blood purification strategies in order to highlight their potentialities and limits and identify the most feasible solution to improve toxins removal effectiveness, exploring possible future strategies and applications, such as the study of a synergic approach by reducing PBTUs production and increasing their blood clearance.
Collapse
|
10
|
Renal Replacement Modality Affects Uremic Toxins and Oxidative Stress. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021. [DOI: 10.1155/2021/6622179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Nowadays, the high prevalence of kidney diseases and their related complications, including endothelial dysfunction and cardiovascular disease, represents one of the leading causes of death in patients with chronic kidney diseases. Renal failure leads to accumulation of uremic toxins, which are the main cause of oxidative stress development. The renal replacement therapy appears to be the best way to lower uremic toxin levels in patients with end-stage renal disease and reduce oxidative stress. At this moment, despite the increasing number of recognized toxins and their mechanisms of action, it is impossible to determine which of them are the most important and which cause the greatest complications. There are many different types of renal replacement therapy, but the best treatment has not been identified yet. Patients treated with diffusion methods have satisfactory clearance of small molecules, but the clearance of medium molecules appears to be insufficient, but treatment with convection methods cleans medium molecules better than small molecules. Hence, there is an urgent need of new more validated, appropriate, and reliable information not only on toxins and their role in metabolic disorders, including oxidative stress, but also on the best artificial renal replacement therapy to reduce complications and prolong the life of patients with chronic kidney disease.
Collapse
|
11
|
Can curcumin supplementation reduce plasma levels of gut-derived uremic toxins in hemodialysis patients? A pilot randomized, double-blind, controlled study. Int Urol Nephrol 2021; 53:1231-1238. [PMID: 33438085 DOI: 10.1007/s11255-020-02760-z] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 12/15/2020] [Indexed: 02/07/2023]
Abstract
BACKGROUND Gut dysbiosis is common in patients with chronic kidney disease (CKD) and is closely related to inflammatory processes. Some nutritional strategies, such as bioactive compounds present in curcumin, have been proposed as an option to modulate the gut microbiota and decrease the production of uremic toxins such as indoxyl sulfate (IS), p-cresyl sulfate (pCS) and indole-3 acetic acid (IAA). OBJECTIVE To evaluate the effects of curcumin supplementation on uremic toxins plasma levels produced by gut microbiota in patients with CKD on hemodialysis (HD). METHODS Randomized, double-blind trial in 28 patients [53.6 ± 13.4 years, fourteen men, BMI 26.7 ± 3.7 kg/m2, dialysis vintage 37.5 (12-193) months]. Fourteen patients were randomly allocated to the curcumin group and received 100 mL of orange juice with 12 g carrot and 2.5 g of turmeric and 14 patients to the control group who received the same juice but without turmeric three times per week after HD sessions for three months. IS, pCS, IAA plasma levels were measured by reverse-phase high-performance liquid chromatography RESULTS: After three months of supplementation, the curcumin group showed a significant decrease in pCS plasma levels [from 32.4 (22.1-45.9) to 25.2 (17.9-37.9) mg/L, p = 0.009], which did not occur in the control group. No statistical difference was observed in IS and IAA levels in both groups. CONCLUSION The oral supplementation of curcumin for three months seems to reduce p-CS plasma levels in HD patients, suggesting a gut microbiota modulation.
Collapse
|
12
|
|
13
|
Fuhrmann V, Weber T, Roedl K, Motaabbed J, Tariparast A, Jarczak D, de Garibay APR, Kluwe J, Boenisch O, Herkner H, Kellum JA, Kluge S. Advanced organ support (ADVOS) in the critically ill: first clinical experience in patients with multiple organ failure. Ann Intensive Care 2020; 10:96. [PMID: 32676849 PMCID: PMC7364697 DOI: 10.1186/s13613-020-00714-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Accepted: 07/08/2020] [Indexed: 02/07/2023] Open
Abstract
Background Prevalence of multiple organ failure (MOF) in critically ill patients is increasing and associated mortality remains high. Extracorporeal organ support is a cornerstone in the management of MOF. We report data of an advanced hemodialysis system based on albumin dialysis (ADVOS multi device) that can regulate acid–base balance in addition to the established properties of renal replacement therapy and albumin dialysis systems in critically ill patients with MOF. Methods 34 critically ill patients with MOF received 102 ADVOS treatment sessions in the Department of Intensive Care Medicine of the University Medical Center Hamburg-Eppendorf. Markers of metabolic detoxification and acid–base regulation were collected and blood gas analyses were performed. A subgroup analyses were performed in patients with severe acidemia (pH < 7.2). Results Median number of treatment sessions was 2 (range 1–9) per patient. Median duration of treatment was 17.5 (IQR 11–23) hours per session. Treatment with the ADVOS multi-albumin dialysis device caused a significant decrease in bilirubin levels, serum creatinine, BUN and ammonia levels. The relative elimination rate of bilirubin was concentration dependent. Furthermore, a significant improvement in blood pH, HCO3− and PaCO2, was achieved during ADVOS treatment including six patients that suffered from severe metabolic acidosis refractory to continuous renal replacement therapy. Delta pH, HCO3− and PaCO2 were significantly affected by the ADVOS blood flow rate and pH settings. This improvement in the clinical course during ADVOS treatments allowed a reduction in norepinephrine during ADVOS therapy. Treatments were well tolerated. Mortality rates were 50% and 62% for 28 and 90 days, respectively. Conclusions In this case series in patients with MOF, ADVOS was able to eliminate water-soluble and albumin-bound substances. Furthermore, the device corrected severe metabolic and respiratory acid–base disequilibrium. No major adverse events associated with the ADVOS treatments were observed.
Collapse
Affiliation(s)
- Valentin Fuhrmann
- Department of Intensive Care Medicine, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246, Hamburg, Germany. .,Department of Medicine B, University Münster, Münster, Germany.
| | - Theresa Weber
- Department of Intensive Care Medicine, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246, Hamburg, Germany
| | - Kevin Roedl
- Department of Intensive Care Medicine, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246, Hamburg, Germany
| | | | - Adel Tariparast
- Department of Intensive Care Medicine, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246, Hamburg, Germany
| | - Dominik Jarczak
- Department of Intensive Care Medicine, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246, Hamburg, Germany
| | - Aritz Perez Ruiz de Garibay
- University of Strasbourg, CNRS, Immunopathology and Therapeutic Chemistry, UPR 3572, 67000, Strasbourg, France
| | - Johannes Kluwe
- Department of Internal Medicine 1, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Olaf Boenisch
- Department of Intensive Care Medicine, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246, Hamburg, Germany
| | - Harald Herkner
- Department of Emergency Medicine, Medical University Vienna, Vienna, Austria
| | - John A Kellum
- Department of Critical Care Medicine, Center for Critical Care Nephrology, University of Pittsburgh Medical Center, Pittsburgh, USA
| | - Stefan Kluge
- Department of Intensive Care Medicine, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246, Hamburg, Germany
| |
Collapse
|
14
|
Gupta N, Buffa JA, Roberts AB, Sangwan N, Skye SM, Li L, Ho KJ, Varga J, DiDonato JA, Tang WHW, Hazen SL. Targeted Inhibition of Gut Microbial Trimethylamine N-Oxide Production Reduces Renal Tubulointerstitial Fibrosis and Functional Impairment in a Murine Model of Chronic Kidney Disease. Arterioscler Thromb Vasc Biol 2020; 40:1239-1255. [PMID: 32212854 DOI: 10.1161/atvbaha.120.314139] [Citation(s) in RCA: 89] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
OBJECTIVE Gut microbial metabolism of dietary choline, a nutrient abundant in a Western diet, produces trimethylamine (TMA) and the atherothrombosis- and fibrosis-promoting metabolite TMA-N-oxide (TMAO). Recent clinical and animal studies reveal that elevated TMAO levels are associated with heightened risks for both cardiovascular disease and incident chronic kidney disease development. Despite this, studies focusing on therapeutically targeting gut microbiota-dependent TMAO production and its impact on preserving renal function are limited. Approach and Results: Herein we examined the impact of pharmacological inhibition of choline diet-induced gut microbiota-dependent production of TMA, and consequently TMAO, on renal tubulointerstitial fibrosis and functional impairment in a model of chronic kidney disease. Initial studies with a gut microbial choline TMA-lyase mechanism-based inhibitor, iodomethylcholine, confirmed both marked suppression of TMA generation, and consequently TMAO levels, and selective targeting of the gut microbial compartment (ie, both accumulation of the drug in intestinal microbes and limited systemic exposure in the host). Dietary supplementation of either choline or TMAO significantly augmented multiple indices of renal functional impairment and fibrosis associated with chronic subcutaneous infusion of isoproterenol. However, the presence of the gut microbiota-targeting inhibitor iodomethylcholine blocked choline diet-induced elevation in TMAO, and both significantly improved decline in renal function, and significantly attenuated multiple indices of tubulointerstitial fibrosis. Iodomethylcholine treatment also reversed many choline diet-induced changes in cecal microbial community composition associated with TMAO and renal functional impairment. CONCLUSIONS Selective targeting of gut microbiota-dependent TMAO generation may prevent adverse renal structural and functional alterations in subjects at risk for chronic kidney disease.
Collapse
Affiliation(s)
- Nilaksh Gupta
- From the Department of Cardiovascular & Metabolic Sciences, Lerner Research Institute (N.G., J.A.B., A.B.R., N.S., S.M.S., L.L., J.A.D., W.H.W.T., S.L.H.), Cleveland Clinic, OH.,Center for Microbiome & Human Health (N.G., J.A.B., A.B.R., N.S., S.M.S., L.L., J.A.D., W.H.W.T., S.L.H.), Cleveland Clinic, OH
| | - Jennifer A Buffa
- From the Department of Cardiovascular & Metabolic Sciences, Lerner Research Institute (N.G., J.A.B., A.B.R., N.S., S.M.S., L.L., J.A.D., W.H.W.T., S.L.H.), Cleveland Clinic, OH.,Center for Microbiome & Human Health (N.G., J.A.B., A.B.R., N.S., S.M.S., L.L., J.A.D., W.H.W.T., S.L.H.), Cleveland Clinic, OH
| | - Adam B Roberts
- From the Department of Cardiovascular & Metabolic Sciences, Lerner Research Institute (N.G., J.A.B., A.B.R., N.S., S.M.S., L.L., J.A.D., W.H.W.T., S.L.H.), Cleveland Clinic, OH.,Center for Microbiome & Human Health (N.G., J.A.B., A.B.R., N.S., S.M.S., L.L., J.A.D., W.H.W.T., S.L.H.), Cleveland Clinic, OH
| | - Naseer Sangwan
- From the Department of Cardiovascular & Metabolic Sciences, Lerner Research Institute (N.G., J.A.B., A.B.R., N.S., S.M.S., L.L., J.A.D., W.H.W.T., S.L.H.), Cleveland Clinic, OH.,Center for Microbiome & Human Health (N.G., J.A.B., A.B.R., N.S., S.M.S., L.L., J.A.D., W.H.W.T., S.L.H.), Cleveland Clinic, OH
| | - Sarah M Skye
- From the Department of Cardiovascular & Metabolic Sciences, Lerner Research Institute (N.G., J.A.B., A.B.R., N.S., S.M.S., L.L., J.A.D., W.H.W.T., S.L.H.), Cleveland Clinic, OH.,Center for Microbiome & Human Health (N.G., J.A.B., A.B.R., N.S., S.M.S., L.L., J.A.D., W.H.W.T., S.L.H.), Cleveland Clinic, OH
| | - Lin Li
- From the Department of Cardiovascular & Metabolic Sciences, Lerner Research Institute (N.G., J.A.B., A.B.R., N.S., S.M.S., L.L., J.A.D., W.H.W.T., S.L.H.), Cleveland Clinic, OH.,Center for Microbiome & Human Health (N.G., J.A.B., A.B.R., N.S., S.M.S., L.L., J.A.D., W.H.W.T., S.L.H.), Cleveland Clinic, OH
| | - Karen J Ho
- Division of Vascular Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL (K.J.H)
| | - John Varga
- Division of Rheumatology, Northwestern University, Chicago, IL (J.V.)
| | - Joseph A DiDonato
- From the Department of Cardiovascular & Metabolic Sciences, Lerner Research Institute (N.G., J.A.B., A.B.R., N.S., S.M.S., L.L., J.A.D., W.H.W.T., S.L.H.), Cleveland Clinic, OH.,Center for Microbiome & Human Health (N.G., J.A.B., A.B.R., N.S., S.M.S., L.L., J.A.D., W.H.W.T., S.L.H.), Cleveland Clinic, OH
| | - W H Wilson Tang
- From the Department of Cardiovascular & Metabolic Sciences, Lerner Research Institute (N.G., J.A.B., A.B.R., N.S., S.M.S., L.L., J.A.D., W.H.W.T., S.L.H.), Cleveland Clinic, OH.,Center for Microbiome & Human Health (N.G., J.A.B., A.B.R., N.S., S.M.S., L.L., J.A.D., W.H.W.T., S.L.H.), Cleveland Clinic, OH.,Department of Cardiovascular Medicine, Heart and Vascular Institute (W.H.W.T., S.L.H.), Cleveland Clinic, OH
| | - Stanley L Hazen
- From the Department of Cardiovascular & Metabolic Sciences, Lerner Research Institute (N.G., J.A.B., A.B.R., N.S., S.M.S., L.L., J.A.D., W.H.W.T., S.L.H.), Cleveland Clinic, OH.,Center for Microbiome & Human Health (N.G., J.A.B., A.B.R., N.S., S.M.S., L.L., J.A.D., W.H.W.T., S.L.H.), Cleveland Clinic, OH.,Department of Cardiovascular Medicine, Heart and Vascular Institute (W.H.W.T., S.L.H.), Cleveland Clinic, OH
| |
Collapse
|
15
|
Efficacy of Divinylbenzenic Resin in Removing Indoxyl Sulfate and P-Cresol Sulfate in Hemodialysis Patients: Results From an In Vitro Study and An In Vivo Pilot Trial (xuanro4-Nature 3.2). Toxins (Basel) 2020; 12:toxins12030170. [PMID: 32164382 PMCID: PMC7150912 DOI: 10.3390/toxins12030170] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 02/25/2020] [Accepted: 03/05/2020] [Indexed: 12/13/2022] Open
Abstract
High serum levels of microbiota-derived uremic toxins, indoxyl sulfate (IS) and p-cresyl sulfate (PCS), are associated with chronic kidney disease (CKD) progression and cardiovascular complications. IS and PCS cannot be efficiently removed by conventional hemodialysis (HD), due to their high binding affinity for albumin. This study evaluates the efficacy of a divinylbenzene-polyvinylpyrrolidone (DVB-PVP) cartridge and a synbiotic to reduce uremic toxins in HD patients. First, the in vitro efficacy of DVB-PVP in adsorbing IS and PCS was evaluated. Second, a randomized, placebo-controlled pilot study in HD patients was carried out to establish whether the administration of a synbiotic, either individually and in association with DVB-PVP-HD, could reduce the production of uremic toxins. In vitro data showed that DVB-PVP resin removed a mean of 56% PCS and around 54% IS, after 6 h of perfusion. While, in the in vivo study, the DVB-PVP cartridge showed its adsorbing efficacy only for IS plasma levels. The combination of synbiotic treatment with DVB-PVP HD decreased IS and PCS both at pre- and post-dialysis levels. In conclusion, this study provides the first line of evidence on the synergistic action of gut microbiota modulation and an innovative absorption-based approach in HD patients, aimed at reducing plasma levels of IS and PCS.
Collapse
|
16
|
Kim TH, Kim SH, Kim TY, Park HY, Jung KS, Lee MH, Jhee JH, Lee JE, Choi HY, Park HC. Removal of large middle molecules via haemodialysis with medium cut-off membranes at lower blood flow rates: an observational prospective study. BMC Nephrol 2019; 21:2. [PMID: 31892319 PMCID: PMC6937993 DOI: 10.1186/s12882-019-1669-3] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2019] [Accepted: 12/20/2019] [Indexed: 12/21/2022] Open
Abstract
Background Online haemodiafiltration (OL-HDF) may improve middle molecular clearance in contrast to conventional haemodialysis (HD). However, OL-HDF requires higher convective flows and cannot sufficiently remove large middle molecules. This study evaluated the efficacy of a medium cut-off (MCO) dialyser in removing large middle molecular uraemic toxins and compared it with that of conventional high-flux (HF) dialysers in HD and predilution OL-HDF. Methods Six clinically stable HD patients without residual renal function were investigated. Dialyser and treatment efficacies were examined during a single midweek treatment in three consecutive periods: 1) conventional HD using an HF dialyser, 2) OL-HDF using the same HF dialyser, and 3) conventional HD using an MCO dialyser. Treatment efficacy was assessed by calculating the reduction ratio (RR) for β2-microglobulin (β2M), myoglobin, κ and λ free light chains (FLCs), and fibroblast growth factor (FGF)-23 and measuring clearance for FLCs. Results All three treatments showed comparable RRs for urea, phosphate, creatinine, and uric acid. MCO HD showed greater RRs for myoglobin and λFLC than did HF HD and predilution OL-HDF (myoglobin: 63.1 ± 5.3% vs. 43.5 ± 8.9% and 49.8 ± 7.3%; λFLC: 43.2 ± 5.6% vs. 26.8 ± 4.4% and 33.0 ± 9.2%, respectively; P < 0.001). Conversely, predilution OL-HDF showed the greatest RR for β2M, whereas MCO HD and HF HD showed comparable RRs for β2M (predilution OL-HDF vs. MCO HD: 80.1 ± 4.9% vs. 72.6 ± 3.8%, P = 0.01). There was no significant difference among MCO HD, HF HD, and predilution OL-HDF in the RRs for κFLC (63.2 ± 6.0%, 53.6 ± 15.5%, and 61.5 ± 7.0%, respectively; P = 0.37), and FGF-23 (55.5 ± 20.3%, 34.6 ± 13.1%, and 35.8 ± 23.2%, respectively; P = 0.13). Notably, MCO HD showed improved clearances for FLCs when compared to HF HD or OL-HDF. Conclusions MCO HD showed significantly greater RR of large middle molecules and achieved improved clearance for FLCs than conventional HD and OL-HDF, without the need for large convection volumes or high blood flow rates. This would pose as an advantage for elderly HD patients with poor vascular access and HD patients without access to OL-HDF. Trial registration Clinical Research Information Service (CRIS): KCT 0003009. The trial was prospectively registered on the 21 Jul 2018.
Collapse
Affiliation(s)
- Tae Hoon Kim
- Department of Internal Medicine, Yongin Severance Hospital, Yonsei University College of Medicine, Yongin-si, Gyeonggi-do, 17046, Republic of Korea
| | - Seok-Hyung Kim
- Department of Internal Medicine, Chuncheon Sacred Heart Hospital, Hallym University College of Medicine, Chuncheon-si, Gangwon-do, 24253, Republic of Korea
| | - Tae Yeon Kim
- Department of Internal Medicine, Gangnam Severance Hospital, Yonsei University College of Medicine, 211 Eonju-ro, Gangnam-gu, Seoul, 06273, Republic of Korea
| | - Hae Yeul Park
- Department of Internal Medicine, Gangnam Severance Hospital, Yonsei University College of Medicine, 211 Eonju-ro, Gangnam-gu, Seoul, 06273, Republic of Korea
| | - Kwon Soo Jung
- Department of Internal Medicine, Gangnam Severance Hospital, Yonsei University College of Medicine, 211 Eonju-ro, Gangnam-gu, Seoul, 06273, Republic of Korea
| | - Moon Hyoung Lee
- Department of Internal Medicine, Gangnam Severance Hospital, Yonsei University College of Medicine, 211 Eonju-ro, Gangnam-gu, Seoul, 06273, Republic of Korea
| | - Jong Hyun Jhee
- Department of Internal Medicine, Gangnam Severance Hospital, Yonsei University College of Medicine, 211 Eonju-ro, Gangnam-gu, Seoul, 06273, Republic of Korea
| | - Jung Eun Lee
- Department of Internal Medicine, Yongin Severance Hospital, Yonsei University College of Medicine, Yongin-si, Gyeonggi-do, 17046, Republic of Korea
| | - Hoon Young Choi
- Department of Internal Medicine, Gangnam Severance Hospital, Yonsei University College of Medicine, 211 Eonju-ro, Gangnam-gu, Seoul, 06273, Republic of Korea.,Severance Institute for Vascular and Metabolic Research, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
| | - Hyeong Cheon Park
- Department of Internal Medicine, Gangnam Severance Hospital, Yonsei University College of Medicine, 211 Eonju-ro, Gangnam-gu, Seoul, 06273, Republic of Korea. .,Severance Institute for Vascular and Metabolic Research, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea.
| |
Collapse
|
17
|
Overexposure to Bisphenol A and Its Chlorinated Derivatives of Patients with End-Stage Renal Disease during Online Hemodiafiltration. Biomolecules 2019; 9:biom9090403. [PMID: 31443526 PMCID: PMC6770677 DOI: 10.3390/biom9090403] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 08/14/2019] [Accepted: 08/16/2019] [Indexed: 01/10/2023] Open
Abstract
The health safety conditions governing the practice of online hemodiafiltration (OL-HDF) do not yet incorporate the risks related to the presence of endocrine disruptors such as bisphenol A (BPA). The aim of this study was to assess, for the first time, the exposure to BPA but also to its chlorinated derivatives (ClxBPA) (100 times more estrogenic than BPA) during OL-HDF. We demonstrated that BPA is transmitted by the different medical devices used in OL-HDF: ultrafilters, dialysis concentrate cartridges (and not only dialyzers, as previously described). Moreover, BPA has been found in dialysis water as well as in ultrapure dialysate and replacement fluid due to contamination of water coming from municipal network. Indeed, due to contaminations provided by both ultrafilters and water, high levels of BPA were determined in the infused replacement fluid (1033 ng.L−1) from the beginning of the session. Thus, our results demonstrate that dialysis water must be considered as an important exposure source to endocrine disruptors, especially since other micropollutants such as ClxBPA have also been detected in dialysis fluids. While assessment of the impact of this exposure remains to be done, these new findings should be taken into account to assess exposure risks in end-stage renal disease patients.
Collapse
|
18
|
Madero M, Cano KB, Campos I, Tao X, Maheshwari V, Brown J, Cornejo B, Handelman G, Thijssen S, Kotanko P. Removal of Protein-Bound Uremic Toxins during Hemodialysis Using a Binding Competitor. Clin J Am Soc Nephrol 2019; 14:394-402. [PMID: 30755453 PMCID: PMC6419294 DOI: 10.2215/cjn.05240418] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Accepted: 01/03/2019] [Indexed: 12/21/2022]
Abstract
BACKGROUND AND OBJECTIVES Current hemodialysis techniques fail to efficiently remove the protein-bound uremic toxins p-cresyl sulfate and indoxyl sulfate due to their high degree of albumin binding. Ibuprofen, which shares the same primary albumin binding site with p-cresyl sulfate and indoxyl sulfate, can be infused during hemodialysis to displace these toxins, thereby augmenting their removal. DESIGN, SETTING, PARTICIPANTS, & MEASUREMENTS We infused 800 mg ibuprofen into the arterial bloodline between minutes 21 and 40 of a conventional 4-hour high-flux hemodialysis treatment. We measured arterial, venous, and dialysate outlet concentrations of indoxyl sulfate, p-cresyl sulfate, tryptophan, ibuprofen, urea, and creatinine before, during, and after the ibuprofen infusion. We report clearances of p-cresyl sulfate and indoxyl sulfate before and during ibuprofen infusion and dialysate concentrations of protein-bound uremic toxins normalized to each patient's average preinfusion concentrations. RESULTS We studied 18 patients on maintenance hemodialysis: age 36±11 years old, ten women, and mean vintage of 37±37 months. Compared with during the preinfusion period, the median (interquartile range) clearances of indoxyl sulfate and p-cresyl sulfate increased during ibuprofen infusion from 6.0 (6.5) to 20.2 (27.1) ml/min and from 4.4 (6.7) to 14.9 (27.1) ml/min (each P<0.001), respectively. Relative median (interquartile range) protein-bound uremic toxin dialysate outlet levels increased from preinfusion 1.0 (reference) to 2.4 (1.2) for indoxyl sulfate and to 2.4 (1.0) for p-cresyl sulfate (each P<0.001). Although median serum post- and predialyzer levels in the preinfusion period were similar, infusion led to a marked drop in serum postdialyzer levels for both indoxyl sulfate and p-cresyl sulfate (-1.0 and -0.3 mg/dl, respectively; each P<0.001). The removal of the nonprotein-bound solutes creatinine and urea was not increased by the ibuprofen infusion. CONCLUSIONS Infusion of ibuprofen into the arterial bloodline during hemodialysis significantly increases the dialytic removal of indoxyl sulfate and p-cresyl sulfate and thereby, leads to greater reduction in their serum levels.
Collapse
Affiliation(s)
- Magdalena Madero
- Division of Nephrology, Instituto Nacional de Cardiología Ignacio Chávez, Ciudad de Mexico, Mexico
| | - Karla B. Cano
- Division of Nephrology, Instituto Nacional de Cardiología Ignacio Chávez, Ciudad de Mexico, Mexico
| | - Israel Campos
- Renal Research Institute, Research Division, New York, New York
| | - Xia Tao
- Renal Research Institute, Research Division, New York, New York
| | | | - Jillian Brown
- Biomedical and Nutritional Sciences, University of Massachusetts, Lowell, Massachusetts; and
| | - Beatriz Cornejo
- Division of Nephrology, Instituto Nacional de Cardiología Ignacio Chávez, Ciudad de Mexico, Mexico
| | - Garry Handelman
- Biomedical and Nutritional Sciences, University of Massachusetts, Lowell, Massachusetts; and
| | | | - Peter Kotanko
- Renal Research Institute, Research Division, New York, New York
- Department of Nephrology, Icahn School of Medicine at Mount Sinai, New York, New York
| |
Collapse
|
19
|
Reporting of "dialysis adequacy" as an outcome in randomised trials conducted in adults on haemodialysis. PLoS One 2019; 14:e0207045. [PMID: 30721242 PMCID: PMC6363141 DOI: 10.1371/journal.pone.0207045] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2018] [Accepted: 12/04/2018] [Indexed: 12/16/2022] Open
Abstract
Background Clinical trials are most informative for evidence-based decision-making when they consistently measure and report outcomes of relevance to stakeholders, especially patients, clinicians, and policy makers. However, sometimes terminology used is interpreted differently by different stakeholders, which might lead to confusion during shared decision making. The construct dialysis adequacy is frequently used, suggesting it is an important outcome both for health care professionals as for patients. Objective To assess the scope and consistency of the construct dialysis adequacy as reported in randomised controlled trials in hemodialysis, and evaluate whether these align to the insights and understanding of this construct by patients. Methods To assess scope and consistency of dialysis adequacy by professionals, we performed a systematic review searching the Cochrane Central Register of Controlled Trials (CENTRAL) up to July 2017. We identified all randomised controlled trails (RCT) including patients on hemodialysis and reporting dialysis adequacy, adequacy or adequacy of dialysis and extracted and classified all reported outcomes. To explore interpretation and meaning of the construct of adequacy by patients, we conducted 11 semi-structured interviews with HD patients using thematic analysis. Belgian registration number B670201731001. Findings From the 31 included trials, we extracted and classified 98 outcome measures defined by the authors as adequacy of dialysis, of which 94 (95%) were biochemical, 3 (3%) non-biochemical surrogate and 2 (2%) patient-relevant. The three most commonly reported measures were all biochemical. None of the studies defined adequacy of dialysis as a patient relevant outcome such as survival or quality of life. Patients had a substantially different understanding of the construct dialysis adequacy than the biochemical interpretation reported in the literature. Being alive, time spent while being on dialysis, fatigue and friendliness of staff were the most prominent themes that patients linked to the construct of dialysis adequacy. Conclusion Adequacy of dialysis as reported in the literature refers to biochemical outcome measures, most of which are not related with patient relevant outcomes. For patients, adequate dialysis is a dialysis that enables them to spend as much quality time in their life as possible.
Collapse
|
20
|
Macías N, Vega A, Abad S, Aragoncillo I, García-Prieto AM, Santos A, Torres E, Luño J. Middle molecule elimination in expanded haemodialysis: only convective transport? Clin Kidney J 2018; 12:447-455. [PMID: 31198548 PMCID: PMC6543970 DOI: 10.1093/ckj/sfy097] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Indexed: 12/25/2022] Open
Abstract
Background New high-retention onset dialysers have shown improved efficacy in the elimination of uraemic toxins, and their depurative capacity has been compared with high convective volumes of online haemodiafiltration. Haemodialysis (HD) using high-flux membranes leads to convective transport by internal filtration [direct filtration (DF)/backfiltration (BF)] and allows the removal of middle molecules (MMs). The aim of this study was to assess solute transport mechanisms in expanded HD (HDx). Methods In 14 4-h HDx sessions with Theranova-500 dialysers under similar dialysis conditions (blood flow 400 mL/min, dialysate flow 700 mL/min, dialysate temperature 35.5°C), pressures at the inlet and outlet of both dialyser compartments (P bi, P bo, P di and P do) were collected hourly to estimate DF/BF volumes by semi-empirical methods. Uraemic toxins with various molecular weights were measured pre-dialysis, at 1 h (pre-filter and post-filter) and post-dialysis to calculate molecules' reduction over time and dialyser in vivo clearances. Results Ultrafiltration was 1.47 ± 0.9 L and Kt/V 1.74 ± 0.3. Hydrodynamic data (P bi: 259 ± 39, P bo: 155 ± 27, P di: 271 ± 30, P do: 145 ± 29 mmHg and oncotic pressure 22.0 ± 3.5 mmHg) allowed the estimation of DF/BF rates. DF flow ranged from 29.5 ± 4.2 to 31.3 ± 3.9 mL/min and BF flow ranged from 25.1 ± 2.3 to 23.4 ± 2.6 mL/min. The highest calculated DF volume was 7506.8 ± 935.3 mL/session. Diffusive clearances (K d) of all solutes were higher than their convective transport (all P < 0.001) except for prolactin (23 kDa) clearances, which showed no differences. Total clearances of all solutes were correlated with their K d (ρ = 0.899-0.987, all P < 0.001) and Kt/V correlated with all reduction rates (ρ = 0.661-0.941, P = 0.010 to <0.001). DF flow was only associated with urea (ρ = -0.793, P = 0.001), creatinine (ρ = -0.675, P = 0.008) and myoglobin clearance (ρ = 0.653, P = 0.011). Conclusion Results suggest that diffusive transport is a main mechanism of MM elimination in HDx. HDx offers an efficient depuration of MM without the need for high convective volumes.
Collapse
Affiliation(s)
- Nicolás Macías
- Department of Nephrology, Hospital General Universitario Gregorio Marañón, Madrid, Spain
| | - Almudena Vega
- Department of Nephrology, Hospital General Universitario Gregorio Marañón, Madrid, Spain
| | - Soraya Abad
- Department of Nephrology, Hospital General Universitario Gregorio Marañón, Madrid, Spain
| | - Inés Aragoncillo
- Department of Nephrology, Hospital General Universitario Gregorio Marañón, Madrid, Spain
| | | | - Alba Santos
- Department of Nephrology, Hospital General Universitario Gregorio Marañón, Madrid, Spain
| | - Esther Torres
- Department of Nephrology, Hospital General Universitario Gregorio Marañón, Madrid, Spain
| | - Jose Luño
- Department of Nephrology, Hospital General Universitario Gregorio Marañón, Madrid, Spain
| |
Collapse
|
21
|
Leypoldt JK, Weinhandl ED, Collins AJ. Volume of urea cleared as a therapy dosing guide for more frequent hemodialysis. Hemodial Int 2018; 23:42-49. [PMID: 30255600 DOI: 10.1111/hdi.12692] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Revised: 08/05/2018] [Indexed: 01/29/2023]
Abstract
INTRODUCTION With dialysis delivery systems that operate at low dialysate flow rates, prescriptions for more frequent hemodialysis (HD) employ dialysate volume as the primary parameter for small solute removal rather than blood-side urea dialyzer clearance (K). Such delivery systems, however, yield dialysate concentrations that almost completely saturate with blood (water), suggesting that the volume of urea cleared (the product of K and treatment time or Kt) can be readily estimated from the prescribed dialysate volume to target small solute removal. Methods For more frequent HD, we examined the volume of urea cleared per treatment required to achieve a minimal dose of small solute removal, comparing results based on body surface area (BSA) with those based on KDOQI clinical practice guidelines, that is, a weekly stdKt/V of 2.1. Estimates of the target volume of urea cleared were calculated for 4, 5, and 6 treatments per week, and compared for patients with different anthropometric estimates of total body water volume (Vant ). BSA was assumed proportional to Vant 0.8 , and residual kidney function was neglected. Findings Whether based on BSA or weekly stdKt/V of 2.1, the target volume of urea cleared per treatment required to achieve a minimal dose of small solute removal was lower at higher treatment frequency. As with conventional thrice-weekly HD, target volumes of urea cleared for more frequent HD based on BSA were larger for patients with small Vant and smaller for patients with large Vant than those based on a weekly stdKt/V of 2.1. Discussion Prescription of more frequent HD using the volume of urea cleared per treatment, calculated from the prescribed dialysate volume, is simple in principle and can be readily implemented in clinical practice when using dialysis delivery systems that operate at low dialysate flow rates. Other aspects of dialysis adequacy require additional consideration.
Collapse
Affiliation(s)
| | - Eric D Weinhandl
- NxStage Medical, Lawrence, Massachusetts, USA.,Department of Pharmaceutical Care and Health Systems, University of Minnesota, Minneapolis, Minnesota, USA
| | - Allan J Collins
- NxStage Medical, Lawrence, Massachusetts, USA.,Medical School, University of Minnesota, Minneapolis, Minnesota, USA
| |
Collapse
|
22
|
Indoxyl Sulfate Elimination in Renal Replacement Therapy: Influence of Citrate- versus Acetate-Buffering Component during Bicarbonate Dialysis. DISEASE MARKERS 2018; 2018:3985861. [PMID: 30186534 PMCID: PMC6114072 DOI: 10.1155/2018/3985861] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 07/02/2018] [Accepted: 07/09/2018] [Indexed: 01/20/2023]
Abstract
Indoxyl sulfate has been identified as a major factor in the dysregulation of several genes. It is classified as a poorly dialyzable uremic toxin and thus a leading cause in the poor survival rate of dialysis patients. A monocentric, prospective, open cohort study was performed in 43 male patients undergoing chronic renal replacement therapy in a single hemodialysis center. The aim of the study was to determine the influence of acetate- versus citrate-buffered dialysis fluids in hemodialysis (HD) and postdilution hemodiafiltration (HDF) settings on the elimination of indoxyl sulfate. Also, additional factors potentially influencing the serum concentration of indoxyl sulfate were evaluated. For this purpose, the predialysis and postdialysis concentration ratio of indoxyl sulfate and total protein was determined. The difference was of 1.15 (0.61; 2.10), 0.89 (0.53; 1.66), 0.32 (0.07; 0.63), and 0.44 (0.27; 0.77) μmol/g in acetate HD and HDF and citrate HD and HDF, respectively. Acetate HD and HDF were superior when concerning IS elimination when compared to citrate HD and HDF. Moreover, residual diuresis was determined as the only predictor of lower indoxyl sulfate concentration, suggesting that it should be preserved as long as possible. This trial is registered with EU PAS Register of Studies EUPAS23714.
Collapse
|
23
|
The relationship between dialysis adequacy and the rate of change in uric acid level by hemodialysis. JOURNAL OF SURGERY AND MEDICINE 2018. [DOI: 10.28982/josam.433344] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
24
|
Dou L, Poitevin S, Sallée M, Addi T, Gondouin B, McKay N, Denison MS, Jourde-Chiche N, Duval-Sabatier A, Cerini C, Brunet P, Dignat-George F, Burtey S. Aryl hydrocarbon receptor is activated in patients and mice with chronic kidney disease. Kidney Int 2018; 93:986-999. [PMID: 29395338 DOI: 10.1016/j.kint.2017.11.010] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2016] [Revised: 10/18/2017] [Accepted: 11/09/2017] [Indexed: 11/25/2022]
Abstract
Patients with chronic kidney disease (CKD) are exposed to uremic toxins and have an increased risk of cardiovascular disease. Some uremic toxins, like indoxyl sulfate, are agonists of the transcription factor aryl hydrocarbon receptor (AHR). These toxins induce a vascular procoagulant phenotype. Here we investigated AHR activation in patients with CKD and in a murine model of CKD. We performed a prospective study in 116 patients with CKD stage 3 to 5D and measured the AHR-Activating Potential of serum by bioassay. Compared to sera from healthy controls, sera from CKD patients displayed a strong AHR-Activating Potential; strongly correlated with eGFR and with the indoxyl sulfate concentration. The expression of the AHR target genes Cyp1A1 and AHRR was up-regulated in whole blood from patients with CKD. Survival analyses revealed that cardiovascular events were more frequent in CKD patients with an AHR-Activating Potential above the median. In mice with 5/6 nephrectomy, there was an increased serum AHR-Activating Potential, and an induction of Cyp1a1 mRNA in the aorta and heart, absent in AhR-/- CKD mice. After serial indoxyl sulfate injections, we observed an increase in serum AHR-AP and in expression of Cyp1a1 mRNA in aorta and heart in WT mice, but not in AhR-/- mice. Thus, the AHR pathway is activated both in patients and mice with CKD. Hence, AHR activation could be a key mechanism involved in the deleterious cardiovascular effects observed in CKD.
Collapse
Affiliation(s)
- Laetitia Dou
- Aix-Marseille University, INSERM, UMR-S 1076, VRCM, Marseille, France
| | - Stéphane Poitevin
- Aix-Marseille University, INSERM, UMR-S 1076, VRCM, Marseille, France
| | - Marion Sallée
- Aix-Marseille University, INSERM, UMR-S 1076, VRCM, Marseille, France; Centre de Néphrologie et Transplantation Rénale, AP-HM, Marseille, France
| | - Tawfik Addi
- Aix-Marseille University, INSERM, UMR-S 1076, VRCM, Marseille, France
| | - Bertrand Gondouin
- Centre de Néphrologie et Transplantation Rénale, AP-HM, Marseille, France
| | - Nathalie McKay
- Aix-Marseille University, INSERM, UMR-S 1076, VRCM, Marseille, France
| | - Michael S Denison
- Department of Environmental Toxicology, University of California, Davis, California, USA
| | - Noémie Jourde-Chiche
- Aix-Marseille University, INSERM, UMR-S 1076, VRCM, Marseille, France; Centre de Néphrologie et Transplantation Rénale, AP-HM, Marseille, France
| | - Ariane Duval-Sabatier
- Centre de Néphrologie et Transplantation Rénale, AP-HM, Marseille, France; Association des dialysés Provence-Corse, Marseille, France
| | - Claire Cerini
- Aix-Marseille University, INSERM, UMR-S 1076, VRCM, Marseille, France
| | - Philippe Brunet
- Aix-Marseille University, INSERM, UMR-S 1076, VRCM, Marseille, France; Centre de Néphrologie et Transplantation Rénale, AP-HM, Marseille, France
| | | | - Stéphane Burtey
- Aix-Marseille University, INSERM, UMR-S 1076, VRCM, Marseille, France; Centre de Néphrologie et Transplantation Rénale, AP-HM, Marseille, France.
| |
Collapse
|
25
|
Leypoldt JK, Agar BU, Akonur A, Gellens ME, Culleton BF. Steady State Phosphorus Mass Balance Model during Hemodialysis Based on a Pseudo One-Compartment Kinetic Model. Int J Artif Organs 2018. [DOI: 10.1177/039139881203501102] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Affiliation(s)
- John K. Leypoldt
- Medical Products (Renal), Baxter Healthcare Corporation, McGaw Park, IL - USA
| | - Baris U. Agar
- Medical Products (Renal), Baxter Healthcare Corporation, McGaw Park, IL - USA
| | - Alp Akonur
- Medical Products (Renal), Baxter Healthcare Corporation, McGaw Park, IL - USA
| | - Mary E. Gellens
- Medical Products (Renal), Baxter Healthcare Corporation, McGaw Park, IL - USA
| | - Bruce F. Culleton
- Medical Products (Renal), Baxter Healthcare Corporation, McGaw Park, IL - USA
| |
Collapse
|
26
|
Roumelioti ME, Trietley G, Nolin TD, Ng YH, Xu Z, Alaini A, Figueroa R, Unruh ML, Argyropoulos CP. Beta-2 microglobulin clearance in high-flux dialysis and convective dialysis modalities: a meta-analysis of published studies. Nephrol Dial Transplant 2017; 33:1025-1039. [DOI: 10.1093/ndt/gfx311] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Accepted: 10/04/2017] [Indexed: 01/01/2023] Open
Affiliation(s)
- Maria-Eleni Roumelioti
- Nephrology Division, Department of Medicine, University of New Mexico, Albuquerque, NM, USA
| | - Gregory Trietley
- Department of Pharmacy and Therapeutics, Renal-Electrolyte Division, University of Pittsburgh Schools of Pharmacy and Medicine, Pittsburgh, PA, USA
- Department of Medicine, University of Pittsburgh Schools of Pharmacy and Medicine, Pittsburgh, PA, USA
| | - Thomas D Nolin
- Department of Pharmacy and Therapeutics, Renal-Electrolyte Division, University of Pittsburgh Schools of Pharmacy and Medicine, Pittsburgh, PA, USA
- Department of Medicine, University of Pittsburgh Schools of Pharmacy and Medicine, Pittsburgh, PA, USA
| | - Yue-Harn Ng
- Nephrology Division, Department of Medicine, University of New Mexico, Albuquerque, NM, USA
| | - Zhi Xu
- Nephrology Division, Department of Medicine, University of New Mexico, Albuquerque, NM, USA
| | - Ahmed Alaini
- Nephrology Division, Department of Medicine, University of New Mexico, Albuquerque, NM, USA
| | - Rocio Figueroa
- Nephrology Division, Department of Medicine, University of New Mexico, Albuquerque, NM, USA
| | - Mark L Unruh
- Nephrology Division, Department of Medicine, University of New Mexico, Albuquerque, NM, USA
| | | |
Collapse
|
27
|
Kirsch AH, Lyko R, Nilsson LG, Beck W, Amdahl M, Lechner P, Schneider A, Wanner C, Rosenkranz AR, Krieter DH. Performance of hemodialysis with novel medium cut-off dialyzers. Nephrol Dial Transplant 2017; 32:165-172. [PMID: 27587605 PMCID: PMC5837492 DOI: 10.1093/ndt/gfw310] [Citation(s) in RCA: 92] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2016] [Accepted: 07/15/2016] [Indexed: 11/14/2022] Open
Abstract
Background. Compared to high-flux dialysis membranes, novel medium cut-off (MCO) membranes show greater permeability for larger middle molecules. Methods. In two prospective, open-label, controlled, randomized, crossover pilot studies, 39 prevalent hemodialysis (HD) patients were studied in four dialysis treatments as follows: study 1, three MCO prototype dialyzers (AA, BB and CC with increasing permeability) and one high-flux dialyzer in HD; and study 2, two MCO prototype dialyzers (AA and BB) in HD and high-flux dialyzers in HD and hemodiafiltration (HDF). Primary outcome was lambda free light chain (λFLC) overall clearance. Secondary outcomes included overall clearances and pre-to-post-reduction ratios of middle and small molecules, and safety of MCO HD treatments. Results. MCO HD provided greater λFLC overall clearance [least square mean (standard error)] as follows: study 1: MCO AA 8.5 (0.54), MCO BB 11.3 (0.51), MCO CC 15.0 (0.53) versus high-flux HD 3.6 (0.51) mL/min; study 2: MCO AA 10.0 (0.58), MCO BB 12.5 (0.57) versus high-flux HD 4.4 (0.57) and HDF 6.2 (0.58) mL/min. Differences between MCO and high-flux dialyzers were consistently significant in mixed model analysis (each P < 0.001). Reduction ratios of λFLC were greater for MCO. Clearances of α1-microglobulin, complement factor D, kappa FLC (κFLC) and myoglobin were generally greater with MCO than with high-flux HD and similar to or greater than clearances with HDF. Albumin loss was moderate with MCO, but greater than with high-flux HD and HDF. Conclusions. MCO HD removes a wide range of middle molecules more effectively than high-flux HD and even exceeds the performance of high-volume HDF for large solutes, particularly λFLC.
Collapse
Affiliation(s)
- Alexander H Kirsch
- Clinical Division of Nephrology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | - Raphael Lyko
- Division of Nephrology, Department of Medicine, University Hospital, Würzburg, Germany
| | | | - Werner Beck
- Gambro Dialysatoren GmbH, Baxter Renal Therapeutic Area, Hechingen, Germany
| | - Michael Amdahl
- Baxter Healthcare Corporation, Life Science & Operations, Round Lake, IL, USA
| | - Petra Lechner
- Department of Internal Medicine, LKH Hochsteiermark, Bruck, Austria
| | - Andreas Schneider
- Division of Nephrology, Department of Medicine, University Hospital, Würzburg, Germany
| | - Christoph Wanner
- Division of Nephrology, Department of Medicine, University Hospital, Würzburg, Germany
| | - Alexander R Rosenkranz
- Clinical Division of Nephrology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | - Detlef H Krieter
- Division of Nephrology, Department of Medicine, University Hospital, Würzburg, Germany
| |
Collapse
|
28
|
Tangvoraphonkchai K, Davenport A. Increasing Haemodialytic Clearances as Residual Renal Function Declines: An Incremental Approach. Blood Purif 2017; 44:217-226. [DOI: 10.1159/000475458] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Accepted: 04/02/2017] [Indexed: 11/19/2022]
Abstract
Many patients with chronic kidney disease start undergoing thrice-weekly haemodialysis (HD), aiming for an HD sessional dialyzer urea clearance target, irrespective of whether they have residual renal function (RRF). While increasing sessional dialyzer urea clearance above a target of 1.2 has not been shown to improve patient survival, it has been shown that the preservation of RRF improves patient self-reported outcomes and survival. Observational studies have suggested that initiating twice-weekly HD schedules leads to greater preservation of RRF. This has led to the concept of following an incremental approach to initiating HD, steadily increasing the amount of weekly dialyzer clearance as RRF decreases. Incremental dialysis practice requires the regular assessment of RRF to prevent inadequate delivery of dialysis treatment. Once RRF is lost, then the dialysis schedule and modality need to be adjusted to try to increase the middle-sized solute clearance and protein-bound toxins.
Collapse
|
29
|
Yamamoto S, Sato M, Sato Y, Wakamatsu T, Takahashi Y, Iguchi A, Omori K, Suzuki Y, Ei I, Kaneko Y, Goto S, Kazama JJ, Gejyo F, Narita I. Adsorption of Protein-Bound Uremic Toxins Through Direct Hemoperfusion With Hexadecyl-Immobilized Cellulose Beads in Patients Undergoing Hemodialysis. Artif Organs 2017; 42:88-93. [DOI: 10.1111/aor.12961] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Revised: 03/20/2017] [Accepted: 04/12/2017] [Indexed: 11/28/2022]
Affiliation(s)
- Suguru Yamamoto
- Division of Clinical Nephrology and Rheumatology; Niigata University Graduate School of Medical and Dental Sciences; Niigata Japan
- Division of Blood Purification Therapy; Niigata University Medical and Dental Hospital; Niigata Japan
| | - Mami Sato
- Division of Clinical Nephrology and Rheumatology; Niigata University Graduate School of Medical and Dental Sciences; Niigata Japan
| | - Yoko Sato
- Division of Clinical Nephrology and Rheumatology; Niigata University Graduate School of Medical and Dental Sciences; Niigata Japan
| | - Takuya Wakamatsu
- Division of Clinical Nephrology and Rheumatology; Niigata University Graduate School of Medical and Dental Sciences; Niigata Japan
| | - Yoshimitsu Takahashi
- Division of Clinical Nephrology and Rheumatology; Niigata University Graduate School of Medical and Dental Sciences; Niigata Japan
| | | | | | | | - Isei Ei
- Santo-second Clinic; Niigata Japan
| | - Yoshikatsu Kaneko
- Division of Clinical Nephrology and Rheumatology; Niigata University Graduate School of Medical and Dental Sciences; Niigata Japan
| | - Shin Goto
- Division of Clinical Nephrology and Rheumatology; Niigata University Graduate School of Medical and Dental Sciences; Niigata Japan
| | - Junichiro J. Kazama
- Department of Nephrology and Hypertension; Fukushima Medical University; Fukushima Japan
| | - Fumitake Gejyo
- Division of Clinical Nephrology and Rheumatology; Niigata University Graduate School of Medical and Dental Sciences; Niigata Japan
- Niigata University of Pharmacy and Applied Life Sciences; Niigata Japan
| | - Ichiei Narita
- Division of Clinical Nephrology and Rheumatology; Niigata University Graduate School of Medical and Dental Sciences; Niigata Japan
| |
Collapse
|
30
|
Pavlenko D, van Geffen E, van Steenbergen MJ, Glorieux G, Vanholder R, Gerritsen KGF, Stamatialis D. New low-flux mixed matrix membranes that offer superior removal of protein-bound toxins from human plasma. Sci Rep 2016; 6:34429. [PMID: 27703258 PMCID: PMC5050520 DOI: 10.1038/srep34429] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Accepted: 09/07/2016] [Indexed: 11/09/2022] Open
Abstract
Hemodialysis is a widely available and well-established treatment for patients with End Stage Renal Disease (ESRD). However, although life-sustaining, patient mortality rates are very high. Several recent studies corroborated the link between dialysis patients' outcomes and elevated levels of protein-bound uremic toxins (PBUT) that are poorly removed by conventional hemodialysis. Therefore, new treatments are needed to improve their removal. Recently, our group showed that the combination of dialysis and adsorption on one membrane, the mixed matrix membrane (MMM), can effectively remove those toxins from human plasma. However, these first MMMs were rather large in diameter and their mass transport characteristics needed improvement before application in the clinical setting. Therefore, in this study we developed a new generation of MMMs that have a smaller diameter and optimized characteristics offering superior ability in removing the PBUT indoxyl sulfate (IS) and p-cresyl sulfate (pCS) in comparison to first generation MMMs (30 and 125% respectively), as well as, a commercial dialysis membrane (more than 100% better removal).
Collapse
Affiliation(s)
- Denys Pavlenko
- Department of Biomaterials Science and Technology, MIRA Institute for Biomedical Engineering and Technical Medicine, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands
| | - Esmée van Geffen
- Department of Biomaterials Science and Technology, MIRA Institute for Biomedical Engineering and Technical Medicine, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands
- Department of Nephrology and Hypertension, University Medical Centre Utrecht, P.O. Box 85500, 3508 GA Utrecht, The Netherlands
| | - Mies J. van Steenbergen
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, P.O. Box 80082, 3508 TB Utrecht, The Netherlands
| | - Griet Glorieux
- Ghent University Hospital, Department of Internal Medicine, Nephrology Division, 9000 Ghent, Belgium
| | - Raymond Vanholder
- Ghent University Hospital, Department of Internal Medicine, Nephrology Division, 9000 Ghent, Belgium
| | - Karin G. F. Gerritsen
- Department of Nephrology and Hypertension, University Medical Centre Utrecht, P.O. Box 85500, 3508 GA Utrecht, The Netherlands
| | - Dimitrios Stamatialis
- Department of Biomaterials Science and Technology, MIRA Institute for Biomedical Engineering and Technical Medicine, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands
| |
Collapse
|
31
|
Yamamoto S, Kazama JJ, Wakamatsu T, Takahashi Y, Kaneko Y, Goto S, Narita I. Removal of uremic toxins by renal replacement therapies: a review of current progress and future perspectives. RENAL REPLACEMENT THERAPY 2016. [DOI: 10.1186/s41100-016-0056-9] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
|
32
|
Why choose high volume online post-dilution hemodiafiltration? J Nephrol 2016; 30:181-186. [DOI: 10.1007/s40620-016-0343-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Accepted: 08/12/2016] [Indexed: 10/21/2022]
|
33
|
Karbowska M, Kaminski T, Pawlak D. Methods of reducing the level of indoxyl sulfate – one of the most potent protein-bound uremic toxins. TOXIN REV 2016. [DOI: 10.1080/15569543.2016.1222442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
34
|
Gura V, Rivara MB, Bieber S, Munshi R, Smith NC, Linke L, Kundzins J, Beizai M, Ezon C, Kessler L, Himmelfarb J. A wearable artificial kidney for patients with end-stage renal disease. JCI Insight 2016; 1:86397. [PMID: 27398407 DOI: 10.1172/jci.insight.86397] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND Stationary hemodialysis machines hinder mobility and limit activities of daily life during dialysis treatments. New hemodialysis technologies are needed to improve patient autonomy and enhance quality of life. METHODS We conducted a FDA-approved human trial of a wearable artificial kidney, a miniaturized, wearable hemodialysis machine, based on dialysate-regenerating sorbent technology. We aimed to determine the efficacy of the wearable artificial kidney in achieving solute, electrolyte, and volume homeostasis in up to 10 subjects over 24 hours. RESULTS During the study, all subjects remained hemodynamically stable, and there were no serious adverse events. Serum electrolytes and hemoglobin remained stable over the treatment period for all subjects. Fluid removal was consistent with prescribed ultrafiltration rates. Mean blood flow was 42 ± 24 ml/min, and mean dialysate flow was 43 ± 20 ml/min. Mean urea, creatinine, and phosphorus clearances over 24 hours were 17 ± 10, 16 ± 8, and 15 ± 9 ml/min, respectively. Mean β2-microglobulin clearance was 5 ± 4 ml/min. Of 7 enrolled subjects, 5 completed the planned 24 hours of study treatment. The trial was stopped after the seventh subject due to device-related technical problems, including excessive carbon dioxide bubbles in the dialysate circuit and variable blood and dialysate flows. CONCLUSION Treatment with the wearable artificial kidney was well tolerated and resulted in effective uremic solute clearance and maintenance of electrolyte and fluid homeostasis. These results serve as proof of concept that, after redesign to overcome observed technical problems, a wearable artificial kidney can be developed as a viable novel alternative dialysis technology. TRIAL REGISTRATION ClinicalTrials.gov NCT02280005. FUNDING The Wearable Artificial Kidney Foundation and Blood Purification Technologies Inc.
Collapse
Affiliation(s)
- Victor Gura
- Cedars-Sinai Medical Center, Los Angeles, California, USA.,David Geffen School of Medicine at UCLA, UCLA, Los Angeles, California, USA
| | - Matthew B Rivara
- Kidney Research Institute, Division of Nephrology, University of Washington, Seattle, Washington, USA
| | - Scott Bieber
- Kidney Research Institute, Division of Nephrology, University of Washington, Seattle, Washington, USA
| | - Raj Munshi
- Kidney Research Institute, Division of Nephrology, University of Washington, Seattle, Washington, USA.,Division of Nephrology, Department of Pediatrics, Seattle Children's Hospital and University of Washington, Seattle, Washington, USA
| | - Nancy Colobong Smith
- Kidney Research Institute, Division of Nephrology, University of Washington, Seattle, Washington, USA.,University of Washington Medical Center, Seattle, Washington, USA
| | - Lori Linke
- Kidney Research Institute, Division of Nephrology, University of Washington, Seattle, Washington, USA
| | - John Kundzins
- Kidney Research Institute, Division of Nephrology, University of Washington, Seattle, Washington, USA
| | - Masoud Beizai
- Blood Purification Technologies Inc., Beverly Hills, California, USA
| | - Carlos Ezon
- Blood Purification Technologies Inc., Beverly Hills, California, USA
| | - Larry Kessler
- Kidney Research Institute, Division of Nephrology, University of Washington, Seattle, Washington, USA.,Department of Health Services, School of Public Health, University of Washington, Seattle, Washington, USA
| | - Jonathan Himmelfarb
- Kidney Research Institute, Division of Nephrology, University of Washington, Seattle, Washington, USA
| |
Collapse
|
35
|
Bertocchio JP, Mohajer M, Gaha K, Ramont L, Maheut H, Rieu P. Modifications to bicarbonate conductivity: A way to increase phosphate removal during hemodialysis? Proof of concept. Hemodial Int 2016; 20:601-609. [PMID: 27060343 DOI: 10.1111/hdi.12423] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Introduction Hyperphosphatemia and cardiovascular mortality are associated particularly with end-stage renal disease. Available therapeutic strategies (i.e., diet restriction, calcium [or not]-based phosphate binders, calcimimetics) are associated with extrarenal blood purification. Compartmentalization of phosphate limits its depuration during hemodialysis. Several studies suggest that plasmatic pH is involved in the mobilization of phosphate from intracellular to extracellular compartments. Consequently, the efficiency of modified bicarbonate conductivity to purify blood phosphate was tested. Methods Ten hemodialysis patients with chronic hyperphosphatemia (>2.1 mmol/L) were included in the two three-sessions-per week periods. Bicarbonate concentration was fixed at 40 mmol/L and 30 mmol/L in the first and second periods, respectively. Phosphate depuration was evaluated by phosphate mobilization clearance (KM ). Findings Although bicarbonatemia was lower during the second period (21.0 ± 2.7 vs. 24.4 ± 3.1 mmol/L, P < 0.01), no difference was observed in phosphatemia (2.4 ± 0.5 vs. 2.3 ± 0.4 mmol/L, P = NS). The in-session variation of phosphate was lower (-1.45 ± 0.42 vs. -1.58 ± 0.44 mmol/L, P < 0.05) and KM was higher during the second period (82.94 ± 38.00 vs. 69.74 ± 24.48 mL/min, P < 0.05). Discussion The decrease of in-session phosphate and the increase in KM reflect phosphate refilling during hemodialysis. Thus, modulation of serum bicarbonate may play a role in controlling the phosphate pool. Even though correcting metabolic acidosis during hemodialysis remains important, alkaline excess can impair phosphate mobilization clearance. Clinical trials are needed to test the efficiency and relevance of a strategy where bicarbonatemia is corrected less at the beginning of sessions.
Collapse
Affiliation(s)
| | - Médérick Mohajer
- Nephrology, Hemodialysis and Transplantation Unit, Reims University Hospital, Reims, France
| | - Khaled Gaha
- Nephrology, Hemodialysis and Transplantation Unit, Reims University Hospital, Reims, France
| | - Laurent Ramont
- CHU de Reims, Laboratoire Central de Biochimie, 51092, Reims, France.,Université de Reims Champagne-Ardenne, CNRS UMR 7369 (Matrice Extracellulaire et Dynamique Cellulaire, MEDyC), 51095, Reims, France
| | - Hervé Maheut
- Nephrology, Hemodialysis and Transplantation Unit, Reims University Hospital, Reims, France
| | - Philippe Rieu
- Nephrology, Hemodialysis and Transplantation Unit, Reims University Hospital, Reims, France.,Université de Reims Champagne-Ardenne, CNRS UMR 7369 (Matrice Extracellulaire et Dynamique Cellulaire, MEDyC), 51095, Reims, France
| |
Collapse
|
36
|
Tao X, Thijssen S, Kotanko P, Ho CH, Henrie M, Stroup E, Handelman G. Improved dialytic removal of protein-bound uraemic toxins with use of albumin binding competitors: an in vitro human whole blood study. Sci Rep 2016; 6:23389. [PMID: 27001248 PMCID: PMC4802219 DOI: 10.1038/srep23389] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Accepted: 03/03/2016] [Indexed: 01/29/2023] Open
Abstract
Protein-bound uraemic toxins (PBUTs) cause various deleterious effects in end-stage kidney disease patients, because their removal by conventional haemodialysis (HD) is severely limited by their low free fraction in plasma. Here we provide an experimental validation of the concept that the HD dialytic removal of PBUTs can be significantly increased by extracorporeal infusion of PBUT binding competitors. The binding properties of indoxyl sulfate (IS), indole-3-acetic acid (IAA) and hippuric acid (HIPA) and their binding competitors, ibuprofen (IBU), furosemide (FUR) and tryptophan (TRP) were studied in uraemic plasma. The effect of binding competitor infusion on fractional removal of PBUT was then quantified in an ex vivo single-pass HD model using uraemic human whole blood. The infusion of a combination of IBU and FUR increased the fractional removal of IS from 6.4 ± 0.1 to 18.3 ± 0.4%. IAA removal rose from 16.8 ± 0.3 to 34.5 ± 0.7%. TRP infusion increased the removal of IS and IAA to 10.5 ± 0.1% and 27.1 ± 0.3%, respectively. Moderate effects were observed on HIPA removal. Pre-dialyzer infusion of PBUT binding competitors into the blood stream can increase the HD removal of PBUTs. This approach can potentially be applied in current HD settings.
Collapse
Affiliation(s)
- Xia Tao
- University of Massachusetts Lowell, Lowell, MA, USA
- Renal Research Institute, NY, NY, USA
| | | | - Peter Kotanko
- Renal Research Institute, NY, NY, USA
- Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | | | | | | | | |
Collapse
|
37
|
Protein-Bound Uremic Toxin Profiling as a Tool to Optimize Hemodialysis. PLoS One 2016; 11:e0147159. [PMID: 26799394 PMCID: PMC4723122 DOI: 10.1371/journal.pone.0147159] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Accepted: 12/29/2015] [Indexed: 12/20/2022] Open
Abstract
Aim We studied various hemodialysis strategies for the removal of protein-bound solutes, which are associated with cardiovascular damage. Methods This study included 10 patients on standard (3x4h/week) high-flux hemodialysis. Blood was collected at the dialyzer inlet and outlet at several time points during a midweek session. Total and free concentration of several protein-bound solutes was determined as well as urea concentration. Per solute, a two-compartment kinetic model was fitted to the measured concentrations, estimating plasmatic volume (V1), total distribution volume (Vtot) and intercompartment clearance (K21). This calibrated model was then used to calculate which hemodialysis strategy offers optimal removal. Our own in vivo data, with the strategy variables entered into the mathematical simulations, was then validated against independent data from two other clinical studies. Results Dialyzer clearance K, V1 and Vtot correlated inversely with percentage of protein binding. All Ks were different from each other. Of all protein-bound solutes, K21was 2.7–5.3 times lower than that of urea. Longer and/or more frequent dialysis that processed the same amount of blood per week as standard 3x4h dialysis at 300mL/min blood flow showed no difference in removal of strongly bound solutes. However, longer and/or more frequent dialysis strategies that processed more blood per week than standard dialysis were markedly more adequate. These conclusions were successfully validated. Conclusion When blood and dialysate flow per unit of time and type of hemodialyzer are kept the same, increasing the amount of processed blood per week by increasing frequency and/or duration of the sessions distinctly increases removal.
Collapse
|
38
|
Vanholder RC, Eloot S, Glorieux GLRL. Future Avenues to Decrease Uremic Toxin Concentration. Am J Kidney Dis 2015; 67:664-76. [PMID: 26500179 DOI: 10.1053/j.ajkd.2015.08.029] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2015] [Accepted: 08/19/2015] [Indexed: 01/13/2023]
Abstract
In this article, we review approaches for decreasing uremic solute concentrations in chronic kidney disease and in particular, in end-stage renal disease (ESRD). The rationale to do so is the straightforward relation between concentration and biological (toxic) effect for most toxins. The first section is devoted to extracorporeal strategies (kidney replacement therapy). In the context of high-flux hemodialysis and hemodiafiltration, we discuss increasing dialyzer blood and dialysate flows, frequent and/or extended dialysis, adsorption, bioartificial kidney, and changing physical conditions within the dialyzer (especially for protein-bound toxins). The next section focuses on the intestinal generation of uremic toxins, which in return is stimulated by uremic conditions. Therapeutic options are probiotics, prebiotics, synbiotics, and intestinal sorbents. Current data are conflicting, and these issues need further study before useful therapeutic concepts are developed. The following section is devoted to preservation of (residual) kidney function. Although many therapeutic options may overlap with therapies provided before ESRD, we focus on specific aspects of ESRD treatment, such as the risks of too-strict blood pressure and glycemic regulation and hemodynamic changes during dialysis. Finally, some recommendations are given on how research might be organized with regard to uremic toxins and their effects, removal, and impact on outcomes of uremic patients.
Collapse
Affiliation(s)
| | - Sunny Eloot
- Nephrology Department, University Hospital, Gent, Belgium
| | | |
Collapse
|
39
|
Once upon a time in dialysis: the last days of Kt/V? Kidney Int 2015; 88:460-5. [DOI: 10.1038/ki.2015.155] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2014] [Accepted: 09/04/2014] [Indexed: 11/09/2022]
|
40
|
Cornelis T, Eloot S, Vanholder R, Glorieux G, van der Sande FM, Scheijen JL, Leunissen KM, Kooman JP, Schalkwijk CG. Protein-bound uraemic toxins, dicarbonyl stress and advanced glycation end products in conventional and extended haemodialysis and haemodiafiltration. Nephrol Dial Transplant 2015; 30:1395-402. [PMID: 25862762 DOI: 10.1093/ndt/gfv038] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Accepted: 01/20/2015] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND Protein-bound uraemic toxins (PBUT), dicarbonyl stress and advanced glycation end products (AGEs) associate with cardiovascular disease in dialysis. Intensive haemodialysis (HD) may have significant clinical benefits. The aim of this study was to evaluate the acute effects of conventional and extended HD and haemodiafiltration (HDF) on reduction ratio (RR) and total solute removal (TSR) of PBUT, dicarbonyl stress compounds and AGEs. METHODS Thirteen stable conventional HD patients randomly completed a single study of 4-h HD (HD4), 4-h HDF (HDF4), 8-h HD (HD8) and 8-h HDF (HDF8) with a 2-week interval between the study sessions. RR and TSR of PBUT [indoxyl sulphate (IS), p-cresyl sulphate (PCS), p-cresyl glucuronide, 3-carboxyl-4-methyl-5-propyl-2-furanpropionic acid (CMPF), indole-3-acetic acid (IAA) and hippuric acid] of free and protein-bound AGEs [N(ε)-(carboxymethyl)lysine (CML), N(ε)-(carboxyethyl)lysine (CEL), Nδ-(5-hydro-5-methyl-4-imidazolon-2-yl)-ornithine, pentosidine], as well as of dicarbonyl compounds [glyoxal, methylglyoxal, 3-deoxyglucosone], were determined. RESULTS Compared with HD4, HDF4 resulted in increased RR of total and/or free fractions of IAA and IS as well as increased RR of free CML and CEL. HD8 and HDF8 showed a further increase in TSR and RR of PBUT (except CMPF), as well as of dicarbonyl stress and free AGEs compared with HD4 and HDF4. Compared with HD8, HDF8 only significantly increased RR of total and free IAA and free PCS, as well as RR of free CEL. CONCLUSIONS Dialysis time extension (HD8 and HDF8) optimized TSR and RR of PBUT, dicarbonyl stress and AGEs, whereas HDF8 was superior to HD8 for only a few compounds.
Collapse
Affiliation(s)
- Tom Cornelis
- Department of Internal Medicine, Divisions of Nephrology, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Sunny Eloot
- Nephrology Section, Department of Internal Medicine, Ghent University Hospital, Ghent, Belgium
| | - Raymond Vanholder
- Nephrology Section, Department of Internal Medicine, Ghent University Hospital, Ghent, Belgium
| | - Griet Glorieux
- Nephrology Section, Department of Internal Medicine, Ghent University Hospital, Ghent, Belgium
| | - Frank M van der Sande
- Department of Internal Medicine, Divisions of Nephrology, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Jean L Scheijen
- Experimental Medicine, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Karel M Leunissen
- Department of Internal Medicine, Divisions of Nephrology, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Jeroen P Kooman
- Department of Internal Medicine, Divisions of Nephrology, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Casper G Schalkwijk
- Experimental Medicine, Maastricht University Medical Centre, Maastricht, The Netherlands
| |
Collapse
|
41
|
Basile C, Libutti P, Lisi P, Teutonico A, Vernaglione L, Casucci F, Lomonte C. Ranking of factors determining potassium mass balance in bicarbonate haemodialysis. Nephrol Dial Transplant 2014; 30:505-13. [DOI: 10.1093/ndt/gfu376] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
42
|
Basile C, Schneditz D. Haemodialysis adequacy monitoring for phosphate: an old problem with new solutions? Nephrol Dial Transplant 2014; 30:9-11. [DOI: 10.1093/ndt/gfu351] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
43
|
Steubl D, Hettwer S, Dahinden P, Wolf P, Luppa P, Wagner CA, Küchle C, Schmaderer C, Renders L, Heemann U, Roos M. Influence of high-flux hemodialysis and hemodiafiltration on serum C-terminal agrin fragment levels in end-stage renal disease patients. Transl Res 2014; 164:392-9. [PMID: 24907476 DOI: 10.1016/j.trsl.2014.05.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2014] [Revised: 05/08/2014] [Accepted: 05/10/2014] [Indexed: 12/16/2022]
Abstract
C-terminal agrin fragment (CAF, 22 kDa) has been shown to be a promising new rapid biomarker for kidney function. This study evaluated the influence of hemodialysis (HD) and hemodiafiltration (HDF) treatment on serum CAF concentrations in patients with end-stage renal disease (ESRD). A total of 36 patients with ESRD undergoing chronic HD/HDF treatment were enrolled (21 high-flux-HD/Fx60 membrane, 7 high-flux-HD/Elisio19H membrane, and 8 HDF/Elisio19H membrane). On a midweek session, blood samples were obtained before, at halftime, and post-treatment. Dialysate samples were obtained 4 times during treatment. Serum and dialysate CAF, cystatin C, urea, and creatinine concentrations were measured. Reduction ratios (RRs), total solute removal, overall dialytic clearance, and instantaneous dialytic clearance at halftime were calculated and compared. Although HD/Elisio19H and HDF/Elisio19H treatments significantly reduced CAF concentrations (RR 46.6 ± 9.1% and 57.6 ± 11.7%, respectively, P = 0.018 and P = 0.001), HD/Fx60 treatment did not remove CAF from serum (RR 2.4 ± 15.4%, P = 0.25), there was no relevant CAF detection in dialysate. In the HD/Fx60 group, the RR of CAF was significantly lower compared with cystatin C, urea, and creatinine, in which significant removal was detected (37.9 ± 14.8%, 65.0 ± 10.7%, and 56.0 ± 9.8%, respectively, P < 0.001). CAF is a new biomarker for kidney function whose serum concentration is not influenced by conventional high-flux HD using Fx60 membrane. It might therefore represent a promising dialysis-independent biomarker for evaluation of kidney function, for example, in acute kidney failure.
Collapse
Affiliation(s)
- Dominik Steubl
- Abteilung für Nephrologie, Klinikum rechts der Isar, München, Germany.
| | | | | | - Petra Wolf
- Institut für Medizinische Statistik und Epidemiologie, Klinikum rechts der Isar, München, Germany
| | - Peter Luppa
- Institut für Klinische Chemie und Pathobiochemie, Klinikum rechts der Isar, München, Germany
| | - Carsten A Wagner
- Institute of Physiology and Zurich Center for Integrative Human Physiology, University of Zurich, Zurich, Switzerland
| | - Claudius Küchle
- Abteilung für Nephrologie, Klinikum rechts der Isar, München, Germany
| | | | - Lutz Renders
- Abteilung für Nephrologie, Klinikum rechts der Isar, München, Germany
| | - Uwe Heemann
- Abteilung für Nephrologie, Klinikum rechts der Isar, München, Germany
| | - Marcel Roos
- Abteilung für Nephrologie, Klinikum rechts der Isar, München, Germany
| |
Collapse
|
44
|
Cornelis T, van der Sande FM, Eloot S, Cardinaels E, Bekers O, Damoiseaux J, Leunissen KM, Kooman JP. Acute Hemodynamic Response and Uremic Toxin Removal in Conventional and Extended Hemodialysis and Hemodiafiltration: A Randomized Crossover Study. Am J Kidney Dis 2014; 64:247-56. [DOI: 10.1053/j.ajkd.2014.02.016] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2013] [Accepted: 02/10/2014] [Indexed: 01/06/2023]
|
45
|
|
46
|
Eloot S, Ledebo I, Ward RA. Extracorporeal Removal of Uremic Toxins: Can We Still Do Better? Semin Nephrol 2014; 34:209-27. [DOI: 10.1016/j.semnephrol.2014.02.011] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
47
|
Leypoldt JK, Agar BU, Culleton BF. Simplified phosphorus kinetic modeling: predicting changes in predialysis serum phosphorus concentration after altering the hemodialysis prescription. Nephrol Dial Transplant 2014; 29:1423-9. [DOI: 10.1093/ndt/gfu032] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
|
48
|
Eloot S, Van Biesen W, Glorieux G, Neirynck N, Dhondt A, Vanholder R. Does the adequacy parameter Kt/V(urea) reflect uremic toxin concentrations in hemodialysis patients? PLoS One 2013; 8:e76838. [PMID: 24236005 PMCID: PMC3827207 DOI: 10.1371/journal.pone.0076838] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2012] [Accepted: 08/31/2013] [Indexed: 11/18/2022] Open
Abstract
Hemodialysis aims at removing uremic toxins thus decreasing their concentrations. The present study investigated whether Kt/Vurea, used as marker of dialysis adequacy, is correlated with these concentrations. Predialysis blood samples were taken before a midweek session in 71 chronic HD patients. Samples were analyzed by colorimetry, HPLC, or ELISA for a broad range of uremic solutes. Solute concentrations were divided into four groups according to quartiles of Kt/Vurea, and also of different other parameters with potential impact, such as age, body weight (BW), Protein equivalent of Nitrogen Appearance (PNA), Residual Renal Function (RRF), and dialysis vintage. Dichotomic concentration comparisons were performed for gender and Diabetes Mellitus (DM). Analysis of Variance in quartiles of Kt/Vurea did not show significant differences for any of the solute concentrations. For PNA, however, concentrations showed significant differences for urea (P<0.001), uric acid (UA), p-cresylsulfate (PCS), and free PCS (all P<0.01), and for creatinine (Crea) and hippuric acid (HA) (both P<0.05). For RRF, concentrations varied for β2-microglobulin (P<0.001), HA, free HA, free indoxyl sulfate, and free indole acetic acid (all P<0.01), and for p-cresylglucuronide (PCG), 3-carboxy-4-methyl-5-propyl-2-furanpropionic acid (CMPF), free PCS, and free PCG (all P<0.05). Gender and body weight only showed differences for Crea and UA, while age, vintage, and diabetes mellitus only showed differences for one solute concentration (UA, UA, and free PCS, respectively). Multifactor analyses indicated a predominant association of concentration with protein intake and residual renal function. In conclusion, predialysis concentrations of uremic toxins seem to be dependent on protein equivalent of nitrogen appearance and residual renal function, and not on dialysis adequacy as assessed by Kt/Vurea. Efforts to control intestinal load of uremic toxin precursors by dietary or other interventions, and preserving RRF seem important approaches to decrease uremic solute concentration and by extension their toxicity.
Collapse
Affiliation(s)
- Sunny Eloot
- Nephrology Section, Department of Internal Medicine, Ghent University Hospital, Gent, Belgium
- * E-mail:
| | - Wim Van Biesen
- Nephrology Section, Department of Internal Medicine, Ghent University Hospital, Gent, Belgium
| | - Griet Glorieux
- Nephrology Section, Department of Internal Medicine, Ghent University Hospital, Gent, Belgium
| | - Nathalie Neirynck
- Nephrology Section, Department of Internal Medicine, Ghent University Hospital, Gent, Belgium
| | - Annemieke Dhondt
- Nephrology Section, Department of Internal Medicine, Ghent University Hospital, Gent, Belgium
| | - Raymond Vanholder
- Nephrology Section, Department of Internal Medicine, Ghent University Hospital, Gent, Belgium
| |
Collapse
|
49
|
Tijink MS, Wester M, Glorieux G, Gerritsen KG, Sun J, Swart PC, Borneman Z, Wessling M, Vanholder R, Joles JA, Stamatialis D. Mixed matrix hollow fiber membranes for removal of protein-bound toxins from human plasma. Biomaterials 2013; 34:7819-28. [DOI: 10.1016/j.biomaterials.2013.07.008] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2013] [Accepted: 07/01/2013] [Indexed: 10/26/2022]
|
50
|
Neirynck N, Glorieux G, Schepers E, Pletinck A, Dhondt A, Vanholder R. Review of protein-bound toxins, possibility for blood purification therapy. Blood Purif 2013; 35 Suppl 1:45-50. [PMID: 23466378 DOI: 10.1159/000346223] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Protein-bound uremic retention solutes, i.e. phenolic compounds, such as p-cresylsulfate, and indolic compounds, such as indoxyl sulfate, have been intensively studied in recent years and have been shown to be associated especially with cardiovascular toxicity and adverse outcomes in chronic kidney disease. In this review, we will focus on their toxicity and their removal by dialysis strategies, which is hampered due to their protein binding. Hemodiafiltration slightly improves the removal of protein-bound solutes as compared to hemodialysis, although the clinical benefit on outcomes still needs to be demonstrated. Removal by means of absorption and interference with intestinal generation or renal tubular excretion are interesting alternative strategies under investigation.
Collapse
Affiliation(s)
- N Neirynck
- Nephrology Section, Department of Internal Medicine, Ghent University Hospital, Gent, Belgium
| | | | | | | | | | | |
Collapse
|