1
|
Møller DL, Sørensen SS, Perch M, Gustafsson F, Hald A, Knudsen AD, Abdulovski R, Arentoft NS, Lundgren J, Rasmussen A, Ostrowski SR, Nielsen SD. Differences in toll-like receptor ligand-induced cytokine concentrations before and after solid organ transplantation: A prospective, observational cohort study in a clinical setting. Scand J Immunol 2024; 99:e13337. [PMID: 38168873 DOI: 10.1111/sji.13337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 10/09/2023] [Accepted: 10/20/2023] [Indexed: 01/05/2024]
Abstract
Reliable methods to assess immune function after solid organ transplantation (SOT) are needed to guide dosing of immunosuppression. We hypothesized that toll-like receptor ligand-induced cytokine concentrations would decrease post-transplantation due to the use of immunosuppressive medication. Furthermore, we hypothesized that induced cytokine concentrations pre-transplantation would be higher in recipients with episodes of acute rejection post-transplantation due to underlying immunological dispositions. We aimed to investigate toll-like receptor ligand-induced cytokine concentrations by TruCulture©, a standardized immunoassay, in SOT recipients before and 3 months after SOT and explored associations with methylprednisolone-treated acute rejections. We conducted a prospective, observational cohort study including 123 participants (67 liver, 32 kidney and 24 lung transplant recipients). Whole blood was stimulated for 22 h with: (A) Lipopolysaccharide (LPS), (B) Resiquimod, (C) Polyinosinic:polycytidylic acid (Poly I:C) and (D) a blank control. Cytokine concentrations (TNF-α, IL-1β, IL-6, IL-8, IL-10, IL-12p40, IL-17A, IFN-α and IFN-γ) were measured by Luminex. 30 participants developed methylprednisolone-treated acute rejection at a median of 9 days (IQR 5-17) post-SOT. We found that all induced cytokine concentrations decreased post-SOT except from LPS-induced and Poly I:C-induced IL-10. The induced cytokine concentration pre-transplantation did not differ in recipients with or without acute rejection. In conclusion, the induced cytokine concentrations decreased for all stimuli post-SOT, except the anti-inflammatory cytokine IL-10. Importantly, recipients developing early acute rejection did not differ in induced cytokine concentrations pre-SOT. Thus, the use of a standardized assay in SOT is feasible in a clinical setting and may provide important information on the immune function post-SOT.
Collapse
Affiliation(s)
- Dina Leth Møller
- Viro-immunology Research Unit, Department of Infectious Diseases 8632, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Søren Schwartz Sørensen
- Department of Nephrology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Michael Perch
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
- Department of Cardiology, Section for Lung Transplantation, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Finn Gustafsson
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
- Department of Cardiology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Annemette Hald
- Viro-immunology Research Unit, Department of Infectious Diseases 8632, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Andreas Delhbaek Knudsen
- Viro-immunology Research Unit, Department of Infectious Diseases 8632, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
- Department of Cardiology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Ranya Abdulovski
- Viro-immunology Research Unit, Department of Infectious Diseases 8632, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Nicoline Stender Arentoft
- Viro-immunology Research Unit, Department of Infectious Diseases 8632, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Jens Lundgren
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
- Centre of Excellence for Health, Immunity, and Infections, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Allan Rasmussen
- Department of Surgical Gastroenterology and Transplantation, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Sisse Rye Ostrowski
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
- Department of Clinical Immunology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Susanne Dam Nielsen
- Viro-immunology Research Unit, Department of Infectious Diseases 8632, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
- Department of Surgical Gastroenterology and Transplantation, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
2
|
Karimi A, Yaghobi R, Roozbeh J, Rahimi Z, Afshari A, Akbarpoor Z, Heidari M. Study the mRNA level of IL-27/IL-27R pathway molecules in kidney transplant rejection. Arch Ital Urol Androl 2023; 95:11691. [PMID: 38193229 DOI: 10.4081/aiua.2023.11691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 10/07/2023] [Indexed: 01/10/2024] Open
Abstract
BACKGROUND Renal transplantation stands as the sole remedy for individuals afflicted with end-stage renal diseases, and safeguarding them from transplant rejection represents a vital, life-preserving endeavor posttransplantation. In this context, the impact of cytokines, notably IL-27, assumes a critical role in managing immune responses aimed at countering rejection. Consequently, this investigation endeavors to explore the precise function of IL-27 and its associated cytokines in the context of kidney transplant rejection. METHODS The study involved the acquisition of blood samples from a cohort of participants, consisting of 61 individuals who had undergone kidney transplantation (comprising 32 nonrejected patients and 29 rejected patients), and 33 healthy controls. The expression levels of specific genes were examined using SYBR Green Real-time PCR. Additionally, the evaluation encompassed the estimation of the ROC curve, the assessment of the relationship between certain blood factors, and the construction of protein-protein interaction networks for the genes under investigation. RESULTS Significant statistical differences in gene expression levels were observed between the rejected group and healthy controls, encompassing all the genes examined, except for TLR3 and TLR4 genes. Moreover, the analysis of the Area Under the Curve (AUC) revealed that IL-27, IL-27R, TNF-α, and TLR4 exhibited greater significance in discriminating between the two patient groups. These findings highlight the potential importance of IL-27, IL-27R, TNF-α, and TLR4 as key factors for distinguishing between individuals in the rejected group and those in the healthy control group. CONCLUSIONS In the context of kidney rejections occurring within the specific timeframe of 2 weeks to 2 months post-transplantation, it is crucial to emphasize the significance of cytokines mRNA level, including IL-27, IL-27R, TNF-α, and TLR4, in elucidating and discerning the diverse immune system responses. The comprehensive examination of these cytokines' mRNA level assumes considerable importance in understanding the intricate mechanisms underlying kidney rejection processes during this critical period.
Collapse
Affiliation(s)
- Aftab Karimi
- Zarghan branch, Islamic Azad University, Zarghan.
| | - Ramin Yaghobi
- Shiraz Transplant Research Center, Shiraz University of Medical Sciences, Shiraz.
| | - Jamshid Roozbeh
- Shiraz Nephro-Urology Research Center, Shiraz University of Medical Sciences, Shiraz.
| | - Zahra Rahimi
- Zarghan branch, Islamic Azad University, Zarghan.
| | - Afsoon Afshari
- Shiraz Nephro-Urology Research Center, Shiraz University of Medical Sciences, Shiraz.
| | | | - Mojdeh Heidari
- Shiraz Transplant Research Center, Shiraz University of Medical Sciences, Shiraz.
| |
Collapse
|
3
|
Chronic Active T-Cell Mediated Kidney Rejection as a Clinically Significant Type of Allograft Loss? Diagnostics (Basel) 2022; 12:diagnostics12123220. [PMID: 36553226 PMCID: PMC9777502 DOI: 10.3390/diagnostics12123220] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 12/14/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022] Open
Abstract
The purpose of this article is to assess the present knowledge about chronic active (CA) T-cell mediated rejection (TCMR) of a kidney. In the research authors review current Banff diagnostic criteria used in kidney rejection, focus on their possible future evolution, and investigate the role of currently available molecular methods that could be implemented into the diagnostic scheme. Research also points out previously and currently available treatment methods applied to CA TCMR and takes into account possible side effects consequent upon the therapy. Moreover, attention is being paid to the CA TCMR coincidence with other kidney rejection types such as antibody-mediated rejection (ABMR) and its influence on the treatment approach. Authors also mark the possibility of non-HLA antibodies coexistence in patients with CA TCMR and describe its possible resonance on kidney allograft function. Nonetheless, it seems that current knowledge about CA TCMR is not sufficient and requires further investigation.
Collapse
|
4
|
Teng L, Shen L, Zhao W, Wang C, Feng S, Wang Y, Bi Y, Rong S, Shushakova N, Haller H, Chen J, Jiang H. SLAMF8 Participates in Acute Renal Transplant Rejection via TLR4 Pathway on Pro-Inflammatory Macrophages. Front Immunol 2022; 13:846695. [PMID: 35432371 PMCID: PMC9012444 DOI: 10.3389/fimmu.2022.846695] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Accepted: 03/03/2022] [Indexed: 01/10/2023] Open
Abstract
Background Acute rejection (AR) in kidney transplantation is an established risk factor that reduces the survival rate of allografts. Despite standard immunosuppression, molecules with regulatory control in the immune pathway of AR can be used as important targets for therapeutic operations to prevent rejection. Methods We downloaded the microarray data of 15 AR patients and 37 non-acute rejection (NAR) patients from Gene Expression Omnibus (GEO). Gene network was constructed, and genes were classified into different modules using weighted gene co-expression network analysis (WGCNA). Kyoto Encyclopedia of Genes and Genomes (KEGG) and Cytoscape were applied for the hub genes in the most related module to AR. Different cell types were explored by xCell online database and single-cell RNA sequencing. We also validated the SLAMF8 and TLR4 levels in Raw264.7 and human kidney tissues of TCMR. Results A total of 1,561 differentially expressed genes were filtered. WGCNA was constructed, and genes were classified into 12 modules. Among them, the green module was most closely associated with AR. These genes were significantly enriched in 20 pathway terms, such as cytokine–cytokine receptor interaction, chemokine signaling pathway, and other important regulatory processes. Intersection with GS > 0.4, MM > 0.9, the top 10 MCC values and DEGs in the green module, and six hub genes (DOCK2, NCKAP1L, IL2RG, SLAMF8, CD180, and PTPRE) were identified. Their expression levels were all confirmed to be significantly elevated in AR patients in GEO, Nephroseq, and quantitative real-time PCR (qRT-PCR). Single-cell RNA sequencing showed that AR patient had a higher percentage of native T, CD1C+_B DC, NKT, NK, and monocytes in peripheral blood mononuclear cells (PBMCs). Xcell enrichment scores of 20 cell types were significantly different (p<0.01), mostly immune cells, such as B cells, CD4+ Tem, CD8+ T cells, CD8+ Tcm, macrophages, M1, and monocytes. GSEA suggests that highly expressed six hub genes are correlated with allograft rejection, interferon γ response, interferon α response, and inflammatory response. In addition, SLAMF8 is highly expressed in human kidney tissues of TCMR and in M1 phenotype macrophages of Raw264.7 cell line WGCNA accompanied by high expression of TLR4. Conclusion This study demonstrates six hub genes and functionally enriched pathways related to AR. SLAMF8 is involved in the M1 macrophages via TLR4, which contributed to AR process.
Collapse
Affiliation(s)
- Lisha Teng
- Kidney Disease Center, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
- Key Laboratory of Nephropathy, Hangzhou, China
- Institute of Nephropathy, Zhejiang University, Hangzhou, China
- Zhejiang Clinical Research Center of Kidney and Urinary System Disease, Hangzhou, China
| | - Lingling Shen
- Kidney Disease Center, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
- Key Laboratory of Nephropathy, Hangzhou, China
- Institute of Nephropathy, Zhejiang University, Hangzhou, China
- Zhejiang Clinical Research Center of Kidney and Urinary System Disease, Hangzhou, China
| | - Wenjun Zhao
- Kidney Disease Center, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
- Key Laboratory of Nephropathy, Hangzhou, China
- Institute of Nephropathy, Zhejiang University, Hangzhou, China
- Zhejiang Clinical Research Center of Kidney and Urinary System Disease, Hangzhou, China
| | - Cuili Wang
- Kidney Disease Center, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
- Key Laboratory of Nephropathy, Hangzhou, China
- Institute of Nephropathy, Zhejiang University, Hangzhou, China
- Zhejiang Clinical Research Center of Kidney and Urinary System Disease, Hangzhou, China
| | - Shi Feng
- Kidney Disease Center, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
- Key Laboratory of Nephropathy, Hangzhou, China
- Institute of Nephropathy, Zhejiang University, Hangzhou, China
- Zhejiang Clinical Research Center of Kidney and Urinary System Disease, Hangzhou, China
| | - Yucheng Wang
- Kidney Disease Center, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
- Key Laboratory of Nephropathy, Hangzhou, China
- Institute of Nephropathy, Zhejiang University, Hangzhou, China
- Zhejiang Clinical Research Center of Kidney and Urinary System Disease, Hangzhou, China
| | - Yan Bi
- Kidney Disease Center, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
- Key Laboratory of Nephropathy, Hangzhou, China
- Institute of Nephropathy, Zhejiang University, Hangzhou, China
- Zhejiang Clinical Research Center of Kidney and Urinary System Disease, Hangzhou, China
| | - Song Rong
- Department of Nephrology, Hannover Medical School, Hannover, Germany
| | - Nelli Shushakova
- Department of Nephrology, Hannover Medical School, Hannover, Germany
| | - Hermann Haller
- Department of Nephrology, Hannover Medical School, Hannover, Germany
| | - Jianghua Chen
- Kidney Disease Center, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
- Key Laboratory of Nephropathy, Hangzhou, China
- Institute of Nephropathy, Zhejiang University, Hangzhou, China
- Zhejiang Clinical Research Center of Kidney and Urinary System Disease, Hangzhou, China
| | - Hong Jiang
- Kidney Disease Center, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
- Key Laboratory of Nephropathy, Hangzhou, China
- Institute of Nephropathy, Zhejiang University, Hangzhou, China
- Zhejiang Clinical Research Center of Kidney and Urinary System Disease, Hangzhou, China
- *Correspondence: Hong Jiang,
| |
Collapse
|
5
|
Trailin A, Hruba P, Viklicky O. Molecular Assessment of Kidney Allografts: Are We Closer to a Daily Routine? Physiol Res 2020; 69:215-226. [PMID: 32199018 DOI: 10.33549/physiolres.934278] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Kidney allograft pathology assessment has been traditionally based on clinical and histological criteria. Despite improvements in Banff histological classification, the diagnostics in particular cases is problematic reflecting a complex pathogenesis of graft injuries. With the advent of molecular techniques, polymerase-chain reaction, oligo- and microarray technologies allowed to study molecular phenotypes of graft injuries, especially acute and chronic rejections. Moreover, development of the molecular microscope diagnostic system (MMDx) to assess kidney graft biopsies, represents the first clinical application of a microarray-based method in transplantation. Whether MMDx may replace conventional pathology is the subject of ongoing research, however this platform is particularly useful in complex histological findings and may help clinicians to guide the therapy.
Collapse
Affiliation(s)
- A Trailin
- Department of Nephrology, Transplant Centre, Institute for Clinical and Experimental Medicine, Prague, Czech Republic.
| | | | | |
Collapse
|
6
|
Sharbafi MH, Assadiasl S, Pour‐reza‐gholi F, Barzegari S, Mohammadi Torbati P, Samavat S, Nicknam MH, Amirzargar A. TLR‐2, TLR‐4 and MyD88 genes expression in renal transplant acute and chronic rejections. Int J Immunogenet 2019; 46:427-436. [DOI: 10.1111/iji.12446] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 04/17/2019] [Accepted: 05/17/2019] [Indexed: 12/11/2022]
Affiliation(s)
| | - Sara Assadiasl
- Molecular Immunology Research Center Tehran University of Medical Sciences Tehran Iran
| | - Fatemeh Pour‐reza‐gholi
- Chronic Kidney Disease Research Center Shahid Beheshti University of Medical Sciences Tehran Iran
| | - Saeed Barzegari
- Department of health information technology, Amol Faculty of Paramedical Sciences Mazandaran University of Medical Sciences Sari Iran
| | - Peyman Mohammadi Torbati
- Department of Pathology Labbafinejad Hospital, Shahid Beheshti University of Medical Sciences Tehran Iran
| | - Shiva Samavat
- Chronic Kidney Disease Research Center Shahid Beheshti University of Medical Sciences Tehran Iran
| | - Mohammad Hossein Nicknam
- Department of Immunology, School of Medicine Tehran University of Medical Sciences Tehran Iran
- Molecular Immunology Research Center Tehran University of Medical Sciences Tehran Iran
| | - Aliakbar Amirzargar
- Department of Immunology, School of Medicine Tehran University of Medical Sciences Tehran Iran
- Molecular Immunology Research Center Tehran University of Medical Sciences Tehran Iran
| |
Collapse
|
7
|
Watts BA, Tamayo E, Sherwood ER, Good DW. Monophosphoryl lipid A induces protection against LPS in medullary thick ascending limb through induction of Tollip and negative regulation of IRAK-1. Am J Physiol Renal Physiol 2019; 317:F705-F719. [PMID: 31241993 DOI: 10.1152/ajprenal.00170.2019] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
LPS inhibits HCO3- absorption in the medullary thick ascending limb (MTAL) through a Toll-like receptor 4 (TLR4)-myeloid differentiation factor 88 (MyD88)-extracellular signal-regulated kinase (ERK) pathway that is upregulated by sepsis. Pretreatment with the nontoxic immunomodulator monophosphoryl lipid A (MPLA) prevents inhibition by LPS through activation of a TLR4-TIR-domain-containing adaptor-inducing interferon-β (TRIF)-phosphatidylinositol 3-kinase (PI3K) pathway that prevents LPS-induced ERK activation. Here, we identified the molecular mechanisms that underlie the protective inhibitory interaction between the MPLA-PI3K and LPS-ERK pathways. Treatment of mouse MTALs with LPS in vitro increased phosphorylation of IL-1 receptor-associated kinase (IRAK)-1, a critical mediator of LPS signaling downstream of TLR4-MyD88. Activation of ERK by LPS was eliminated by a selective IRAK-1 inhibitor, establishing IRAK-1 as the upstream mediator of ERK activation. Pretreatment of MTALs with MPLA in vitro prevented LPS-induced IRAK-1 activation; this effect was dependent on PI3K. Treatment of MTALs with MPLA increased expression of Toll-interacting protein (Tollip), an inducible protein that negatively regulates LPS signaling by inhibiting IRAK-1. The MPLA-induced increase in Tollip protein level was prevented by PI3K inhibitors. In coimmunoprecipitation experiments, MPLA increased the amount of Tollip stably bound to IRAK-1, an interaction that inhibits IRAK-1 activation. These results support a mechanism whereby MPLA increases Tollip expression in the MTAL through a PI3K-dependent pathway. Tollip, in turn, inhibits LPS-induced TLR4 signaling by suppressing activation of IRAK-1, thereby preventing activation of ERK that inhibits HCO3- absorption. These studies show that MPLA induces reprogramming of MTAL cells that protects against LPS stimulation and identify IRAK-1 and Tollip as new therapeutic targets to prevent renal tubule dysfunction in response to infectious and inflammatory stimuli.
Collapse
Affiliation(s)
- Bruns A Watts
- Department of Internal Medicine, University of Texas Medical Branch, Galveston, Texas
| | - Esther Tamayo
- Department of Internal Medicine, University of Texas Medical Branch, Galveston, Texas
| | - Edward R Sherwood
- Department of Anesthesiology, Vanderbilt University Medical Center, Nashville, Tennessee
| | - David W Good
- Department of Internal Medicine, University of Texas Medical Branch, Galveston, Texas.,Department of Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, Texas
| |
Collapse
|
8
|
Yang J, Snijders MLH, Haasnoot GW, van Kooten C, Mallat M, de Fijter JW, Clahsen-van Groningen MC, Claas FHJ, Eikmans M. Elevated intragraft expression of innate immunity and cell death-related markers is a risk factor for adverse graft outcome. Transpl Immunol 2018; 48:39-46. [PMID: 29475090 DOI: 10.1016/j.trim.2018.02.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Revised: 02/13/2018] [Accepted: 02/14/2018] [Indexed: 12/26/2022]
Abstract
BACKGROUND Molecules of the innate immune response are increasingly recognized as important mediators in allograft injury during and after kidney transplantation. We therefore aimed to establish the relationship between the expression of these genes at implantation, during an acute rejection (AR) and on graft outcome. METHODS A total of 19 genes, including Toll like receptors (TLRs), complement components and regulators, and apoptosis-related genes were analyzed at the mRNA level by qPCR in 123 biopsies with acute rejection and paired pre-transplantation tissue (n = 75). RESULTS Before transplantation, relative mRNA expression of BAX:BCL2 ratio (apoptosis marker) and several complement genes was significantly higher in tissue samples from deceased donors compared to living donors. During AR, TLRs and complement genes showed an increased expression compared to pre-transplant conditions, whereas complement regulators were decreased. A relatively high TLR4 expression level and BAX:BCL2 ratio during AR in the deceased donor group was associated with adverse graft outcome, independently of clinical risk factors. CONCLUSIONS Complement- and apoptosis-related gene expression is elevated in deceased donor transplants before transplantation. High BAX:BCL2 ratio and TLR4 expression during AR may reflect enhanced intragraft cell death and immunogenic danger signals, and pose a risk factor for adverse graft outcome.
Collapse
Affiliation(s)
- Jianxin Yang
- Dept. of Immunohematology and Blood Transfusion, Leiden University Medical Center, Leiden, The Netherlands
| | | | - Geert W Haasnoot
- Dept. of Immunohematology and Blood Transfusion, Leiden University Medical Center, Leiden, The Netherlands
| | - Cees van Kooten
- Dept. of Nephrology, Leiden University Medical Center, Leiden, The Netherlands
| | - Marko Mallat
- Dept. of Nephrology, Leiden University Medical Center, Leiden, The Netherlands
| | - Johan W de Fijter
- Dept. of Nephrology, Leiden University Medical Center, Leiden, The Netherlands
| | | | - Frans H J Claas
- Dept. of Immunohematology and Blood Transfusion, Leiden University Medical Center, Leiden, The Netherlands
| | - Michael Eikmans
- Dept. of Immunohematology and Blood Transfusion, Leiden University Medical Center, Leiden, The Netherlands.
| |
Collapse
|
9
|
Hosseinzadeh M, Ahmadpoor P, Yekaninejad MS, Pourrezagholi F, Foroughi F, Ghorbanpour M, Barabadi M, Shahbaz SK, Solgi G, Amirzargar A. Expression patterns of Toll like receptor (TLR)-2, TLR-4 and myeloid differentiation primary response gene 88 (MYD88) in renal transplant patients developing allograft dysfunction; a cohort study. Transpl Immunol 2018; 48:26-31. [PMID: 29452169 DOI: 10.1016/j.trim.2018.02.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Revised: 02/10/2018] [Accepted: 02/12/2018] [Indexed: 01/27/2023]
Abstract
This cohort intends to determine the sequential dynamic changes in Toll-like receptor (TLR)-4, TLR-2, and myeloid differentiation primary response gene 88 (MYD88) mRNA expressions in PBMCs and biopsy samples from kidney allograft recipients in relation to graft function. This study enrolled 52 renal transplant patients, 27 with well functioning graft (WFG) and 25 graft dysfunction (GD). Peripheral blood samples pre- and post-transplantation (days 2, 90 and 180) were collected to analyze mRNA expression levels of TLR-2, TLR-4, and MYD88 genes in relation to allograft function during one-year follow up. The mean dynamic changes of post-transplant TLR-2, TLR-4, and MYD88 mRNA expressions were significantly higher in GD compared to WFG patients (P = .001). ROC curve analysis based on glomerular filtration rate (GFR) index showed the area under curve (AUC) values for the genes: TLR-2(0.89;P < .001), TLR-4(0.86;P < .001), and MYD88(0.75;P = .003) in the third month post-transplantation for GD diagnosis. The calculated AUCs for the expressions of genes in allograft biopsies were 0.94(TLR-2), 0.95(TLR-4), and 0.98(MYD88) in the sixth month post-transplant based on pathology report (P < .001). Our results indicate that sequential monitoring of the expression patterns of TLR-2, TLR-4, and MYD88 in PBMCs and biopsy samples could be considered as predictive biomarkers for early and late kidney allograft function.
Collapse
Affiliation(s)
- Morteza Hosseinzadeh
- Department of Immunology, School of Medicine, Ilam University of Medical Sciences, Ilam, Iran
| | - Pedram Ahmadpoor
- Department of Nephrology, Shahid Labbafinejad Medical Center, Chronic Kidney Disease Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mir Saeed Yekaninejad
- Department of Epidemiology and Biostatistics, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Pourrezagholi
- Department of Nephrology, Shahid Labbafinejad Medical Center, Chronic Kidney Disease Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Farshad Foroughi
- Department of Immunology, School of Medicine, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Mina Ghorbanpour
- Department of Epidemiology and Biostatistics, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Mehri Barabadi
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Sanaz K Shahbaz
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Ghasem Solgi
- Department of Immunology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Aliakbar Amirzargar
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran; Molecular immunology research center, Tehran university of medical sciences, Tehran, Iran.
| |
Collapse
|
10
|
Wu Y, Liang H, Wang Z, Lei Q, Xia L. A novel toll-like receptor from the pearl oyster Pinctada fucata martensii is induced in response to stress. Comp Biochem Physiol B Biochem Mol Biol 2017; 214:19-26. [DOI: 10.1016/j.cbpb.2017.08.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Revised: 08/29/2017] [Accepted: 08/29/2017] [Indexed: 01/01/2023]
|
11
|
Ischemia as a factor affecting innate immune responses in kidney transplantation. Curr Opin Nephrol Hypertens 2016; 25:3-11. [PMID: 26625866 DOI: 10.1097/mnh.0000000000000190] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
PURPOSE OF REVIEW Ischemic injury inevitably occurs during the procurement of organs for transplantation, and the injury is worsened by inflammation following reperfusion. The purpose of this review is to describe the role of the innate immune system in ischemia-induced renal injury in kidneys procured for transplantation. The key role of pattern recognition receptors in immune responses to ischemia is described. Innate immune receptors are emerging novel targets for the amelioration of ischemic injury of donor kidneys. RECENT FINDINGS Several families of pattern recognition receptors are direct mediators of early injurious events during kidney procurement, and also innate and adaptive immune responses after transplantation. The deleterious events associated with the activation of the innate immune system in donor kidneys significantly contribute to short and long-term allograft outcomes. SUMMARY Although a number of therapies have been proposed to decrease ischemic donor kidney injury, targeting the innate immune system is an exciting new area that is gaining significant interest in transplantation. As we learn more about how these important receptors are regulated by ischemia, strategies will likely evolve to allow their modulation in ischemic renal injury.
Collapse
|
12
|
Braza F, Brouard S, Chadban S, Goldstein DR. Role of TLRs and DAMPs in allograft inflammation and transplant outcomes. Nat Rev Nephrol 2016; 12:281-90. [PMID: 27026348 DOI: 10.1038/nrneph.2016.41] [Citation(s) in RCA: 127] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Graft inflammation impairs the induction of solid organ transplant tolerance and enhances acute and chronic rejection. Elucidating the mechanisms by which inflammation is induced after organ transplantation could lead to novel therapeutics to improve transplant outcomes. In this Review we describe endogenous substances--damage-associated molecular patterns (DAMPs)--that are released after allograft reperfusion and induce inflammation. We also describe innate immune signalling pathways that are activated after solid organ transplantation, with a focus on Toll-like receptors (TLRs) and their signal adaptor, MYD88. Experimental and clinical studies have yielded a large body of evidence that TLRs and MYD88 are instrumental in initiating allograft inflammation and promoting the development of acute and chronic rejection. Ongoing clinical studies are testing TLR inhibition strategies in solid organ transplantation, although avoiding compromising host defence to pathogens is a key challenge. Further elucidation of the mechanisms by which sterile inflammation is induced, maintained and amplified within the allograft has the potential to lead to novel anti-inflammatory treatments that could improve outcomes for solid organ transplant recipients.
Collapse
Affiliation(s)
- Faouzi Braza
- Instituto Gulbenkian de Ciência, Rua da Quinta Grande, 2780-156 Oeiras, Portugal
| | - Sophie Brouard
- INSERM, UMR 1064, CHU de Nantes, ITUN, 30 Bd Jean Monnet Nantes F-44093, France
| | - Steve Chadban
- Renal Medicine and Transplantation, Royal Prince Alfred Hospital, Missenden Road Camperdown, NSW 2050, Sydney, Australia.,Kidney Node, Charles Perkins Centre, University of Sydney, Missenden Road, Camperdown, NSW 2093, Australia
| | - Daniel R Goldstein
- Department of Internal Medicine, 333 Cedar St, Yale School of Medicine, New Haven, Connecticut 06525, USA.,Department of Immunobiology, 300 Cedar St, Yale School of Medicine, New Haven, Connecticut 06525, USA
| |
Collapse
|
13
|
Renal expression of Toll-like receptor 2 and 4: Dynamics in human allograft injury and comparison to rodents. Mol Immunol 2015; 64:82-9. [DOI: 10.1016/j.molimm.2014.11.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Accepted: 11/03/2014] [Indexed: 11/22/2022]
|
14
|
Abstract
Toll-like receptors (TLRs) and nucleotide-binding oligomerization domain receptors (NLRs) are families of pattern recognition receptors that, together with inflammasomes, sense and respond to highly conserved pathogen motifs and endogenous molecules released upon cell damage or stress. Evidence suggests that TLRs, NLRs and the NACHT, LRR and PYD domains-containing protein 3 (NLRP3) inflammasome have important roles in kidney diseases through regulation of inflammatory and tissue-repair responses to infection and injury. In this Review, we discuss the pathological mechanisms that are related to TLRs, NLRs and NLRP3 in various kidney diseases. In general, these receptors are protective in the host defence against urinary tract infection, but can sustain and self-perpetuate tissue damage in sterile inflammatory and immune-mediated kidney diseases. TLRs, NLRs and NLRP3, therefore, have become promising drug targets to enable specific modulation of kidney inflammation and suppression of immunopathology in kidney disease.
Collapse
|
15
|
|
16
|
Heutinck KM, Rowshani AT, Kassies J, Claessen N, van Donselaar-van der Pant KAMI, Bemelman FJ, Eldering E, van Lier RAW, Florquin S, Ten Berge IJM, Hamann J. Viral double-stranded RNA sensors induce antiviral, pro-inflammatory, and pro-apoptotic responses in human renal tubular epithelial cells. Kidney Int 2012; 82:664-75. [PMID: 22648297 DOI: 10.1038/ki.2012.206] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Viral infection in the kidney is characterized by tubular injury induced directly by the virus and/or by cytotoxic lymphocytes. Previously, we found that human tubular epithelial cells express Toll-like receptor 3 (TLR3), melanoma differentiation-associated gene 5 (MDA5), and retinoic acid-inducible gene-I (RIG-I), all sensors of double-stranded RNA (dsRNA) and potent inducers of antiviral activity. Here, we demonstrate increased expression of these three dsRNA sensors in kidney transplant biopsies during cytomegalovirus or BK virus infection. In primary tubular epithelial cells, dsRNA sensor activation induced the production of pro-inflammatory TNF-α and antiviral IFN-β. Notably, dsRNA also enhanced the expression of pro-apoptotic proteins; however, dsRNA alone did not cause cell death due to the expression of anti-apoptotic proteins. The dsRNA sensitized tubular epithelial cells to apoptosis induced by an agonistic antibody against the Fas receptor (CD95), an apoptotic pathway that eliminates infected cells. These findings indicate that tubular epithelial cells require at least two signals to undergo apoptosis, which can help preserve tubular integrity even under inflammatory conditions. Thus, sensors of viral dsRNA promote antiviral, pro-inflammatory, and pro-apoptotic responses in tubular epithelial cells, which may orchestrate the control of viral infection in the kidney.
Collapse
Affiliation(s)
- Kirstin M Heutinck
- Department of Experimental Immunology, Academic Medical Center, Amsterdam, The Netherlands.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Yapici Ü, Kers J, Bemelman FJ, Roelofs JJTH, Groothoff JW, van der Loos CM, van Donselaar-van der Pant KAMI, Idu MM, Claessen N, ten Berge IJM, Florquin S. Interleukin-17 positive cells accumulate in renal allografts during acute rejection and are independent predictors of worse graft outcome. Transpl Int 2011; 24:1008-17. [DOI: 10.1111/j.1432-2277.2011.01302.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|