1
|
Lin X, Lai Y. Scarring Skin: Mechanisms and Therapies. Int J Mol Sci 2024; 25:1458. [PMID: 38338767 PMCID: PMC10855152 DOI: 10.3390/ijms25031458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 01/19/2024] [Accepted: 01/20/2024] [Indexed: 02/12/2024] Open
Abstract
Skin injury always results in fibrotic, non-functional scars in adults. Although multiple factors are well-known contributors to scar formation, the precise underlying mechanisms remain elusive. This review aims to elucidate the intricacies of the wound healing process, summarize the known factors driving skin cells in wounds toward a scarring fate, and particularly to discuss the impact of fibroblast heterogeneity on scar formation. To the end, we explore potential therapeutic interventions used in the treatment of scarring wounds.
Collapse
Affiliation(s)
- Xinye Lin
- Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai 200241, China;
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Yuping Lai
- Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai 200241, China;
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, School of Life Sciences, East China Normal University, Shanghai 200241, China
| |
Collapse
|
2
|
Periostin Augments Vascular Smooth Muscle Cell Calcification via β-Catenin Signaling. Biomolecules 2022; 12:biom12081157. [PMID: 36009051 PMCID: PMC9405747 DOI: 10.3390/biom12081157] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 08/16/2022] [Accepted: 08/18/2022] [Indexed: 11/26/2022] Open
Abstract
Medial vascular calcification is common in chronic kidney disease (CKD) and is closely linked to hyperphosphatemia. Vascular smooth muscle cells (VSMCs) can take up pro-calcific properties and actively augment vascular calcification. Various pro-inflammatory mediators are able to promote VSMC calcification. In this study, we investigated the effects and mechanisms of periostin, a matricellular signaling protein, in calcifying human VSMCs and human serum samples. As a result, periostin induced the mRNA expression of pro-calcific markers in VSMCs. Furthermore, periostin augmented the effects of β-glycerophosphate on the expression of pro-calcific markers and aggravated the calcification of VSMCs. A periostin treatment was associated with an increased β-catenin abundance as well as the expression of target genes. The pro-calcific effects of periostin were ameliorated by WNT/β-catenin pathway inhibitors. Moreover, a co-treatment with an integrin αvβ3-blocking antibody blunted the pro-calcific effects of periostin. The silencing of periostin reduced the effects of β-glycerophosphate on the expression of pro-calcific markers and the calcification of VSMCs. Elevated serum periostin levels were observed in hemodialysis patients compared with healthy controls. These observations identified periostin as an augmentative factor in VSMC calcification. The pro-calcific effects of periostin involve integrin αvβ3 and the activation of the WNT/β-catenin pathway. Thus, the inhibition of periostin may be beneficial to reduce the burden of vascular calcification in CKD patients.
Collapse
|
3
|
AlQudah M, Hale TM, Czubryt MP. Targeting the renin-angiotensin-aldosterone system in fibrosis. Matrix Biol 2020; 91-92:92-108. [PMID: 32422329 DOI: 10.1016/j.matbio.2020.04.005] [Citation(s) in RCA: 94] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 04/28/2020] [Accepted: 04/29/2020] [Indexed: 02/06/2023]
Abstract
Fibrosis is characterized by excessive deposition of extracellular matrix components such as collagen in tissues or organs. Fibrosis can develop in the heart, kidneys, liver, skin or any other body organ in response to injury or maladaptive reparative processes, reducing overall function and leading eventually to organ failure. A variety of cellular and molecular signaling mechanisms are involved in the pathogenesis of fibrosis. The renin-angiotensin-aldosterone system (RAAS) interacts with the potent Transforming Growth Factor β (TGFβ) pro-fibrotic pathway to mediate fibrosis in many cell and tissue types. RAAS consists of both classical and alternative pathways, which act to potentiate or antagonize fibrotic signaling mechanisms, respectively. This review provides an overview of recent literature describing the roles of RAAS in the pathogenesis of fibrosis, particularly in the liver, heart, kidney and skin, and with a focus on RAAS interactions with TGFβ signaling. Targeting RAAS to combat fibrosis represents a promising therapeutic approach, particularly given the lack of strategies for treating fibrosis as its own entity, thus animal and clinical studies to examine the impact of natural and synthetic substances to alter RAAS signaling as a means to treat fibrosis are reviewed as well.
Collapse
Affiliation(s)
- Mohammad AlQudah
- Department of Physiology and Pathophysiology, Rady Faculty of Health Sciences, University of Manitoba, Canada; Department of Physiology and Biochemistry, College of Medicine, Jordan University of Science and Technology, Jordan
| | - Taben M Hale
- Department of Basic Medical Sciences, University of Arizona College of Medicine Phoenix, United States
| | - Michael P Czubryt
- Department of Physiology and Pathophysiology, Rady Faculty of Health Sciences, University of Manitoba, Canada.
| |
Collapse
|
4
|
Yemanyi F, Vranka J, Raghunathan V. Generating cell-derived matrices from human trabecular meshwork cell cultures for mechanistic studies. Methods Cell Biol 2020; 156:271-307. [PMID: 32222223 DOI: 10.1016/bs.mcb.2019.10.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Ocular hypertension has been attributed to increased resistance to aqueous outflow often as a result of changes in trabecular meshwork (TM) extracellular matrix (ECM) using in vivo animal models (for example, by genetic manipulation) and ex vivo anterior segment perfusion organ cultures. These are, however, complex and difficult in dissecting molecular mechanisms and interactions. In vitro approaches to mimic the underlying substrate exist by manipulating either ECM topography, mechanics, or chemistry. These models best investigate the role of individual ECM protein(s) and/or substrate property, and thus do not recapitulate the multifactorial extracellular microenvironment; hence, mitigating its physiological relevance for mechanistic studies. Cell-derived matrices (CDMs), however, are capable of presenting a 3D-microenvironment rich in topography, chemistry, and whose mechanics can be tuned to better represent the network of native ECM constituents in vivo. Critically, the composition of CDMs may also be fine-tuned by addition of small molecules or relevant bioactive factors to mimic homeostasis or pathology. Here, we first provide a streamlined protocol for generating CDMs from TM cell cultures from normal or glaucomatous donor tissues. Second, we document how TM cells can be pharmacologically manipulated to obtain glucocorticoid-induced CDMs and how generated pristine CDMs can be manipulated with reagents like genipin. Finally, we summarize how CDMs may be used in mechanistic studies and discuss their probable application in future TM regenerative studies.
Collapse
Affiliation(s)
- Felix Yemanyi
- Department of Basic Sciences, University of Houston, Houston, TX, United States
| | - Janice Vranka
- Casey Eye Institute, Oregon Health and Science University, Portland, OR, United States
| | - VijayKrishna Raghunathan
- Department of Basic Sciences, University of Houston, Houston, TX, United States; The Ocular Surface Institute, College of Optometry, University of Houston, Houston, TX, United States; Department of Biomedical Engineering, Cullen College of Engineering, University of Houston, Houston, TX, United States.
| |
Collapse
|
5
|
Abstract
The ECM (extracellular matrix) network plays a crucial role in cardiac homeostasis, not only by providing structural support, but also by facilitating force transmission, and by transducing key signals to cardiomyocytes, vascular cells, and interstitial cells. Changes in the profile and biochemistry of the ECM may be critically implicated in the pathogenesis of both heart failure with reduced ejection fraction and heart failure with preserved ejection fraction. The patterns of molecular and biochemical ECM alterations in failing hearts are dependent on the type of underlying injury. Pressure overload triggers early activation of a matrix-synthetic program in cardiac fibroblasts, inducing myofibroblast conversion, and stimulating synthesis of both structural and matricellular ECM proteins. Expansion of the cardiac ECM may increase myocardial stiffness promoting diastolic dysfunction. Cardiomyocytes, vascular cells and immune cells, activated through mechanosensitive pathways or neurohumoral mediators may play a critical role in fibroblast activation through secretion of cytokines and growth factors. Sustained pressure overload leads to dilative remodeling and systolic dysfunction that may be mediated by changes in the interstitial protease/antiprotease balance. On the other hand, ischemic injury causes dynamic changes in the cardiac ECM that contribute to regulation of inflammation and repair and may mediate adverse cardiac remodeling. In other pathophysiologic conditions, such as volume overload, diabetes mellitus, and obesity, the cell biological effectors mediating ECM remodeling are poorly understood and the molecular links between the primary insult and the changes in the matrix environment are unknown. This review article discusses the role of ECM macromolecules in heart failure, focusing on both structural ECM proteins (such as fibrillar and nonfibrillar collagens), and specialized injury-associated matrix macromolecules (such as fibronectin and matricellular proteins). Understanding the role of the ECM in heart failure may identify therapeutic targets to reduce geometric remodeling, to attenuate cardiomyocyte dysfunction, and even to promote myocardial regeneration.
Collapse
Affiliation(s)
- Nikolaos G Frangogiannis
- From the Wilf Family Cardiovascular Research Institute, Department of Medicine (Cardiology), Albert Einstein College of Medicine, Bronx, NY
| |
Collapse
|
6
|
Bian X, Su X, Wang Y, Zhao G, Zhang B, Li D. Periostin contributes to renal and cardiac dysfunction in rats with chronic kidney disease: Reduction of PPARα. Biochimie 2019; 160:172-182. [DOI: 10.1016/j.biochi.2019.03.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Accepted: 03/06/2019] [Indexed: 12/20/2022]
|
7
|
Wen L, Chen J, Duan L, Li S. Vitamin K‑dependent proteins involved in bone and cardiovascular health (Review). Mol Med Rep 2018; 18:3-15. [PMID: 29749440 PMCID: PMC6059683 DOI: 10.3892/mmr.2018.8940] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Accepted: 02/13/2018] [Indexed: 12/19/2022] Open
Abstract
In postmenopausal women and elderly men, bone density decreases with age and vascular calcification is aggravated. This condition is closely associated with vitamin K2 deficiency. A total of 17 different vitamin K-dependent proteins have been identified to date. Vitamin K-dependent proteins are located within the bone, heart and blood vessels. For instance, carboxylated osteocalcin is beneficial for bone and aids the deposition of calcium into the bone matrix. Carboxylated matrix Gla protein effectively protects blood vessels and may prevent calcification within the vascular wall. Furthermore, carboxylated Gla-rich protein has been reported to act as an inhibitor in the calcification of the cardiovascular system, while growth arrest-specific protein-6 protects endothelial cells and vascular smooth muscle cells, resists apoptosis and inhibits the calcification of blood vessels by inhibiting the apoptosis of vascular smooth muscle cells. In addition, periostin may promote the differentiation, aggregation, adhesion and proliferation of osteoblasts. Periostin also occurs in the heart and may be associated with the reconstruction of heart function. These vitamin K-dependent proteins may exert their functions following γ-carboxylation with vitamin K, and different vitamin K-dependent proteins may exhibit synergistic effects or antagonistic effects on each other. In the cardiovascular system with vitamin K antagonist supplement or vitamin K deficiency, calcification occurs in the endothelium of blood vessels and vascular smooth muscle cells are transformed into osteoblast-like cells, a phenomenon that resembles bone growth. Both the bone and cardiovascular system are closely associated during embryonic development. Thus, the present study hypothesized that embryonic developmental position and tissue calcification may have a certain association for the bone and the cardiovascular system. This review describes and briefly discusses several important vitamin K-dependent proteins that serve an important role in bone and the cardiovascular system. The results of the review suggest that the vascular calcification and osteogenic differentiation of vascular smooth muscle cells may be associated with the location of the bone and cardiovascular system during embryonic development.
Collapse
Affiliation(s)
- Lianpu Wen
- Department of Physiology, Dalian Medical University, Dalian, Liaoning 116044, P.R. China
| | - Jiepeng Chen
- Sungen Bioscience Co., Ltd., Shantou, Guangdong 515000, P.R. China
| | - Lili Duan
- Sungen Bioscience Co., Ltd., Shantou, Guangdong 515000, P.R. China
| | - Shuzhuang Li
- Department of Physiology, Dalian Medical University, Dalian, Liaoning 116044, P.R. China
| |
Collapse
|
8
|
Baracho NCDV, Kangussu LM, Prestes TRR, Silveira KDD, Pereira RM, Rocha NP, Silva ACSE. Characterization of an experimental model of progressive renal disease in rats. Acta Cir Bras 2016; 31:744-752. [DOI: 10.1590/s0102-865020160110000007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Accepted: 10/18/2016] [Indexed: 01/01/2023] Open
|
9
|
Danziger J, Young RL, Shea MK, Tracy RP, Ix JH, Jenny NS, Mukamal KJ. Vitamin K-Dependent Protein Activity and Incident Ischemic Cardiovascular Disease: The Multi-Ethnic Study of Atherosclerosis. Arterioscler Thromb Vasc Biol 2016; 36:1037-42. [PMID: 27034472 PMCID: PMC5844474 DOI: 10.1161/atvbaha.116.307273] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Accepted: 03/14/2016] [Indexed: 12/24/2022]
Abstract
OBJECTIVE Vitamin K-dependent proteins (VKDPs), which require post-translational modification to achieve biological activity, seem to contribute to thrombus formation, vascular calcification, and vessel stiffness. Whether VKDP activity is prospectively associated with incident cardiovascular disease has not been studied. APPROACH AND RESULTS VKDP activity was determined by measuring circulating des-γ-carboxy prothrombin concentrations in a random sample of 709 multiethnic adults free of cardiovascular disease drawn from the Multi-Ethnic Study of Atherosclerosis (MESA). Lower des-γ-carboxy prothrombin concentrations reflect greater VKDP activity. Subjects were followed up for the risk of ischemic cardiovascular disease (coronary heart disease, stroke, and fatal cardiovascular disease) for 11.0 years of follow-up. A total of 75 first ischemic CVD events occurred during follow-up. The incidence of ischemic cardiovascular disease increased progressively across des-γ-carboxy prothrombin quartiles, with event rates of 5.9 and 11.7 per 1000 person-years in the lowest and highest quartiles. In analyses adjusted for traditional cardiovascular risk factors and measures of vitamin K intake, a doubling of des-γ-carboxy prothrombin concentration was associated with a 1.53 (95% confidence interval, 1.09-2.13; P=0.008) higher risk of incident ischemic cardiovascular disease. The association was consistent across strata of participants with diabetes mellitus, hypertension, renal impairment, and low vitamin K nutritional intake. CONCLUSIONS In this sample of middle-aged and older adults, VKDP activity was associated with incident ischemic cardiovascular events. Further studies to understand the role of this large class of proteins in cardiovascular disease are warranted.
Collapse
Affiliation(s)
- John Danziger
- From the Department of Medicine, Beth Israel Deaconess Medical Center, Boston, MA (J.D., K.J.M.); Department of Biostatistics, University of Washington, Seattle (R.L.Y.); Human Nutrition Research Center on Aging, Tufts University, Boston, MA (K.M.S.); College of Medicine (R.P.T.) and Department of Pathology (N.S.J.), University of Vermont, Burlington; and Nephrology Section, Veterans Affairs San Diego Healthcare System, CA (J.H.I.).
| | - Rebekah L Young
- From the Department of Medicine, Beth Israel Deaconess Medical Center, Boston, MA (J.D., K.J.M.); Department of Biostatistics, University of Washington, Seattle (R.L.Y.); Human Nutrition Research Center on Aging, Tufts University, Boston, MA (K.M.S.); College of Medicine (R.P.T.) and Department of Pathology (N.S.J.), University of Vermont, Burlington; and Nephrology Section, Veterans Affairs San Diego Healthcare System, CA (J.H.I.)
| | - M Kyla Shea
- From the Department of Medicine, Beth Israel Deaconess Medical Center, Boston, MA (J.D., K.J.M.); Department of Biostatistics, University of Washington, Seattle (R.L.Y.); Human Nutrition Research Center on Aging, Tufts University, Boston, MA (K.M.S.); College of Medicine (R.P.T.) and Department of Pathology (N.S.J.), University of Vermont, Burlington; and Nephrology Section, Veterans Affairs San Diego Healthcare System, CA (J.H.I.)
| | - Russell P Tracy
- From the Department of Medicine, Beth Israel Deaconess Medical Center, Boston, MA (J.D., K.J.M.); Department of Biostatistics, University of Washington, Seattle (R.L.Y.); Human Nutrition Research Center on Aging, Tufts University, Boston, MA (K.M.S.); College of Medicine (R.P.T.) and Department of Pathology (N.S.J.), University of Vermont, Burlington; and Nephrology Section, Veterans Affairs San Diego Healthcare System, CA (J.H.I.)
| | - Joachim H Ix
- From the Department of Medicine, Beth Israel Deaconess Medical Center, Boston, MA (J.D., K.J.M.); Department of Biostatistics, University of Washington, Seattle (R.L.Y.); Human Nutrition Research Center on Aging, Tufts University, Boston, MA (K.M.S.); College of Medicine (R.P.T.) and Department of Pathology (N.S.J.), University of Vermont, Burlington; and Nephrology Section, Veterans Affairs San Diego Healthcare System, CA (J.H.I.)
| | - Nancy S Jenny
- From the Department of Medicine, Beth Israel Deaconess Medical Center, Boston, MA (J.D., K.J.M.); Department of Biostatistics, University of Washington, Seattle (R.L.Y.); Human Nutrition Research Center on Aging, Tufts University, Boston, MA (K.M.S.); College of Medicine (R.P.T.) and Department of Pathology (N.S.J.), University of Vermont, Burlington; and Nephrology Section, Veterans Affairs San Diego Healthcare System, CA (J.H.I.)
| | - Kenneth J Mukamal
- From the Department of Medicine, Beth Israel Deaconess Medical Center, Boston, MA (J.D., K.J.M.); Department of Biostatistics, University of Washington, Seattle (R.L.Y.); Human Nutrition Research Center on Aging, Tufts University, Boston, MA (K.M.S.); College of Medicine (R.P.T.) and Department of Pathology (N.S.J.), University of Vermont, Burlington; and Nephrology Section, Veterans Affairs San Diego Healthcare System, CA (J.H.I.)
| |
Collapse
|
10
|
Ma HB, Wang R, Yu KZ, Yu C. Dynamic changes of early-stage aortic lipid deposition in chronic renal failure rats and effects of decorin gene therapy. Exp Ther Med 2015; 9:591-597. [PMID: 25574240 PMCID: PMC4280988 DOI: 10.3892/etm.2014.2106] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2014] [Accepted: 09/22/2014] [Indexed: 11/05/2022] Open
Abstract
The aim of the present study was to clarify the association between lipid metabolism and the atherosclerosis in early-stage chronic renal failure at the molecular level and to explore the efficacy of decorin on chronic renal failure. Sprague Dawley rats receiving 5/6 nephrectomy and Sham surgery were divided into control and experimental groups. Sprague Dawley rats receiving 5/6 nephrectomy were divided into control and experimental groups, and the experimental group was further subdivided into rats receiving treatment with fibroblasts (FBs) transfected either with empty vector and with a decorin (DCN) gene. The dynamic levels of triglyceride (TG), total cholesterol (T-Ch) and total phospholipid (T-PL) were detected on the 10th, 30th and 60th days. The body weight, blood lipid levels, renal function and renal tissue were observed after four weeks, and transforming growth factor-βl and protein expression was detected by immunohistochemistry. In total, 4 weeks after treatment, the DCN expression in the renal tissue of rats treated with DCN-transfected FBs was significantly increased compared to that in the control rats. The results showed that the levels of the three lipids in the aortic arches were slightly elevated on the 10th day compared with those in the control group, and the TG level was significantly increased on the 30th day. The levels of T-Ch, TG and T-PL in the aortic arches were significantly elevated on the 60th day. The TG and T-Ch levels in the plasma and aortic tissues of Sprague Dawley rats receiving 5/6 nephrectomy without any treatment and after receiving treatment with FBs transfected with empty vector were significantly increased compared with those in the control group. The increased T-Ch and decreased T-PL levels in the erythrocyte membrane increased the rigidity of the erythrocyte and decreased erythrocyte deformability. In conclusion, highly expressed DCN mitigated renal fibrosis and thus delayed renal failure as well as mitigating the abnormal lipid metabolism of the chronic renal failure.
Collapse
Affiliation(s)
- Hong-Bo Ma
- Department of Nephrology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, P.R. China
| | - Rong Wang
- Department of Nephrology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, P.R. China
| | - Ke-Zhou Yu
- Department of Nephrology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, P.R. China
| | - Che Yu
- Department of Nephrology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, P.R. China
| |
Collapse
|
11
|
Raghunathan VK, Morgan JT, Chang YR, Weber D, Phinney B, Murphy CJ, Russell P. Transforming Growth Factor Beta 3 Modifies Mechanics and Composition of Extracellular Matrix Deposited by Human Trabecular Meshwork Cells. ACS Biomater Sci Eng 2015; 1:110-118. [PMID: 30882039 DOI: 10.1021/ab500060r] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Pseudoexfoliation syndrome is a systemic disorder of the extracellular matrix (ECM) with ocular manifestations in the form of chronic open angle glaucoma. Elevated levels of TGFβ3 in the aqueous humor of individuals with pseudoexfoliation glaucoma (PEX) have been reported. The influence of TGFβ3 on the biochemical composition and biomechanics of ECM of human trabecular meshwork (HTM) cells was investigated. HTM cells from eye bank donor eyes were isolated, plated on aminosilane functionalized glass substrates and cultured in the presence or absence of 1 ng/mL TGFβ3 for 4 weeks. After incubation, samples were decellularized and decellularization was verified by immunostaining. The mechanics of the remaining ECM that was deposited by the treated or the control cells were measured by atomic force microscopy (AFM). Imaged by AFM, the surface features of the ECM from both sets of samples had a similar roughness/topography (as determined by RMS values) suggesting surface features of the ECM were similar in both cases; however, the ECM from the HTM cells treated with TGFβ3 was between 3- and 5-fold stiffer than that produced by the control HTM cells. Proteins present in the ECM were solubilized and analyzed using liquid chromatography tandem mass spectroscopy (LC-MS/MS). Data indicate that multiple proteins previously reported to be altered in glaucoma were changed in the ECM as a result of the presence of TGFβ3, including inhibitors of the BMP and Wnt signaling pathways. Gremlin1and 4, SERPINE1 and 2, periostin, secreted frizzled related protein (SFRP) 1 and 4, and ANGPTL4 were among those proteins that were overexpressed in the ECM after TGFβ3 treatment.
Collapse
Affiliation(s)
- Vijay Krishna Raghunathan
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California, Davis, California 95616, United States
| | - Joshua T Morgan
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California, Davis, California 95616, United States
| | - Yow-Ren Chang
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California, Davis, California 95616, United States
| | - Darren Weber
- UC Davis Genome Center Proteomics Core Facility, University of California, Davis, California 95616, United States
| | - Brett Phinney
- UC Davis Genome Center Proteomics Core Facility, University of California, Davis, California 95616, United States
| | - Christopher J Murphy
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California, Davis, California 95616, United States.,Department of Ophthalmology and Vision Sciences, School of Medicine, University of California, Davis, California 95616, United States
| | - Paul Russell
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California, Davis, California 95616, United States
| |
Collapse
|
12
|
Zhao S, Wu H, Xia W, Chen X, Zhu S, Zhang S, Shao Y, Ma W, Yang D, Zhang J. Periostin expression is upregulated and associated with myocardial fibrosis in human failing hearts. J Cardiol 2014; 63:373-8. [DOI: 10.1016/j.jjcc.2013.09.013] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2013] [Revised: 08/30/2013] [Accepted: 09/30/2013] [Indexed: 11/26/2022]
|
13
|
Mael-Ainin M, Abed A, Conway SJ, Dussaule JC, Chatziantoniou C. Inhibition of periostin expression protects against the development of renal inflammation and fibrosis. J Am Soc Nephrol 2014; 25:1724-36. [PMID: 24578131 DOI: 10.1681/asn.2013060664] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Increased renal expression of periostin, a protein normally involved in embryonic and dental development, correlates with the decline of renal function in experimental models and patient biopsies. Because periostin has been reported to induce cell differentiation, we investigated whether it is also involved in the development of renal disease and whether blocking its abnormal expression improves renal function and/or structure. After unilateral ureteral obstruction in wild-type mice, we observed a progressive increase in the expression and synthesis of periostin in the obstructed kidney that associated with the progression of renal lesions. In contrast, mice lacking the periostin gene showed less injury-induced interstitial fibrosis and inflammation and were protected against structural alterations. This protection was associated with a preservation of the renal epithelial phenotype. In vitro, administration of TGF-β to renal epithelial cells increased the expression of periostin several-fold, leading to subsequent loss of the epithelial phenotype. Furthermore, treatment of these cells with periostin increased the expression of collagen I and stimulated the phosphorylation of FAK, p38, and ERK 42/44. In vivo delivery of antisense oligonucleotides to inhibit periostin expression protected animals from L-NAME-induced renal injury. These data strongly suggest that periostin mediates renal disease in response to TGF-β and that blocking periostin may be a promising therapeutic strategy against the development of CKD.
Collapse
Affiliation(s)
- Mouna Mael-Ainin
- Institut National de la Santé Et de la Recherche Médicale UMRS 702, Tenon Hospital, Paris, France; Sorbonne Universités, UPMC Univ Paris 06, Paris, France
| | - Ahmed Abed
- Institut National de la Santé Et de la Recherche Médicale UMRS 702, Tenon Hospital, Paris, France; Sorbonne Universités, UPMC Univ Paris 06, Paris, France
| | - Simon J Conway
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, Indiana; and
| | - Jean-Claude Dussaule
- Institut National de la Santé Et de la Recherche Médicale UMRS 702, Tenon Hospital, Paris, France; Sorbonne Universités, UPMC Univ Paris 06, Paris, France; Department of Physiology, Saint-Antoine Hospital, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Christos Chatziantoniou
- Institut National de la Santé Et de la Recherche Médicale UMRS 702, Tenon Hospital, Paris, France; Sorbonne Universités, UPMC Univ Paris 06, Paris, France;
| |
Collapse
|
14
|
Braun N, Sen K, Alscher MD, Fritz P, Kimmel M, Morelle J, Goffin E, Jörres A, Wüthrich RP, Cohen CD, Segerer S. Periostin: a matricellular protein involved in peritoneal injury during peritoneal dialysis. Perit Dial Int 2013; 33:515-28. [PMID: 23378472 DOI: 10.3747/pdi.2010.00259] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
BACKGROUND Periostin is a matricellular protein involved in tissue remodeling through the promotion of adhesion, cell survival, cellular dedifferentiation, and fibrogenesis. It can be induced by transforming growth factor beta and high glucose concentrations. We hypothesized that this protein might be expressed in the peritoneal cavity of patients on peritoneal dialysis (PD) and even more in patients with signs of encapsulating peritoneal sclerosis (EPS). METHOD In this retrospective study, we included peritoneal biopsies from patients on PD with EPS (n = 7) and without signs of EPS (n = 10), and we compared them with biopsies taken during hernia repair from patients not on PD (n = 11) and during various procedures from uremic patients not on PD (n = 6). Periostin was localized by immunohistochemistry, scored semiquantitatively, and quantified by morphometry. Periostin protein concentrations were measured by ELISA in dialysates from 15 patients. Periostin messenger RNA was quantified in vitro in peritoneal fibroblasts. RESULTS In control biopsies, periostin was present in the walls of larger arteries and focally in extracellular matrix in the submesothelial zone. Patients on PD demonstrated interstitial periostin in variable amounts depending on the severity of submesothelial fibrosis. In EPS, periostin expression was very prominent in the sclerosis layer. The area of periostin was significantly larger in EPS biopsies than in control biopsies, and the percentage of periostin-positive area correlated with the thickness of the submesothelial fibrosis zone. Periostin concentrations in dialysate increased significantly with time on PD in patients without signs of EPS; in patients with EPS, periostin concentrations in dialysate were low and demonstrated the smallest increase with time. In vitro, periostin was found to be strongly expressed by peritoneal fibroblasts. CONCLUSION Periostin is strongly expressed by fibroblasts and deposited in the peritoneal cavity of patients with EPS and with simple peritoneal fibrosis on PD. This protein might play a role in the progression of peritoneal injury, and low levels of periostin after prolonged time on PD might be a marker of EPS.
Collapse
Affiliation(s)
- Niko Braun
- Department of Internal Medicine,1 Division of General Internal Medicine and Nephrology, Robert-Bosch-Hospital, and Institute of Digital Medicine,2 Stuttgart, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Wu G, Wang X, Zhang X. Clinical implications of periostin in the liver metastasis of colorectal cancer. Cancer Biother Radiopharm 2013; 28:298-302. [PMID: 23347152 DOI: 10.1089/cbr.2012.1374] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
AIM To investigate the expression status of periostin in colorectal cancer (CRC) to lay a foundation for managing this disease. METHODS Periostin expression status was detected by immunohistochemistry staining in 720 CRC specimens. The relationship between the periostin protein and clinicopathological factors and prognosis was subsequently determined. RESULT The periostin protein was expressed significantly higher in CD133+ tumor cells compared to CD133- tumor cells. Positively expressed periostin was observed in 218 (30.28%) of the 720 cases. Spearman correlation analysis showed that periostin expression has a linear correlation to the tumor size, histological type, lymph node metastasis, TNM stage, and postoperative liver metastasis (p=0.02, 0.035, 0.001, 0.001, and 0.001, respectively). Multivariate analysis showed that histological type, lymph node metastasis, TNM stage, and periostin were found to be related to liver metastasis (p=0.01, 0.035, 0.01, and 0.001, respectively). In the Cox regression test, the histological grade, Lymph node metastasis, TNM stage, and periostin were detected as independent prognostic factors (p=0.01, 0.001, 0.001, and 0.001, respectively). CONCLUSION Periostin was found to be related to the liver metastasis of CRC and may be a potential target for CRC.
Collapse
Affiliation(s)
- Guoqiang Wu
- 1 Department of General Surgery, The General Hospital of ShenYang Military Area Command , Shenyang, China
| | | | | |
Collapse
|
16
|
Meems LMG, Cannon MV, Mahmud H, Voors AA, van Gilst WH, Silljé HHW, Ruifrok WPT, de Boer RA. The vitamin D receptor activator paricalcitol prevents fibrosis and diastolic dysfunction in a murine model of pressure overload. J Steroid Biochem Mol Biol 2012; 132:282-9. [PMID: 22800987 DOI: 10.1016/j.jsbmb.2012.06.004] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2012] [Revised: 06/21/2012] [Accepted: 06/24/2012] [Indexed: 12/16/2022]
Abstract
BACKGROUND Activation of the vitamin D-vitamin D receptor (VDR) axis has been shown to reduce blood pressure and left ventricular (LV) hypertrophy. Besides cardiac hypertrophy, cardiac fibrosis is a key element of adverse cardiac remodeling. We hypothesized that activation of the VDR by paricalcitol would prevent fibrosis and LV diastolic dysfunction in an established murine model of cardiac remodeling. METHODS Mice were subjected to transverse aortic constriction (TAC) to induce cardiac hypertrophy. Mice were treated with paricalcitol, losartan, or a combination of both for a period of four consecutive weeks. RESULTS The fixed aortic constriction caused similar increase in blood pressure, both in untreated and paricalcitol- or losartan-treated mice. TAC significantly increased LV weight compared to sham operated animals (10.2±0.7 vs. 6.9±0.3 mg/mm, p<0.05). Administration of either paricalcitol (10.5±0.7), losartan (10.8±0.4), or a combination of both (9.2±0.6) did not reduce LV weight. Fibrosis was significantly increased in mice undergoing TAC (5.9±1.0 vs. sham 2.4±0.8%, p<0.05). Treatment with losartan and paricalcitol reduced fibrosis (paricalcitol 1.6±0.3% and losartan 2.9±0.6%, both p<0.05 vs. TAC). This reduction in fibrosis in paricalcitol treated mice was associated with improved indices of LV contraction and relaxation, e.g. dPdtmax and dPdtmin and lower LV end diastolic pressure, and relaxation constant Tau. Also, treatment with paricalcitol and losartan reduced mRNA expression of ANP, fibronectin, collagen III and TIMP-1. DISCUSSION Treatment with the selective VDR activator paricalcitol reduces myocardial fibrosis and preserves diastolic LV function due to pressure overload in a mouse model. This is associated with a reduced percentage of fibrosis and a decreased expression of ANP and several other tissue markers.
Collapse
Affiliation(s)
- Laura M G Meems
- Department of Cardiology, University of Groningen, University Medical Center Groningen, P.O. Box 30.001, Postal code AB43, 9700 RB Groningen, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Xu D, Xu H, Ren Y, Liu C, Wang X, Zhang H, Lu P. Cancer stem cell-related gene periostin: a novel prognostic marker for breast cancer. PLoS One 2012; 7:e46670. [PMID: 23056395 PMCID: PMC3467269 DOI: 10.1371/journal.pone.0046670] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2012] [Accepted: 09/03/2012] [Indexed: 11/18/2022] Open
Abstract
We investigated the expression status of periostin in breast cancer stem cells and its clinical implications in order to lay a foundation for managing breast cancer. CD44+/CD24−/line- tumor cells (CSC) from clinical specimens were sorted using flow cytometry. Periostin expression status was detected in CSC cells and 1,086 breast cancer specimens by Western blot and immunohistochemistry staining, with the CSC ratio determined by immunofluorescence double staining. The relationship between the periostin protein and clinico-pathological parameters and prognosis was subsequently determined. As a result, CSC cells are more likely to generate new tumors in mice and cell microspheres that are deficient in NOD/SCID compared to the control group. Periostin protein was expressed higher in CSC cells compared to the control cells and was found to be related to CSC chemotherapy resistance. Moreover, periostin expression was found to be related to the CSC ratio in 1,086 breast cancer specimens (P = 0.001). In total, 334 (30.76%) of the 1,086 breast cases showed high periostin expression. After universal and Spearman regression correlation analysis, periostin was observed to be related to histological grade, CSC ratio, lymph node metastasis, tumor size, and triple-negative breast cancer (all P<0.05). Furthermore, periostin was shown to attain a significantly more distant bone metastasis and worse disease-specific survival than those with none or low-expressed periostin protein (P = 0.001). In the Cox regression test, periostin protein was detected as an independent prognostic factor (P = 0.001). In conclusion, periostin was found to be related to the CSC and an independent prognostic factor for breast cancer. It is also perhaps a potential target to breast cancer.
Collapse
Affiliation(s)
- Dongyang Xu
- Ultrasound Department, First Hospital of China Medical University, Shenyang, China
| | - Hong Xu
- Department of Breast Surgery, Tumor Hospital of Liaoning Province, Shenyang, Liaoning Province, People’s Republic of China
| | - Ying Ren
- Radiology Department, Shengjing Hospital of China Medical University, Shenyang, Liaoning Province, People’s Republic of China
| | - Caigang Liu
- Department of Breast Surgery, General Surgery, First Hospital of China Medical University, Shenyang, Liaoning Province, People’s Republic of China
- * E-mail: (CL); (XW)
| | - Xuemei Wang
- Ultrasound Department, First Hospital of China Medical University, Shenyang, China
- * E-mail: (CL); (XW)
| | - Hao Zhang
- Ultrasound Department, First Hospital of China Medical University, Shenyang, China
| | - Ping Lu
- Ultrasound Department, First Hospital of China Medical University, Shenyang, China
| |
Collapse
|
18
|
Identification of periostin as a critical marker of progression/reversal of hypertensive nephropathy. PLoS One 2012; 7:e31974. [PMID: 22403621 PMCID: PMC3293874 DOI: 10.1371/journal.pone.0031974] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2011] [Accepted: 01/16/2012] [Indexed: 12/31/2022] Open
Abstract
Progression of chronic kidney disease (CKD) is a major health issue due to persistent accumulation of extracellular matrix in the injured kidney. However, our current understanding of fibrosis is limited, therapeutic options are lacking, and progressive degradation of renal function prevails in CKD patients. Uncovering novel therapeutic targets is therefore necessary.We have previously demonstrated reversal of renal fibrosis with losartan in experimental hypertensive nephropathy. Reversal was achieved provided that the drug was administered before late stages of nephropathy, thereby determining a non-return point of CKD progression. In the present study, to identify factors critically involved in the progression of renal fibrosis, we introduced losartan at the non-return point in L-NAME treated Sprague Dawley rats. Our results showed either reversal or progression of renal disease with losartan, defining 2 groups according to the opposite evolution of renal function. We took advantage of these experimental conditions to perform a transcriptomic screening to identify novel factors potentially implicated in the mechanisms of CKD progression. A secondary analysis of selected markers was thereafter performed. Among the targets identified, periostin, an extracellular matrix protein, presented a significant 3.3-fold higher mRNA expression in progression compared to reversal group. Furthermore, independent of blood pressure, periostin was strongly correlated with plasma creatinine, proteinuria and renal blood flow, hallmarks of hypertensive renal disease severity. Periostin staining was predominant in the injured regions, both in experimental hypertensive and human nephropathy.These results identify periostin as a previously unrecognized marker associated with disease progression and regression in hypertensive nephropathy and suggest measuring periostin may be a sensitive tool to evaluate severity, progression and response to therapy in human kidney disease associated to hypertension.
Collapse
|