1
|
Yu T, Mai Z, Zhang S, Wang S, Yang W, Ruan Z, Li P, Guo F, Zhang Y, Li J, Wang L, Lin C, Zheng L. ACVR1 mediates renal tubular EMT in kidney fibrosis via AKT activation. Cell Signal 2024; 125:111521. [PMID: 39586521 DOI: 10.1016/j.cellsig.2024.111521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 11/06/2024] [Accepted: 11/18/2024] [Indexed: 11/27/2024]
Abstract
Tubulointerstitial fibrosis in the kidneys is a chronic and progressive process. Although studies suggested that tubular epithelial-mesenchymal transition (EMT) plays a key role in the development of kidney fibrosis, whether ACVR1, a member of the TGFβ superfamily, is involved in the EMT needs to be illustrated. Using bioinformatics analysis of bulk-seq data (GSE23338 and GSE168876), we found that TGF-β1 perhaps activated the PI3K/AKT signaling pathway and induced the mRNA expression of ACVR1, fibronectin, and Collagen I in HK-2 cells (human renal tubular epithelial cell line). Furthermore, qPCR and western blotting results confirmed the high expressions of ACVR1 and EMT markers in TGFβ-induced HK-2 cells. Similar results were also found in the UUO mouse model. Besides, different time-point immunofluorescent staining indicated a positive correlation between the expression of the ACVR1 and EMT marker vimentin in TGF-β1-induced HK-2 cells. Consequently, knockdown ACVR1 effectively inhibited the expression of TGF-β1-induced EMT markers and AKT phosphorylation in HK-2 cells. Moreover, treatment of HK-2 cells with MK2206 (an allosteric inhibitor of AKT) decreased the activation of AKT and the expression of α-SMA while treatment of cells with SC79 (a AKT activator) enhanced the expression of α-SMA. These findings suggest that ACVR1 regulated the EMT of renal tubular epithelial cells through activation of the AKT signaling pathway and that ACVR1 could be considered novel therapeutic targets for renal fibrosis.
Collapse
Affiliation(s)
- Tianli Yu
- School of Basic Medical Sciences, Guangdong Pharmaceutical University, Guangzhou 510006, Guangdong, PR China
| | - Zhangyu Mai
- School of Basic Medical Sciences, Guangdong Pharmaceutical University, Guangzhou 510006, Guangdong, PR China
| | - Shunhui Zhang
- School of Basic Medical Sciences, Guangdong Pharmaceutical University, Guangzhou 510006, Guangdong, PR China
| | - Shunyi Wang
- School of Basic Medical Sciences, Guangdong Pharmaceutical University, Guangzhou 510006, Guangdong, PR China
| | - Wenjin Yang
- School of Basic Medical Sciences, Guangdong Pharmaceutical University, Guangzhou 510006, Guangdong, PR China
| | - Zhang Ruan
- School of Basic Medical Sciences, Guangdong Pharmaceutical University, Guangzhou 510006, Guangdong, PR China
| | - Pinxian Li
- School of Basic Medical Sciences, Guangdong Pharmaceutical University, Guangzhou 510006, Guangdong, PR China
| | - Fujia Guo
- School of Basic Medical Sciences, Guangdong Pharmaceutical University, Guangzhou 510006, Guangdong, PR China
| | - Yining Zhang
- School of Basic Medical Sciences, Guangdong Pharmaceutical University, Guangzhou 510006, Guangdong, PR China
| | - Jiangchao Li
- School of Basic Medical Sciences, Guangdong Pharmaceutical University, Guangzhou 510006, Guangdong, PR China
| | - Lijing Wang
- School of Basic Medical Sciences, Guangdong Pharmaceutical University, Guangzhou 510006, Guangdong, PR China
| | - Caixia Lin
- School of Basic Medical Sciences, Guangdong Pharmaceutical University, Guangzhou 510006, Guangdong, PR China.
| | - Lingyun Zheng
- School of Basic Medical Sciences, Guangdong Pharmaceutical University, Guangzhou 510006, Guangdong, PR China.
| |
Collapse
|
2
|
Li C, Li X, Niu M, Xiao D, Luo Y, Wang Y, Fang ZE, Zhan X, Zhao X, Fang M, Wang J, Xiao X, Bai Z. Unveiling correlations between aristolochic acids and liver cancer: spatiotemporal heterogeneity phenomenon. Chin Med 2024; 19:132. [PMID: 39342223 PMCID: PMC11439320 DOI: 10.1186/s13020-024-01003-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 09/14/2024] [Indexed: 10/01/2024] Open
Abstract
Aristolochic acids are a class of naturally occurring compounds in Aristolochiaceae that have similar structural skeletons and chemical properties. Exposure to aristolochic acids is a risk factor for severe kidney disease and urinary system cancer. However, the carcinogenicity of aristolochic acids to the liver, which is the main site of aristolochic acid metabolism, is unclear. Although the characteristic fingerprint of aristolochic acid-induced mutations has been detected in the liver and aristolochic acids are known to be hepatotoxic, whether aristolochic acids can directly cause liver cancer is yet to be verified. This review summarizes the findings of long-term carcinogenicity studies of aristolochic acids in experimental animals. We propose that spatiotemporal heterogeneity in the carcinogenicity of these phytochemicals could explain why direct evidence of aristolochic acids causing liver cancer has never been found in adult individuals. We also summarized the reported approaches to mitigate aristolochic acid-induced hepatotoxicity to better address the associated global safety issue and provide directions and recommendations for future investigation.
Collapse
Affiliation(s)
- Chengxian Li
- Department of Liver Disease, Fifth Medical Center of Chinese PLA General Hospital, Beijing, 100039, China
- Evidence-Based Medicine Center, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin, 301617, China
| | - Xinyu Li
- Department of Liver Disease, Fifth Medical Center of Chinese PLA General Hospital, Beijing, 100039, China
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China
| | - Ming Niu
- Department of Hematology, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, 100071, China
| | - Dake Xiao
- Department of Liver Disease, Fifth Medical Center of Chinese PLA General Hospital, Beijing, 100039, China
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, 100069, China
| | - Ye Luo
- Department of Liver Disease, Fifth Medical Center of Chinese PLA General Hospital, Beijing, 100039, China
| | - Yinkang Wang
- Department of Liver Disease, Fifth Medical Center of Chinese PLA General Hospital, Beijing, 100039, China
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Zhi-E Fang
- Department of Pharmacy, Chongqing Hospital of Traditional Chinese Medicine, Chongqing, 400021, China
| | - Xiaoyan Zhan
- Department of Liver Disease, Fifth Medical Center of Chinese PLA General Hospital, Beijing, 100039, China
- National Key Laboratory of Kidney Diseases, Beijing, 100039, China
| | - Xu Zhao
- Department of Liver Disease, Fifth Medical Center of Chinese PLA General Hospital, Beijing, 100039, China
| | - Mingxia Fang
- Department of Liver Disease, Fifth Medical Center of Chinese PLA General Hospital, Beijing, 100039, China
| | - Jiabo Wang
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, 100069, China.
| | - Xiaohe Xiao
- Department of Liver Disease, Fifth Medical Center of Chinese PLA General Hospital, Beijing, 100039, China.
- National Key Laboratory of Kidney Diseases, Beijing, 100039, China.
| | - Zhaofang Bai
- Department of Liver Disease, Fifth Medical Center of Chinese PLA General Hospital, Beijing, 100039, China.
- National Key Laboratory of Kidney Diseases, Beijing, 100039, China.
| |
Collapse
|
3
|
Moldvai D, Sztankovics D, Dankó T, Vetlényi E, Petővári G, Márk Á, Patonai A, Végső G, Piros L, Hosszú Á, Pápay J, Krencz I, Sebestyén A. Tumorigenic role of tacrolimus through mTORC1/C2 activation in post-transplant renal cell carcinomas. Br J Cancer 2024; 130:1119-1130. [PMID: 38341510 PMCID: PMC10991560 DOI: 10.1038/s41416-024-02597-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 01/19/2024] [Accepted: 01/22/2024] [Indexed: 02/12/2024] Open
Abstract
BACKGROUND Kidney transplant recipients (KTRs) face an increased risk of renal cell carcinoma (RCC), in which the immunosuppressive regimen plays an important role. This study aimed to identify intracellular signalling alterations associated with post-transplant (post-tx) tumour formation. METHODS Expression of mTOR-related proteins were analysed in kidneys obtained from end-stage renal disease (ESRD) patients and RCCs developed in KTRs or non-transplant patients. The effects of tacrolimus (TAC) and rapamycin (RAPA) on mTOR activity, proliferation, and tumour growth were investigated through different in vitro and in vivo experiments. RESULTS Elevated mTORC1/C2 activity was observed in post-tx RCCs and in kidneys of TAC-treated ESRD patients. In vitro experiments demonstrated that TAC increases mTOR activity in a normal tubular epithelial cell line and in the investigated RCC cell lines, moreover, promotes the proliferation of some RCC cell line. In vivo, TAC elevated mTORC1/C2 activity in ischaemic kidneys of mice and enhanced tumour growth in xenograft model. CONCLUSIONS We observed significantly increased mTOR activity in ischaemic kidneys and post-tx RCCs, which highlights involvement of mTOR pathway both in the healing or fibrotic processes of kidney and in tumorigenesis. TAC-treatment further augmented the already elevated mTOR activity of injured kidney, potentially contributing to tumorigenesis during immunosuppression.
Collapse
Affiliation(s)
- Dorottya Moldvai
- Department of Pathology and Experimental Cancer Research, Semmelweis University, Üllői út 26., H-1085, Budapest, Hungary
| | - Dániel Sztankovics
- Department of Pathology and Experimental Cancer Research, Semmelweis University, Üllői út 26., H-1085, Budapest, Hungary
| | - Titanilla Dankó
- Department of Pathology and Experimental Cancer Research, Semmelweis University, Üllői út 26., H-1085, Budapest, Hungary
| | - Enikő Vetlényi
- Department of Pathology and Experimental Cancer Research, Semmelweis University, Üllői út 26., H-1085, Budapest, Hungary
| | - Gábor Petővári
- Department of Pathology and Experimental Cancer Research, Semmelweis University, Üllői út 26., H-1085, Budapest, Hungary
| | - Ágnes Márk
- Department of Pathology and Experimental Cancer Research, Semmelweis University, Üllői út 26., H-1085, Budapest, Hungary
| | - Attila Patonai
- Department of Surgery, Transplantation and Gastroenterology, Semmelweis University, Üllői út 78., H-1082, Budapest, Hungary
| | - Gyula Végső
- Department of Surgery, Transplantation and Gastroenterology, Semmelweis University, Üllői út 78., H-1082, Budapest, Hungary
| | - László Piros
- Department of Surgery, Transplantation and Gastroenterology, Semmelweis University, Üllői út 78., H-1082, Budapest, Hungary
| | - Ádám Hosszú
- Department of Paediatrics (Bókay street Unit), Semmelweis University, Üllői út. 26, H-1085, Budapest, Hungary
- MTA-SE Lendulet Diabetes Research Group, Bókay János utca 53-54., H-1083, Budapest, Hungary
| | - Judit Pápay
- Department of Pathology and Experimental Cancer Research, Semmelweis University, Üllői út 26., H-1085, Budapest, Hungary
| | - Ildikó Krencz
- Department of Pathology and Experimental Cancer Research, Semmelweis University, Üllői út 26., H-1085, Budapest, Hungary
| | - Anna Sebestyén
- Department of Pathology and Experimental Cancer Research, Semmelweis University, Üllői út 26., H-1085, Budapest, Hungary.
| |
Collapse
|
4
|
Afshar K, Sanaei MJ, Ravari MS, Pourbagheri-Sigaroodi A, Bashash D. An overview of extracellular matrix and its remodeling in the development of cancer and metastasis with a glance at therapeutic approaches. Cell Biochem Funct 2023; 41:930-952. [PMID: 37665068 DOI: 10.1002/cbf.3846] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 08/16/2023] [Accepted: 08/21/2023] [Indexed: 09/05/2023]
Abstract
The extracellular matrix (ECM) is an inevitable part of tissues able to provide structural support for cells depending on the purpose of tissues and organs. The dynamic characteristics of ECM let this system fluently interact with the extrinsic triggers and get stiffed, remodeled, and/or degraded ending in maintaining tissue homeostasis. ECM could serve as the platform for cancer progression. The dysregulation of biochemical and biomechanical ECM features might take participate in some pathological conditions such as aging, tissue destruction, fibrosis, and particularly cancer. Tumors can reprogram how ECM remodels by producing factors able to induce protein synthesis, matrix proteinase expression, degradation of the basement membrane, growth signals and proliferation, angiogenesis, and metastasis. Therefore, targeting the ECM components, their secretion, and their interactions with other cells or tumors could be a promising strategy in cancer therapies. The present study initially introduces the physiological functions of ECM and then discusses how tumor-dependent dysregulation of ECM could facilitate cancer progression and ends with reviewing the novel therapeutic strategies regarding ECM.
Collapse
Affiliation(s)
- Kimiya Afshar
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad-Javad Sanaei
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mehrnaz Sadat Ravari
- Research Center for Hydatid Disease in Iran, Kerman University of Medical Sciences, Kerman, Iran
| | - Atieh Pourbagheri-Sigaroodi
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Davood Bashash
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
5
|
Hou X, Luan J, Fu S. Multi-functional gene ZNF281 identified as a molecular biomarker in soft tissue regeneration and pan-cancer progression. Front Genet 2023; 13:1082654. [PMID: 36685971 PMCID: PMC9849369 DOI: 10.3389/fgene.2022.1082654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 12/15/2022] [Indexed: 01/06/2023] Open
Abstract
Regeneration and tumorigenesis are indicated as related processes, while regeneration leads to life and the outcome of tumorigenesis is death. Here, we show the upregulation of zfp281 (zinc finger 281) in our adipose de novo regeneration model through RNA-seq analysis. Then, we validated the upregulation of zfp281 in adipose regeneration via immunofluorescence. Following that, we found that ZNF281 (the human homolog of Zfp281) was upregulated in most types of cancer and related to worse prognosis in 10 tumors. We further investigated the role of ZNF281 in cervical squamous cell carcinoma and endocervical adenocarcinoma (CESC), pancreatic adenocarcinoma (PAAD), and stomach adenocarcinoma (STAD) and confirmed the high accuracy in the clinical diagnostic feature. Beyond that, based on these three types of cancers, we analyzed the ZNF281-related tumor immune infiltration and DNA methylation sites and finally built risk prediction models for future disease diagnosis. Taken together, our findings provide new insights into the dual role of ZNF281, and we found that it was a potential biomarker for regeneration and tumor prognosis.
Collapse
Affiliation(s)
| | - Jie Luan
- *Correspondence: Jie Luan, ; Su Fu,
| | - Su Fu
- *Correspondence: Jie Luan, ; Su Fu,
| |
Collapse
|
6
|
Zhu Z, Zhou X, Du H, Cloer EW, Zhang J, Mei L, Wang Y, Tan X, Hepperla AJ, Simon JM, Cook JG, Major MB, Dotti G, Liu P. STING Suppresses Mitochondrial VDAC2 to Govern RCC Growth Independent of Innate Immunity. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2203718. [PMID: 36445063 PMCID: PMC9875608 DOI: 10.1002/advs.202203718] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 11/10/2022] [Indexed: 05/02/2023]
Abstract
STING is an innate immune sensor for immune surveillance of viral/bacterial infection and maintenance of an immune-friendly microenvironment to prevent tumorigenesis. However, if and how STING exerts innate immunity-independent function remains elusive. Here, the authors report that STING expression is increased in renal cell carcinoma (RCC) patients and governs tumor growth through non-canonical innate immune signaling involving mitochondrial ROS maintenance and calcium homeostasis. Mitochondrial voltage-dependent anion channel VDAC2 is identified as a new STING binding partner. STING depletion potentiates VDAC2/GRP75-mediated MERC (mitochondria-ER contact) formation to increase mitochondrial ROS/calcium levels, impairs mitochondria function, and suppresses mTORC1/S6K signaling leading to RCC growth retardation. STING interaction with VDAC2 occurs through STING-C88/C91 palmitoylation and inhibiting STING palmitoyl-transferases ZDHHCs by 2-BP significantly impedes RCC cell growth alone or in combination with sorafenib. Together, these studies reveal an innate immunity-independent function of STING in regulating mitochondrial function and growth in RCC, providing a rationale to target the STING/VDAC2 interaction in treating RCC.
Collapse
Affiliation(s)
- Zhichuan Zhu
- Lineberger Comprehensive Cancer CenterThe University of North Carolina at Chapel HillChapel HillNC27599USA
- Department of Biochemistry and BiophysicsThe University of North Carolina at Chapel HillChapel HillNC27599USA
| | - Xin Zhou
- Lineberger Comprehensive Cancer CenterThe University of North Carolina at Chapel HillChapel HillNC27599USA
- Department of Microbiology and ImmunologyThe University of North Carolina at Chapel HillChapel HillNC27599USA
| | - Hongwei Du
- Lineberger Comprehensive Cancer CenterThe University of North Carolina at Chapel HillChapel HillNC27599USA
- Department of Microbiology and ImmunologyThe University of North Carolina at Chapel HillChapel HillNC27599USA
| | - Erica W. Cloer
- Lineberger Comprehensive Cancer CenterThe University of North Carolina at Chapel HillChapel HillNC27599USA
| | - Jiaming Zhang
- Department of Oral MedicineInfection and ImmunityHarvard School of Dental MedicineBostonMA02115USA
| | - Liu Mei
- Department of Biochemistry and BiophysicsThe University of North Carolina at Chapel HillChapel HillNC27599USA
| | - Ying Wang
- Lineberger Comprehensive Cancer CenterThe University of North Carolina at Chapel HillChapel HillNC27599USA
- Department of Biochemistry and BiophysicsThe University of North Carolina at Chapel HillChapel HillNC27599USA
| | - Xianming Tan
- Lineberger Comprehensive Cancer CenterThe University of North Carolina at Chapel HillChapel HillNC27599USA
- Department of BiostatisticsThe University of North Carolina at Chapel HillChapel HillNC27599USA
| | - Austin J. Hepperla
- Lineberger Comprehensive Cancer CenterThe University of North Carolina at Chapel HillChapel HillNC27599USA
- Carolina Institute for Developmental DisabilitiesThe University of North Carolina at Chapel HillChapel HillNC27599USA
- UNC Neuroscience CenterThe University of North Carolina at Chapel HillChapel HillNC27599USA
| | - Jeremy M. Simon
- Lineberger Comprehensive Cancer CenterThe University of North Carolina at Chapel HillChapel HillNC27599USA
- Carolina Institute for Developmental DisabilitiesThe University of North Carolina at Chapel HillChapel HillNC27599USA
- UNC Neuroscience CenterThe University of North Carolina at Chapel HillChapel HillNC27599USA
- Department of GeneticsThe University of North Carolina at Chapel HillChapel HillNC27599USA
| | - Jeanette Gowen Cook
- Lineberger Comprehensive Cancer CenterThe University of North Carolina at Chapel HillChapel HillNC27599USA
- Department of Biochemistry and BiophysicsThe University of North Carolina at Chapel HillChapel HillNC27599USA
| | - Michael B. Major
- Department of Cell Biology and PhysiologyDepartment of OtolaryngologyWashington University in St. LouisSt. LouisMO63130USA
| | - Gianpietro Dotti
- Lineberger Comprehensive Cancer CenterThe University of North Carolina at Chapel HillChapel HillNC27599USA
- Department of Microbiology and ImmunologyThe University of North Carolina at Chapel HillChapel HillNC27599USA
| | - Pengda Liu
- Lineberger Comprehensive Cancer CenterThe University of North Carolina at Chapel HillChapel HillNC27599USA
- Department of Biochemistry and BiophysicsThe University of North Carolina at Chapel HillChapel HillNC27599USA
| |
Collapse
|
7
|
Motofei IG. Biology of cancer; from cellular and molecular mechanisms to developmental processes and adaptation. Semin Cancer Biol 2022; 86:600-615. [PMID: 34695580 DOI: 10.1016/j.semcancer.2021.10.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 09/21/2021] [Accepted: 10/10/2021] [Indexed: 02/07/2023]
Abstract
Cancer research has been largely focused on the cellular and molecular levels of investigation. Recent data show that not only the cell but also the extracellular matrix plays a major role in the progression of malignancy. In this way, the cells and the extracellular matrix create a specific local microenvironment that supports malignant development. At the same time, cancer implies a systemic evolution which is closely related to developmental processes and adaptation. Consequently, there is currently a real gap between the local investigation of cancer at the microenvironmental level, and the pathophysiological approach to cancer as a systemic disease. In fact, the cells and the matrix are not only complementary structures but also interdependent components that act synergistically. Such relationships lead to cell-matrix integration, a supracellular form of biological organization that supports tissue development. The emergence of this supracellular level of organization, as a structure, leads to the emergence of the supracellular control of proliferation, as a supracellular function. In humans, proliferation is generally involved in developmental processes and adaptation. These processes suppose a specific configuration at the systemic level, which generates high-order guidance for local supracellular control of proliferation. In conclusion, the supracellular control of proliferation act as an interface between the downstream level of cell division and differentiation, and upstream level of developmental processes and adaptation. Understanding these processes and their disorders is useful not only to complete the big picture of malignancy as a systemic disease, but also to open new treatment perspectives in the form of etiopathogenic (supracellular or informational) therapies.
Collapse
Affiliation(s)
- Ion G Motofei
- Department of Oncology/ Surgery, Carol Davila University, St. Pantelimon Hospital, Dionisie Lupu Street, No. 37, Bucharest, 020021, Romania.
| |
Collapse
|
8
|
Inhibitory Effects of Rhein on Renal Interstitial Fibrosis via the SHH-Gli1 Signal Pathway. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:4398265. [PMID: 35966731 PMCID: PMC9374561 DOI: 10.1155/2022/4398265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 03/21/2022] [Accepted: 04/11/2022] [Indexed: 11/17/2022]
Abstract
Background. Rhein is the main extract of Rheum palmatum L., which has been proved to improve the renal function of chronic kidney disease, but its mechanism is not clear. Therefore, this experiment explored the potential pharmacological effect of rhein on renal interstitial fibrosis rats. Methods. This study explores the potential pharmacological action of rhein. In this work, we investigate the potential pharmacological action of rhein in unilateral urethral obstruction (UUO) rats. Thirty Sprague Dawley rats were randomly divided into three groups: sham, UUO, and rhein (rhein-treated UUO rats) groups. The left ureters of the UUO group rats were exposed and bluntly dissected. The rhein group rats were administered an intragastric gavage of rhein (2 mg·kg−1·d−1) for 14 d. Kidney function-related indicators were monitored in these rats, while indexes of pathologic aspects were determined histologically. The expression of α-SMA, TGF-β1, SHH, Gli1, and Snail was quantified using real-time polymerase chain reaction and western blotting. The NRK-49F cells were incubated with and without SHH (100 ng·ml−1) for 48 hours. The SHH-activated NRK-49F cells were incubated with cyclopamine (CNP, 20 umol L−1) or rhein (1 ng·ml−1). The Gli1 and Snail mRNA and protein level were detected. Results. In the in vivo experiment, the results exhibited that UUO caused renal pathological damages. However, these changes could be significantly reversed by the administration of rhein. Compared with the untreated UUO group, the rhein group showed reduced kidney tubular atrophy and necrosis, interstitial fibrosis, hyperplasia, and abnormal deposition of extracellular matrix. Rhein reduced the RNA and protein expression of SHH, Gli1, and Snail of the UUO rats. In the in vitro experiment, CNP or rhein treatment decreased the expression of Gli1 and Snail on mRNA and protein levels in SHH-induced NRK-49F cells, suggesting that CNP or rhein suppresses SHH-induced NRK-49F activation. Taken together, these results demonstrated that rhein suppresses SHH-Gli1-Snail signal pathway activation, with potential implications for the treatment of renal fibrosis. Conclusions. Treatment with rhein remarkably ameliorated renal interstitial fibrosis in UUO rats by regulating the SHH-Gli1-Snail signal pathway.
Collapse
|
9
|
Qin JC, Yu WT, Li HX, Liang YQ, Nong FF, Wen B. Cold exposure and capsaicin promote 1,2-dimethylhyrazine-induced colon carcinogenesis in rats correlates with extracellular matrix remodeling. World J Gastroenterol 2021; 27:6615-6630. [PMID: 34754156 PMCID: PMC8554402 DOI: 10.3748/wjg.v27.i39.6615] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 07/02/2021] [Accepted: 07/30/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Extracellular matrix (ECM) remodeling and stiffening, which are correlated with tumor malignancy, drives tumor development. However, the relationship between ECM remodeling and rat experimental model of 1,2-dimethylhyrazine (DMH)-induced colorectal cancer (CRC) imposed by cold and capsaicin exposure remains unclear.
AIM To explore the effects of cold exposure and capsaicin on ECM remodeling and ECM enzymes in DMH-induced CRC.
METHODS For histopathological analysis, the sections of colon tissues were stained with hematoxylin and eosin, Masson’s trichrome, Picrosirius red, and Weigert’s Resorcin-Fuchsin to observe the remodeling of collagen and elastin. Additionally, the protein expression level of type I collagen (COL I), type 3 collagen (COL III0, elastin, matrix metalloproteinase (MMP) 1, MMP2, MMP9, and tissue-specific matrix metalloproteinase 1 (TIMP1) was assessed by immunohistochemistry. The messenger RNA (mRNA) levels of COL I, COL III, elastin, and lysyl oxidase-like-2 (LOXL2) in the colon tissues of rats was measured by reverse-transcriptase quantitative polymerase chain reaction.
RESULTS Although no differences were observed in the proportion of adenomas, a trend towards the increase of invasive tumors was observed in the cold and capsaicin group. The cold exposure group had a metastasis rate compared with the other groups. Additionally, abnormal accumulation of both collagen and elastin was observed in the cold exposure and capsaicin group. Specifically, collagen quantitative analysis showed increased length, width, angle, and straightness compared with the DMH group. Collagen deposition and straightness were significantly increased in the cold exposure group compared with the capsaicin group. Cold exposure and capsaicin significantly increased the protein levels of COL I, elastin, and LOXL2 along with increases in their mRNA levels in the colon tissues compared with the DMH group, while COL III did not show a significant difference. Furthermore, in immunohistochemical evaluations, MMP1, MMP2, MMP9, and TIMP1 staining increased in the cold exposure and capsaicin group compared with the DMH group.
CONCLUSION These results suggest that chronic cold and capsaicin exposure further increased the deposition of collagen and elastin in the colonic tissue. Increased COL I and elastin mRNA and protein levels expression may account for the enhanced ECM remodel and stiffness variations of colon tissue. The upregulated expression of the LOXL2 and physiological imbalance between MMP/TIMP activation and deactivation could contribute to the progression of the CRC resulting from cold and capsaicin exposure.
Collapse
Affiliation(s)
- Jing-Chun Qin
- Institute of Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangdong 530001, Guangdong Province, China
- Liuzhou People’s Hospital, Guangxi, 545006, Guangxi Province China
| | - Wei-Tao Yu
- Traditional Chinese Medicine Department, The Second People’s Hospital of Lianyungang, Lianyungang 222000, Jiangsu Province, China
| | - Hui-Xuan Li
- National Center for Respiratory Medicine, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, State Key Laboratory of Respiratory Disease and National Clinical Research Center for Respiratory Disease, Guangdong 510000, Guangdong Province, China
| | - Yu-Qi Liang
- Institute of Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangdong 530001, Guangdong Province, China
| | - Fei-Fei Nong
- Institute of Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangdong 530001, Guangdong Province, China
| | - Bin Wen
- Institute of Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangdong 530001, Guangdong Province, China
| |
Collapse
|
10
|
Pradhan RN, Krishnamurty AT, Fletcher AL, Turley SJ, Müller S. A bird's eye view of fibroblast heterogeneity: A pan-disease, pan-cancer perspective. Immunol Rev 2021; 302:299-320. [PMID: 34164824 DOI: 10.1111/imr.12990] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 05/14/2021] [Indexed: 02/07/2023]
Abstract
Fibroblasts, custodians of tissue architecture and function, are no longer considered a monolithic entity across tissues and disease indications. Recent advances in single-cell technologies provide an unrestricted, high-resolution view of fibroblast heterogeneity that exists within and across tissues. In this review, we summarize a compendium of single-cell transcriptomic studies and provide a comprehensive accounting of fibroblast subsets, many of which have been described to occupy specific niches in tissues at homeostatic and pathologic states. Understanding this heterogeneity is particularly important in the context of cancer, as the diverse cancer-associated fibroblast (CAF) phenotypes in the tumor microenvironment (TME) are directly impacted by the expression phenotypes of their predecessors. Relationships between these heterogeneous populations often accompany and influence response to therapy in cancer and fibrosis. We further highlight the importance of integrating single-cell studies to deduce common fibroblast phenotypes across disease states, which will facilitate the identification of common signaling pathways, gene regulatory programs, and cell surface markers that are going to advance drug discovery and targeting.
Collapse
|
11
|
Landolt L, Spagnoli GC, Hertig A, Brocheriou I, Marti HP. Fibrosis and cancer: shared features and mechanisms suggest common targeted therapeutic approaches. Nephrol Dial Transplant 2020; 37:1024-1032. [PMID: 33280031 DOI: 10.1093/ndt/gfaa301] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Indexed: 12/17/2022] Open
Abstract
Epidemiological studies support a strong link between organ fibrosis and epithelial cancers. Moreover, clinical and experimental investigations consistently indicate that these diseases intertwine and share strikingly overlapping features. As a deregulated response to injury occurring in all body tissues, fibrosis is characterized by activation of fibroblasts and immune cells, contributing to progressive deposition of extracellular matrix (ECM) and inflammation. Cancers are driven by genetic alterations resulting in dysregulated cell survival, proliferation and dissemination. However, non-cancerous components of tumour tissues including fibroblasts, inflammatory cells and ECM play key roles in oncogenesis and cancer progression by providing a pro-mutagenic environment where cancer cells can develop, favouring their survival, expansion and invasiveness. Additional commonalities of fibrosis and cancer are also represented by overproduction of growth factors, like transforming growth factor β, epithelial-to-mesenchymal transition, high oxidative stress, Hippo pathway dysfunctions and enhanced cellular senescence. Here, we review advances in the analysis of cellular and molecular mechanisms involved in the pathogenesis of both organ fibrosis and cancer, with particular reference to chronic kidney diseases and renal cell cancers. Most importantly, improved understanding of common features is contributing to the development of innovative treatment strategies targeting shared mechanisms.
Collapse
Affiliation(s)
- Lea Landolt
- Department of Clinical Medicine, University of Bergen, Bergen, Norway.,Department of Medicine, Haukeland University Hospital, Bergen, Norway
| | - Giulio C Spagnoli
- National Research Council, Institute of Translational Pharmacology, Rome, Italy
| | - Alexandre Hertig
- Sorbonne Université, INSERM UMR S1155, Pitié-Salpêtrière Hospital, APHP6, Paris, France and
| | - Isabelle Brocheriou
- Sorbonne Université, INSERM UMR S1155, Pitié-Salpêtrière Hospital, APHP6, Paris, France and.,Department of Pathology, Pitié-Salpêtrière Hospital, Paris, France
| | - Hans-Peter Marti
- Department of Clinical Medicine, University of Bergen, Bergen, Norway.,Department of Medicine, Haukeland University Hospital, Bergen, Norway
| |
Collapse
|
12
|
Leslie J, Macia MG, Luli S, Worrell JC, Reilly WJ, Paish HL, Knox A, Barksby BS, Gee LM, Zaki MYW, Collins AL, Burgoyne RA, Cameron R, Bragg C, Xu X, Chung GW, Brown CDA, Blanchard AD, Nanthakumar CB, Karsdal M, Robinson SM, Manas DM, Sen G, French J, White SA, Murphy S, Trost M, Zakrzewski JL, Klein U, Schwabe RF, Mederacke I, Nixon C, Bird T, Teuwen LA, Schoonjans L, Carmeliet P, Mann J, Fisher AJ, Sheerin NS, Borthwick LA, Mann DA, Oakley F. c-Rel orchestrates energy-dependent epithelial and macrophage reprogramming in fibrosis. Nat Metab 2020; 2:1350-1367. [PMID: 33168981 PMCID: PMC7116435 DOI: 10.1038/s42255-020-00306-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Accepted: 09/30/2020] [Indexed: 02/07/2023]
Abstract
Fibrosis is a common pathological feature of chronic disease. Deletion of the NF-κB subunit c-Rel limits fibrosis in multiple organs, although the mechanistic nature of this protection is unresolved. Using cell-specific gene-targeting manipulations in mice undergoing liver damage, we elucidate a critical role for c-Rel in controlling metabolic changes required for inflammatory and fibrogenic activities of hepatocytes and macrophages and identify Pfkfb3 as the key downstream metabolic mediator of this response. Independent deletions of Rel in hepatocytes or macrophages suppressed liver fibrosis induced by carbon tetrachloride, while combined deletion had an additive anti-fibrogenic effect. In transforming growth factor-β1-induced hepatocytes, c-Rel regulates expression of a pro-fibrogenic secretome comprising inflammatory molecules and connective tissue growth factor, the latter promoting collagen secretion from HMs. Macrophages lacking c-Rel fail to polarize to M1 or M2 states, explaining reduced fibrosis in RelΔLysM mice. Pharmacological inhibition of c-Rel attenuated multi-organ fibrosis in both murine and human fibrosis. In conclusion, activation of c-Rel/Pfkfb3 in damaged tissue instigates a paracrine signalling network among epithelial, myeloid and mesenchymal cells to stimulate fibrogenesis. Targeting the c-Rel-Pfkfb3 axis has potential for therapeutic applications in fibrotic disease.
Collapse
Affiliation(s)
- Jack Leslie
- Newcastle Fibrosis Research Group, Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK.
| | - Marina García Macia
- Newcastle Fibrosis Research Group, Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Saimir Luli
- Newcastle Fibrosis Research Group, Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Julie C Worrell
- Newcastle Fibrosis Research Group, Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - William J Reilly
- Newcastle Fibrosis Research Group, Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Hannah L Paish
- Newcastle Fibrosis Research Group, Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Amber Knox
- Newcastle Fibrosis Research Group, Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Ben S Barksby
- Newcastle Fibrosis Research Group, Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Lucy M Gee
- Newcastle Fibrosis Research Group, Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Marco Y W Zaki
- Newcastle Fibrosis Research Group, Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
- Biochemistry Department, Faculty of Pharmacy, Minia University, Minia, Egypt
| | - Amy L Collins
- Newcastle Fibrosis Research Group, Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Rachel A Burgoyne
- Newcastle Fibrosis Research Group, Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Rainie Cameron
- Newcastle Fibrosis Research Group, Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Charlotte Bragg
- Newcastle Fibrosis Research Group, Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Xin Xu
- Newcastle Fibrosis Research Group, Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Git W Chung
- Newcells Biotech, The Biosphere, Newcastle Helix, Newcastle upon Tyne, UK
| | - Colin D A Brown
- Newcells Biotech, The Biosphere, Newcastle Helix, Newcastle upon Tyne, UK
| | - Andrew D Blanchard
- Fibrosis Discovery Performance Unit, Respiratory Therapy Area, Medicines Research Centre, GlaxoSmithKline R&D, Stevenage, UK
| | - Carmel B Nanthakumar
- Fibrosis Discovery Performance Unit, Respiratory Therapy Area, Medicines Research Centre, GlaxoSmithKline R&D, Stevenage, UK
| | - Morten Karsdal
- Nordic Bioscience A/S, Biomarkers & Research, Herlev, Denmark
| | - Stuart M Robinson
- Department of Hepatobiliary Surgery, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Derek M Manas
- Department of Hepatobiliary Surgery, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Gourab Sen
- Department of Hepatobiliary Surgery, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Jeremy French
- Department of Hepatobiliary Surgery, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Steven A White
- Department of Hepatobiliary Surgery, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Sandra Murphy
- Newcastle Fibrosis Research Group, Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Matthias Trost
- Newcastle Fibrosis Research Group, Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Johannes L Zakrzewski
- Center for Discovery and Innovation and John Theurer Cancer Center, Hackensack University Medical Center, Hackensack, NJ, USA
| | - Ulf Klein
- Division of Haematology & Immunology, Leeds Institute of Medical Research at St. James's, University of Leeds, Leeds, UK
| | | | - Ingmar Mederacke
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany
| | - Colin Nixon
- Cancer Research UK Beatson Institute, Garscube Estate, Glasgow, UK
| | - Tom Bird
- Cancer Research UK Beatson Institute, Garscube Estate, Glasgow, UK
- Institute of Cancer Sciences, University of Glasgow, Garscube Estate, Glasgow, UK
- MRC Centre for Inflammation Research, The Queen's Medical Research Institute, University of Edinburgh, Edinburgh, UK
| | - Laure-Anne Teuwen
- Laboratory of Angiogenesis and Vascular Metabolism, Center for Cancer Biology, VIB, Leuven, Belgium
- Laboratory of Angiogenesis and Vascular Metabolism, Center for Cancer Biology, Department of Oncology and Leuven Cancer Institute (LKI), KU Leuven, Leuven, Belgium
| | - Luc Schoonjans
- Laboratory of Angiogenesis and Vascular Metabolism, Center for Cancer Biology, VIB, Leuven, Belgium
- Laboratory of Angiogenesis and Vascular Metabolism, Center for Cancer Biology, Department of Oncology and Leuven Cancer Institute (LKI), KU Leuven, Leuven, Belgium
| | - Peter Carmeliet
- Laboratory of Angiogenesis and Vascular Metabolism, Center for Cancer Biology, VIB, Leuven, Belgium
- Laboratory of Angiogenesis and Vascular Metabolism, Center for Cancer Biology, Department of Oncology and Leuven Cancer Institute (LKI), KU Leuven, Leuven, Belgium
| | - Jelena Mann
- Newcastle Fibrosis Research Group, Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
- Fibrofind, Medical School, Newcastle University, Newcastle upon Tyne, UK
| | - Andrew J Fisher
- Newcastle Fibrosis Research Group, Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
- Institute of Transplantation, The Freeman Hospital, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Neil S Sheerin
- Newcastle Fibrosis Research Group, Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Lee A Borthwick
- Newcastle Fibrosis Research Group, Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
- Fibrofind, Medical School, Newcastle University, Newcastle upon Tyne, UK
| | - Derek A Mann
- Newcastle Fibrosis Research Group, Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
- Fibrofind, Medical School, Newcastle University, Newcastle upon Tyne, UK
| | - Fiona Oakley
- Newcastle Fibrosis Research Group, Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK.
- Fibrofind, Medical School, Newcastle University, Newcastle upon Tyne, UK.
| |
Collapse
|
13
|
Gembillo G, Cernaro V, Siligato R, Curreri F, Catalano A, Santoro D. Protective Role of Vitamin D in Renal Tubulopathies. Metabolites 2020; 10:115. [PMID: 32204545 PMCID: PMC7142711 DOI: 10.3390/metabo10030115] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 03/13/2020] [Accepted: 03/17/2020] [Indexed: 02/06/2023] Open
Abstract
Vitamin D is tightly linked with renal tubular homeostasis: the mitochondria of proximal convoluted tubule cells are the production site of 1α,25-dihydroxyvitamin D3. Patients with renal impairment or tubular injury often suffer from chronic inflammation. This alteration comes from oxidative stress, acidosis, decreased clearance of inflammatory cytokines and stimulation of inflammatory factors. The challenge is to find the right formula for each patient to correctly modulate the landscape of treatment and preserve the essential functions of the organism without perturbating its homeostasis. The complexity of the counter-regulation mechanisms and the different axis involved in the Vitamin D equilibrium pose a major issue on Vitamin D as a potential effective anti-inflammatory drug. The therapeutic use of this compound should be able to inhibit the development of inflammation without interfering with normal homeostasis. Megalin-Cubilin-Amnionless and the FGF23-Klotho axis represent two Vitamin D-linked mechanisms that could modulate and ameliorate the damage response at the renal tubular level, balancing Vitamin D therapy with an effect potent enough to contrast the inflammatory cascades, but which avoids potential severe side effects.
Collapse
Affiliation(s)
- Guido Gembillo
- Unit of Nephrology and Dialysis, Department of Clinical and Experimental Medicine, University of Messina, Via Consolare Valeria, 98125 Messina, Italy; (V.C.); (R.S.)
| | - Valeria Cernaro
- Unit of Nephrology and Dialysis, Department of Clinical and Experimental Medicine, University of Messina, Via Consolare Valeria, 98125 Messina, Italy; (V.C.); (R.S.)
| | - Rossella Siligato
- Unit of Nephrology and Dialysis, Department of Clinical and Experimental Medicine, University of Messina, Via Consolare Valeria, 98125 Messina, Italy; (V.C.); (R.S.)
| | | | - Antonino Catalano
- Department of Clinical and Experimental Medicine, University of Messina, 98125 Messina, Italy;
| | - Domenico Santoro
- Unit of Nephrology and Dialysis, Department of Clinical and Experimental Medicine, University of Messina, Via Consolare Valeria, 98125 Messina, Italy; (V.C.); (R.S.)
| |
Collapse
|
14
|
Kulebyakin KY, Nimiritsky PP, Makarevich PI. Growth Factors in Regeneration and Regenerative Medicine: "the Cure and the Cause". Front Endocrinol (Lausanne) 2020; 11:384. [PMID: 32733378 PMCID: PMC7358447 DOI: 10.3389/fendo.2020.00384] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2019] [Accepted: 05/14/2020] [Indexed: 12/20/2022] Open
Abstract
The potential rapid advance of regenerative medicine was obstructed by findings that stimulation of human body regeneration is a much tougher mission than expected after the first cultures of stem and progenitor cells were established. In this mini review, we focus on the ambiguous role of growth factors in regeneration, discuss their evolutionary importance, and highlight them as the "cure and the cause" for successful or failed attempts to drive human body regeneration. We draw the reader's attention to evolutionary changes that occurred in growth factors and their receptor tyrosine kinases (RTKs) and how they established and shaped response to injury in metazoans. Discussing the well-known pleiotropy of growth factors, we propose an evolutionary rationale for their functioning in this specific way and focus on growth factors and RTKs as an amazing system that defines the multicellular nature of animals and highlight their participation in regeneration. We pinpoint potential bottlenecks in their application for human tissue regeneration and show their role in fibrosis/regeneration balance. This communication invites the reader to re-evaluate the functions of growth factors as keepers of natively existing communications between elements of tissue, which makes them a fundamental component of a successful regenerative strategy. Finally, we draw attention to the epigenetic landscape that may facilitate or block regeneration and give a brief insight into how it may define the outcome of injury.
Collapse
Affiliation(s)
- Konstantin Yu. Kulebyakin
- Faculty of Medicine, Lomonosov Moscow State University, Moscow, Russia
- Laboratory of Molecular Endocrinology, Institute for Regenerative Medicine, University Medical Research and Education Centre, Lomonosov Moscow State University, Moscow, Russia
| | - Peter P. Nimiritsky
- Faculty of Medicine, Lomonosov Moscow State University, Moscow, Russia
- Laboratory of Gene and Cell Therapy, Institute for Regenerative Medicine, University Medical Research and Education Centre, Lomonosov Moscow State University, Moscow, Russia
| | - Pavel I. Makarevich
- Faculty of Medicine, Lomonosov Moscow State University, Moscow, Russia
- Laboratory of Gene and Cell Therapy, Institute for Regenerative Medicine, University Medical Research and Education Centre, Lomonosov Moscow State University, Moscow, Russia
- *Correspondence: Pavel I. Makarevich
| |
Collapse
|
15
|
Kim CL, Choi SH, Mo JS. Role of the Hippo Pathway in Fibrosis and Cancer. Cells 2019; 8:cells8050468. [PMID: 31100975 PMCID: PMC6562634 DOI: 10.3390/cells8050468] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 05/10/2019] [Accepted: 05/14/2019] [Indexed: 12/12/2022] Open
Abstract
The Hippo pathway is the key player in various signaling processes, including organ development and maintenance of tissue homeostasis. This pathway comprises a core kinases module and transcriptional activation module, representing a highly conserved mechanism from Drosophila to vertebrates. The central MST1/2-LATS1/2 kinase cascade in this pathway negatively regulates YAP/TAZ transcription co-activators in a phosphorylation-dependent manner. Nuclear YAP/TAZ bind to transcription factors to stimulate gene expression, contributing to the regenerative potential and regulation of cell growth and death. Recent studies have also highlighted the potential role of Hippo pathway dysfunctions in the pathology of several diseases. Here, we review the functional characteristics of the Hippo pathway in organ fibrosis and tumorigenesis, and discuss its potential as new therapeutic targets.
Collapse
Affiliation(s)
- Cho-Long Kim
- Department of Biomedical Sciences, Cancer Biology Graduate Program, Ajou University Graduate School of Medicine, Suwon 16499, Korea.
| | - Sue-Hee Choi
- Department of Biomedical Sciences, Cancer Biology Graduate Program, Ajou University Graduate School of Medicine, Suwon 16499, Korea.
| | - Jung-Soon Mo
- Genomic Instability Research Center (GIRC), Ajou University School of Medicine, Suwon 16499, Korea.
| |
Collapse
|
16
|
Cernaro V, Coppolino G, Visconti L, Rivoli L, Lacquaniti A, Santoro D, Buemi A, Loddo S, Buemi M. Erythropoiesis and chronic kidney disease-related anemia: From physiology to new therapeutic advancements. Med Res Rev 2018; 39:427-460. [PMID: 30084153 DOI: 10.1002/med.21527] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2018] [Revised: 06/18/2018] [Accepted: 07/06/2018] [Indexed: 12/19/2022]
Abstract
Erythropoiesis is triggered by hypoxia and is strictly regulated by hormones, growth factors, cytokines, and vitamins to ensure an adequate oxygen delivery to all body cells. Abnormalities in one or more of these factors may induce different kinds of anemia requiring different treatments. A key player in red blood cell production is erythropoietin. It is a glycoprotein hormone, mainly produced by the kidneys, that promotes erythroid progenitor cell survival and differentiation in the bone marrow and regulates iron metabolism. A deficit in erythropoietin synthesis is the main cause of the normochromic normocytic anemia frequently observed in patients with progressive chronic kidney disease. The present review summarizes the most recent findings about each step of the erythropoietic process, going from the renal oxygen sensing system to the cascade of events induced by erythropoietin through its own receptor in the bone marrow. The paper also describes the new class of drugs designed to stabilize the hypoxia-inducible factor by inhibiting prolyl hydroxylase, with a discussion about their metabolism, disposition, efficacy, and safety. According to many trials, these drugs seem able to simulate tissue hypoxia and then stimulate erythropoiesis in patients affected by renal impairment. In conclusion, the in-depth investigation of all events involved in erythropoiesis is crucial to understand anemia pathophysiology and to identify new therapeutic strategies, in an attempt to overcome the potential side effects of the commonly used erythropoiesis-stimulating agents.
Collapse
Affiliation(s)
- Valeria Cernaro
- Chair of Nephrology, Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | - Giuseppe Coppolino
- Nephrology and Dialysis Unit, Department of Internal Medicine, "Pugliese-Ciaccio" Hospital of Catanzaro, Catanzaro, Italy
| | - Luca Visconti
- Chair of Nephrology, Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | - Laura Rivoli
- Unit of Nephrology, Department of Internal Medicine, Chivasso Hospital, Turin, Italy
| | - Antonio Lacquaniti
- Chair of Nephrology, Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | - Domenico Santoro
- Chair of Nephrology, Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | - Antoine Buemi
- Surgery and Abdominal Transplantation Division, Cliniques Universitaires Saint-Luc, Université Catholique De Louvain, Brussels, Belgium
| | - Saverio Loddo
- Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | - Michele Buemi
- Chair of Nephrology, Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| |
Collapse
|
17
|
Choudhari SS, Kulkarni DG, Sarode SC, Kheur SM, Patankar S. Is matrix stiffness a cause for malignant transformation of oral submucous fibrosis? J Oral Pathol Med 2018; 47:627-628. [PMID: 29656454 DOI: 10.1111/jop.12714] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Sheetal S Choudhari
- Dr. D. Y. Patil Dental College and Hospital, Dr. D. Y. Patil Vidyapeeth, DPU, Pune, India
| | - Deepak G Kulkarni
- Dr. D. Y. Patil Dental College and Hospital, Dr. D. Y. Patil Vidyapeeth, DPU, Pune, India
| | - Sachin C Sarode
- Department of Oral Pathology and Microbiology, Dr. D. Y. Patil Dental College and Hospital, Dr. D. Y. Patil Vidyapeeth, DPU, Pune, India
| | - Supriya M Kheur
- Department of Oral Pathology and Microbiology, Dr. D. Y. Patil Dental College and Hospital, Dr. D. Y. Patil Vidyapeeth, DPU, Pune, India
| | - Sangeeta Patankar
- Department of Oral Pathology & Microbiology, Yerala Dental College and Hospital, Kharghar, Mumbai, India
| |
Collapse
|
18
|
Yazdani S, Bansal R, Prakash J. Drug targeting to myofibroblasts: Implications for fibrosis and cancer. Adv Drug Deliv Rev 2017; 121:101-116. [PMID: 28720422 DOI: 10.1016/j.addr.2017.07.010] [Citation(s) in RCA: 108] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Revised: 06/20/2017] [Accepted: 07/12/2017] [Indexed: 12/21/2022]
Abstract
Myofibroblasts are the key players in extracellular matrix remodeling, a core phenomenon in numerous devastating fibrotic diseases. Not only in organ fibrosis, but also the pivotal role of myofibroblasts in tumor progression, invasion and metastasis has recently been highlighted. Myofibroblast targeting has gained tremendous attention in order to inhibit the progression of incurable fibrotic diseases, or to limit the myofibroblast-induced tumor progression and metastasis. In this review, we outline the origin of myofibroblasts, their general characteristics and functions during fibrosis progression in three major organs: liver, kidneys and lungs as well as in cancer. We will then discuss the state-of-the art drug targeting technologies to myofibroblasts in context of the above-mentioned organs and tumor microenvironment. The overall objective of this review is therefore to advance our understanding in drug targeting to myofibroblasts, and concurrently identify opportunities and challenges for designing new strategies to develop novel diagnostics and therapeutics against fibrosis and cancer.
Collapse
Affiliation(s)
- Saleh Yazdani
- Targeted Therapeutics Division, Department of Biomaterials, Science and Technology, MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente, Enschede, The Netherlands
| | - Ruchi Bansal
- Targeted Therapeutics Division, Department of Biomaterials, Science and Technology, MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente, Enschede, The Netherlands
| | - Jai Prakash
- Targeted Therapeutics Division, Department of Biomaterials, Science and Technology, MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente, Enschede, The Netherlands; ScarTec Therapeutics BV, Enschede, The Netherlands.
| |
Collapse
|
19
|
Cernaro V, Medici MA, Bianco F, Santoro D, Lacquaniti A, Romeo A, Lucisano S, Buemi A, Buemi M. Opposite actions of urotensin II and relaxin-2 on cellular expression of fibronectin in renal fibrosis: A preliminary experimental study. Clin Exp Pharmacol Physiol 2017; 44:1069-1071. [DOI: 10.1111/1440-1681.12798] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2016] [Revised: 05/30/2017] [Accepted: 06/07/2017] [Indexed: 11/27/2022]
Affiliation(s)
- Valeria Cernaro
- Chair of Nephrology; Department of Clinical and Experimental Medicine; University of Messina; Messina Italy
| | - Maria A Medici
- Department of Biological and Environmental Sciences; University of Messina; Messina Italy
| | - Federica Bianco
- Department of Biological and Environmental Sciences; University of Messina; Messina Italy
| | - Domenico Santoro
- Chair of Nephrology; Department of Clinical and Experimental Medicine; University of Messina; Messina Italy
| | - Antonio Lacquaniti
- Chair of Nephrology; Department of Clinical and Experimental Medicine; University of Messina; Messina Italy
| | - Adolfo Romeo
- Chair of Nephrology; Department of Clinical and Experimental Medicine; University of Messina; Messina Italy
| | - Silvia Lucisano
- Chair of Nephrology; Department of Clinical and Experimental Medicine; University of Messina; Messina Italy
| | - Antoine Buemi
- Chair of Nephrology; Department of Clinical and Experimental Medicine; University of Messina; Messina Italy
| | - Michele Buemi
- Chair of Nephrology; Department of Clinical and Experimental Medicine; University of Messina; Messina Italy
| |
Collapse
|
20
|
Cernaro V, Sfacteria A, Rifici C, Macrì F, Maricchiolo G, Lacquaniti A, Ricciardi CA, Buemi A, Costantino G, Santoro D, Buemi M. Renoprotective effect of erythropoietin in zebrafish after administration of gentamicin: an immunohistochemical study for β-catenin and c-kit expression. J Nephrol 2016; 30:385-391. [PMID: 27679401 DOI: 10.1007/s40620-016-0353-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2016] [Accepted: 09/11/2016] [Indexed: 12/17/2022]
Abstract
BACKGROUND Gentamicin is an aminoglycoside antibiotic widely used in the treatment of infections caused by Gram-negative bacteria. The main limitation to its therapeutic effectiveness is the potential nephrotoxicity. Erythropoietin has a tissue protective effect widely demonstrated in the kidney. The aim of the present study was to evaluate the renoprotective effects of erythropoietin in a model of zebrafish (Danio rerio) after administration of gentamicin. METHODS Sixty adult zebrafish were subdivided into three groups: group A was treated with gentamicin; group B received gentamicin and, 24 h later, epoetin alpha; group C received drug diluent only. In order to analyze the renoprotective activity of erythropoietin, the expression of c-kit and β-catenin was evaluated by immunohistochemistry. RESULTS Generally, the zebrafish renal tubule regenerates 15 days after an injury. Conversely, 7 days after gentamicin administration, animals treated with erythropoietin (group B) showed a better renal injury repair as documented by: increased expression of β-catenin, less degenerated tubules, greater number of centers of regeneration, positivity for c-kit only in immature-looking tubules and lymphohematopoietic cells. CONCLUSION The expression of c-kit and β-catenin suggests that erythropoietin may exert a role in regeneration reducing the extent of tubular damage from the outset after gentamicin administration.
Collapse
Affiliation(s)
- Valeria Cernaro
- Chair of Nephrology, Department of Clinical and Experimental Medicine, University of Messina, Via Consolare Valeria n. 1, 98124, Messina, Italy.
| | | | - Claudia Rifici
- Department of Veterinary Science, University of Messina, 98100, Messina, Italy
| | - Francesco Macrì
- Department of Veterinary Science, University of Messina, 98100, Messina, Italy
| | - Giulia Maricchiolo
- IAMC (Institute for Coastal Marine Environment), CNR, U.O.S. Messina, Spianata S. Raineri, 86, 98122, Messina, Italy
| | - Antonio Lacquaniti
- Chair of Nephrology, Department of Clinical and Experimental Medicine, University of Messina, Via Consolare Valeria n. 1, 98124, Messina, Italy
| | - Carlo Alberto Ricciardi
- Chair of Nephrology, Department of Clinical and Experimental Medicine, University of Messina, Via Consolare Valeria n. 1, 98124, Messina, Italy
| | - Antoine Buemi
- Chair of Nephrology, Department of Clinical and Experimental Medicine, University of Messina, Via Consolare Valeria n. 1, 98124, Messina, Italy
| | - Giuseppe Costantino
- Chair of Nephrology, Department of Clinical and Experimental Medicine, University of Messina, Via Consolare Valeria n. 1, 98124, Messina, Italy
| | - Domenico Santoro
- Chair of Nephrology, Department of Clinical and Experimental Medicine, University of Messina, Via Consolare Valeria n. 1, 98124, Messina, Italy
| | - Michele Buemi
- Chair of Nephrology, Department of Clinical and Experimental Medicine, University of Messina, Via Consolare Valeria n. 1, 98124, Messina, Italy
| |
Collapse
|
21
|
Čunderlíková B. Clinical significance of immunohistochemically detected extracellular matrix proteins and their spatial distribution in primary cancer. Crit Rev Oncol Hematol 2016; 105:127-44. [DOI: 10.1016/j.critrevonc.2016.04.017] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2015] [Revised: 04/03/2016] [Accepted: 04/27/2016] [Indexed: 02/07/2023] Open
|
22
|
Chimenz R, Lacquaniti A, Colavita L, Chirico V, Fede C, Buemi M, Fede C. High mobility group box 1 and tumor growth factor β: useful biomarkers in pediatric patients receiving peritoneal dialysis. Ren Fail 2016; 38:1370-1376. [DOI: 10.1080/0886022x.2016.1216711] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
|
23
|
Pathogenesis of Type 2 Epithelial to Mesenchymal Transition (EMT) in Renal and Hepatic Fibrosis. J Clin Med 2015; 5:jcm5010004. [PMID: 26729181 PMCID: PMC4730129 DOI: 10.3390/jcm5010004] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Revised: 12/22/2015] [Accepted: 12/24/2015] [Indexed: 02/07/2023] Open
Abstract
Epithelial to mesenchymal transition (EMT), particularly, type 2 EMT, is important in progressive renal and hepatic fibrosis. In this process, incompletely regenerated renal epithelia lose their epithelial characteristics and gain migratory mesenchymal qualities as myofibroblasts. In hepatic fibrosis (importantly, cirrhosis), the process also occurs in injured hepatocytes and hepatic progenitor cells (HPCs), as well as ductular reaction-related bile epithelia. Interestingly, the ductular reaction contributes partly to hepatocarcinogenesis of HPCs, and further, regenerating cholangiocytes after injury may be derived from hepatic stellate cells via mesenchymal to epithelia transition, a reverse phenomenon of type 2 EMT. Possible pathogenesis of type 2 EMT and its differences between renal and hepatic fibrosis are reviewed based on our experimental data.
Collapse
|
24
|
Saichua P, Yakovleva A, Kamamia C, Jariwala AR, Sithithaworn J, Sripa B, Brindley PJ, Laha T, Mairiang E, Pairojkul C, Khuntikeo N, Mulvenna J, Sithithaworn P, Bethony JM. Levels of 8-OxodG Predict Hepatobiliary Pathology in Opisthorchis viverrini Endemic Settings in Thailand. PLoS Negl Trop Dis 2015; 9:e0003949. [PMID: 26230769 PMCID: PMC4521778 DOI: 10.1371/journal.pntd.0003949] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2015] [Accepted: 07/03/2015] [Indexed: 01/05/2023] Open
Abstract
Opisthorchis viverrini is distinct among helminth infections as it drives a chronic inflammatory response in the intrahepatic bile duct that progresses from advanced periductal fibrosis (APF) to cholangiocarcinoma (CCA). Extensive research shows that oxidative stress (OS) plays a critical role in the transition from chronic O. viverrini infection to CCA. OS also results in the excision of a modified DNA lesion (8-oxodG) into urine, the levels of which can be detected by immunoassay. Herein, we measured concentrations of urine 8-oxodG by immunoassay from the following four groups in the Khon Kaen Cancer Cohort study: (1) O. viverrini negative individuals, (2) O. viverrini positive individuals with no APF as determined by abdominal ultrasound, (3) O. viverrini positive individuals with APF as determined by abdominal ultrasound, and (4) O. viverrini induced cases of CCA. A logistic regression model was used to evaluate the utility of creatinine-adjusted urinary 8-oxodG among these groups, along with demographic, behavioral, and immunological risk factors. Receiver operating characteristic (ROC) curve analysis was used to evaluate the predictive accuracy of urinary 8-oxodG for APF and CCA. Elevated concentrations of 8-oxodG in urine positively associated with APF and CCA in a strongly dose-dependent manner. Urinary 8-oxodG concentrations also accurately predicted whether an individual presented with APF or CCA compared to O. viverrini infected individuals without these pathologies. In conclusion, urinary 8-oxodG is a robust ‘candidate’ biomarker of the progression of APF and CCA from chronic opisthorchiasis, which is indicative of the critical role that OS plays in both of these advanced hepatobiliary pathologies. The findings also confirm our previous observations that severe liver pathology occurs early and asymptomatically in residents of O. viverrini endemic regions, where individuals are infected for years (often decades) with this food-borne pathogen. These findings also contribute to an expanding literature on 8-oxodG in an easily accessible bodily fluid (e.g., urine) as a biomarker in the multistage process of inflammation, fibrogenesis, and infection-induced cancer. Opisthorchis viverrini is a food-borne helminth infection that drives a strong inflammatory response in the bile duct that can result in bile duct fibrosis and bile duct cancer (intrahepatic cholangiocarcinoma). Extensive research shows that oxidative stress (OS) plays a critical role in chronic O. viverrini infection transitioning to cancer in the bile duct. OS also results in a modified DNA lesion, referred to as 8-oxodG, excreted in the urine, where it can be detected by an antibody-based test. We measured the concentrations of 8-oxodG in the urine of O. viverrini-infected individuals who had developed bile duct fibrosis or bile duct cancer and compared levels of this metabolite in urine to O. viverrini infected individuals who did not have bile duct fibrosis or cancer in Northeastern Thailand. We determined bile duct fibrosis by ultrasonography and bile duct cancer by immunohistochemistry on resected liver tissue. We then built a statistical model to quantify how well urinary 8-oxodG predicted bile duct fibrosis and bile duct cancer in O. viverrini-infected individuals. We found that individuals with elevated levels of 8-oxodG in urine had a greater probability of developing bile duct fibrosis or bile duct cancer from O. viverrini infection. This association occurred in a strongly dose-dependent manner: in other words, the O. viverrini-infected individuals who had the highest concentration of urinary 8-oxodG also had the highest risk of presenting with bile duct fibrosis or bile duct cancer. In summary, measuring levels of 8-oxodG in the urine offers a unique opportunity to develop a candidate biomarker for advanced O. viverrini induced hepatobiliary pathologies such as fibrosis and cancer. The findings also confirm our previous observations that severe liver pathology occurs early and asymptomatically in residents of O. viverrini endemic regions, where individuals are infected for years (often decades) with this food-borne neglected tropical diseases (NTD) pathogen.
Collapse
Affiliation(s)
- Prasert Saichua
- Biomedical Science Program, Faculty of Graduate School, Khon Kaen University, Khon Kaen, Thailand
- Department of Preclinical Science, Faculty of Medicine, Thammasat University, Pathumthani, Thailand
| | - Anna Yakovleva
- Department of Microbiology, Immunology and Tropical Medicine, and Research Center for Neglected Diseases of Poverty, School of Medicine & Health Sciences, George Washington University, Washington, D.C., United States of America
| | - Christine Kamamia
- Department of Microbiology, Immunology and Tropical Medicine, and Research Center for Neglected Diseases of Poverty, School of Medicine & Health Sciences, George Washington University, Washington, D.C., United States of America
| | - Amar R. Jariwala
- Department of Microbiology, Immunology and Tropical Medicine, and Research Center for Neglected Diseases of Poverty, School of Medicine & Health Sciences, George Washington University, Washington, D.C., United States of America
| | - Jiraporn Sithithaworn
- Department of Clinical Microscopy, Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen, Thailand
| | - Banchob Sripa
- Department of Pathology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
- Liver Fluke and Cholangiocarcinoma Research Center, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Paul J. Brindley
- Department of Microbiology, Immunology and Tropical Medicine, and Research Center for Neglected Diseases of Poverty, School of Medicine & Health Sciences, George Washington University, Washington, D.C., United States of America
| | - Thewarach Laha
- Department of Parasitology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Eimorn Mairiang
- Department of Radiology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Chawalit Pairojkul
- Department of Pathology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
- Liver Fluke and Cholangiocarcinoma Research Center, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Narong Khuntikeo
- Liver Fluke and Cholangiocarcinoma Research Center, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
- Department of Surgery, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Jason Mulvenna
- Infections Disease Program, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Paiboon Sithithaworn
- Liver Fluke and Cholangiocarcinoma Research Center, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
- Department of Parasitology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Jeffrey M. Bethony
- Department of Microbiology, Immunology and Tropical Medicine, and Research Center for Neglected Diseases of Poverty, School of Medicine & Health Sciences, George Washington University, Washington, D.C., United States of America
- * E-mail:
| |
Collapse
|
25
|
Effect of Quyu Chencuo Formula () on Renal Fibrosis in Obstructive Nephropathy Rats. Chin J Integr Med 2015; 25:190-196. [PMID: 26142335 DOI: 10.1007/s11655-015-2133-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/20/2014] [Indexed: 10/23/2022]
Abstract
OBJECTIVE To observe the effect of Quyu Chencuo Formula (, QCF) on renal fibrosis in rats with obstructive nephropathy. METHODS Twenty-four rats were randomly divided into three groups, 4 for sham operation as the control group, 10 for unilateral ureteral obstruction (UUO) model group, and the rest 10 for QCF treating UUO model group. All rats were sacrificed under 3% pentobarbital (50 mg/kg) anesthesia on the 14th day after surgery, then the right kidney samples of rats were harvested for hematoxylin eosin (HE) staining and Masson staining to observe the renal pathological changes. Immunohistochemistry and Western blotting were used to examine the expression of transforming growth factor β1 (TGF-β1), and real-time polymerase chain reaction (RT-PCR) was employed to examine the expressions of TGF-β1, α-smooth muscle actin (α-SMA) and E-cadherin mRNA. RESULTS HE and Masson staining showed that the renal interstitial of the rats in the control group had no significant fibrotic lesion; in the model group, there were obvious interstitial fibrosis; for the QCF group, there were epithelial cell necrosis, infiltration of lymphocytes and mononuclear cells, aggravated interstitial fibrosis in varied degrees, but the pathological changes were less in the QCF group than in the model group. The immunohistochemistry and Western blotting results showed that the TGF-β1 expression was increased significantly in the model group, while decreased significantly in the QCF group (P<0.05); RT-PCR showed that the mRNA expression of α-SMA and TGF-β1 increased significantly in the model group, while both were significantly decreased in the QCF group compared with the model group (P<0.05). The mRNA expression of E-cadherin was decreased significantly in the model group, and it was significantly increased in the QCF group as compared with the model group (P<0.05). CONCLUSION QCF may improve renal fibrosis by regulating the expressions of TGF-β1, α-SMA and E-cadherin, and prevent the progress of kidney fibrosis.
Collapse
|
26
|
Ang-(1-7) promotes the migration and invasion of human renal cell carcinoma cells via Mas-mediated AKT signaling pathway. Biochem Biophys Res Commun 2015; 460:333-40. [PMID: 25783053 DOI: 10.1016/j.bbrc.2015.03.035] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Accepted: 03/08/2015] [Indexed: 11/22/2022]
Abstract
Ang-(1-7) is an active peptide component of renin-angiotensin system and endogenous ligand for Mas receptor. In the current study, we showed that Ang-(1-7) enhanced migratory and invasive abilities of renal cell carcinoma cells 786-O and Caki-1 by wound-healing, transwell migration and transwell invasion assays. Mas antagonist A779 pretreatment or shRNA-mediated Mas knockdown abolished the stimulatory effect of Ang-(1-7). Furthermore, Ang-(1-7)-stimulated AKT activation was inhibited by either A779 pretreatment or Mas knockdown. Blockage of AKT signaling by AKT inhibitor VIII inhibited Ang-(1-7)-induced migration and invasion in 786-O cells. Taken together, our results provided the first evidence for the pro-metastatic role of Ang-(1-7) in RCC, which may help to better understand the molecular mechanism underlying the progression of this tumor.
Collapse
|
27
|
Cernaro V, Medici MA, Leonello G, Buemi A, Kohnke FH, Villari A, Santoro D, Buemi M. Auxin induces cell proliferation in an experimental model of mammalian renal tubular epithelial cells. Ren Fail 2015; 37:911-3. [DOI: 10.3109/0886022x.2015.1015683] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
28
|
Cernaro V, Trifirò G, Lorenzano G, Lucisano S, Buemi M, Santoro D. New therapeutic strategies under development to halt the progression of renal failure. Expert Opin Investig Drugs 2014; 23:693-709. [DOI: 10.1517/13543784.2014.899352] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
29
|
Cernaro V, Lacquaniti A, Lupica R, Buemi A, Trimboli D, Giorgianni G, Bolignano D, Buemi M. Relaxin: new pathophysiological aspects and pharmacological perspectives for an old protein. Med Res Rev 2013; 34:77-105. [PMID: 23401142 DOI: 10.1002/med.21277] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Human relaxin-2 (hereafter simply defined as "relaxin") is a 6-kDa peptidic hormone best known for the physiological role played during pregnancy in the growth and differentiation of the reproductive tract and in the renal and systemic hemodynamic changes. This factor can also be involved in the pathophysiology of arterial hypertension and heart failure, in the molecular pathways of fibrosis and cancer, and in angiogenesis and bone remodeling. It belongs to the relaxin peptide family, whose members comprehensively exert numerous effects through interaction with different types of receptors, classified as relaxin family peptide (RXFP) receptors (RXFP1, RXFP2, RXFP3, RXFP4). Research looks toward the in-depth examination and complete understanding of relaxin in its various pleiotropic actions. The intent is to evaluate the likelihood of employing this substance for therapeutic purposes, for instance in diseases where a deficit could be part of the underlying pathophysiological mechanisms, also avoiding any adverse effect. Relaxin is already being considered as a promising drug, especially in acute heart failure. A careful study of the different RXFPs and their receptors and the comprehension of all biological activities of these hormones will probably provide new drugs with a potential wide range of therapeutic applications in the near future.
Collapse
Affiliation(s)
- Valeria Cernaro
- Department of Internal Medicine, University of Messina, Via Consolare Valeria, 1, 98100, Italy
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Melnick RL, Burns KM, Ward JM, Huff J. Chemically exacerbated chronic progressive nephropathy not associated with renal tubular tumor induction in rats: an evaluation based on 60 carcinogenicity studies by the national toxicology program. Toxicol Sci 2012; 128:346-56. [PMID: 22539614 DOI: 10.1093/toxsci/kfs156] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Chronic progressive nephropathy (CPN) is a common age-related degenerative-regenerative disease of the kidney that occurs in both sexes of most strains of rats. Recently, claims have been made that enhanced CPN is a mode of action for chemically induced kidney tumors in male rats and that renal tubular tumors (RTTs) induced by chemicals that concomitantly exacerbate CPN are not relevant for human cancer risk assessments. Although CPN is an observable histopathological lesion that may be modified by diet, the etiology of this disease and the mechanisms for its exacerbation by chemicals are unknown, and it fails to meet fundamental principles for defining carcinogenic modes of action and human relevance. Our comprehensive evaluation of possible relationships between exacerbated CPN and induction of RTTs in 58 carcinogenicity studies, conducted by the National Toxicology Program, in male and 11 studies in female F344 rats using 60 chemicals revealed widespread inconsistency in the claimed association. Because the proposed hypothesis lacks evidence of biological plausibility, and due to inconsistent relationships between exacerbated CPN and kidney tumor incidence in carcinogenicity studies in rats, dismissing the human relevance of kidney tumors induced by chemicals that also exacerbate CPN in rats would be wrong.
Collapse
Affiliation(s)
- Ronald L Melnick
- Ron Melnick Consulting, LLC, Chapel Hill , North Carolina 27514, USA.
| | | | | | | |
Collapse
|