1
|
Kundu G, Ghasemi M, Yim S, Rohil A, Xin C, Ren L, Srivastava S, Akinfolarin A, Kumar S, Srivastava GP, Sabbisetti VS, Murugaiyan G, Ajay AK. STAT3 Protein-Protein Interaction Analysis Finds P300 as a Regulator of STAT3 and Histone 3 Lysine 27 Acetylation in Pericytes. Biomedicines 2024; 12:2102. [PMID: 39335615 PMCID: PMC11428717 DOI: 10.3390/biomedicines12092102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 09/10/2024] [Accepted: 09/11/2024] [Indexed: 09/30/2024] Open
Abstract
BACKGROUND Signal transducer and activator of transcription 3 (STAT3) is a member of the cytoplasmic inducible transcription factors and plays an important role in mediating signals from cytokines, chemokines, and growth factors. We and others have found that STAT3 directly regulates pro-fibrotic signaling in the kidney. The STAT3 protein-protein interaction plays an important role in activating its transcriptional activity. It is necessary to identify these interactions to investigate their function in kidney disease. Here, we investigated the protein-protein interaction among three species to find crucial interactions that can be targeted to alleviate kidney disease. METHOD In this study, we examined common protein-protein interactions leading to the activation or downregulation of STAT3 among three different species: humans (Homo sapiens), mice (Mus musculus), and rabbits (Oryctolagus cuniculus). Further, we chose to investigate the P300 and STAT3 interaction and performed studies of the activation of STAT3 using IL-6 and inhibition of the P300 by its specific inhibitor A-485 in pericytes. Next, we performed immunoprecipitation to confirm whether A-485 inhibits the binding of P300 to STAT3. RESULTS Using the STRING application from ExPASy, we found that six proteins, including PIAS3, JAK1, JAK2, EGFR, SRC, and EP300, showed highly confident interactions with STAT3 in humans, mice, and rabbits. We also found that IL-6 treatment increased the acetylation of STAT3 and increased histone 3 lysine acetylation (H3K27ac). Furthermore, we found that the disruption of STAT3 and P300 interaction by the P300 inhibitor A-485 decreased STAT3 acetylation and H3K27ac. Finally, we confirmed that the P300 inhibitor A-485 inhibited the binding of STAT3 with P300, which inhibited its transcriptional activity by reducing the expression of Ccnd1 (Cyclin D1). CONCLUSIONS Targeting the P300 protein interaction with STAT3 may alleviate STAT3-mediated fibrotic signaling in humans and other species.
Collapse
Affiliation(s)
- Gautam Kundu
- Division of Renal Medicine, Department of Medicine, Brigham and Women’s Hospital, Boston, MA 02115, USA
- US Military HIV Research Program (MHRP), Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD 20817, USA
| | - Maryam Ghasemi
- Division of Renal Medicine, Department of Medicine, Brigham and Women’s Hospital, Boston, MA 02115, USA
- Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Seungbin Yim
- Division of Renal Medicine, Department of Medicine, Brigham and Women’s Hospital, Boston, MA 02115, USA
| | - Ayanna Rohil
- Division of Renal Medicine, Department of Medicine, Brigham and Women’s Hospital, Boston, MA 02115, USA
| | - Cuiyan Xin
- Division of Renal Medicine, Department of Medicine, Brigham and Women’s Hospital, Boston, MA 02115, USA
- Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Leo Ren
- Division of Renal Medicine, Department of Medicine, Brigham and Women’s Hospital, Boston, MA 02115, USA
| | | | - Akinwande Akinfolarin
- Division of Renal Medicine, Department of Medicine, Brigham and Women’s Hospital, Boston, MA 02115, USA
- Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Subodh Kumar
- Department of Medical Oncology, Dana Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Gyan P. Srivastava
- Department of Electrical Engineering & Computer Science, University of Missouri, Columbia, MO 65211, USA
| | - Venkata S. Sabbisetti
- Division of Renal Medicine, Department of Medicine, Brigham and Women’s Hospital, Boston, MA 02115, USA
- Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Gopal Murugaiyan
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Amrendra K. Ajay
- Division of Renal Medicine, Department of Medicine, Brigham and Women’s Hospital, Boston, MA 02115, USA
- Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
- Center for Polycystic Kidney Disease, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
2
|
Bronstein R, Pace J, Gowthaman Y, Salant DJ, Mallipattu SK. Podocyte-Parietal Epithelial Cell Interdependence in Glomerular Development and Disease. J Am Soc Nephrol 2023; 34:737-750. [PMID: 36800545 PMCID: PMC10125654 DOI: 10.1681/asn.0000000000000104] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Accepted: 02/04/2023] [Indexed: 02/19/2023] Open
Abstract
Podocytes and parietal epithelial cells (PECs) are among the few principal cell types within the kidney glomerulus, the former serving as a crucial constituent of the kidney filtration barrier and the latter representing a supporting epithelial layer that adorns the inner wall of Bowman's capsule. Podocytes and PECs share a circumscript developmental lineage that only begins to diverge during the S-shaped body stage of nephron formation-occurring immediately before the emergence of the fully mature nephron. These two cell types, therefore, share a highly conserved gene expression program, evidenced by recently discovered intermediate cell types occupying a distinct spatiotemporal gene expression zone between podocytes and PECs. In addition to their homeostatic functions, podocytes and PECs also have roles in kidney pathogenesis. Rapid podocyte loss in diseases, such as rapidly progressive GN and collapsing and cellular subtypes of FSGS, is closely allied with PEC proliferation and migration toward the capillary tuft, resulting in the formation of crescents and pseudocrescents. PECs are thought to contribute to disease progression and severity, and the interdependence between these two cell types during development and in various manifestations of kidney pathology is the primary focus of this review.
Collapse
Affiliation(s)
- Robert Bronstein
- Division of Nephrology, Department of Medicine, Renaissance School of Medicine at Stony Brook University, Stony Brook, New York
| | - Jesse Pace
- Division of Nephrology, Department of Medicine, Renaissance School of Medicine at Stony Brook University, Stony Brook, New York
| | - Yogesh Gowthaman
- Division of Nephrology, Department of Medicine, Renaissance School of Medicine at Stony Brook University, Stony Brook, New York
| | - David J. Salant
- Division of Nephrology, Department of Medicine, Boston University School of Medicine, Boston, Massachusetts
| | - Sandeep K. Mallipattu
- Division of Nephrology, Department of Medicine, Renaissance School of Medicine at Stony Brook University, Stony Brook, New York
- Renal Section, Northport VA Medical Center, Northport, New York
| |
Collapse
|
3
|
Huang Y, Zhao X, Zhang Q, Yang X, Hou G, Peng C, Jia M, Zhou L, Yamamoto T, Zheng J. Novel therapeutic perspectives for crescentic glomerulonephritis through targeting parietal epithelial cell activation and proliferation. Expert Opin Ther Targets 2023; 27:55-69. [PMID: 36738160 DOI: 10.1080/14728222.2023.2177534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
INTRODUCTION Kidney injury is clinically classified as crescentic glomerulonephritis (CrGN) when ≥50% of the glomeruli in a biopsy sample contain crescentic lesions. However, current strategies, such as systemic immunosuppressive therapy and plasmapheresis for CrGN, are partially effective, and these drugs have considerable systemic side effects. Hence, targeted therapy to prevent glomerular crescent formation and expansion remains an unmet clinical need. AREAS COVERED Hyperproliferative parietal epithelial cells (PECs) are the main constituent cells of the glomerular crescent with cell-tracing evidence. Crescents obstruct the flow of primary urine, pressure the capillaries, and degenerate the affected nephrons. We reviewed the markers of PEC activation and proliferation, potential therapeutic effects of thrombin and thrombin receptor inhibitors, and how podocytes cross-talk with PECs. These experiments may help identify potential early specific targets for the prevention and treatment of glomerular crescentic injury. EXPERT OPINION Inhibiting PEC activation and proliferation in CrGN can alleviate glomerular crescent progression, which has been supported by preclinical studies with evidence of genetic deletion. Clarifying the outcome of PEC transformation to the podocyte phenotype and suppressing thrombin, thrombin receptors, and PEC hyperproliferation in early therapeutic strategies will be the research goals in the next ten years.
Collapse
Affiliation(s)
- Yanjie Huang
- School of Pediatric Medicine, Henan University of Chinese Medicine, Zhengzhou, Henan, China.,Department of Pediatrics, the First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, Henan, China
| | - Xueru Zhao
- School of Pediatric Medicine, Henan University of Chinese Medicine, Zhengzhou, Henan, China
| | - Qiushuang Zhang
- Department of Pediatrics, the First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, Henan, China
| | - Xiaoqing Yang
- Department of Pediatrics, the First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, Henan, China
| | - Gailing Hou
- School of Pediatric Medicine, Henan University of Chinese Medicine, Zhengzhou, Henan, China
| | - Chaoqun Peng
- School of Pediatric Medicine, Henan University of Chinese Medicine, Zhengzhou, Henan, China
| | - Mengzhen Jia
- School of Pediatric Medicine, Henan University of Chinese Medicine, Zhengzhou, Henan, China
| | - Li Zhou
- School of Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Tatsuo Yamamoto
- Department of Nephrology, Fujieda Municipal General Hospital, 4-1-11 Surugadai, Fujieda, Japan
| | - Jian Zheng
- Institute of Pediatrics of Traditional Chinese Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China
| |
Collapse
|
4
|
Li ZH, Guo XY, Quan XY, Yang C, Liu ZJ, Su HY, An N, Liu HF. The Role of Parietal Epithelial Cells in the Pathogenesis of Podocytopathy. Front Physiol 2022; 13:832772. [PMID: 35360248 PMCID: PMC8963495 DOI: 10.3389/fphys.2022.832772] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 02/07/2022] [Indexed: 02/05/2023] Open
Abstract
Podocytopathy is the most common feature of glomerular disorder characterized by podocyte injury- or dysfunction-induced excessive proteinuria, which ultimately develops into glomerulosclerosis and results in persistent loss of renal function. Due to the lack of self-renewal ability of podocytes, mild podocyte depletion triggers replacement and repair processes mostly driven by stem cells or resident parietal epithelial cells (PECs). In contrast, when podocyte recovery fails, activated PECs contribute to the establishment of glomerular lesions. Increasing evidence suggests that PECs, more than just bystanders, have a crucial role in various podocytopathies, including minimal change disease, focal segmental glomerulosclerosis, membranous nephropathy, diabetic nephropathy, IgA nephropathy, and lupus podocytopathy. In this review, we attempt to dissect the diverse role of PECs in the pathogenesis of podocytopathy based on currently available information.
Collapse
|
5
|
Rayego-Mateos S, Morgado-Pascual JL, Lavoz C, Rodrigues-Díez RR, Márquez-Expósito L, Tejera-Muñoz A, Tejedor-Santamaría L, Rubio-Soto I, Marchant V, Ruiz-Ortega M. CCN2 Binds to Tubular Epithelial Cells in the Kidney. Biomolecules 2022; 12:biom12020252. [PMID: 35204752 PMCID: PMC8869303 DOI: 10.3390/biom12020252] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/30/2022] [Accepted: 02/01/2022] [Indexed: 02/01/2023] Open
Abstract
Cellular communication network-2 (CCN2), also called connective tissue growth factor (CTGF), is considered a fibrotic biomarker and has been suggested as a potential therapeutic target for kidney pathologies. CCN2 is a matricellular protein with four distinct structural modules that can exert a dual function as a matricellular protein and as a growth factor. Previous experiments using surface plasmon resonance and cultured renal cells have demonstrated that the C-terminal module of CCN2 (CCN2(IV)) interacts with the epidermal growth factor receptor (EGFR). Moreover, CCN2(IV) activates proinflammatory and profibrotic responses in the mouse kidney. The aim of this paper was to locate the in vivo cellular CCN2/EGFR binding sites in the kidney. To this aim, the C-terminal module CCN2(IV) was labeled with a fluorophore (Cy5), and two different administration routes were employed. Both intraperitoneal and direct intra-renal injection of Cy5-CCN2(IV) in mice demonstrated that CCN2(IV) preferentially binds to the tubular epithelial cells, while no signal was detected in glomeruli. Moreover, co-localization of Cy5-CCN2(IV) binding and activated EGFR was found in tubules. In cultured tubular epithelial cells, live-cell confocal microscopy experiments showed that EGFR gene silencing blocked Cy5-CCN2(IV) binding to tubuloepithelial cells. These data clearly show the existence of CCN2/EGFR binding sites in the kidney, mainly in tubular epithelial cells. In conclusion, these studies show that circulating CCN2(IV) can directly bind and activate tubular cells, supporting the role of CCN2 as a growth factor involved in kidney damage progression.
Collapse
Affiliation(s)
- Sandra Rayego-Mateos
- Molecular and Cellular Biology in Renal and Vascular Pathology, IIS-Fundación Jiménez Díaz, Universidad Autónoma Madrid, Av Reyes Católicos 2, 28040 Madrid, Spain; (S.R.-M.); (L.M.-E.); (A.T.-M.); (L.T.-S.); (I.R.-S.); (V.M.)
- Red de Investigación Renal (REDinREN), Av. de Monforte de Lemos, 5, 28029 Madrid, Spain;
| | - José Luis Morgado-Pascual
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), Hospital Universitario Reina Sofía, 14004 Cordoba, Spain;
- Department of Cell Biology, Physiology and Immunology, University of Cordoba, 14071 Cordoba, Spain
| | - Carolina Lavoz
- Division of Nephrology, School of Medicine, Universidad Austral Chile, Valdivia 5090000, Chile;
| | - Raúl R. Rodrigues-Díez
- Red de Investigación Renal (REDinREN), Av. de Monforte de Lemos, 5, 28029 Madrid, Spain;
- Translational Immunology Laboratory, Health Research Institute of Asturias (ISPA), 33011 Oviedo, Spain
| | - Laura Márquez-Expósito
- Molecular and Cellular Biology in Renal and Vascular Pathology, IIS-Fundación Jiménez Díaz, Universidad Autónoma Madrid, Av Reyes Católicos 2, 28040 Madrid, Spain; (S.R.-M.); (L.M.-E.); (A.T.-M.); (L.T.-S.); (I.R.-S.); (V.M.)
- Red de Investigación Renal (REDinREN), Av. de Monforte de Lemos, 5, 28029 Madrid, Spain;
| | - Antonio Tejera-Muñoz
- Molecular and Cellular Biology in Renal and Vascular Pathology, IIS-Fundación Jiménez Díaz, Universidad Autónoma Madrid, Av Reyes Católicos 2, 28040 Madrid, Spain; (S.R.-M.); (L.M.-E.); (A.T.-M.); (L.T.-S.); (I.R.-S.); (V.M.)
- Red de Investigación Renal (REDinREN), Av. de Monforte de Lemos, 5, 28029 Madrid, Spain;
| | - Lucía Tejedor-Santamaría
- Molecular and Cellular Biology in Renal and Vascular Pathology, IIS-Fundación Jiménez Díaz, Universidad Autónoma Madrid, Av Reyes Católicos 2, 28040 Madrid, Spain; (S.R.-M.); (L.M.-E.); (A.T.-M.); (L.T.-S.); (I.R.-S.); (V.M.)
- Red de Investigación Renal (REDinREN), Av. de Monforte de Lemos, 5, 28029 Madrid, Spain;
| | - Irene Rubio-Soto
- Molecular and Cellular Biology in Renal and Vascular Pathology, IIS-Fundación Jiménez Díaz, Universidad Autónoma Madrid, Av Reyes Católicos 2, 28040 Madrid, Spain; (S.R.-M.); (L.M.-E.); (A.T.-M.); (L.T.-S.); (I.R.-S.); (V.M.)
- Red de Investigación Renal (REDinREN), Av. de Monforte de Lemos, 5, 28029 Madrid, Spain;
| | - Vanessa Marchant
- Molecular and Cellular Biology in Renal and Vascular Pathology, IIS-Fundación Jiménez Díaz, Universidad Autónoma Madrid, Av Reyes Católicos 2, 28040 Madrid, Spain; (S.R.-M.); (L.M.-E.); (A.T.-M.); (L.T.-S.); (I.R.-S.); (V.M.)
- Red de Investigación Renal (REDinREN), Av. de Monforte de Lemos, 5, 28029 Madrid, Spain;
| | - Marta Ruiz-Ortega
- Molecular and Cellular Biology in Renal and Vascular Pathology, IIS-Fundación Jiménez Díaz, Universidad Autónoma Madrid, Av Reyes Católicos 2, 28040 Madrid, Spain; (S.R.-M.); (L.M.-E.); (A.T.-M.); (L.T.-S.); (I.R.-S.); (V.M.)
- Red de Investigación Renal (REDinREN), Av. de Monforte de Lemos, 5, 28029 Madrid, Spain;
- Correspondence:
| |
Collapse
|
6
|
Wen X, Xi Y, Zhang Y, Jiao L, Shi S, Bai S, Sun F, Chang G, Wu R, Hao J, Li H. DR1 activation promotes vascular smooth muscle cell apoptosis via up-regulation of CSE/H 2 S pathway in diabetic mice. FASEB J 2021; 36:e22070. [PMID: 34859931 DOI: 10.1096/fj.202101455r] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 11/07/2021] [Accepted: 11/12/2021] [Indexed: 12/20/2022]
Abstract
The important role of hydrogen sulfide (H2 S) as a novel gasotransmitter in inhibiting proliferation and promoting apoptosis of vascular smooth muscle cells (VSMCs) has been widely recognized. The dopamine D1 receptor (DR1), a G protein coupled receptor, inhibits atherosclerosis by suppressing VSMC proliferation. However, whether DR1 contributes to VSMC apoptosis via the induction of endogenous H2 S in diabetic mice is unclear. Here, we found that hyperglycemia decreased the expressions of DR1 and cystathionine-γ-lyase (CSE, a key enzyme for endogenous H2 S production) and reduced endogenous H2 S generation in mouse arteries and cultured VSMCs. DR1 agonist SKF38393 increased DR1 and CSE expressions and stimulated endogenous H2 S generation. Sodium hydrosulfide (NaHS, a H2 S donor) increased CSE expressions and H2 S generation but had no effect on DR1 expression. In addition, high glucose (HG) increased VSMC apoptosis, up-regulated IGF-1-IGF-1R and HB-EGF-EGFR, and stimulated ERK1/2 and PI3K-Akt pathways. Overexpression of DR1, the addition of SKF38393 or supply of NaHS further promoted VSMC apoptosis and down-regulated the above pathways. Knock out of CSE or the addition of the CSE inhibitor poly propylene glycol diminished the effect of SKF38393. Moreover, calmodulin (CaM) interacted with CSE in VSMCs; HG increased intracellular Ca2+ concentration and induced CaM expression, further strengthened the interaction of CaM with CSE in VSMCs, which were further enhanced by SKF38393. CaM inhibitor W-7, inositol 1,4,5-trisphosphate (IP3 ) inhibitor 2-APB, or ryanodine receptor inhibitor tetracaine abolished the stimulatory effect of SKF38393 on CaM expression and intracellular Ca2+ concentration. Taken together, these results suggest that DR1 up-regulates CSE/H2 S signaling by inducing the Ca2+ -CaM pathway followed by down-regulations of IGF-1-IGF-1R and HB-EGF-EGFR and their downstream ERK1/2 and PI3K-Akt, finally promoting the apoptosis of VSMCs in diabetic mice.
Collapse
Affiliation(s)
- Xin Wen
- Department of Pathophysiology, Harbin Medical University, Harbin, China
| | - Yuxin Xi
- Department of Pathophysiology, Harbin Medical University, Harbin, China
| | - Yuanzhou Zhang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lijie Jiao
- School of Medicine, Xiamen University, Xiamen, China
| | - Sa Shi
- Department of Pathophysiology, Harbin Medical University, Harbin, China
| | - Shuzhi Bai
- Department of Pathophysiology, Harbin Medical University, Harbin, China
| | - Fengqi Sun
- Department of Pathophysiology, Harbin Medical University, Harbin, China
| | - Guiquan Chang
- Department of Pathophysiology, Harbin Medical University, Harbin, China
| | - Ren Wu
- Department of Pathophysiology, Harbin Medical University, Harbin, China
| | - Jinghui Hao
- Department of Pathophysiology, Harbin Medical University, Harbin, China
| | - Hongzhu Li
- Department of Pathophysiology, Harbin Medical University, Harbin, China.,School of Medicine, Xiamen University, Xiamen, China
| |
Collapse
|
7
|
Crosnier A, Abbara C, Cellier M, Lagarce L, Babin M, Bourneau-Martin D, Briet M. Renal Safety Profile of EGFR Targeted Therapies: A Study from VigiBase ® the WHO Global Database of Individual Case Safety Reports. Cancers (Basel) 2021; 13:5907. [PMID: 34885014 PMCID: PMC8657199 DOI: 10.3390/cancers13235907] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 11/12/2021] [Accepted: 11/19/2021] [Indexed: 01/22/2023] Open
Abstract
Kidney EGFR expression together with reported cases of glomerular diseases in the context of anti-EGFR drug administration raise concerns about the renal safety profile of these drugs. This issue is addressed in a case/non-case study carried out on VigiBase®, the WHO global database of individual case safety reports (ICRS). Disproportionality analysis of renal adverse effects related to the selected anti-EGFR drugs, erlotinib, gefitinib, afatinib, osimertinib, cetuximab and panitumumab, was assessed using the reporting odds ratio (ROR). Nine hundred and eighty-nine ICRSs were included. A signal of disproportionate reporting (SDR) was found for afatinib (ROR = 2.70; 95% CI [2.22-3.29]) and erlotinib (ROR = 1.73; 95% CI [1.46-2.04]) with acute kidney injury, and for afatinib (ROR = 2.41; 95% CI [1.78-3.27]), cetuximab (ROR = 1.42; 95% CI [1.14-1.78]) and erlotinib (ROR = 2.23; 95% CI [1.80-2.77]) with renal failure. The preferred term "diarrhoea" was frequently reported in the included cases. An SDR was found for erlotinib with haemolytic and uremic syndrome (ROR = 4.01; 95% CI [1.80-8.94]) and thrombotic microangiopathy (ROR = 4.94; 95% CI [2.80-8.72]). No SDR was seen for glomerular or tubule-interstitial diseases. This study showed that the anti-EGFR drug renal toxicity is mainly related to renal failure in the context of digestive toxicity.
Collapse
Affiliation(s)
- Alexandre Crosnier
- Department of Pharmacology-Toxicology and Pharmacovigilance, University Hospital of Angers, 4 Rue Larrey, 49100 Angers, France; (A.C.); (C.A.); (M.C.); (L.L.); (M.B.); (D.B.-M.)
- Département de Médecine, Faculté de Médecine d’Angers, Université d’Angers, 49035 Angers, France
| | - Chadi Abbara
- Department of Pharmacology-Toxicology and Pharmacovigilance, University Hospital of Angers, 4 Rue Larrey, 49100 Angers, France; (A.C.); (C.A.); (M.C.); (L.L.); (M.B.); (D.B.-M.)
| | - Morgane Cellier
- Department of Pharmacology-Toxicology and Pharmacovigilance, University Hospital of Angers, 4 Rue Larrey, 49100 Angers, France; (A.C.); (C.A.); (M.C.); (L.L.); (M.B.); (D.B.-M.)
| | - Laurence Lagarce
- Department of Pharmacology-Toxicology and Pharmacovigilance, University Hospital of Angers, 4 Rue Larrey, 49100 Angers, France; (A.C.); (C.A.); (M.C.); (L.L.); (M.B.); (D.B.-M.)
| | - Marina Babin
- Department of Pharmacology-Toxicology and Pharmacovigilance, University Hospital of Angers, 4 Rue Larrey, 49100 Angers, France; (A.C.); (C.A.); (M.C.); (L.L.); (M.B.); (D.B.-M.)
| | - Delphine Bourneau-Martin
- Department of Pharmacology-Toxicology and Pharmacovigilance, University Hospital of Angers, 4 Rue Larrey, 49100 Angers, France; (A.C.); (C.A.); (M.C.); (L.L.); (M.B.); (D.B.-M.)
| | - Marie Briet
- Department of Pharmacology-Toxicology and Pharmacovigilance, University Hospital of Angers, 4 Rue Larrey, 49100 Angers, France; (A.C.); (C.A.); (M.C.); (L.L.); (M.B.); (D.B.-M.)
- Département de Médecine, Faculté de Médecine d’Angers, Université d’Angers, 49035 Angers, France
- Research Institute MitoVasc, UMR CNRS 6214 INSERM 1083, University of Angers, 49100 Angers, France
| |
Collapse
|
8
|
Ni L, Yuan C, Wu X. The recruitment mechanisms and potential therapeutic targets of podocytes from parietal epithelial cells. J Transl Med 2021; 19:441. [PMID: 34674704 PMCID: PMC8529729 DOI: 10.1186/s12967-021-03101-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 10/01/2021] [Indexed: 01/02/2023] Open
Abstract
Podocytes are differentiated postmitotic cells which cannot be replaced after podocyte injury. The mechanism of podocyte repopulation after injury has aroused wide concern. Parietal epithelial cells (PECs) are heterogeneous and only a specific subpopulation of PECs has the capacity to replace podocytes. Major progress has been achieved in recent years regarding the role and function of a subset of PECs which could transdifferentiate toward podocytes. Additionally, several factors, such as Notch, Wnt/ß-catenin, Wilms’ tumor-1, miR-193a and growth arrest-specific protein 1, have been shown to be involved in these processes. Finally, PECs serve as a potential therapeutic target in the conditions of podocyte loss. In this review, we discuss the latest observations and concepts about the recruitment of podocytes from PECs in glomerular diseases as well as newly identified mechanisms and the most recent treatments for this process.
Collapse
Affiliation(s)
- Lihua Ni
- Department of Nephrology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, People's Republic of China
| | - Cheng Yuan
- Department of Gynecological Oncology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, People's Republic of China.
| | - Xiaoyan Wu
- Department of Nephrology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, People's Republic of China.
| |
Collapse
|
9
|
Interplay between extracellular matrix components and cellular and molecular mechanisms in kidney fibrosis. Clin Sci (Lond) 2021; 135:1999-2029. [PMID: 34427291 DOI: 10.1042/cs20201016] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 07/30/2021] [Accepted: 08/02/2021] [Indexed: 12/13/2022]
Abstract
Chronic kidney disease (CKD) is characterized by pathological accumulation of extracellular matrix (ECM) proteins in renal structures. Tubulointerstitial fibrosis is observed in glomerular diseases as well as in the regeneration failure of acute kidney injury (AKI). Therefore, finding antifibrotic therapies comprises an intensive research field in Nephrology. Nowadays, ECM is not only considered as a cellular scaffold, but also exerts important cellular functions. In this review, we describe the cellular and molecular mechanisms involved in kidney fibrosis, paying particular attention to ECM components, profibrotic factors and cell-matrix interactions. In response to kidney damage, activation of glomerular and/or tubular cells may induce aberrant phenotypes characterized by overproduction of proinflammatory and profibrotic factors, and thus contribute to CKD progression. Among ECM components, matricellular proteins can regulate cell-ECM interactions, as well as cellular phenotype changes. Regarding kidney fibrosis, one of the most studied matricellular proteins is cellular communication network-2 (CCN2), also called connective tissue growth factor (CTGF), currently considered as a fibrotic marker and a potential therapeutic target. Integrins connect the ECM proteins to the actin cytoskeleton and several downstream signaling pathways that enable cells to respond to external stimuli in a coordinated manner and maintain optimal tissue stiffness. In kidney fibrosis, there is an increase in ECM deposition, lower ECM degradation and ECM proteins cross-linking, leading to an alteration in the tissue mechanical properties and their responses to injurious stimuli. A better understanding of these complex cellular and molecular events could help us to improve the antifibrotic therapies for CKD.
Collapse
|
10
|
Matthaiou A, Poulli T, Deltas C. Prevalence of clinical, pathological and molecular features of glomerular basement membrane nephropathy caused by COL4A3 or COL4A4 mutations: a systematic review. Clin Kidney J 2020; 13:1025-1036. [PMID: 33391746 PMCID: PMC7769542 DOI: 10.1093/ckj/sfz176] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Accepted: 11/06/2019] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Patients heterozygous for COL4A3 or COL4A4 mutations show a wide spectrum of disease, extending from familial isolated microscopic haematuria, as a result of thin basement membranes (TBMs), to autosomal dominant Alport syndrome (ADAS) and end-stage renal disease (ESRD). Many patients are mentioned in the literature under the descriptive diagnosis of TBM nephropathy (TBMN), in which case it actually describes a histological finding that represents the carriers of autosomal recessive Alport syndrome (ARAS), a severe glomerulopathy, as most patients reach ESRD at a mean age of 25 years. METHODS We performed a systematic literature review for patients with heterozygous COL4A3/A4 mutations with the aim of recording the spectrum and frequency of pathological features. We searched three databases (PubMed, Embase and Scopus) using the keywords 'Autosomal Dominant Alport Syndrome' OR 'Thin Basement Membrane Disease' OR 'Thin Basement Membrane Nephropathy'. We identified 48 publications reporting on 777 patients from 258 families. RESULTS In total, 29% of the patients developed chronic kidney disease (CKD) and 15.1% reached ESRD at a mean age of 52.8 years. Extrarenal features and typical Alport syndrome (AS) findings had a low prevalence in patients as follows: hearing loss, 16%; ocular lesions, 3%; basement membrane thickening, 18.4%; and podocyte foot process effacement, 6.9%. Data for 76 patients from 54 families emphasize extensive inter- and intrafamilial heterogeneity, with age at onset of ESRD ranging between 21 and 84 years (mean 52.8). CONCLUSIONS The analysis enabled a comparison of the clinical course of patients with typical ARAS or X-linked AS with those with heterozygous COL4A mutations diagnosed with TBMN or ADAS. Despite the consequence of a potential ascertainment bias, an important outcome is that TBM poses a global high risk of developing severe CKD, over a long follow-up, with a variable spectrum of other findings. The results are useful to practicing nephrologists for better evaluation of patients.
Collapse
Affiliation(s)
| | | | - Constantinos Deltas
- Molecular Medicine Research Center and Laboratory of Molecular and Medical Genetics, Department of Biological Sciences, University of Cyprus, Nicosia, Cyprus
| |
Collapse
|
11
|
Kim BW, Kim SK, Heo KW, Bae KB, Jeong KH, Lee SH, Kim TH, Kim YH, Kang SW. Association between epidermal growth factor (EGF) and EGF receptor gene polymorphisms and end-stage renal disease and acute renal allograft rejection in a Korean population. Ren Fail 2020; 42:98-106. [PMID: 31906817 PMCID: PMC6968622 DOI: 10.1080/0886022x.2019.1710535] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Purpose Epidermal growth factor (EGF) has been found to be associated with the development and repair mechanisms of several renal diseases. In this study, we hypothesized that single nucleotide polymorphisms (SNPs) in EGF or its receptor genes might have an association with end-stage renal disease (ESRD) or acute renal allograft rejection (AR) in a Korean population. Methods Three-hundred and forty seven recipients of the first renal transplants for ESRD, including 63 AR patients along with 289 healthy adults were included in the study. Five EGF gene SNPs (rs11568835, rs11568943, rs2237051, rs11569017, and rs3756261) and four EGFR gene SNPs (rs1140475, rs2293347, rs1050171, and rs6965469) were analyzed. The genotypes of these SNPs were analyzed using the AxiomTM genome-wide human assay. Statistical analysis was performed using SNPStats and Haploview version 4.2 software. Multiple logistic regression models (codominant, dominant, recessive, and Log-additive) were used to estimate the odds ratio (OR), 95% confidence interval (CI), and P value. Results One SNP (rs11569017) in the EGF gene showed significant association with ESRD but not with AR. Another SNP (rs11568835) in the EGF gene showed significant association with susceptibility to AR but not with ESRD. One SNP (rs1050171) in the EGFR gene showed significant association with susceptibility to AR but not with ESRD. Conclusion Our findings suggest that SNPs in the EGF and EGFR gene may be associated with the risk of ESRD and AR development in the Korean population.
Collapse
Affiliation(s)
- Byeong Woo Kim
- Department of Internal Medicine, Haeundae Bumin Hospital, Busan, Korea
| | - Su Kang Kim
- Kohwang Medical Research Institute, Kyung Hee University School of Medicine, Seoul, Korea
| | - Kyung Wook Heo
- Department of Otolaryngology, Inje University, Busan, Korea
| | - Ki Beom Bae
- Department of General Surgery, Inje University, Busan, Korea
| | - Kyung Hwan Jeong
- Division of Nephrology, Department of Internal Medicine, Kyung Hee University, Seoul, Korea
| | - Sang Ho Lee
- Division of Nephrology, Department of Internal Medicine, Kyung Hee University, Seoul, Korea
| | - Tae Hee Kim
- Division of Nephrology, Department of Internal Medicine, Inje University, Busan, Korea
| | - Yeong Hoon Kim
- Division of Nephrology, Department of Internal Medicine, Inje University, Busan, Korea
| | - Sun Woo Kang
- Division of Nephrology, Department of Internal Medicine, Inje University, Busan, Korea
| |
Collapse
|
12
|
Hénique C, Lenoir O, Karras A, Tharaux PL. Local miscommunications between glomerular cells as potential therapeutic targets for crescentic glomerulonephritides. Nephrol Ther 2019; 15 Suppl 1:S1-S5. [PMID: 30981386 DOI: 10.1016/j.nephro.2019.03.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Accepted: 03/04/2019] [Indexed: 10/27/2022]
Abstract
Necrotizing and crescentic rapidly progressive glomerulonephritis or crescentic glomerulonephritis is one of the severest forms of acquired glomerular diseases with significant mortality. Risk of end-stage renal failure at 5 years is near 30%, with a number of patients developing chronic kidney disease. Currently, autoimmune crescentic glomerulonephritides are treated with broad-spectrum immunosuppression inducing remission of the injury in the majority of patients. However, treatment is associated with significant side effects and by the time remission is achieved the majority of patients have developed renal tissue damage and significant impairment of their kidney function with a steep slope of deterioration within the first weeks following initiation of immunosuppression. It is therefore important to develop complementary strategies that would be immediately active on the common process of destructive epithelial processes. We have worked to identify the major cellular pathways contributing to glomerular destruction in this context by a systematic comparison of patient tissues and experimental models. Our studies demonstrate the pivotal role of local intra- and intercellular communications in orchestrating the global glomerular tolerance to a severe rapidly progressive glomerulonephritis model with excellent anatomoclinical correlative expressions in kidney biopsies of individuals diagnosed with crescentic glomerulonephritis, irrespectively of the causal immune disorder. We hope that such approaches deciphering mechanisms of cellular adaptation that underlie kidney damage control in response to vasculitides, integrating both stress and damage responses, will delineate novel complementary therapies.
Collapse
Affiliation(s)
- Carole Hénique
- Inserm, Paris Cardiovascular Centre (Parcc), 56, rue Leblanc, 75015 Paris, France; Université Paris Descartes, Sorbonne Paris Cité, 12, rue de l'École-de-Médecine, 75006 Paris, France; Inserm, équipe 21, U955 institut Mondor de recherche biomédicale, 8, rue du Général-Sarrail, 94010 Créteil cedex, France; Université Paris Est Créteil, 8, rue du Général-Sarrail, 94010 Créteil cedex, France
| | - Olivia Lenoir
- Inserm, Paris Cardiovascular Centre (Parcc), 56, rue Leblanc, 75015 Paris, France; Université Paris Descartes, Sorbonne Paris Cité, 12, rue de l'École-de-Médecine, 75006 Paris, France
| | - Alexandre Karras
- Inserm, Paris Cardiovascular Centre (Parcc), 56, rue Leblanc, 75015 Paris, France; Université Paris Descartes, Sorbonne Paris Cité, 12, rue de l'École-de-Médecine, 75006 Paris, France; Renal Division, hôpital européen Georges-Pompidou, Assistance publique-hôpitaux de Paris, 20, rue Leblanc, 75015 Paris, France
| | - Pierre-Louis Tharaux
- Inserm, Paris Cardiovascular Centre (Parcc), 56, rue Leblanc, 75015 Paris, France; Université Paris Descartes, Sorbonne Paris Cité, 12, rue de l'École-de-Médecine, 75006 Paris, France.
| |
Collapse
|
13
|
Role of Epidermal Growth Factor Receptor (EGFR) and Its Ligands in Kidney Inflammation and Damage. Mediators Inflamm 2018; 2018:8739473. [PMID: 30670929 PMCID: PMC6323488 DOI: 10.1155/2018/8739473] [Citation(s) in RCA: 81] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 10/29/2018] [Accepted: 11/07/2018] [Indexed: 12/29/2022] Open
Abstract
Chronic kidney disease (CKD) is characterized by persistent inflammation and progressive fibrosis, ultimately leading to end-stage renal disease. Although many studies have investigated the factors involved in the progressive deterioration of renal function, current therapeutic strategies only delay disease progression, leaving an unmet need for effective therapeutic interventions that target the cause behind the inflammatory process and could slow down or reverse the development and progression of CKD. Epidermal growth factor receptor (EGFR) (ERBB1), a membrane tyrosine kinase receptor expressed in the kidney, is activated after renal damage, and preclinical studies have evidenced its potential as a therapeutic target in CKD therapy. To date, seven official EGFR ligands have been described, including epidermal growth factor (EGF) (canonical ligand), transforming growth factor-α, heparin-binding epidermal growth factor, amphiregulin, betacellulin, epiregulin, and epigen. Recently, the connective tissue growth factor (CTGF/CCN2) has been described as a novel EGFR ligand. The direct activation of EGFR by its ligands can exert different cellular responses, depending on the specific ligand, tissue, and pathological condition. Among all EGFR ligands, CTGF/CCN2 is of special relevance in CKD. This growth factor, by binding to EGFR and downstream signaling pathway activation, regulates renal inflammation, cell growth, and fibrosis. EGFR can also be “transactivated” by extracellular stimuli, including several key factors involved in renal disease, such as angiotensin II, transforming growth factor beta (TGFB), and other cytokines, including members of the tumor necrosis factor superfamily, showing another important mechanism involved in renal pathology. The aim of this review is to summarize the contribution of EGFR pathway activation in experimental kidney damage, with special attention to the regulation of the inflammatory response and the role of some EGFR ligands in this process. Better insights in EGFR signaling in renal disease could improve our current knowledge of renal pathology contributing to therapeutic strategies for CKD development and progression.
Collapse
|
14
|
Rayego-Mateos S, Morgado-Pascual JL, Rodrigues-Diez RR, Rodrigues-Diez R, Falke LL, Mezzano S, Ortiz A, Egido J, Goldschmeding R, Ruiz-Ortega M. Connective tissue growth factor induces renal fibrosis via epidermal growth factor receptor activation. J Pathol 2018; 244:227-241. [PMID: 29160908 DOI: 10.1002/path.5007] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 10/20/2017] [Accepted: 11/14/2017] [Indexed: 01/04/2023]
Abstract
Connective tissue growth factor (CCN2/CTGF) is a matricellular protein that is overexpressed in progressive human renal diseases, mainly in fibrotic areas. In vitro studies have demonstrated that CCN2 regulates the production of extracellular matrix (ECM) proteins and epithelial-mesenchymal transition (EMT), and could therefore contribute to renal fibrosis. CCN2 blockade ameliorates experimental renal damage, including diminution of ECM accumulation. We have reported that CCN2 and its C-terminal degradation product CCN2(IV) bind to epidermal growth factor receptor (EGFR) to modulate renal inflammation. However, the receptor involved in CCN2 profibrotic actions has not been described so far. Using a murine model of systemic administration of CCN2(IV), we have unveiled a fibrotic response in the kidney that was diminished by EGFR blockade. Additionally, in conditional CCN2 knockout mice, renal fibrosis elicited by folic acid-induced renal damage was prevented, and this was linked to inhibition of EGFR pathway activation. Our in vitro studies demonstrated a direct effect of CCN2 via the EGFR pathway on ECM production by fibroblasts and the induction of EMT in tubular epithelial cells. Our studies clearly show that the EGFR regulates CCN2 fibrotic signalling in the kidney, and suggest that EGFR pathway blockade could be a potential therapeutic option to block CCN2-mediated profibrotic effects in renal diseases. Copyright © 2017 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Sandra Rayego-Mateos
- Cellular Biology in Renal Diseases Laboratory. School of Medicine, Universidad Autónoma Madrid, Madrid, Spain
| | - José Luis Morgado-Pascual
- Cellular Biology in Renal Diseases Laboratory. School of Medicine, Universidad Autónoma Madrid, Madrid, Spain
| | | | - Raquel Rodrigues-Diez
- Cellular Biology in Renal Diseases Laboratory. School of Medicine, Universidad Autónoma Madrid, Madrid, Spain
| | - Lucas L Falke
- Department of Pathology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Sergio Mezzano
- Division of Nephrology, School of Medicine, Universidad Austral de Chile, Valdivia, Chile
| | - Alberto Ortiz
- IIS-Fundación Jiménez Díaz-UAM, School of Medicine, UAM, Madrid, Spain
| | - Jesús Egido
- IIS-Fundación Jiménez Díaz-UAM, School of Medicine, UAM, Madrid, Spain.,Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM), Madrid, Spain
| | - Roel Goldschmeding
- Department of Pathology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Marta Ruiz-Ortega
- Cellular Biology in Renal Diseases Laboratory. School of Medicine, Universidad Autónoma Madrid, Madrid, Spain
| |
Collapse
|
15
|
Ma TKW, McAdoo SP, Tam FWK. Targeting the tyrosine kinase signalling pathways for treatment of immune-mediated glomerulonephritis: from bench to bedside and beyond. Nephrol Dial Transplant 2017; 32:i129-i138. [PMID: 28391340 PMCID: PMC5410974 DOI: 10.1093/ndt/gfw336] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Accepted: 08/18/2016] [Indexed: 12/25/2022] Open
Abstract
Glomerulonephritis (GN) affects patients of all ages and is an important cause of morbidity and mortality. Non-selective immunosuppressive drugs have been used in immune-mediated GN but often result in systemic side effects and occasionally fatal infective complications. There is increasing evidence from both preclinical and clinical studies that abnormal activation of receptor and non-receptor tyrosine kinase signalling pathways are implicated in the pathogenesis of immune-mediated GN. Activation of spleen tyrosine kinase (SYK), Bruton's tyrosine kinase (BTK), platelet-derived growth factor receptor (PDGFR), epidermal growth factor receptor (EGFR) and discoidin domain receptor 1 (DDR1) have been demonstrated in anti-GBM disease. SYK is implicated in the pathogenesis of ANCA-associated GN. SYK, BTK, PDGFR, EFGR, DDR1 and Janus kinase are implicated in the pathogenesis of lupus nephritis. A representative animal model of IgA nephropathy (IgAN) is lacking. Based on the results from in vitro and human renal biopsy study results, a phase II clinical trial is ongoing to evaluate the efficacy and safety of fostamatinib (an oral SYK inhibitor) in high-risk IgAN patient. Various tyrosine kinase inhibitors (TKIs) have been approved for cancer treatment. Clinical trials of TKIs in GN may be justified given their long-term safety data. In this review we will discuss the current unmet medical needs in GN treatment and research as well as the current stage of development of TKIs in GN treatment and propose an accelerated translational research approach to investigate whether selective inhibition of tyrosine kinase provides a safer and more efficacious option for GN treatment.
Collapse
Affiliation(s)
- Terry King-Wing Ma
- Renal and Vascular Inflammation Section, Department of Medicine, Imperial College London, Hammersmith Hospital, Du Cane Road, London, UK.,Carol and Richard Yu Peritoneal Dialysis Research Centre, Department of Medicine and Therapeutics, Prince of Wales Hospital, Chinese University of Hong Kong, Sha Tin, Hong Kong
| | - Stephen P McAdoo
- Renal and Vascular Inflammation Section, Department of Medicine, Imperial College London, Hammersmith Hospital, Du Cane Road, London, UK
| | - Frederick Wai Keung Tam
- Renal and Vascular Inflammation Section, Department of Medicine, Imperial College London, Hammersmith Hospital, Du Cane Road, London, UK
| |
Collapse
|
16
|
Caetano-Pinto P, Jamalpoor A, Ham J, Goumenou A, Mommersteeg M, Pijnenburg D, Ruijtenbeek R, Sanchez-Romero N, van Zelst B, Heil SG, Jansen J, Wilmer MJ, van Herpen CML, Masereeuw R. Cetuximab Prevents Methotrexate-Induced Cytotoxicity in Vitro through Epidermal Growth Factor Dependent Regulation of Renal Drug Transporters. Mol Pharm 2017; 14:2147-2157. [PMID: 28493713 PMCID: PMC5462489 DOI: 10.1021/acs.molpharmaceut.7b00308] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
![]()
The combination of methotrexate with
epidermal growth factor receptor
(EGFR) recombinant antibody, cetuximab, is currently being investigated
in treatment of head and neck carcinoma. As methotrexate is cleared
by renal excretion, we studied the effect of cetuximab on renal methotrexate
handling. We used human conditionally immortalized proximal tubule
epithelial cells overexpressing either organic anion transporter 1
or 3 (ciPTEC-OAT1/ciPTEC-OAT3) to examine OAT1 and OAT3, and the efflux
pumps breast cancer resistance protein (BCRP), multidrug resistance
protein 4 (MRP4), and P-glycoprotein (P-gp) in methotrexate handling
upon EGF or cetuximab treatment. Protein kinase microarrays and knowledge-based
pathway analysis were used to predict EGFR-mediated transporter regulation.
Cytotoxic effects of methotrexate were evaluated using the dimethylthiazol
bromide (MTT) viability assay. Methotrexate inhibited OAT-mediated
fluorescein uptake and decreased efflux of Hoechst33342 and glutathione-methylfluorescein
(GS-MF), which suggested involvement of OAT1/3, BCRP, and MRP4 in
transepithelial transport, respectively. Cetuximab reversed the EGF-increased
expression of OAT1 and BCRP as well as their membrane expressions
and transport activities, while MRP4 and P-gp were increased. Pathway
analysis predicted cetuximab-induced modulation of PKC and PI3K pathways
downstream EGFR/ERBB2/PLCg. Pharmacological inhibition of ERK decreased
expression of OAT1 and BCRP, while P-gp and MRP4 were increased. AKT
inhibition reduced all transporters. Exposure to methotrexate for
24 h led to a decreased viability, an effect that was reversed by
cetuximab. In conclusion, cetuximab downregulates OAT1 and BCRP while
upregulating P-gp and MRP4 through an EGFR-mediated regulation of
PI3K-AKT and MAPKK-ERK pathways. Consequently, cetuximab attenuates
methotrexate-induced cytotoxicity, which opens possibilities for further
research into nephroprotective comedication therapies.
Collapse
Affiliation(s)
- Pedro Caetano-Pinto
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University , 3584 CG Utrecht, The Netherlands
| | - Amer Jamalpoor
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University , 3584 CG Utrecht, The Netherlands
| | - Janneke Ham
- Department of Oncology, Radboud University Medical Center , 6525 GA Nijmegen, The Netherlands
| | - Anastasia Goumenou
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University , 3584 CG Utrecht, The Netherlands
| | | | | | | | - Natalia Sanchez-Romero
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University , 3584 CG Utrecht, The Netherlands.,Centro Investigación Biomédica de Aragón (CIBA), 50009 Zaragoza, Spain
| | - Bertrand van Zelst
- Department of Clinical Chemistry, ErasmusMC , 3015 CE Rotterdam, The Netherlands
| | - Sandra G Heil
- Department of Clinical Chemistry, ErasmusMC , 3015 CE Rotterdam, The Netherlands
| | - Jitske Jansen
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University , 3584 CG Utrecht, The Netherlands
| | - Martijn J Wilmer
- Department of Pharmacology and Toxicology, Radboud Institute of Molecular Life Sciences, Radboudumc , 6500 HB Nijmegen, The Netherlands
| | - Carla M L van Herpen
- Department of Oncology, Radboud University Medical Center , 6525 GA Nijmegen, The Netherlands
| | - Rosalinde Masereeuw
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University , 3584 CG Utrecht, The Netherlands
| |
Collapse
|
17
|
Epidermal growth factor receptor signaling mediates aldosterone-induced profibrotic responses in kidney. Exp Cell Res 2016; 346:99-110. [PMID: 27317889 DOI: 10.1016/j.yexcr.2016.06.009] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Revised: 06/12/2016] [Accepted: 06/14/2016] [Indexed: 12/19/2022]
Abstract
Aldosterone has been recognized as a risk factor for the development of chronic kidney disease (CKD). Studies have indicated that enhanced activation of epidermal growth factor receptor (EGFR) is associated with the development and progression of renal fibrosis. But if EGFR is involved in aldosterone-induced renal fibrosis is less investigated. In the present study, we examined the effect of erlotinib, an inhibitor of EGFR tyrosine kinase activity, on the progression of aldosterone-induced renal profibrotic responses in a murine model underwent uninephrectomy. Erlotinib-treated rats exhibited relieved structural lesion comparing with rats treated with aldosterone alone, as characterized by glomerular hypertrophy, mesangial cell proliferation and expansion. Also, erlotinib inhibited the expression of TGF-β, α-SMA and mesangial matrix proteins such as collagen Ⅳ and fibronectin. In cultured mesangial cells, inhibition of EGFR also abrogated aldosterone-induced expression of extracellular matrix proteins, cell proliferation and migration. We also demonstrated that aldosterone induced the phosphorylation of EGFR through generation of ROS. And the activation of EGFR resulted in the phosphorylation of ERK1/2, leading to the activation of profibrotic pathways. Taken together, we concluded that aldosterone-mediated tissue fibrosis relies on ROS induced EGFR/ERK activation, highlighting EGFR as a potential therapeutic target for modulating renal fibrosis.
Collapse
|
18
|
Guo Z, Liu X, Li M, Shao C, Tao J, Sun W, Li M. Differential urinary glycoproteome analysis of type 2 diabetic nephropathy using 2D-LC-MS/MS and iTRAQ quantification. J Transl Med 2015; 13:371. [PMID: 26608305 PMCID: PMC4660682 DOI: 10.1186/s12967-015-0712-9] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Accepted: 10/23/2015] [Indexed: 01/20/2023] Open
Abstract
Background Diabetic nephropathy (DN) is the leading cause of chronic kidney failure and end-stage kidney disease. More accurate and non-invasive test for the diagnosis and monitoring the progression of DN is urgently needed for the better care of such patients. Methods In this study we utilized urinary glycoproteome to discover the differential proteins during the course of type 2 DN. The urinary glycoproteins from normal controls, normalbuminuira, microalbuminura, and macroalbuminuria patients were enriched by concanavalin A (ConA) and analyzed by 2DLC/MS/MS and isobaric tags for relative and absolute quantitation quantification. Results A total of 478 proteins were identified and 408 were annotated as N-linked glycoproteins. A total of 72, 107 and 123 differential proteins were identified in normalbuminuria, microalbuminuria and macroalbuminuria, respectively. By bioinformatics analysis, in normalbuminruia state, cell proliferation and cell movement were activated, which might reflect the compensatory phase during the disease development. In micro- and macro-albuminuria, cell death and apoptosis was activated, which might reflect the de-compensatory phase. Pathway analysis showed acute phase proteins, the member of high density lipoprotein and low density lipoprotein proteins were changed, indicating the role of the inflammatory response and lipid metabolism abnormality in the pathogenesis of DN. Six selected differential proteins were validated by Western Blot. Alpha-1-antitrypsin (SERPINA1) and Ceruloplasmin are the two markers with excellent area under curve values (0.929 and 1.000 respectively) to distinguish the microalbuminuria and normalbuminuria. For the first time, we found pro-epidermal growth factor and prolactin-inducible protein were decreased in macroalbuminuria stage, which might reflect the inhibition of cell viability and the activation of cell death in kidney. Conclusions Above data indicated that urinary glycoproteome could be useful to distinguish the differences in protein profiles in different stages in DN, which will help better individualized care of patients in DN. Electronic supplementary material The online version of this article (doi:10.1186/s12967-015-0712-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Zhengguang Guo
- Core Facility of Instrument, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, 5 Dong Dan San Tiao, Beijing, 100005, China.
| | - Xuejiao Liu
- Department of Nephrology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, No. 1 Shuaifuyan, Wangfujing Street, Beijing, China.
| | - Menglin Li
- National Key Laboratory of Medical Molecular Biology, Department of Physiology and Pathophysiology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, 5 Dong Dan San Tiao, Beijing, 100005, China.
| | - Chen Shao
- The Center for Biomedical Information, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, 5 Dong Dan San Tiao, Beijing, 100005, China.
| | - Jianling Tao
- Department of Nephrology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, No. 1 Shuaifuyan, Wangfujing Street, Beijing, China.
| | - Wei Sun
- Core Facility of Instrument, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, 5 Dong Dan San Tiao, Beijing, 100005, China.
| | - Mingxi Li
- Department of Nephrology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, No. 1 Shuaifuyan, Wangfujing Street, Beijing, China.
| |
Collapse
|
19
|
Rintala JM, Savikko J, Rintala SE, Palin N, Koskinen PK. Epidermal growth factor receptor inhibition with erlotinib ameliorates anti-Thy 1.1-induced experimental glomerulonephritis. J Nephrol 2015; 29:359-365. [PMID: 26423803 DOI: 10.1007/s40620-015-0233-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Accepted: 09/08/2015] [Indexed: 10/23/2022]
Abstract
BACKGROUND Mesangial proliferative glomerulonephritis is a common glomerular disorder that may lead to end-stage renal disease. Epidermal growth factor (EGF) plays an important role in the regulation of cell growth, proliferation, and differentiation and in the pathology of various renal diseases. Erlotinib is a novel, oral, highly selective tyrosine kinase inhibitor of the EGF receptor. It is clinically used to treat non-small cell lung and pancreatic cancers. Here, we investigated the effect of erlotinib on the progression of mesangioproliferative glomerulonephritis in an experimental model. METHODS Mesangial glomerulonephritis was induced with anti-rat Thy-1.1 antibody in male Wistar rats weighing 150-160 g. Rats were treated with erlotinib (10 mg/kg/day p.o.) or vehicle only (polyethylene glycol). Native Wistar rat kidneys were used as histological controls. Serum creatinine levels were measured at day 7. Kidneys were harvested 7 days after antibody administration for histology. RESULTS Native controls showed no histological signs of glomerular pathology. In the vehicle group, intense glomerular inflammation developed after 7 days and prominent mesangial cell proliferation and glomerular matrix accumulation was seen. Erlotinib was well tolerated and there were no adverse effects during the follow-up period. Erlotinib significantly prevented progression of the glomerular inflammatory response and glomerular mesangial cell proliferation as well as matrix accumulation when compared with the vehicle group. Erlotinib also preserved renal function. CONCLUSION These results indicate that erlotinib prevents the early events of experimental mesangial proliferative glomerulonephritis. Therefore, inhibition of the EGF receptor with erlotinib could prevent the progression of glomerulonephritis also in clinical nephrology.
Collapse
Affiliation(s)
- Jukka M Rintala
- Transplantation Laboratory, University of Helsinki, P.O. Box 21, Haartmaninkatu 3, 00014, Helsinki, Finland.
| | - Johanna Savikko
- Transplantation Laboratory, University of Helsinki, P.O. Box 21, Haartmaninkatu 3, 00014, Helsinki, Finland.,Transplantation and Liver Surgery Unit, Helsinki University Hospital, Helsinki, Finland
| | - Sini E Rintala
- Transplantation Laboratory, University of Helsinki, P.O. Box 21, Haartmaninkatu 3, 00014, Helsinki, Finland
| | - Niina Palin
- Transplantation Laboratory, University of Helsinki, P.O. Box 21, Haartmaninkatu 3, 00014, Helsinki, Finland
| | - Petri K Koskinen
- Transplantation Laboratory, University of Helsinki, P.O. Box 21, Haartmaninkatu 3, 00014, Helsinki, Finland.,Division of Nephrology, Department of Medicine, Helsinki University Hospital, Helsinki, Finland
| |
Collapse
|
20
|
New insights into glomerular parietal epithelial cell activation and its signaling pathways in glomerular diseases. BIOMED RESEARCH INTERNATIONAL 2015; 2015:318935. [PMID: 25866774 PMCID: PMC4383425 DOI: 10.1155/2015/318935] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 05/23/2014] [Revised: 07/28/2014] [Accepted: 09/01/2014] [Indexed: 12/26/2022]
Abstract
The glomerular parietal epithelial cells (PECs) have aroused an increasing attention recently. The proliferation of PECs is the main feature of crescentic glomerulonephritis; besides that, in the past decade, PEC activation has been identified in several types of noninflammatory glomerulonephropathies, such as focal segmental glomerulosclerosis, diabetic glomerulopathy, and membranous nephropathy. The pathogenesis of PEC activation is poorly understood; however, a few studies delicately elucidate the potential mechanisms and signaling pathways implicated in these processes. In this review we will focus on the latest observations and concepts about PEC activation in glomerular diseases and the newest identified signaling pathways in PEC activation.
Collapse
|
21
|
Greenhall GHB, Salama AD. What is new in the management of rapidly progressive glomerulonephritis? Clin Kidney J 2015; 8:143-50. [PMID: 25815169 PMCID: PMC4370308 DOI: 10.1093/ckj/sfv008] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2015] [Accepted: 01/23/2015] [Indexed: 12/20/2022] Open
Abstract
Rapidly progressive glomerulonephritis (RPGN) results from severe crescentic damage to glomeruli and leads to irreversible kidney failure if not diagnosed and managed in a timely fashion. Traditional treatment has relied on glucocorticoids and cyclophosphamide, with additional plasmapheresis for certain conditions. Here we describe updates in the management of RPGN, according to the underlying renal pathology. However, there remains a paucity of trials that have enrolled patients with more advanced renal disease, dialysis dependence or with RPGN, and we are therefore still reliant on extrapolation of data from studies of patients with a less severe form of disease. In addition, reporting bias results in publication of cases or cohorts showing benefit for newer agents in advanced disease or RPGN, but it remains unclear how many unsuccessful outcomes in these circumstances take place. Since clinical trials specifically in RPGN are unlikely, use of biologic registries or combination of sufficient sized cohort series may provide indications of benefit outside of a clinical trial setting and should be encouraged, in order to provide some evidence for the efficacy of therapeutic regimens in RPGN and advanced renal disease.
Collapse
Affiliation(s)
| | - Alan D Salama
- UCL Centre for Nephrology , Royal Free Hospital , London , UK
| |
Collapse
|
22
|
Wada Y, Iyoda M, Matsumoto K, Shindo-Hirai Y, Kuno Y, Yamamoto Y, Suzuki T, Saito T, Iseri K, Shibata T. Epidermal growth factor receptor inhibition with erlotinib partially prevents cisplatin-induced nephrotoxicity in rats. PLoS One 2014; 9:e111728. [PMID: 25390346 PMCID: PMC4229108 DOI: 10.1371/journal.pone.0111728] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2014] [Accepted: 10/05/2014] [Indexed: 11/19/2022] Open
Abstract
The effects of blocking the epidermal growth factor receptor (EGFR) in acute kidney injury (AKI) are controversial. Here we investigated the renoprotective effect of erlotinib, a selective tyrosine kinase inhibitor that can block EGFR activity, on cisplatin (CP)-induced AKI. Groups of animals were given either erlotinib or vehicle from one day before up to Day 3 following induction of CP-nephrotoxicity (CP-N). In addition, we analyzed the effects of erlotinib on signaling pathways involved in CP-N by using human renal proximal tubular cells (HK-2). Compared to controls, rats treated with erlotinib exhibited significant improvement of renal function and attenuation of tubulointerstitial injury, and reduced the number of apoptotic and proliferating cells. Erlotinib-treated rats had a significant reduction of renal cortical mRNA for profibrogenic genes. The Bax/Bcl-2 mRNA and protein ratios were significantly reduced by erlotinib treatment. In vitro, we observed that erlotinib significantly reduced the phosphorylation of MEK1 and Akt, processes that were induced by CP in HK-2. Taken together, these data indicate that erlotinib has renoprotective properties that are likely mediated through decreases in the apoptosis and proliferation of tubular cells, effects that reflect inhibition of downstream signaling pathways of EGFR. These results suggest that erlotinib may be useful for preventing AKI in patients receiving CP chemotherapy.
Collapse
Affiliation(s)
- Yukihiro Wada
- Division of Nephrology, Department of Medicine, Showa University School of Medicine, Tokyo, Japan
| | - Masayuki Iyoda
- Division of Nephrology, Department of Medicine, Showa University School of Medicine, Tokyo, Japan
- * E-mail:
| | - Kei Matsumoto
- Division of Nephrology, Department of Medicine, Showa University School of Medicine, Tokyo, Japan
| | - Yuki Shindo-Hirai
- Division of Nephrology, Department of Medicine, Showa University School of Medicine, Tokyo, Japan
| | - Yoshihiro Kuno
- Division of Nephrology, Department of Medicine, Showa University School of Medicine, Tokyo, Japan
| | - Yasutaka Yamamoto
- Division of Nephrology, Department of Medicine, Showa University School of Medicine, Tokyo, Japan
| | - Taihei Suzuki
- Division of Nephrology, Department of Medicine, Showa University School of Medicine, Tokyo, Japan
| | - Tomohiro Saito
- Division of Nephrology, Department of Medicine, Showa University School of Medicine, Tokyo, Japan
| | - Ken Iseri
- Division of Nephrology, Department of Medicine, Showa University School of Medicine, Tokyo, Japan
| | - Takanori Shibata
- Division of Nephrology, Department of Medicine, Showa University School of Medicine, Tokyo, Japan
| |
Collapse
|
23
|
Abstract
Signaling through the epidermal growth factor receptor (EGFR) is involved in regulation of multiple biological processes, including proliferation, metabolism, differentiation, and survival. Owing to its aberrant expression in a variety of malignant tumors, EGFR has been recognized as a target in anticancer therapy. Increasingly, evidence from animal studies indicates that EGFR signaling is also implicated in the development and progression of renal fibrosis. The therapeutic value of EGFR inhibition has not yet been evaluated in human kidney disease. In this article, we summarize recent research into the role of EGFR signaling in renal fibrogenesis, discuss the mechanism by which EGFR regulates this process, and consider the potential of EGFR as an antifibrotic target.
Collapse
|
24
|
Glomerular parietal epithelial cells in kidney physiology, pathology, and repair. Curr Opin Nephrol Hypertens 2014; 22:302-9. [PMID: 23518463 DOI: 10.1097/mnh.0b013e32835fefd4] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
PURPOSE OF REVIEW We have summarized recently published glomerular parietal epithelial cell (PEC) research, focusing on their roles in glomerular development and physiology, and in certain glomerular diseases. The rationale is that PECs have been largely ignored until the recent availability of cell lineage tracing studies, human and murine PEC culture systems, and potential therapeutic interventions of PECs. RECENT FINDINGS Several new paradigms involving PECs have emerged demonstrating their significant contribution to glomerular physiology and numerous glomerular diseases. A subset of PECs serving as podocyte progenitors have been identified in normal human glomeruli. They provide a source for podocytes in adolescent mice, and their numbers increase in states of podocyte depletion. PEC progenitor number is increased by retinoids and angiotensin-converting enzyme inhibition. However, dysregulated growth of PEC progenitors leads to pseudo-crescent and crescent formation. In focal segmental glomerulosclerosis, considered a podocyte disease, activated PECs increase extracellular matrix production, which leads to synechial attachment and, when they move to the glomerular tuft, to segmental glomerulosclerosis. Finally, PECs might be adversely affected in proteinuric states by undergoing apoptosis. SUMMARY PECs play a critical role in glomerular repair through their progenitor function, but under certain circumstances paradoxically contribute to deterioration by augmenting scarring and crescent formation.
Collapse
|
25
|
Abstract
PURPOSE OF REVIEW The tumor necrosis factor-like weak inducer of apoptosis (TWEAK) cytokine has been linked to kidney injury by functional studies in experimental animals, and has biomarker potential in kidney disease. RECENT FINDINGS TWEAK was known to promote tubular cell injury and kidney inflammation. Recent studies have expanded these observations, identifying additional targets of TWEAK relevant to kidney injury. Thus, TWEAK upregulates the chemokine and cholesterol scavenger receptor CXCL16 and downregulates the antiaging and antifibrotic molecule Klotho in tubular cells. Furthermore, fibrogenic TWEAK actions on renal fibroblasts were described. TWEAK or factor-inducible molecule 14 targeting decreased the kidney fibrosis resulting from immune and nonimmune kidney injury induced by transient tubular or glomerular insults or by persistent urinary tract obstruction. TWEAK might also contribute to the link between chronic kidney disease and kidney cancer, as suggested by its role in other genitourinary cancers. Progress has also been made in TWEAK targeting. A phase I clinical trial showed that TWEAK targeting is well tolerated in humans, and an ongoing trial is exploring efficacy in lupus nephritis. Nanomolecules and inhibitors of epidermal growth factor receptor pathway may also protect from the adverse effects of TWEAK in the kidney. SUMMARY These findings suggest that TWEAK targeting has clinical potential in kidney injury of immune and nonimmune origin.
Collapse
|
26
|
Update on crescentic glomerulonephritis. Semin Immunopathol 2014; 36:479-90. [PMID: 24948005 DOI: 10.1007/s00281-014-0435-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2014] [Accepted: 05/27/2014] [Indexed: 10/25/2022]
Abstract
The recent years have seen a number of major progresses in the field of extracapillary glomerulonephritis. This entity is the final damage caused by unrelated immunological disorders such as immune complexes glomerular deposits or microvascular injury caused by proinflammatory cytokines, neutrophil extracellular traps (NET), and cell adhesion molecules in the context of antineutrophil cytoplasmic antibody (ANCA)-associated vasculitis (AAV). This review provides a summary of recent advances in the understanding of crescentic glomerulonephritis, focusing on interplays of local immune cells and on local mediators participating to crescent formation especially in anti-glomerular basement membrane (anti-GBM) antibody disease. The recent advances about AAV and lupus nephritis are covered by other chapters of this issue. Nevertheless, these considerations may apply to the general case of crescentic glomerulonephritis of all causes.
Collapse
|
27
|
Rayego-Mateos S, Morgado-Pascual JL, Sanz AB, Ramos AM, Eguchi S, Batlle D, Pato J, Keri G, Egido J, Ortiz A, Ruiz-Ortega M. TWEAK transactivation of the epidermal growth factor receptor mediates renal inflammation. J Pathol 2014; 231:480-94. [PMID: 24037740 DOI: 10.1002/path.4250] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2013] [Revised: 08/13/2013] [Accepted: 08/21/2013] [Indexed: 11/08/2022]
Abstract
TWEAK, a member of the TNF superfamily, binds to the Fn14 receptor, eliciting biological responses. EGFR signalling is involved in experimental renal injury. Our aim was to investigate the relationship between TWEAK and EGFR in the kidney. Systemic TWEAK administration into C57BL/6 mice increased renal EGFR phosphorylation, mainly in tubular epithelial cells. In vitro, in these cells TWEAK phosphorylated EGFR via Fn14 binding, ADAM17 activation and subsequent release of the EGFR ligands HB-EGF and TGFα. In vivo the EGFR kinase inhibitor Erlotinib inhibited TWEAK-induced renal EGFR activation and downstream signalling, including ERK activation, up-regulation of proinflammatory factors and inflammatory cell infiltration. Moreover, the ADAM17 inhibitor WTACE-2 also prevented those TWEAK-induced renal effects. In vitro TWEAK induction of proinflammatory factors was prevented by EGFR, ERK or ADAM17 inhibition. In contrast, EGFR transactivation did not modify TWEAK-mediated NF-κB activation. Our data suggest that TWEAK transactivates EGFR in the kidney, leading to modulation of downstream effects, including ERK activation and inflammation, and suggest that inhibition of EGFR signalling could be a novel therapeutic tool for renal inflammation.
Collapse
Affiliation(s)
- Sandra Rayego-Mateos
- Cellular Biology in Renal Diseases Laboratory, Universidad Autónoma, Madrid, Spain
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Deltas C, Pierides A, Voskarides K. Molecular genetics of familial hematuric diseases. Nephrol Dial Transplant 2013; 28:2946-60. [PMID: 24046192 DOI: 10.1093/ndt/gft253] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The familial hematuric diseases are a genetically heterogeneous group of monogenic conditions, caused by mutations in one of several genes. The major genes involved are the following: (i) the collagen IV genes COL4A3/A4/A5 that are expressed in the glomerular basement membranes (GBM) and are responsible for the most frequent forms of microscopic hematuria, namely Alport syndrome (X-linked or autosomal recessive) and thin basement membrane nephropathy (TBMN). (ii) The FN1 gene, expressed in the glomerulus and responsible for a rare form of glomerulopathy with fibronectin deposits (GFND). (iii) CFHR5 gene, a recently recognized regulator of the complement alternative pathway and mutated in a recently revisited form of inherited C3 glomerulonephritis (C3GN), characterized by isolated C3 deposits in the absence of immune complexes. A hallmark feature of all conditions is the age-dependent penetrance and a broad phenotypic heterogeneity in the sense that subsets of patients progress to added proteinuria or proteinuria and chronic renal failure that may or may not lead to end-stage kidney disease (ESKD) anywhere between the second and seventh decade of life. In addition to other excellent laboratory tools that assist the clinician in reaching the correct diagnosis, the molecular analysis emerges as the gold standard in establishing the diagnosis in many cases of doubt due to equivocal findings that complicate the differential diagnosis. Recent work led to the description of candidate genetic modifiers which confer a variable risk for progressing to chronic renal failure when co-inherited on the background of a primary glomerulopathy. Finally, more families are still waiting to be studied and more genes to be mapped and cloned that are responsible for other forms of heritable hematuric diseases. The study of such genes and their protein products will likely shed more light on the structure and function of the glomerular filtration barrier and other important glomerular components.
Collapse
Affiliation(s)
- Constantinos Deltas
- Molecular Medicine Research Center and Laboratory of Molecular and Medical Genetics, Department of Biological Sciences, University of Cyprus, Nicosia, Cyprus
| | | | | |
Collapse
|
29
|
Rayego-Mateos S, Rodrigues-Díez R, Morgado-Pascual JL, Rodrigues Díez RR, Mas S, Lavoz C, Alique M, Pato J, Keri G, Ortiz A, Egido J, Ruiz-Ortega M. Connective tissue growth factor is a new ligand of epidermal growth factor receptor. J Mol Cell Biol 2013; 5:323-35. [PMID: 23929714 DOI: 10.1093/jmcb/mjt030] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Chronic kidney disease is reaching epidemic proportions worldwide and there is no effective treatment. Connective tissue growth factor (CCN2) has been suggested as a risk biomarker and a potential therapeutic target for renal diseases, but its specific receptor has not been identified. Epidermal growth factor receptor (EGFR) participates in kidney damage, but whether CCN2 activates the EGFR pathway is unknown. Here, we show that CCN2 is a novel EGFR ligand. CCN2 binding to EGFR extracellular domain was demonstrated by surface plasmon resonance. CCN2 contains four distinct structural modules. The carboxyl-terminal module (CCN2(IV)) showed a clear interaction with soluble EGFR, suggesting that EGFR-binding site is located in this module. Injection of CCN2(IV) in mice increased EGFR phosphorylation in the kidney, mainly in tubular epithelial cells. EGFR kinase inhibition decreased CCN2(IV)-induced renal changes (ERK activation and inflammation). Studies in cultured tubular epithelial cells showed that CCN2(IV) binds to EGFR leading to ERK activation and proinflammatory factors overexpression. CCN2 interacts with the neurotrophin receptor TrkA, and EGFR/TrkA receptor crosstalk was found in response to CCN2(IV) stimulation. Moreover, endogenous CCN2 blockade inhibited TGF-β-induced EGFR activation. These findings indicate that CCN2 is a novel EGFR ligand that contributes to renal damage through EGFR signalling.
Collapse
Affiliation(s)
- Sandra Rayego-Mateos
- Cellular Biology in Renal Diseases Laboratory, Universidad Autónoma de Madrid, 28040 Madrid, Spain
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Sasaki K, Anderson E, Shankland SJ, Nicosia RF. Diffuse Proliferative Glomerulonephritis Associated With Cetuximab, an Epidermal Growth Factor Receptor Inhibitor. Am J Kidney Dis 2013; 61:988-91. [DOI: 10.1053/j.ajkd.2013.01.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2012] [Accepted: 01/14/2013] [Indexed: 12/30/2022]
|
31
|
Staruschenko A, Palygin O, Ilatovskaya DV, Pavlov TS. Epidermal growth factors in the kidney and relationship to hypertension. Am J Physiol Renal Physiol 2013; 305:F12-20. [PMID: 23637204 DOI: 10.1152/ajprenal.00112.2013] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Members of the epidermal growth factor (EGF)-family bind to ErbB (EGFR)-family receptors that play an important role in the regulation of various fundamental cell processes in many organs including the kidney. In this field, most of the research efforts are focused on the role of EGF-ErbB axis in cancer biology. However, many studies indicate that abnormal ErbB-mediated signaling pathways are critical in the development of renal and cardiovascular pathologies. The kidney is a major site of the EGF-family ligands synthesis, and it has been shown to express all four members of the ErbB receptor family. The study of kidney disease regulation by ErbB receptor ligands has expanded considerably in recent years. In vitro and in vivo studies have provided direct evidence of the role of ErbB signaling in the kidney. Recent advances in the understanding of how the proteins in the EGF-family regulate sodium transport and development of hypertension are specifically discussed here. Collectively, these results suggest that EGF-ErbB signaling pathways could be major determinants in the progress of renal lesions, including its effects on the regulation of sodium reabsorption in collecting ducts.
Collapse
Affiliation(s)
- Alexander Staruschenko
- Department of Physiology, Medical College of Wisconsin, 8701 Watertown Plank Rd., Milwaukee, WI 53226, USA.
| | | | | | | |
Collapse
|
32
|
Hénique C, Fligny C, Tharaux PL. L22. Crescent formation: unraveling local mediators that break glomerular epithelial cell tolerance to immune injury. Presse Med 2013; 42:565-8. [PMID: 23474044 DOI: 10.1016/j.lpm.2013.01.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Affiliation(s)
- Carole Hénique
- Inserm, université Paris-Descartes, Sorbonne Paris Cité, Paris cardiovascular centre (PARCC), 56, rue Leblanc, 75015 Paris, France
| | | | | |
Collapse
|
33
|
Combined Effects of PPAR γ Agonists and Epidermal Growth Factor Receptor Inhibitors in Human Proximal Tubule Cells. PPAR Res 2013; 2013:982462. [PMID: 23533381 PMCID: PMC3596915 DOI: 10.1155/2013/982462] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2012] [Accepted: 01/25/2013] [Indexed: 12/28/2022] Open
Abstract
We aimed to determine whether epidermal growth factor receptor (EGFR) inhibition, in addition to a peroxisome proliferator-activated receptor gamma (PPARγ) agonist, prevents high-glucose-induced proximal tubular fibrosis, inflammation, and sodium and water retention in human proximal tubule cells exposed to normal glucose; high glucose; high glucose with the PPARγ agonist pioglitazone or with the P-EGFR inhibitor, gefitinib; or high glucose with both pioglitazone and gefitinib. We have shown that high glucose increases AP-1 and NFκB binding activity, downstream phosphorylation of EGFR and Erk1/2, and fibronectin and collagen IV expression. Pioglitazone reversed these effects but upregulated NHE3 and AQP1 expression. Gefitinib inhibited high glucose induced fibronectin and collagen IV, and EGFR and Erk1/2 phosphorylation and reversed pioglitazone-induced increases in NHE3 and AQP1 expression. Our data suggests that combination of an EGFR inhibitor and a PPARγ agonist mitigates high-glucose-induced fibrosis and inflammation and reverses the upregulation of transporters and channels involved in sodium and water retention in human proximal tubule cells. Hence EGFR blockade may hold promise, not only in limiting tubulointerstitial pathology in diabetic nephropathy, but also in limiting the sodium and water retention observed in patients with diabetes and exacerbated by PPARγ agonists.
Collapse
|