1
|
Magalhães de Castro B, Dos Santos Rosa T, de Araújo TB, de Luca Corrêa H, de Deus LA, Neves RVP, Reis AL, Dos Santos RL, da Silva Barbosa JM, de Sousa Honorato F, da Motta Vilalva Mestrinho VM, de Moraes MR, Tzanno-Martins C, Prestes J. Effects of cluster set resistance training on bone mineral density and markers of bone metabolism in older hemodialysis subjects: A pilot study. Bone 2024; 189:117240. [PMID: 39182595 DOI: 10.1016/j.bone.2024.117240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 08/20/2024] [Accepted: 08/22/2024] [Indexed: 08/27/2024]
Abstract
Chronic kidney disease (CKD) is associated with a series of mineral bone disturbances due to increased production of parathormone which increases the activity of osteoclasts, removing calcium and phosphorous from the bones. However, the literature lacks investigations on the feasibility of different resistance training (RT) methods, such as cluster-sets, in this population. Thus, the aim of the present study was to compare traditional versus cluster-set RT protocols on bone mineral density (BMD) T-score, BMD Total, femur BMD, L3-L4 BMD, femoral neck BMD, Klotho, FGF23, Klotho - FGF23 ratio, Sclerostin, vitamin D, phosphorous and calcium in older subjects with CKD. Seventy-eight older subjects (age: 57.55 ± 4.06 years, body mass: 72.26 ± 13.96 kg, body mass index: 26.73 ± 2.97 kg/m2) with CKD undergoing maintenance hemodialysis were randomly divided into control group (CG, n = 26), traditional RT (RT, n = 26) and cluster-set RT (RT-CS, n = 26) groups. Subjects completed 24 weeks of RT three times per week, 1 h and 30 min before the hemodialysis session, and each training lasted around 60 to 80 min. There was a group×time interaction for total BMD, femur BMD, L3-L4 BMD, and femoral neck BMD, revealed by improvements for RT and RT-CS groups (pre versus post). Only femur BMD displayed differences as compared with the CG. Minimum clinically important difference (MCID) values revealed more responsive subjects in the RT-CS group for total BMD, femur BMD, klotho, FGF23, sclerostin, Vitamin D and calcium. In conclusion, RT can be used as a non-pharmacological complementary strategy for the treatment of CKD. RT-CS may be useful for these subjects as more responders were found for this type of training.
Collapse
Affiliation(s)
| | | | - Thaís Branquinho de Araújo
- Department of Physical Education, Catholic University of Brasilia, Brasilia, DF, Brazil; NephroClinics, Premium Nephrology Clinic, Brasilia, Brazil
| | - Hugo de Luca Corrêa
- Department of Physical Education, Catholic University of Brasilia, Brasilia, DF, Brazil
| | | | | | - Andrea Lucena Reis
- Department of Physical Education, Catholic University of Brasilia, Brasilia, DF, Brazil
| | | | | | | | | | | | | | - Jonato Prestes
- Department of Physical Education, Catholic University of Brasilia, Brasilia, DF, Brazil
| |
Collapse
|
2
|
Zaimi M, Grapsa E. Current therapeutic approach of chronic kidney disease-mineral and bone disorder. Ther Apher Dial 2024; 28:671-689. [PMID: 38898685 DOI: 10.1111/1744-9987.14177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 05/14/2024] [Accepted: 05/31/2024] [Indexed: 06/21/2024]
Abstract
Chronic kidney disease (CKD) has emerged as one of the leading noncommunicable diseases affecting >10% of the population worldwide. Bone and mineral disorders are a common complication among patients with CKD resulting in a poor life quality, high fracture risk, increased morbidity and cardiovascular mortality. According to Kidney Disease: Improving Global Outcomes, renal osteodystrophy refers to changes in bone morphology found in bone biopsy, whereas CKD-mineral and bone disorder (CKD-MBD) defines a complex of disturbances including biochemical and hormonal alterations, disorders of bone and mineral metabolism and extraskeletal calcification. As a result, the management of CKD-MBD should focus on the aforementioned parameters, including the treatment of hyperphosphatemia, hypocalcemia, abnormal PTH and vitamin D levels. Regarding the bone fragility fractures, osteoporosis and renal osteodystrophy, which constitute the bone component of CKD-MBD, anti-osteoporotic agents constitute the mainstay of treatment. However, a thorough elucidation of the CKD-MBD pathogenesis is crucial for the ideal personalized treatment approach. In this paper, we review the pathology and management of CKD-MBD based on the current literature with special attention to recent advances.
Collapse
Affiliation(s)
- Maria Zaimi
- National and Kapodistrian University of Athens, Aretaieio Hospital, Athens, Greece
| | - Eirini Grapsa
- National and Kapodistrian University of Athens, Aretaieio Hospital, Athens, Greece
| |
Collapse
|
3
|
Wan Abdul Azim WA, Kassim NK, Taib H, Abdullah NH, Che Abdul Aziz NA, Ibrahim HA. The Effect of Periodontitis on Fibroblast Growth Factor 23 Levels in Predialysis Chronic Kidney Disease Patients. Cureus 2024; 16:e65166. [PMID: 39176315 PMCID: PMC11339633 DOI: 10.7759/cureus.65166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/22/2024] [Indexed: 08/24/2024] Open
Abstract
Introduction Chronic kidney disease (CKD) is known to cause an increase in fibroblast growth factor 23 (FGF23). Periodontitis, a condition recognized as a risk factor for CKD, is also potentially associated with the increment of FGF23. This study aims to compare FGF23 levels in CKD patients with and without periodontitis and non-CKD patients with and without periodontitis. Correlation with serum phosphate, calcium, and intact parathyroid hormone (iPTH) was assessed. Additionally, associations between FGF23, calcium, phosphate, iPTH, creatinine, urea, plaque score, and bleeding score with periodontitis in CKD patients were determined. Method A total of 124 participants were categorized into four groups: CKD patients with periodontitis (n=31), CKD patients without periodontitis (n=32), periodontitis patients without CKD (n=32), and healthy population (n=29). The selected CKD patients include those from stages 3 and 4 (predialysis) patients. Serum levels of FGF23, calcium, phosphate, iPTH, creatinine, and urea were analyzed. Oral examinations were conducted to determine the presence and absence of periodontitis and assess plaque and bleeding scores. Result A significantly higher level of FGF23 was found in CKD compared to non-CKD groups; however, no difference was observed with the presence of periodontitis in both CKD and non-CKD. There was no significant correlation found between FGF23 and serum calcium, phosphate, or iPTH concerning periodontal status. Apart from the bleeding score, there was no association between FGF23, calcium, phosphate, iPTH, creatinine, urea, and plaque score with the presence of periodontitis in CKD patients. Conclusion The presence of periodontitis was not associated with higher FGF23 levels in CKD patients. Changes in FGF23, calcium, phosphate, iPTH, creatinine, urea, and plaque score could not be attributed to the presence of periodontitis in CKD patients.
Collapse
Affiliation(s)
- Wan Asma Wan Abdul Azim
- Department of Chemical Pathology, Universiti Sains Malaysia School of Medical Sciences, Kubang Kerian, MYS
| | | | - Haslina Taib
- Unit of Periodontics, School of Dental Sciences, Universiti Sains Malaysia, Kubang Kerian, MYS
| | - Nurul Huda Abdullah
- Department of Internal Medicine, Universiti Sains Malaysia School of Medical Sciences, Kubang Kerian, MYS
| | | | | |
Collapse
|
4
|
Malecki A, Pawloski J, Anzalone A, Shaftel K, Fadel HA, Lee I. Compressive myelopathy from diffuse spinal dural calcifications in a patient with end-stage renal disease: illustrative case. JOURNAL OF NEUROSURGERY. CASE LESSONS 2024; 7:CASE23641. [PMID: 38408341 PMCID: PMC10901115 DOI: 10.3171/case23641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 12/13/2023] [Indexed: 02/28/2024]
Abstract
BACKGROUND Diffuse spinal dural calcification is a rare disorder associated with hyperparathyroidism, including the secondary forms associated with renal failure, osteodystrophy, and chronic hypocalcemia. Here, the authors report a rare case of diffuse dural calcification causing spinal cord compression with myelopathy, requiring decompressive surgery with duraplasty to achieve adequate decompression. OBSERVATIONS A 46-year-old male with a history of renal failure on dialysis presented with 2 months of progressive neuropathic pain, lower-extremity weakness, and nonsustained clonus. Spine imaging showed severe renal osteodystrophy with multilevel compression fractures and diffuse dural calcifications with areas of invagination causing severe spinal cord compression. Decompressive surgery was recommended. In surgery, a thickened and calcified dura was encountered with areas of buckling causing spinal cord compression. The invaginated area of the dura was resected and reconstructed with patch duraplasty. The patient's neurological status remained unchanged postoperatively, and at the 6-month follow-up, the patient reported significant improvement in pain and muscle spasms. LESSONS Diffuse dural calcifications are a rare complication of prolonged dialysis and secondary hyperparathyroidism. When there is resultant spinal cord compression, this condition requires an intradural approach that addresses the thickened, calcified dura directly to obtain adequate spinal cord decompression.
Collapse
Affiliation(s)
- Alexis Malecki
- Wayne State University School of Medicine, Detroit, Michigan; and
| | - Jacob Pawloski
- Department of Neurosurgery, Henry Ford Health, Detroit, Michigan
| | - Anthony Anzalone
- Department of Neurosurgery, Henry Ford Health, Detroit, Michigan
| | - Kelly Shaftel
- Department of Neurosurgery, Henry Ford Health, Detroit, Michigan
| | - Hassan Ali Fadel
- Department of Neurosurgery, Henry Ford Health, Detroit, Michigan
| | - Ian Lee
- Department of Neurosurgery, Henry Ford Health, Detroit, Michigan
| |
Collapse
|
5
|
Takkavatakarn K, Puapatanakul P, Phannajit J, Sukkumme W, Chariyavilaskul P, Sitticharoenchai P, Leelahavanichkul A, Katavetin P, Praditpornsilpa K, Eiam-Ong S, Susantitaphong P. Protein-Bound Uremic Toxins Lowering Effect of Sevelamer in Pre-Dialysis Chronic Kidney Disease Patients with Hyperphosphatemia: A Randomized Controlled Trial. Toxins (Basel) 2021; 13:toxins13100688. [PMID: 34678981 PMCID: PMC8539528 DOI: 10.3390/toxins13100688] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 09/20/2021] [Accepted: 09/21/2021] [Indexed: 11/16/2022] Open
Abstract
P-cresyl sulfate and indoxyl sulfate are strongly associated with cardiovascular events and all-cause mortality in chronic kidney disease (CKD). This randomized controlled trial was conducted to compare the effects between sevelamer and calcium carbonate on protein-bound uremic toxins in pre-dialysis CKD patients with hyperphosphatemia. Forty pre-dialysis CKD patients with persistent hyperphosphatemia were randomly assigned to receive either 2400 mg of sevelamer daily or 1500 mg of calcium carbonate daily for 24 weeks. A significant decrease of total serum p-cresyl sulfate was observed in sevelamer therapy compared to calcium carbonate therapy (mean difference between two groups −5.61 mg/L; 95% CI −11.01 to −0.27 mg/L; p = 0.04). There was no significant difference in serum indoxyl sulfate levels (p = 0.36). Sevelamer had effects in terms of lowering fibroblast growth factor 23 (p = 0.01) and low-density lipoprotein cholesterol levels (p = 0.04). Sevelamer showed benefits in terms of retarding CKD progression. Changes in vascular stiffness were not found in this study.
Collapse
Affiliation(s)
- Kullaya Takkavatakarn
- Division of Nephrology, Department of Medicine, Faculty of Medicine, King Chulalongkorn Memorial Hospital, Chulalongkorn University, Bangkok 10330, Thailand; (K.T.); (P.P.); (J.P.); (A.L.); (P.K.); (K.P.); (S.E.-O.)
| | - Pongpratch Puapatanakul
- Division of Nephrology, Department of Medicine, Faculty of Medicine, King Chulalongkorn Memorial Hospital, Chulalongkorn University, Bangkok 10330, Thailand; (K.T.); (P.P.); (J.P.); (A.L.); (P.K.); (K.P.); (S.E.-O.)
| | - Jeerath Phannajit
- Division of Nephrology, Department of Medicine, Faculty of Medicine, King Chulalongkorn Memorial Hospital, Chulalongkorn University, Bangkok 10330, Thailand; (K.T.); (P.P.); (J.P.); (A.L.); (P.K.); (K.P.); (S.E.-O.)
| | - Warumphon Sukkumme
- Clinical Pharmacokinetics and Pharmacogenomics Research Unit, Department of Pharmacology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand; (W.S.); (P.C.)
- Department of Pharmacology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| | - Pajaree Chariyavilaskul
- Clinical Pharmacokinetics and Pharmacogenomics Research Unit, Department of Pharmacology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand; (W.S.); (P.C.)
- Department of Pharmacology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| | - Patita Sitticharoenchai
- Division of Cardiology, Department of Medicine, Faculty of Medicine, King Chulalongkorn Memorial Hospital, Chulalongkorn University, Bangkok 10330, Thailand;
| | - Asada Leelahavanichkul
- Division of Nephrology, Department of Medicine, Faculty of Medicine, King Chulalongkorn Memorial Hospital, Chulalongkorn University, Bangkok 10330, Thailand; (K.T.); (P.P.); (J.P.); (A.L.); (P.K.); (K.P.); (S.E.-O.)
- Department of Microbiology, King Chulalongkorn Memorial Hospital, Thai Red Cross Society, Bangkok 10330, Thailand
- Translational Research in Inflammation and Immunology Research Unit (TRIRU), Department of Microbiology, Chulalongkorn University, Bangkok 10330, Thailand
| | - Pisut Katavetin
- Division of Nephrology, Department of Medicine, Faculty of Medicine, King Chulalongkorn Memorial Hospital, Chulalongkorn University, Bangkok 10330, Thailand; (K.T.); (P.P.); (J.P.); (A.L.); (P.K.); (K.P.); (S.E.-O.)
| | - Kearkiat Praditpornsilpa
- Division of Nephrology, Department of Medicine, Faculty of Medicine, King Chulalongkorn Memorial Hospital, Chulalongkorn University, Bangkok 10330, Thailand; (K.T.); (P.P.); (J.P.); (A.L.); (P.K.); (K.P.); (S.E.-O.)
| | - Somchai Eiam-Ong
- Division of Nephrology, Department of Medicine, Faculty of Medicine, King Chulalongkorn Memorial Hospital, Chulalongkorn University, Bangkok 10330, Thailand; (K.T.); (P.P.); (J.P.); (A.L.); (P.K.); (K.P.); (S.E.-O.)
| | - Paweena Susantitaphong
- Division of Nephrology, Department of Medicine, Faculty of Medicine, King Chulalongkorn Memorial Hospital, Chulalongkorn University, Bangkok 10330, Thailand; (K.T.); (P.P.); (J.P.); (A.L.); (P.K.); (K.P.); (S.E.-O.)
- Research Unit for Metabolic Bone Disease in CKD Patients, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
- Correspondence: ; Tel.: +(662)-256-4251
| |
Collapse
|
6
|
Hampson G, Elder GJ, Cohen-Solal M, Abrahamsen B. A review and perspective on the assessment, management and prevention of fragility fractures in patients with osteoporosis and chronic kidney disease. Endocrine 2021; 73:509-529. [PMID: 33974225 PMCID: PMC8325650 DOI: 10.1007/s12020-021-02735-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 04/19/2021] [Indexed: 01/01/2023]
Abstract
This article aims to review the methods used for the assessment of fracture risk and the use of osteoporosis medications for fracture prevention in the population with CKD, and highlights the difficulties faced by clinicians in the management of these patients and the latest recommendations and guidelines. Chronic kidney disease (CKD) and osteoporosis often co-exist in older adults, and they present a major healthcare challenge. CKD mineral and bone disorder (CKD-MBD) occurs as renal function declines and this syndrome affects most patients in CKD stages 4 and 5. The biochemical abnormalities of CKD-MBD, renal bone disease and risk factors associated with age-related bone loss and osteoporosis lead to a cumulative effect on fracture risk and mortality. There is a need for routine evaluation of fracture risk and fracture prevention in this population. Measurement of bone mineral density (BMD) and the use of the FRAX tool have predictive value for incident fractures in the general population and in CKD. This enables physicians to identify CKD patients most at risk of sustaining a fragility fracture and allows a more targeted approach to fracture prevention. Data analysis from the pivotal trials of therapeutic agents used in osteoporosis show that these drugs can be considered in mild and moderate CKD (stages 1-3 CKD). Off-label drug use in patients with CKD-MBD and more severe renal impairment (CKD stages 4 and 5) could offer significant benefits to sub-groups of patients when carefully tailored to each individual's bone turnover and calcium and phosphate balance. However, this requires a selective approach and treatment decisions based on inference from pathophysiology while we await further trials. Guidelines advocate the correction and/or reduction of the biochemical abnormalities of CKD-MBD before initiation of treatment with osteoporosis drugs and close monitoring during treatment.
Collapse
Affiliation(s)
- Geeta Hampson
- Department of Chemical Pathology and Metabolic Medicine, St Thomas' Hospital, London, UK.
- Metabolic Bone Clinic, Department of Rheumatology, Guy's Hospital, London, UK.
| | - Grahame J Elder
- Department of Renal Medicine, Westmead Hospital, Sydney, New South Wales, Australia
- Osteoporosis and Bone Biology Program, Garvan Institute of Medical Research, Sydney, New South Wales, Australia
- Faculty of Medicine, University of Notre Dame Australia, Level 2, 88-90 Water Street, Auburn, New South Wales, 2144, Australia
| | - Martine Cohen-Solal
- Bioscar Inserm U1132 and Université de Paris, Hôpital Lariboisière, F-75010, Paris, France
| | - Bo Abrahamsen
- Department of Medicine, Holbæk Hospital, Holbæk, Denmark
- Department of Clinical Research, Open Data Explorative Network, University of Southern Denmark, Odense, Denmark
| |
Collapse
|
7
|
RGS14 Regulation of Post-Synaptic Signaling and Spine Plasticity in Brain. Int J Mol Sci 2021; 22:ijms22136823. [PMID: 34201943 PMCID: PMC8268017 DOI: 10.3390/ijms22136823] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Revised: 06/12/2021] [Accepted: 06/14/2021] [Indexed: 02/06/2023] Open
Abstract
The regulator of G-protein signaling 14 (RGS14) is a multifunctional signaling protein that regulates post synaptic plasticity in neurons. RGS14 is expressed in the brain regions essential for learning, memory, emotion, and stimulus-induced behaviors, including the basal ganglia, limbic system, and cortex. Behaviorally, RGS14 regulates spatial and object memory, female-specific responses to cued fear conditioning, and environmental- and psychostimulant-induced locomotion. At the cellular level, RGS14 acts as a scaffolding protein that integrates G protein, Ras/ERK, and calcium/calmodulin signaling pathways essential for spine plasticity and cell signaling, allowing RGS14 to naturally suppress long-term potentiation (LTP) and structural plasticity in hippocampal area CA2 pyramidal cells. Recent proteomics findings indicate that RGS14 also engages the actomyosin system in the brain, perhaps to impact spine morphogenesis. Of note, RGS14 is also a nucleocytoplasmic shuttling protein, where its role in the nucleus remains uncertain. Balanced nuclear import/export and dendritic spine localization are likely essential for RGS14 neuronal functions as a regulator of synaptic plasticity. Supporting this idea, human genetic variants disrupting RGS14 localization also disrupt RGS14’s effects on plasticity. This review will focus on the known and unexplored roles of RGS14 in cell signaling, physiology, disease and behavior.
Collapse
|
8
|
The Influence of Dietary Interventions on Chronic Kidney Disease-Mineral and Bone Disorder (CKD-MBD). Nutrients 2021; 13:nu13062065. [PMID: 34208727 PMCID: PMC8235119 DOI: 10.3390/nu13062065] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 06/06/2021] [Accepted: 06/07/2021] [Indexed: 12/14/2022] Open
Abstract
Chronic kidney disease is a health problem whose prevalence is increasing worldwide. The kidney plays an important role in the metabolism of minerals and bone health and therefore, even at the early stages of CKD, disturbances in bone metabolism are observed. In the course of CKD, various bone turnover or mineralization disturbances can develop including adynamic hyperparathyroid, mixed renal bone disease, osteomalacia. The increased risk of fragility fractures is present at any age in these patients. Nutritional treatment of patients with advanced stages of CKD is aiming at prevention or correction of signs, symptoms of renal failure, avoidance of protein-energy wasting (PEW), delaying or prevention of the occurrence of mineral/bone disturbances, and delaying the start of dialysis. The results of studies suggest that progressive protein restriction is beneficial with the progression of renal insufficiency; however, other aspects of dietary management of CKD patients, including changes in sodium, phosphorus, and energy intake, as well as the source of protein and lipids (animal or plant origin) should also be considered carefully. Energy intake must cover patients' energy requirement, in order to enable correct metabolic adaptation in the course of protein-restricted regimens and prevent negative nitrogen balance and protein-energy wasting.
Collapse
|
9
|
Nakatani S, Ishimura E, Murase T, Nakamura T, Nakatani A, Toi N, Nishide K, Uedono H, Tsuda A, Kurajoh M, Yamada S, Mori K, Inaba M, Emoto M. Plasma Xanthine Oxidoreductase Activity Associated with Glycemic Control in Patients with Pre-Dialysis Chronic Kidney Disease. Kidney Blood Press Res 2021; 46:475-483. [PMID: 34082427 DOI: 10.1159/000516610] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 04/10/2021] [Indexed: 11/19/2022] Open
Abstract
INTRODUCTION Xanthine oxidoreductase (XOR) activity plays an important role as a pivotal source of reactive oxygen species, which is associated with cardiovascular disease (CVD) events. Patients with CKD have increased risk of CVD events. In the present study, factors associated with plasma XOR activity in pre-dialysis CKD patients were investigated. METHODS In this cross-sectional study, plasma XOR activity in 118 pre-dialysis CKD patients (age 68 [57-75] years; 64 males, 26 with diabetes mellitus [DM]) was determined using a newly established highly sensitive assay based on (13C2,15N2) xanthine and liquid chromatography/triple quadrupole mass spectrometry. RESULTS Plasma glucose, hemoglobin A1c, and estimated glomerular filtration (eGFR) were significantly and positively correlated with plasma logarithmically transformed XOR (ln-XOR) activity. In multiple regression analyses, eGFR and hemoglobin A1c or plasma glucose were significantly, independently, and positively associated with plasma ln-XOR activity after adjusting for several confounders. Plasma XOR activity was significantly higher in CKD patients with (n = 26) than in those without (n = 92) DM (62.7 [32.3-122] vs. 25.7 [13.4-45.8] pmol/h/mL, p < 0.001). A total of 38 patients were taking uric acid-lowering drugs. Multiple regression analysis of CKD patients not administered uric acid-lowering drugs (n = 80) showed no significant association between eGFR and plasma ln-XOR activity. In contrast, association between glycemic control and plasma ln-XOR activity was significant even in CKD patients without uric acid-lowering drug treatment. CONCLUSIONS These results indicate the importance of glycemic control in CKD patients in regard to decreased XOR, possibly leading to a decrease in CVD events.
Collapse
Affiliation(s)
- Shinya Nakatani
- Department of Metabolism, Endocrinology and Molecular Medicine, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Eiji Ishimura
- Department of Nephrology, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Takayo Murase
- Mie Research Laboratories, Sanwa Kagaku Kenkyusho Co., Ltd., Inabe-shi, Japan
| | - Takashi Nakamura
- Mie Research Laboratories, Sanwa Kagaku Kenkyusho Co., Ltd., Inabe-shi, Japan
| | - Ayumi Nakatani
- Department of Metabolism, Endocrinology and Molecular Medicine, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Norikazu Toi
- Department of Metabolism, Endocrinology and Molecular Medicine, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Kozo Nishide
- Department of Metabolism, Endocrinology and Molecular Medicine, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Hideki Uedono
- Department of Metabolism, Endocrinology and Molecular Medicine, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Akihiro Tsuda
- Department of Metabolism, Endocrinology and Molecular Medicine, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Masafumi Kurajoh
- Department of Metabolism, Endocrinology and Molecular Medicine, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Shinsuke Yamada
- Department of Metabolism, Endocrinology and Molecular Medicine, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Katsuhito Mori
- Department of Nephrology, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Masaaki Inaba
- Department of Metabolism, Endocrinology and Molecular Medicine, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Masanori Emoto
- Department of Metabolism, Endocrinology and Molecular Medicine, Osaka City University Graduate School of Medicine, Osaka, Japan
| |
Collapse
|
10
|
Bakkaloglu SA, Bacchetta J, Lalayiannis AD, Leifheit-Nestler M, Stabouli S, Haarhaus M, Reusz G, Groothoff J, Schmitt CP, Evenepoel P, Shroff R, Haffner D. Bone evaluation in paediatric chronic kidney disease: clinical practice points from the European Society for Paediatric Nephrology CKD-MBD and Dialysis working groups and CKD-MBD working group of the ERA-EDTA. Nephrol Dial Transplant 2021; 36:413-425. [PMID: 33245331 DOI: 10.1093/ndt/gfaa210] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Indexed: 11/13/2022] Open
Abstract
Mineral and bone disorder (MBD) is widely prevalent in children with chronic kidney disease (CKD) and is associated with significant morbidity. CKD may cause disturbances in bone remodelling/modelling, which are more pronounced in the growing skeleton, manifesting as short stature, bone pain and deformities, fractures, slipped epiphyses and ectopic calcifications. Although assessment of bone health is a key element in the clinical care of children with CKD, it remains a major challenge for physicians. On the one hand, bone biopsy with histomorphometry is the gold standard for assessing bone health, but it is expensive, invasive and requires expertise in the interpretation of bone histology. On the other hand, currently available non-invasive measures, including dual-energy X-ray absorptiometry and biomarkers of bone formation/resorption, are affected by growth and pubertal status and have limited sensitivity and specificity in predicting changes in bone turnover and mineralization. In the absence of high-quality evidence, there are wide variations in clinical practice in the diagnosis and management of CKD-MBD in childhood. We present clinical practice points (CPPs) on the assessment of bone disease in children with CKD Stages 2-5 and on dialysis based on the best available evidence and consensus of experts from the CKD-MBD and Dialysis working groups of the European Society for Paediatric Nephrology and the CKD-MBD working group of the European Renal Association-European Dialysis and Transplant Association. These CPPs should be carefully considered by treating physicians and adapted to individual patients' needs as appropriate. Further areas for research are suggested.
Collapse
Affiliation(s)
- Sevcan A Bakkaloglu
- Department of Paediatric Nephrology, Gazi University Faculty of Medicine, Ankara, Turkey
| | - Justine Bacchetta
- Department of Paediatric Nephrology, Rheumatology and Dermatology, University Children's Hospital, Lyon, France
| | - Alexander D Lalayiannis
- Renal Unit, UCL Great Ormond Street Hospital for Children Institute of Child Health, London, UK
| | - Maren Leifheit-Nestler
- Department of Paediatric Kidney, Liver and Metabolic Diseases, Hannover Medical School Children's Hospital, Hannover, Germany
| | - Stella Stabouli
- First Department of Paediatrics, Aristotle University Thessaloniki, Thessaloniki, Greece
| | - Mathias Haarhaus
- Division of Renal Medicine and Baxter Novum, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden.,Diaverum AB, Stockholm, Sweden
| | - George Reusz
- First Department of Paediatrics, Semmelweis University, Budapest, Hungary
| | - Jaap Groothoff
- Department of Paediatric Nephrology, Emma Children's Hospital, Amsterdam, The Netherlands
| | - Claus Peter Schmitt
- Division of Paediatric Nephrology, Center for Paediatric and Adolescent Medicine, University of Heidelberg, Heidelberg, Germany
| | - Pieter Evenepoel
- Department of Microbiology and Immunology, Laboratory of Nephrology, KU Leuven, Leuven, Belgium.,Department of Nephrology, University Hospitals Leuven, Leuven, Belgium
| | - Rukshana Shroff
- Renal Unit, UCL Great Ormond Street Hospital for Children Institute of Child Health, London, UK
| | - Dieter Haffner
- Department of Paediatric Kidney, Liver and Metabolic Diseases, Hannover Medical School Children's Hospital, Hannover, Germany
| | | |
Collapse
|
11
|
Inflammation both increases and causes resistance to FGF23 in normal and uremic rats. Clin Sci (Lond) 2020; 134:15-32. [PMID: 31860056 DOI: 10.1042/cs20190779] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 12/03/2019] [Accepted: 12/20/2019] [Indexed: 12/19/2022]
Abstract
Fibroblast growth factor 23 (FGF23) increases phosphorus excretion and decreases calcitriol (1,25(OH)2D) levels. FGF23 increases from early stages of renal failure. We evaluated whether strict control of phosphorus intake in renal failure prevents the increase in FGF23 and to what extent inflammation impairs regulation of FGF23. The study was performed in 5/6 nephrectomized (Nx) Wistar rats fed diets containing 0.2-1.2% phosphorus for 3 or 15 days. FGF23 levels significantly increased in all Nx groups in the short-term (3-day) experiment. However, at 15 days, FGF23 increased in all Nx rats except in those fed 0.2% phosphorus. In a second experiment, Nx rats fed low phosphorus diets (0.2 and 0.4%) for 15 days received daily intraperitoneal lipopolysaccharide (LPS) injections to induce inflammation. In these rats, FGF23 increased despite the low phosphorus diets. Thus, higher FGF23 levels were needed to maintain phosphaturia and normal serum phosphorus values. Renal Klotho expression was preserved in Nx rats on a 0.2% phosphorus diet, reduced on a 0.4% phosphorus diet, and markedly reduced in Nx rats receiving LPS. In ex vivo experiments, high phosphorus and LPS increased nuclear β-catenin and p65-NFκB and decreased Klotho. Inhibition of inflammation and Wnt signaling activation resulted in decreased FGF23 levels and increased renal Klotho. In conclusion, strict control of phosphorus intake prevented the increase in FGF23 in renal failure, whereas inflammation independently increased FGF23 values. Decreased Klotho may explain the renal resistance to FGF23 in inflammation. These effects are likely mediated by the activation of NFkB and Wnt/β-catenin signaling.
Collapse
|
12
|
Rodríguez M. FGF23: Is It Another Biomarker for Phosphate-Calcium Metabolism? Adv Ther 2020; 37:73-79. [PMID: 32236868 DOI: 10.1007/s12325-019-01181-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Indexed: 12/13/2022]
Abstract
Fibroblast growth factor 23 (FGF23) is a protein produced by mature osteoblasts involved in mineral homeostasis by binding to its receptor complex FGFR/Klotho located mainly in the kidneys. Although this protein participates in numerous biological processes, increase in the levels of FGF23 is responsible for many pathologies, such as X-linked hypophosphataemia (XLH), chronic kidney disease, cardiovascular disease or even mortality. For this reason, both FGF23 and its receptors have become elements of interest for the development of treatments. However, FGF23 can be altered for many other reasons, such as inflammatory processes, iron, hypoxia, heart failure or erythropoietin, that negatively affect mortality. This article will review the role of FGF23 in phosphate homeostasis, its relationship to mortality, fractures and chronic renal failure, and how the levels of this factor can be reduced.
Collapse
|
13
|
Rroji M, Figurek A, Spasovski G. Should We Consider the Cardiovascular System While Evaluating CKD-MBD? Toxins (Basel) 2020; 12:toxins12030140. [PMID: 32106499 PMCID: PMC7150959 DOI: 10.3390/toxins12030140] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 02/12/2020] [Accepted: 02/20/2020] [Indexed: 12/25/2022] Open
Abstract
Cardiovascular (CV) disease is highly prevalent in the population with chronic kidney disease (CKD), where the risk of CV death in early stages far exceeds the risk of progression to dialysis. The presence of chronic kidney disease-mineral and bone disorder (CKD-MBD) has shown a strong correlation with CV events and mortality. As a non-atheromatous process, it could be partially explained why standard CV disease-modifying drugs do not provide such an impact on CV mortality in CKD as observed in the general population. We summarize the potential association of CV comorbidities with the older (parathyroid hormone, phosphate) and newer (FGF23, Klotho, sclerostin) CKD-MBD biomarkers.
Collapse
Affiliation(s)
- Merita Rroji
- University Department of Nephrology, Faculty of Medicine, University of Medicine Tirana, Tirana 1001, Albania
- Correspondence:
| | - Andreja Figurek
- Institute of Anatomy, University of Zurich, Zurich 8057, Switzerland;
| | - Goce Spasovski
- University Department of Nephrology, Medical Faculty, University of Skopje, Skopje 1000, North Macedonia;
| |
Collapse
|
14
|
Delucchi Á, Toro L, Alzamora R, Barrientos V, González M, Andaur R, León P, Villanueva F, Galindo M, Las Heras F, Montecino M, Moena D, Lazcano A, Pinto V, Salas P, Reyes ML, Mericq V, Michea L. Glucocorticoids Decrease Longitudinal Bone Growth in Pediatric Kidney Transplant Recipients by Stimulating the FGF23/FGFR3 Signaling Pathway. J Bone Miner Res 2019; 34:1851-1861. [PMID: 31099911 DOI: 10.1002/jbmr.3761] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/25/2018] [Revised: 05/05/2019] [Accepted: 05/11/2019] [Indexed: 12/11/2022]
Abstract
Renal transplantation (RTx) is an effective therapy to improve clinical outcomes in pediatric patients with terminal chronic kidney disease. However, chronic immunosuppression with glucocorticoids (GCs) reduces bone growth and BMD. The mechanisms causing GC-induced growth impairment have not been fully clarified. Fibroblast growth factor 23 (FGF23) is a peptide hormone that regulates phosphate homeostasis and bone growth. In pathological conditions, FGF23 excess or abnormal FGF receptors (FGFR) activity leads to bone growth impairment. Experimental data indicate that FGF23 expression is induced by chronic GC exposure. Therefore, we hypothesize that GCs impair bone growth by increasing FGF23 expression, which has direct effects on bone growth plate. In a post hoc analysis of a multicentric randomized clinical trial of prepubertal RTx children treated with early GC withdrawal or chronic GC treatment, we observed that GC withdrawal was associated with improvement in longitudinal growth and BMD, and lower plasma FGF23 levels as compared with a chronic GC group. In prepubertal rats, GC-induced bone growth retardation correlated with increased plasma FGF23 and bone FGF23 expression. Additionally, GC treatment decreased FGFR1 expression whereas it increased FGFR3 expression in mouse tibia explants. The GC-induced bone growth impairment in tibiae explants was prevented by blockade of FGF23 receptors using either a pan-FGFR antagonist (PD173074), a C-terminal FGF23 peptide (FGF23180-205) which blocks the binding of FGF23 to the FGFR-Klotho complex or a specific FGFR3 antagonist (P3). Finally, local administration of PD173074 into the tibia growth plate ameliorated cartilage growth impairment in GC-treated rats. These results show that GC treatment partially reduces longitudinal bone growth via upregulation of FGF23 and FGFR3 expression, thus suggesting that the FGF23/Klotho/FGFR3 axis at the growth plate could be a potential therapeutic target for the management of GC-induced growth impairment in children.
Collapse
Affiliation(s)
- Ángela Delucchi
- Division of Nephrology, Hospital Luis Calvo Mackenna, Santiago, Chile.,Division of Nephrology, Clínica Alemana de Santiago, Santiago, Chile
| | - Luis Toro
- Division of Nephrology, Department of Medicine, Hospital Clínico Universidad de Chile, Santiago, Chile.,Centro de Investigación Clínica Avanzada, Hospital Clínico Universidad de Chile, Santiago, Chile.,Clinica Las Condes, Santiago, Chile
| | - Rodrigo Alzamora
- Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile.,Millennium Nucleus of Ion Channel-Associated Diseases (MiNICAD), Santiago, Chile
| | - Victor Barrientos
- Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Magdalena González
- Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Rodrigo Andaur
- Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Pablo León
- Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Francisco Villanueva
- Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Mario Galindo
- Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile.,Millennium Institute on Immunology and Immunotherapy (MIII), Santiago, Chile
| | - Facundo Las Heras
- Clinica Las Condes, Santiago, Chile.,Department of Anatomic Pathology, Hospital Clínico Universidad de Chile, Santiago, Chile
| | - Martín Montecino
- Institute of Biomedical Sciences, Faculty of Medicine and Faculty of Life Sciences, Universidad Andrés Bello, Santiago, Chile.,FONDAP Center for Genome Regulation, Universidad Andres Bello, Santiago, Chile
| | - Daniel Moena
- Institute of Biomedical Sciences, Faculty of Medicine and Faculty of Life Sciences, Universidad Andrés Bello, Santiago, Chile.,FONDAP Center for Genome Regulation, Universidad Andres Bello, Santiago, Chile
| | - Andrea Lazcano
- Division of Nephrology, Clínica Alemana de Santiago, Santiago, Chile.,Division of Nephrology, Hospital de Niños Roberto del Río, Santiago, Chile
| | - Viola Pinto
- Clinica Las Condes, Santiago, Chile.,Pediatric Nephrology Unit, Hospital Doctor Exequiel González Cortés, Santiago, Chile
| | - Paulina Salas
- Pediatric Nephrology Unit, Hospital Doctor Exequiel González Cortés, Santiago, Chile
| | - María Loreto Reyes
- Pediatric Endocrinology Unit, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Verónica Mericq
- Clinica Las Condes, Santiago, Chile.,Institute of Maternal and Child Research, Universidad de Chile, Santiago, Chile
| | - Luis Michea
- Division of Nephrology, Department of Medicine, Hospital Clínico Universidad de Chile, Santiago, Chile.,Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile.,Millennium Institute on Immunology and Immunotherapy (MIII), Santiago, Chile
| |
Collapse
|
15
|
Kritmetapak K, Pongchaiyakul C. Parathyroid Hormone Measurement in Chronic Kidney Disease: From Basics to Clinical Implications. Int J Nephrol 2019; 2019:5496710. [PMID: 31637056 PMCID: PMC6766083 DOI: 10.1155/2019/5496710] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Accepted: 09/04/2019] [Indexed: 11/18/2022] Open
Abstract
Accurate measurement of parathyroid hormone (PTH) is crucial for therapeutic decision-making in patients with chronic kidney disease-mineral and bone disorder (CKD-MBD). The second-generation PTH assays, often referred to as "intact PTH" assays, are the current standard and most available assays in clinical practice. However, intact PTH assays measure both full-length biologically active PTH and heterogeneous PTH fragments in the circulation, providing the equivocal value of PTH measurement in patients with CKD-MBD. Due to the variability of PTH assays, preanalytical sample errors, and the phenomenon of end-organ PTH hyporesponsiveness, current CKD-MBD guidelines recommend a wide range for serum PTH targets (2-9 the upper normal limit of the intact PTH assay) in dialysis patients to diminish the risk of developing adynamic bone disease. Nevertheless, a sizeable proportion of CKD patients still experience renal osteodystrophy despite having serum PTH levels within the recommended range. The primary cause of this inconsistency is the analytical interference of various PTH fragments and oxidized PTH forms that considerably accumulate in CKD patients. Therefore, a new mass spectrometry-based assay, which is capable of specifically measuring the whole spectra of PTH fragments, can potentially improve diagnostic accuracy for renal osteodystrophy. However, the effects of different PTH fragments on bone metabolism, vascular calcification, and mortality in CKD patients warrant further research.
Collapse
Affiliation(s)
- Kittrawee Kritmetapak
- Division of Nephrology, Department of Medicine, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Chatlert Pongchaiyakul
- Division of Endocrinology and Metabolism, Department of Medicine, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
| |
Collapse
|
16
|
Treatment of secondary hyperparathyroidism with paricalcitol in patients with end-stage renal disease undergoing hemodialysis in Turkey: an observational study. Int Urol Nephrol 2019; 51:1261-1270. [DOI: 10.1007/s11255-019-02175-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Accepted: 05/14/2019] [Indexed: 12/29/2022]
|
17
|
Rodelo-Haad C, Santamaria R, Muñoz-Castañeda JR, Pendón-Ruiz de Mier MV, Martin-Malo A, Rodriguez M. FGF23, Biomarker or Target? Toxins (Basel) 2019; 11:E175. [PMID: 30909513 PMCID: PMC6468608 DOI: 10.3390/toxins11030175] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 03/14/2019] [Accepted: 03/19/2019] [Indexed: 12/11/2022] Open
Abstract
Fibroblast growth factor 23 (FGF23) plays a key role in the complex network between the bones and other organs. Initially, it was thought that FGF23 exclusively regulated phosphate and vitamin D metabolism; however, recent research has demonstrated that an excess of FGF23 has other effects that may be detrimental in some cases. The understanding of the signaling pathways through which FGF23 acts in different organs is crucial to develop strategies aiming to prevent the negative effects associated with high FGF23 levels. FGF23 has been described to have effects on the heart, promoting left ventricular hypertrophy (LVH); the liver, leading to production of inflammatory cytokines; the bones, inhibiting mineralization; and the bone marrow, by reducing the production of erythropoietin (EPO). The identification of FGF23 receptors will play a remarkable role in future research since its selective blockade might reduce the adverse effects of FGF23. Patients with chronic kidney disease (CKD) have very high levels of FGF23 and may be the population suffering from the most adverse FGF23-related effects. The general population, as well as kidney transplant recipients, may also be affected by high FGF23. Whether the association between FGF23 and clinical events is causal or casual remains controversial. The hypothesis that FGF23 could be considered a therapeutic target is gaining relevance and may become a promising field of investigation in the future.
Collapse
Affiliation(s)
- Cristian Rodelo-Haad
- Nephrology Service, University Hospital Reina Sofia, 14005 Cordoba, Spain.
- Maimonides Institute for Biomedical Research of Cordoba (IMIBIC)/University of Cordoba, 14005 Cordoba, Spain.
- Spanish Renal Research Network (REDinREN), Institute of Health Carlos III, 28040 Madrid, Spain.
| | - Rafael Santamaria
- Nephrology Service, University Hospital Reina Sofia, 14005 Cordoba, Spain.
- Maimonides Institute for Biomedical Research of Cordoba (IMIBIC)/University of Cordoba, 14005 Cordoba, Spain.
- Spanish Renal Research Network (REDinREN), Institute of Health Carlos III, 28040 Madrid, Spain.
| | - Juan R Muñoz-Castañeda
- Nephrology Service, University Hospital Reina Sofia, 14005 Cordoba, Spain.
- Maimonides Institute for Biomedical Research of Cordoba (IMIBIC)/University of Cordoba, 14005 Cordoba, Spain.
- Spanish Renal Research Network (REDinREN), Institute of Health Carlos III, 28040 Madrid, Spain.
| | - M Victoria Pendón-Ruiz de Mier
- Nephrology Service, University Hospital Reina Sofia, 14005 Cordoba, Spain.
- Maimonides Institute for Biomedical Research of Cordoba (IMIBIC)/University of Cordoba, 14005 Cordoba, Spain.
- Spanish Renal Research Network (REDinREN), Institute of Health Carlos III, 28040 Madrid, Spain.
| | - Alejandro Martin-Malo
- Nephrology Service, University Hospital Reina Sofia, 14005 Cordoba, Spain.
- Maimonides Institute for Biomedical Research of Cordoba (IMIBIC)/University of Cordoba, 14005 Cordoba, Spain.
- Spanish Renal Research Network (REDinREN), Institute of Health Carlos III, 28040 Madrid, Spain.
| | - Mariano Rodriguez
- Nephrology Service, University Hospital Reina Sofia, 14005 Cordoba, Spain.
- Maimonides Institute for Biomedical Research of Cordoba (IMIBIC)/University of Cordoba, 14005 Cordoba, Spain.
- Spanish Renal Research Network (REDinREN), Institute of Health Carlos III, 28040 Madrid, Spain.
| |
Collapse
|
18
|
Coltherd JC, Staunton R, Colyer A, Thomas G, Gilham M, Logan DW, Butterwick R, Watson P. Not all forms of dietary phosphorus are equal: an evaluation of postprandial phosphorus concentrations in the plasma of the cat. Br J Nutr 2019; 121:270-284. [PMID: 30420000 PMCID: PMC6390407 DOI: 10.1017/s0007114518003379] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Revised: 10/04/2018] [Accepted: 10/22/2018] [Indexed: 11/08/2022]
Abstract
Phosphorus is present in diets as naturally occurring P from raw materials or added as an inorganic salt. However, little is known about postprandial kinetics of P absorption in cats. Here, we describe several studies quantifying postprandial kinetics following the ingestion of diets of varying composition. Briefly, cats were fed a meal consisting of 50 % of their metabolic energy requirement in a randomised crossover design. A pre-meal baseline blood sample was taken via cephalic catheter and repeated measurements taken regularly up to 6 h post-meal to assess the whole blood ionised Ca, plasma P and parathyroid hormone concentrations. A diet containing 4·8 g total P/4184 kJ (1000 kcal), 3·5 g P from sodium dihydrogen phosphate (NaH2PO4)/4184 kJ (1000 kcal) and Ca:P 0·6 caused a marked increase in plasma P from baseline to a peak of 1·976 (95% CI 1·724, 2·266) mmol/l (P <0·001), whereas a diet containing 3·38 g total P/4184 kJ (1000 kcal), no added inorganic P and Ca:P 1·55 resulted in a postprandial decrease in plasma P (P = 0·008). Subsequent data indicate that added inorganic P salts in the diet above 0·5 g P/4184 kJ (1000 kcal) cause an increase in plasma P in cats, while diets below this do not. The data presented here demonstrate that sources of added inorganic P salts cause a temporary postprandial increase in plasma P in a dose-dependent manner, prolonged in diets with Ca:P <1·0. Dietary P derived from natural food ingredients (e.g. meat or vegetable matter) does not appear to have any effect on postprandial plasma P.
Collapse
Affiliation(s)
| | - Ruth Staunton
- WALTHAM Centre for Pet Nutrition, Melton Mowbray, Leicestershire LE14 4RT, UK
| | - Alison Colyer
- WALTHAM Centre for Pet Nutrition, Melton Mowbray, Leicestershire LE14 4RT, UK
| | - Gäelle Thomas
- WALTHAM Centre for Pet Nutrition, Melton Mowbray, Leicestershire LE14 4RT, UK
| | - Matthew Gilham
- WALTHAM Centre for Pet Nutrition, Melton Mowbray, Leicestershire LE14 4RT, UK
| | - Darren W. Logan
- WALTHAM Centre for Pet Nutrition, Melton Mowbray, Leicestershire LE14 4RT, UK
| | - Richard Butterwick
- WALTHAM Centre for Pet Nutrition, Melton Mowbray, Leicestershire LE14 4RT, UK
| | - Phillip Watson
- WALTHAM Centre for Pet Nutrition, Melton Mowbray, Leicestershire LE14 4RT, UK
| |
Collapse
|
19
|
Rodelo-Haad C, Rodríguez-Ortiz ME, Martin-Malo A, Pendon-Ruiz de Mier MV, Agüera ML, Muñoz-Castañeda JR, Soriano S, Caravaca F, Alvarez-Lara MA, Felsenfeld A, Aljama P, Rodriguez M. Phosphate control in reducing FGF23 levels in hemodialysis patients. PLoS One 2018; 13:e0201537. [PMID: 30086150 PMCID: PMC6080760 DOI: 10.1371/journal.pone.0201537] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Accepted: 07/04/2018] [Indexed: 02/07/2023] Open
Abstract
Background In hemodialysis patients, high levels of Fibroblast Growth Factor 23 (FGF23) predict mortality. Our study was designed to test whether the control of serum phosphate is associated with a reduction in serum FGF23 levels. Additionally other variables with a potential effect on FGF23 levels were evaluated. Material and methods The effect of sustained (40-weeks) control of serum phosphate on FGF23 levels (intact and c-terminal) was evaluated in 21 stable hemodialysis patients that were not receiving calcimimetics or active vitamin D. Patients received non-calcium phosphate binders to maintain serum phosphate below 4.5 mg/dl. In an additional analysis, values of intact-FGF23 (iFGF23) and c-terminal FGF23 (cFGF23) from 150 hemodialysis patients were correlated with parameters of mineral metabolism and inflammation. Linear mixed models and linear regression were performed to evaluate longitudinal trajectories of variables and the association between FGF23 and the other variables examined. Results During the 40-week treatment, 12 of 21 patients achieved the target of serum phosphate <4.5 mg/dl. In these 12 patients, iFGF23 decreased to less than half whereas cFGF23 did not reduce significantly. In patients with serum phosphate >4.5 mg, iFGF23 and cFGF23 increased two and four-fold respectively as compared with baseline. Furthermore, changes in serum phosphate correlated with changes in C-reactive protein (hs-CRP). In our 150 hemodialysis patients, those in the higher tertile of serum phosphate also showed increased hs-CRP, iPTH, iFGF23 and cFGF23. Multiple regression analysis revealed that iFGF23 levels directly correlated with both serum phosphate and calcium, whereas cFGF23 correlated with serum phosphate and hs-CRP but not with calcium. Conclusions The control of serum phosphate reduced iFGF23. This reduction was also associated with a decreased in inflammatory parameters. Considering the entire cohort of hemodialysis patients, iFGF23 levels correlated directly with serum phosphate levels and also correlated inversely with serum calcium concentration. The levels of cFGF23 were closely related to serum phosphate and parameters of inflammation.
Collapse
Affiliation(s)
- Cristian Rodelo-Haad
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Reina Sofia University Hospital, University of Cordoba, Cordoba, Spain
- Nephrology Service, Reina Sofia University Hospital, Cordoba, Spain
- RETICs-REDinREN (National Institute of Health Carlos III), Madrid, Spain
| | - Maria E. Rodríguez-Ortiz
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Reina Sofia University Hospital, University of Cordoba, Cordoba, Spain
- RETICs-REDinREN (National Institute of Health Carlos III), Madrid, Spain
| | - Alejandro Martin-Malo
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Reina Sofia University Hospital, University of Cordoba, Cordoba, Spain
- Nephrology Service, Reina Sofia University Hospital, Cordoba, Spain
- RETICs-REDinREN (National Institute of Health Carlos III), Madrid, Spain
- * E-mail:
| | - M. Victoria Pendon-Ruiz de Mier
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Reina Sofia University Hospital, University of Cordoba, Cordoba, Spain
- Nephrology Service, Reina Sofia University Hospital, Cordoba, Spain
- RETICs-REDinREN (National Institute of Health Carlos III), Madrid, Spain
| | - M. Luisa Agüera
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Reina Sofia University Hospital, University of Cordoba, Cordoba, Spain
- Nephrology Service, Reina Sofia University Hospital, Cordoba, Spain
- RETICs-REDinREN (National Institute of Health Carlos III), Madrid, Spain
| | - Juan R. Muñoz-Castañeda
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Reina Sofia University Hospital, University of Cordoba, Cordoba, Spain
- Nephrology Service, Reina Sofia University Hospital, Cordoba, Spain
- RETICs-REDinREN (National Institute of Health Carlos III), Madrid, Spain
| | - Sagrario Soriano
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Reina Sofia University Hospital, University of Cordoba, Cordoba, Spain
- Nephrology Service, Reina Sofia University Hospital, Cordoba, Spain
- RETICs-REDinREN (National Institute of Health Carlos III), Madrid, Spain
| | | | - M. Antonia Alvarez-Lara
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Reina Sofia University Hospital, University of Cordoba, Cordoba, Spain
- Nephrology Service, Reina Sofia University Hospital, Cordoba, Spain
- RETICs-REDinREN (National Institute of Health Carlos III), Madrid, Spain
| | - Arnold Felsenfeld
- Wadsworth VA, UCLA, Department of Medicine, Veterans Affairs Greater Los Angeles Healthcare System and the David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California
| | - Pedro Aljama
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Reina Sofia University Hospital, University of Cordoba, Cordoba, Spain
- Nephrology Service, Reina Sofia University Hospital, Cordoba, Spain
- RETICs-REDinREN (National Institute of Health Carlos III), Madrid, Spain
| | - Mariano Rodriguez
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Reina Sofia University Hospital, University of Cordoba, Cordoba, Spain
- Nephrology Service, Reina Sofia University Hospital, Cordoba, Spain
- RETICs-REDinREN (National Institute of Health Carlos III), Madrid, Spain
| |
Collapse
|
20
|
Figurek A, Spasovski G, Popovic-Pejicic S. FGF23 Level and Intima-Media Thickness Are Elevated From Early Stages of Chronic Kidney Disease. Ther Apher Dial 2017; 22:40-48. [PMID: 28971600 DOI: 10.1111/1744-9987.12592] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2017] [Revised: 05/15/2017] [Accepted: 06/15/2017] [Indexed: 01/18/2023]
Abstract
Considering high cardiovascular (CV) risk in chronic kidney disease (CKD), the aim of this cross-sectional study was to assess the association between carotid intima-media thickness (IMT) and fibroblast growth factor (FGF) 23 as important players in CV pathophysiology. Eighty-seven patients with mean estimated glomerular filtration rate 40.1 mL/min per 1.73 m2 were involved. FGF23 and IMT were elevated from early stages of CKD. Mean IMT value was 1.10 ± 0.20 mm, being significantly elevated starting from early CKD, showing no correlation with FGF23 (r = -0.01, P = -0.91). Unlike the FGF23 level that followed worsening of kidney function, IMT was increasing only in the initial CKD stages, with no further increase from CKD stage 3 on. Although we found no direct association between current use of vitamin D and statin therapy, this may be associated with the sustained reference values of lipid and vitamin D status under treatment that further preclude worsening of IMT in patients with advanced CKD.
Collapse
Affiliation(s)
- Andreja Figurek
- Department of Nephrology, University Clinical Centre of the Republic of Srpska, Banja Luka, Bosnia and Herzegovina.,Medical Faculty, University of Banja Luka, Banja Luka, Bosnia and Herzegovina
| | - Goce Spasovski
- University Department of Nephrology, Medical Faculty, Skopje, Macedonia
| | - Snjezana Popovic-Pejicic
- Department of Endocrinology, University Clinical Centre of the Republic of Srpska, Banja Luka, Bosnia and Herzegovina.,Medical Faculty, University of Banja Luka, Banja Luka, Bosnia and Herzegovina
| |
Collapse
|
21
|
|
22
|
Hruska KA, Sugatani T, Agapova O, Fang Y. The chronic kidney disease - Mineral bone disorder (CKD-MBD): Advances in pathophysiology. Bone 2017; 100:80-86. [PMID: 28119179 PMCID: PMC5502716 DOI: 10.1016/j.bone.2017.01.023] [Citation(s) in RCA: 125] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Revised: 01/19/2017] [Accepted: 01/20/2017] [Indexed: 01/01/2023]
Abstract
The causes of excess cardiovascular mortality associated with chronic kidney disease (CKD) have been attributed in part to the CKD-mineral bone disorder syndrome (CKD-MBD), wherein, novel cardiovascular risk factors have been identified. New advances in the causes of the CKD-MBD are discussed in this review. They demonstrate that repair and disease processes in the kidneys release factors to the circulation that cause the systemic complications of CKD. The discovery of WNT inhibitors, especially Dickkopf 1 (Dkk1), produced during renal repair as participating in the pathogenesis of the vascular and skeletal components of the CKD-MBD implied that additional pathogenic factors are critical. This lead to the discovery that activin A is a second renal repair factor circulating in increased levels during CKD. Activin A derives from peritubular myofibroblasts of diseased kidneys, wherein it stimulates fibrosis, and decreases tubular klotho expression. Activin A binds to the type 2 activin A receptor, ActRIIA, which is variably affected by CKD in the vasculature. In diabetic/atherosclerotic aortas, specifically in vascular smooth muscle cells (VSMC), ActRIIA signaling is inhibited and contributes to CKD induced VSMC dedifferentiation, osteogenic transition and neointimal atherosclerotic calcification. In nondiabetic/nonatherosclerotic aortas, CKD increases VSMC ActRIIA signaling, and vascular fibroblast signaling causing the latter to undergo osteogenic transition and stimulate vascular calcification. In both vascular situations, a ligand trap for ActRIIA prevented vascular calcification. In the skeleton, activin A is responsible for CKD stimulation of osteoclastogenesis and bone remodeling increasing bone turnover. These studies demonstrate that circulating renal repair and injury factors are causal of the CKD-MBD and CKD associated cardiovascular disease.
Collapse
Affiliation(s)
- Keith A Hruska
- Department of Pediatrics, Nephrology, Washington University Saint Louis, MO, United States; Departments of Medicine, Washington University Saint Louis, MO, United States; Department of Cell Biology, Washington University Saint Louis, MO, United States.
| | - Toshifumi Sugatani
- Department of Pediatrics, Nephrology, Washington University Saint Louis, MO, United States
| | - Olga Agapova
- Department of Pediatrics, Nephrology, Washington University Saint Louis, MO, United States
| | - Yifu Fang
- Department of Pediatrics, Nephrology, Washington University Saint Louis, MO, United States
| |
Collapse
|
23
|
Gruson D, Ferracin B, Ahn SA, Rousseau MF. Elevation of plasma oncostatin M in heart failure. Future Cardiol 2017; 13:219-227. [DOI: 10.2217/fca-2016-0063] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Aim: Oncostatin M (OSM) is an inflammatory cytokine of the gp130 family. OSM could participate in adverse cardiovascular remodeling through regulation of FGF23. Materials & methods: OSM levels were determined in 80 heart failure patients with reduced left ventricular ejection fraction (HFrEF). Results: OSM levels are significantly increased in HFrEF patients compared with healthy subjects. We have also demonstrated that, in HFrEF patients, plasma OSM levels are correlated to parathyroid hormone PTH(1–84) and 1,25(OH)2D, two other biomarkers related to bone and mineral metabolism and associated to adverse cardiovascular outcomes. Conclusion: OSM concentrations are elevated in HFrEF patients and could interplay with parathyroid hormone and vitamin D impacting cardiovascular function. Nevertheless, the prognostic value of OSM testing appears limited.
Collapse
Affiliation(s)
- Damien Gruson
- Pôle de recherche en Endocrinologie, Diabète et Nutrition, Institut de Recherche Expérimentale et Clinique, Cliniques Universitaires St-Luc & Université Catholique de Louvain, Brussels, Belgium
- Department of Laboratory Medicine, Cliniques Universitaires St-Luc & Université Catholique de Louvain, Brussels, Belgium
| | - Benjamin Ferracin
- Department of Laboratory Medicine, Cliniques Universitaires St-Luc & Université Catholique de Louvain, Brussels, Belgium
| | - Sylvie A Ahn
- Division of Cardiology, Cliniques Universitaires St-Luc & Pôle de recherche cardiovasculaire, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium
| | - Michel F Rousseau
- Division of Cardiology, Cliniques Universitaires St-Luc & Pôle de recherche cardiovasculaire, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium
| |
Collapse
|
24
|
Abstract
The last 25 years have been characterized by dramatic improvements in short-term patient and allograft survival after kidney transplantation. Long-term patient and allograft survival remains limited by cardiovascular disease and chronic allograft injury, among other factors. Cardiovascular disease remains a significant contributor to mortality in native chronic kidney disease as well as cardiovascular mortality in chronic kidney disease more than doubles that of the general population. The chronic kidney disease (CKD)-mineral bone disorder (MBD) is a syndrome recently coined to embody the biochemical, skeletal, and cardiovascular pathophysiology that results from disrupting the complex systems biology between the kidney, skeleton, and cardiovascular system in native and transplant kidney disease. The CKD-MBD is a unique kidney disease-specific syndrome containing novel cardiovascular risk factors, with an impact reaching far beyond traditional notions of renal osteodystrophy and hyperparathyroidism. This overview reviews current knowledge of the pathophysiology of the CKD-MBD, including emerging concepts surrounding the importance of circulating pathogenic factors released from the injured kidney that directly cause cardiovascular disease in native and transplant chronic kidney disease, with potential application to mechanisms of chronic allograft injury and vasculopathy.
Collapse
|
25
|
Abstract
Alpha-Klotho (αKlotho) protein is encoded by the gene, Klotho, and functions as a coreceptor for endocrine fibroblast growth factor-23. The extracellular domain of αKlotho is cleaved by secretases and released into the circulation where it is called soluble αKlotho. Soluble αKlotho in the circulation starts to decline in chronic kidney disease (CKD) stage 2 and urinary αKlotho in even earlier CKD stage 1. Therefore soluble αKlotho is an early and sensitive marker of decline in kidney function. Preclinical data from numerous animal experiments support αKlotho deficiency as a pathogenic factor for CKD progression and extrarenal CKD complications including cardiac and vascular disease, hyperparathyroidism, and disturbed mineral metabolism. αKlotho deficiency induces cell senescence and renders cells susceptible to apoptosis induced by a variety of cellular insults including oxidative stress. αKlotho deficiency also leads to defective autophagy and angiogenesis and promotes fibrosis in the kidney and heart. Most importantly, prevention of αKlotho decline, upregulation of endogenous αKlotho production, or direct supplementation of soluble αKlotho are all associated with attenuation of renal fibrosis, retardation of CKD progression, improvement of mineral metabolism, amelioration of cardiac function and morphometry, and alleviation of vascular calcification in CKD. Therefore in rodents, αKlotho is not only a diagnostic and prognostic marker for CKD but the enhancement of endogenous or supplement of exogenous αKlotho are promising therapeutic strategies to prevent, retard, and decrease the comorbidity burden of CKD.
Collapse
Affiliation(s)
- J A Neyra
- University of Texas Southwestern Medical Center, Dallas, TX, United States; Charles and Jane Pak Center for Mineral Metabolism and Clinical Research, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - M C Hu
- University of Texas Southwestern Medical Center, Dallas, TX, United States; Charles and Jane Pak Center for Mineral Metabolism and Clinical Research, University of Texas Southwestern Medical Center, Dallas, TX, United States.
| |
Collapse
|
26
|
Davis EM. Oral Manifestations of Chronic Kidney Disease and Renal Secondary Hyperparathyroidism: A Comparative Review. J Vet Dent 2015; 32:87-98. [PMID: 26415385 DOI: 10.1177/089875641503200202] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Recent epidemiological studies have demonstrated that significant associations exist between oral disease and diseases involving non-oral tissues. Occasionally, the roles may be reversed and the oral cavity can be severely affected by systemic disease originating in another part of the body. Renal secondary hyperparathyroidism is a common endocrinopathy that occurs as a consequence of chronic azotemic kidney disease. Renal osteodystrophy, the most dramatic clinical consequence of renal secondary hyperparathyroidism is uncommon, but can result in demineralization of maxillofacial bones, loosening of teeth, and pathological jaw fractures. The purpose of this report is to update the current understanding of the pathophysiology of this endocrine disease and to compare the oral manifestations of renal secondary hyperparathyroidism in humans and companion animals. A 50-year review of the veterinary literature was undertaken to examine the clinical presentation of renal osteodystrophy in dogs, and to determine what clinical consequences of renal secondary hyperparathyroidism have been reported in domestic cats.
Collapse
|
27
|
Gruson D, Ferracin B, Ahn SA, Zierold C, Blocki F, Hawkins DM, Bonelli F, Rousseau MF. 1,25-Dihydroxyvitamin D to PTH(1-84) Ratios Strongly Predict Cardiovascular Death in Heart Failure. PLoS One 2015; 10:e0135427. [PMID: 26308451 PMCID: PMC4550259 DOI: 10.1371/journal.pone.0135427] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Accepted: 07/21/2015] [Indexed: 11/19/2022] Open
Abstract
OBJECTIVES Vitamin D deficiency and hyperparathyroidism are common in patients with heart failure (HF). There is a growing body of evidence supporting the role of vitamin D and parathyroid hormone (PTH) in cardiac remodeling and worsening of HF. Lack of reliable automated testing of 1,25-dihydroxyvitamin D (1,25(OH)2D), the biologically active metabolite of vitamin D, has limited its contribution to the prognostic assessment of HF. Here, the association of 1,25(OH)2D and PTH(1-84) levels was evaluated for prediction of cardiovascular death in chronic HF patients. METHODS We conducted a single center prospective cohort including 170 chronic HF patients (females n = 36; males n = 134; NYHA II-IV; mean age: 67 years; etiology: ischemic n = 119, dilated cardiomyopathy n = 51; mean LVEF: 23%). The primary outcome was cardiovascular death. RESULTS Serum levels of 1,25(OH)2D decreased markedly with increased HF severity. Medians were 33.3 pg/mL for NYHA-II patients, 23.4 pg/mL for NYHA-III, and 14.0 pg/mL for NYHA-IV patients (p<0.001). Most patients had levels of 25(OH)D below 30ng/mL, and stratification by NYHA functional class did not show significant differences (p = 0.249). The 1,25(OH)2D to PTH(1-84) ratio and the (1,25(OH)2D)2 to PTH(1-84) ratio were found to be the most significantly related to HF severity. After a median follow-up of 4.1 years, 106 out of 170 patients reached the primary endpoint. Cox proportional hazard modeling revealed 1,25(OH)2D and the 1,25(OH)2D to PTH(1-84) ratios to be strongly predictive of outcomes. CONCLUSIONS 1,25(OH)2D and its ratios to PTH(1-84) strongly and independently predict cardiovascular mortality in chronic HF.
Collapse
Affiliation(s)
- Damien Gruson
- Pôle de recherche en Endocrinologie, Diabète et Nutrition, Institut de Recherche Expérimentale et Clinique, Cliniques Universitaires St-Luc and Université Catholique de Louvain, Brussels, Belgium
- Department of Laboratory Medicine, Cliniques Universitaires St-Luc and Université Catholique de Louvain, Brussels, Belgium
| | - Benjamin Ferracin
- Pôle de recherche en Endocrinologie, Diabète et Nutrition, Institut de Recherche Expérimentale et Clinique, Cliniques Universitaires St-Luc and Université Catholique de Louvain, Brussels, Belgium
| | - Sylvie A. Ahn
- Division of Cardiology, Cliniques Universitaires St-Luc and Pôle de recherche cardiovasculaire, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium
| | - Claudia Zierold
- DiaSorin Inc, 1951 Northwestern Avenue, Stillwater, Minnesota, 55082, United States of America
| | - Frank Blocki
- DiaSorin Inc, 1951 Northwestern Avenue, Stillwater, Minnesota, 55082, United States of America
| | - Douglas M. Hawkins
- School of Statistics, University of Minnesota, Minneapolis, Minnesota, 55455, United States of America
| | - Fabrizio Bonelli
- DiaSorin Inc, 1951 Northwestern Avenue, Stillwater, Minnesota, 55082, United States of America
| | - Michel F. Rousseau
- Division of Cardiology, Cliniques Universitaires St-Luc and Pôle de recherche cardiovasculaire, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium
| |
Collapse
|
28
|
Hruska KA, Seifert M, Sugatani T. Pathophysiology of the chronic kidney disease-mineral bone disorder. Curr Opin Nephrol Hypertens 2015; 24:303-9. [PMID: 26050115 PMCID: PMC4699443 DOI: 10.1097/mnh.0000000000000132] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
PURPOSE OF REVIEW The causes of excess cardiovascular mortality associated with chronic kidney disease (CKD) have been attributed in part to the CKD-mineral bone disorder syndrome (CKD-MBD), wherein, novel cardiovascular risk factors have been identified. The causes of the CKD-MBD are not well known and they will be discussed in this review RECENT FINDINGS The discovery of WNT (portmanteau of wingless and int) inhibitors, especially Dickkopf 1, produced during renal repair and participating in the pathogenesis of the vascular and skeletal components of the CKD-MBD implied that additional pathogenic factors are critical, leading to the finding that activin A is a second renal repair factor circulating in increased levels during CKD. Activin A derives from peritubular myofibroblasts of diseased kidneys, where it stimulates fibrosis, and decreases tubular klotho expression. The type 2 activin A receptor, ActRIIA, is decreased by CKD in atherosclerotic aortas, specifically in vascular smooth muscle cells (VSMC). Inhibition of activin signaling by a ligand trap inhibited CKD induced VSMC dedifferentiation, osteogenic transition and atherosclerotic calcification. Inhibition of activin signaling in the kidney decreased renal fibrosis and proteinuria. SUMMARY These studies demonstrate that circulating renal repair factors are causal for the CKD-MBD and CKD associated cardiovascular disease, and identify ActRIIA signaling as a therapeutic target in CKD that links progression of renal disease and vascular disease.
Collapse
Affiliation(s)
- Keith A. Hruska
- Department of Pediatrics, Nephrology, Washington University Saint Louis, MO
- Departments of Medicine and Cell Biology Washington University Saint Louis, MO
| | - Michael Seifert
- Department of Pediatrics, Nephrology, Washington University Saint Louis, MO
- Department of Pediatrics, Nephrology, Southern Illinois University, Springfield IL
| | - Toshifumi Sugatani
- Department of Pediatrics, Nephrology, Washington University Saint Louis, MO
| |
Collapse
|
29
|
Sörensen-Zender I, Bhayana S, Susnik N, Rolli V, Batkai S, Baisantry A, Bahram S, Sen P, Teng B, Lindner R, Schiffer M, Thum T, Melk A, Haller H, Schmitt R. Zinc-α2-Glycoprotein Exerts Antifibrotic Effects in Kidney and Heart. J Am Soc Nephrol 2015; 26:2659-68. [PMID: 25788525 DOI: 10.1681/asn.2014050485] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2014] [Accepted: 01/05/2015] [Indexed: 12/22/2022] Open
Abstract
Zinc-α2-glycoprotein (AZGP1) is a secreted protein synthesized by epithelial cells and adipocytes that has roles in lipid metabolism, cell cycling, and cancer progression. Our previous findings in AKI indicated a new role for AZGP1 in the regulation of fibrosis, which is a unifying feature of CKD. Using two models of chronic kidney injury, we now show that mice with genetic AZGP1 deletion develop significantly more kidney fibrosis. This destructive phenotype was rescued by injection of recombinant AZGP1. Exposure of AZGP1-deficient mice to cardiac stress by thoracic aortic constriction revealed that antifibrotic effects were not restricted to the kidney but were cardioprotective. In vitro, recombinant AZGP1 inhibited kidney epithelial dedifferentiation and antagonized fibroblast activation by negatively regulating TGF-β signaling. Patient sera with high levels of AZGP1 similarly attenuated TGF-β signaling in fibroblasts. Taken together, these findings indicate a novel role for AZGP1 as a negative regulator of fibrosis progression, suggesting that recombinant AZGP1 may have translational effect for treating fibrotic disease.
Collapse
Affiliation(s)
| | | | | | - Veronique Rolli
- Immunogénétique Moléculaire Humaine, Centre de Recherche d'Immunologie et d'Hématologie, Faculté de Médecine, Hôpitaux Universitaires de Strasbourg, Strasbourg, France; and
| | - Sandor Batkai
- Institute of Molecular and Translational Therapeutic Strategies, Integriertes Forschungs- und Behandlungszentrum Transplantation, Hannover Medical School, Hannover, Germany
| | - Arpita Baisantry
- Departments of Nephrology and Hypertension, Pediatric Kidney, Liver, and Metabolic Diseases, and
| | - Siamak Bahram
- Immunogénétique Moléculaire Humaine, Centre de Recherche d'Immunologie et d'Hématologie, Faculté de Médecine, Hôpitaux Universitaires de Strasbourg, Strasbourg, France; and
| | - Payel Sen
- Departments of Nephrology and Hypertension
| | - Beina Teng
- Departments of Nephrology and Hypertension
| | | | | | - Thomas Thum
- Institute of Molecular and Translational Therapeutic Strategies, Integriertes Forschungs- und Behandlungszentrum Transplantation, Hannover Medical School, Hannover, Germany; National Heart and Lung Institute, Imperial College, London, United Kingdom
| | - Anette Melk
- Pediatric Kidney, Liver, and Metabolic Diseases, and
| | | | | |
Collapse
|
30
|
Gruson D, Ahn SA, Rousseau MF. Multiple biomarker strategy based on parathyroid hormone and natriuretic peptides testing for improved prognosis of chronic heart failure. Peptides 2015; 64:24-8. [PMID: 25572303 DOI: 10.1016/j.peptides.2014.12.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2014] [Revised: 12/27/2014] [Accepted: 12/27/2014] [Indexed: 01/28/2023]
Abstract
Biomarkers offer new perspectives for a more personalized management of patients with heart failure (HF). Hyperparathyroidism is common in HF patients and parathyroid hormone (PTH) testing might provide added value for the prognostication of HF patients. Our objectives were therefore to determine the efficiency of multiple biomarker strategy based on PTH and natriuretic peptides measurement for the risk stratification of patients with HF. Circulating concentrations of bioactive PTH 1-84 and natriuretic peptides, B-type natriuretic peptide (BNP) and N-terminal proBNP (NT-proBNP), were measured with automated immunoassays in 45 healthy individuals and 137 HF patients with reduced left ventricular ejection fraction. Circulating levels of PTH 1-84 and natriuretic peptides were significantly increased in HF patients in comparison to HF patients. Over a long-term follow-up, baseline PTH 1-84 levels were related to the risk of cardiovascular death. Furthermore, in multiple biomarker approach, PTH measurement was additive to BNP and NT-proBNP testing for the cardiovascular risk assessment of HF patients. In conclusion, the combination of PTH 1-84 and natriuretic peptides testing improves the prognostication of HF patients and might allowed more personalized approach for risk stratification and treatment selection in HF patients.
Collapse
Affiliation(s)
- Damien Gruson
- Pôle de recherche en Endocrinologie, Diabète et Nutrition, Institut de Recherche Expérimentale et Clinique, Cliniques Universitaires St-Luc and Université Catholique de Louvain, Brussels, Belgium; Department of Laboratory Medicine, Cliniques Universitaires St-Luc and Université Catholique de Louvain, Brussels, Belgium.
| | - Sylvie A Ahn
- Division of Cardiology, Cliniques Universitaires St-Luc and Pôle de recherche cardiovasculaire, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium
| | - Michel F Rousseau
- Division of Cardiology, Cliniques Universitaires St-Luc and Pôle de recherche cardiovasculaire, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium
| |
Collapse
|
31
|
Abstract
Cardiovascular disease is the most common cause of the greatly elevated rates of mortality characteristic of patients undergoing maintenance hemodialysis. This article is an attempt to describe the complex and evolving features of cardiac disease routinely encountered in HD patients. Furthermore, by trying to appreciate the pathophysiological drivers, and the crucial interaction with the HD treatment itself, this article seeks to define cardiac disease in this setting (HD-associated cardiomyopathy) as a unique and complex entity. By understanding the phenotype and basis of HD-associated cardiomyopathy, we can develop an evolved understanding of the dominant processes involved in its development and offer up dialysis-based interventions specifically designed to mitigate the cumulative ischemic insults consequent to conventional HD treatment. This article explores the justification of this approach and recent evidence of its efficacy.
Collapse
|
32
|
Arcidiacono MV, Yang J, Fernandez E, Dusso A. Parathyroid-specific epidermal growth factor-receptor inactivation prevents uremia-induced parathyroid hyperplasia in mice. Nephrol Dial Transplant 2014; 30:434-40. [PMID: 25324357 DOI: 10.1093/ndt/gfu318] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND In chronic kidney disease (CKD), parathyroid hyperplasia contributes to high serum parathyroid hormone (PTH) and also to an impaired suppression of secondary hyperparathyroidism by calcium, vitamin D and fibroblast growth factor 23 (FGF23). In rats, systemic inhibition of epidermal growth factor receptor (EGFR) activation markedly attenuated uremia-induced parathyroid hyperplasia and vitamin D receptor (VDR) loss, hence restoring the response to vitamin D. Therefore, we propose that parathyroid-specific EGFR inactivation should prevent CKD-induced parathyroid hyperplasia. METHODS A dominant-negative human EGFR mutant, which forms non-functional heterodimers with full-length endogenous EGFR, was successfully targeted to the parathyroid glands (PTGs) of FVB/N mice, using the 5' regulatory sequence of the PTH promoter. The parathyroid phenotype and serum chemistries of wild-type (WT) and transgenic mice were examined after 14 weeks of either sham operation or 75% renal mass reduction (NX). RESULTS Both genotypes had similar morphology and body weight, and NX-induction enhanced similarly serum blood urea nitrogen compared with sham-operated controls. However, despite similar serum calcium, phosphate and FGF23 levels in NX mice of both genotypes, parathyroid EGFR inactivation sufficed to completely prevent the marked increases in PTG enlargement, serum PTH and in parathyroid levels of transforming growth factor-α, a powerful EGFR-activator, and the VDR reductions observed in WT mice. CONCLUSION In CKD, parathyroid EGFR activation is essential for parathyroid hyperplasia and VDR loss, rendering this transgenic mouse a unique tool to scrutinize the pathogenesis of parathyroid and multiple organ dysfunction of CKD progression unrelated to parathyroid hyperplasia.
Collapse
Affiliation(s)
- Maria Vittoria Arcidiacono
- Renal Division, Washington University School of Medicine, St. Louis, MO, USA Division of Experimental Nephrology, IRB Lleida, Lleida, Spain Renal Division, Hospital Universitari Arnau de Vilanova, Universidad de Lleida, Lleida, Spain
| | - Jing Yang
- Renal Division, Washington University School of Medicine, St. Louis, MO, USA
| | - Elvira Fernandez
- Division of Experimental Nephrology, IRB Lleida, Lleida, Spain Renal Division, Hospital Universitari Arnau de Vilanova, Universidad de Lleida, Lleida, Spain
| | - Adriana Dusso
- Renal Division, Washington University School of Medicine, St. Louis, MO, USA Division of Experimental Nephrology, IRB Lleida, Lleida, Spain Renal Division, Hospital Universitari Arnau de Vilanova, Universidad de Lleida, Lleida, Spain
| |
Collapse
|
33
|
Arcidiacono MV, Yang J, Fernandez E, Dusso A. The induction of C/EBPβ contributes to vitamin D inhibition of ADAM17 expression and parathyroid hyperplasia in kidney disease. Nephrol Dial Transplant 2014; 30:423-33. [PMID: 25294851 DOI: 10.1093/ndt/gfu311] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND In secondary hyperparathyroidism (SHPT), enhanced parathyroid levels of transforming growth factor-α (TGFα) increase EGF receptor (EGFR) activation causing parathyroid hyperplasia, high parathyroid hormone (PTH) and also reductions in vitamin D receptor (VDR) that limit vitamin D suppression of SHPT. Since anti-EGFR therapy is not an option in human SHPT, we evaluated ADAM17 as a therapeutic target to suppress parathyroid hyperplasia because ADAM17 is required to release mature TGFα, the most potent EGFR-activating ligand. METHODS Computer analysis of the ADAM17 promoter identified TGFα and C/EBPβ as potential regulators of the ADAM17 gene. Their regulation of ADAM17 expression, TGFα/EGFR-driven growth and parathyroid gland (PTG) enlargement were assessed in promoter-reporter assays in A431 cells and corroborated in rat and human SHPT, using erlotinib as anti-EGFR therapy to suppress TGFα signals, active vitamin D to induce C/EBPβ or the combination. RESULTS While TGFα induced ADAM17-promoter activity by 2.2-fold exacerbating TGFα/EGFR-driven growth, ectopic C/EBPβ expression completely prevented this vicious synergy. Accordingly, in advanced human SHPT, parathyroid ADAM17 levels correlated directly with TGFα and inversely with C/EBPβ. Furthermore, combined erlotinib + calcitriol treatment suppressed TGFα/EGFR-cell growth and PTG enlargement more potently than erlotinib in part through calcitriol induction of C/EBPβ to inhibit ADAM17-promoter activity, mRNA and protein. Importantly, in rat SHPT, the correction of vitamin D deficiency effectively reversed the resistance to paricalcitol induction of C/EBPβ to suppress ADAM17 expression and PTG enlargement, reducing PTH by 50%. CONCLUSION In SHPT, correction of vitamin D and calcitriol deficiency induces parathyroid C/EBPβ to efficaciously attenuate the severe ADAM17/TGFα synergy, which drives PTG enlargement and high PTH.
Collapse
Affiliation(s)
- Maria Vittoria Arcidiacono
- Renal Division, Washington University School of Medicine, St. Louis, MO, USA Division of Experimental Nephrology, IRB Lleida, Lleida, Spain
| | - Jing Yang
- Renal Division, Washington University School of Medicine, St. Louis, MO, USA
| | - Elvira Fernandez
- Division of Experimental Nephrology, IRB Lleida, Lleida, Spain Renal Division, Hospital Universitari Arnau de Vilanova, Universidad de Lleida, Lleida, Spain
| | - Adriana Dusso
- Renal Division, Washington University School of Medicine, St. Louis, MO, USA Division of Experimental Nephrology, IRB Lleida, Lleida, Spain
| |
Collapse
|
34
|
Heart failure in patients with chronic kidney disease: a systematic integrative review. BIOMED RESEARCH INTERNATIONAL 2014; 2014:937398. [PMID: 24959595 PMCID: PMC4052068 DOI: 10.1155/2014/937398] [Citation(s) in RCA: 102] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/05/2014] [Revised: 04/21/2014] [Accepted: 04/22/2014] [Indexed: 02/08/2023]
Abstract
Introduction. Heart failure (HF) is highly prevalent in patients with chronic kidney disease (CKD) and end-stage renal disease (ESRD) and is strongly associated with mortality in these patients. However, the treatment of HF in this population is largely unclear. Study Design. We conducted a systematic integrative review of the literature to assess the current evidence of HF treatment in CKD patients, searching electronic databases in April 2014. Synthesis used narrative methods. Setting and Population. We focused on adults with a primary diagnosis of CKD and HF. Selection Criteria for Studies. We included studies of any design, quantitative or qualitative. Interventions. HF treatment was defined as any formal means taken to improve the symptoms of HF and/or the heart structure and function abnormalities. Outcomes. Measures of all kinds were considered of interest. Results. Of 1,439 results returned by database searches, 79 articles met inclusion criteria. A further 23 relevant articles were identified by hand searching. Conclusions. Control of fluid overload, the use of beta-blockers and angiotensin-converting enzyme inhibitors or angiotensin receptor blockers, and optimization of dialysis appear to be the most important methods to treat HF in CKD and ESRD patients. Aldosterone antagonists and digitalis glycosides may additionally be considered; however, their use is associated with significant risks. The role of anemia correction, control of CKD-mineral and bone disorder, and cardiac resynchronization therapy are also discussed.
Collapse
|
35
|
Association between parathyroid hormone levels and inflammatory markers among US adults. Mediators Inflamm 2014; 2014:709024. [PMID: 24782595 PMCID: PMC3980926 DOI: 10.1155/2014/709024] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2013] [Accepted: 02/27/2014] [Indexed: 02/07/2023] Open
Abstract
Background and Aims. High levels of parathyroid hormone (PTH) appear to be associated with an increased mortality. Previous studies concerning the relationship of inflammatory markers with hyperparathyroidism have yielded inconsistent results. This study investigated whether serum PTH concentrations were independently associated with several inflammatory markers among the US adults. Materials and Methods. Using data from the National Health and Nutrition Examination Survey, we examined the relation between serum PTH and C-reactive protein (CRP), red cell distribution width (RDW), and platelet-to-lymphocyte ratio (PLR) levels with weighted linear regression. Additionally, we examined the relation with increased modified Glasgow Prognostic Score (mGPS) by using weighted logistic regression. Results. CRP, RDW, and PLR values increased with increasing serum PTH concentration. After extensively adjusting for covariates, CRP and RDW increased linearly and across PTH categories (all P < 0.001), while PLR marginally increased (P = 0.190 and P = 0.095 using PTH as a categorical and continuous variable, resp.). The odds ratio of increased mGPS was 1.11 and 1.31 across PTH categories and with increasing PTH levels continuously. Conclusion. These nationally representative data indicate that serum PTH levels are independently associated with several inflammatory markers in the US population. The casual relationship between PTH levels and inflammation remains to be elucidated.
Collapse
|
36
|
Rhee H, Yang JY, Jung WJ, Shin MJ, Yang BY, Song SH, Kwak IS, Seong EY. Significance of residual renal function for phosphate control in chronic hemodialysis patients. Kidney Res Clin Pract 2014; 33:58-64. [PMID: 26885471 PMCID: PMC4714245 DOI: 10.1016/j.krcp.2014.01.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2013] [Revised: 12/25/2013] [Accepted: 01/13/2014] [Indexed: 01/11/2023] Open
Abstract
Background The aim of this study was to compare mineral metabolism between anuric and nonanuric chronic hemodialysis patients, and determine the differences in phosphate control between the two groups. Methods A total of 77 chronic hemodialysis patients were enrolled in this cross-sectional study from January 2012 to February 2012. Patient demographics, laboratory findings, medication histories, and vascular calcification scores were collected. We divided the patients into anuric and nonanuric groups according to the residual renal function and then compared their clinical features. Multivariate binary regression analysis was used in each group to determine the independent factors related to phosphate control. Results The mean patient age was 59.27±13.95 years, and 57.1% of patients were anuric. In anuric patients, dialysis vintage was significantly longer, but the mean Kt/V was not different between groups. Serum phosphate, fibroblast growth factor (FGF)-23, and Ca/P products were significantly higher, and 1,25(OH)2D3 levels were significantly lower in the anuric patients, although the intact parathyroid hormone and 25(OH)D levels were not different. In anuric patients, LnFGF-23 [hazard ratio (HR) 2.894, 95% confidence interval (CI) 1.294–6.474, P=0.010] was an independent factor predictive of phosphate control. However, in the nonanuric patients, glomerular filtration rate (HR 0.409, 95% CI 0.169–0.989, P=0.047) and blood urea nitrogen (HR 1.090, 95% CI 1.014–1.172, P=0.019) were independent factors predictive of phosphate control. Conclusion In chronic hemodialysis patients, preservation of residual renal function is a significant determinant of phosphate control, and the factors associated with phosphate control is different depending on the residual renal function status. In the anuric patients, FGF-23 is most significantly associated with phosphate control; however, glomerular filtration rate and blood urea nitrogen are more important than FGF-23 in the nonanuric HD patients.
Collapse
Affiliation(s)
- Harin Rhee
- Department of Internal Medicine, Pusan National University School of Medicine, Busan, Korea; Biomedical Research Institute, Pusan National University Hospital, Busan, Korea
| | - Ji Young Yang
- Biomedical Research Institute, Pusan National University Hospital, Busan, Korea
| | - Woo Jin Jung
- Department of Internal Medicine, Pusan National University School of Medicine, Busan, Korea
| | - Min Ji Shin
- Department of Internal Medicine, Pusan National University School of Medicine, Busan, Korea; Biomedical Research Institute, Pusan National University Hospital, Busan, Korea
| | - Byung Yoon Yang
- Department of Internal Medicine, Pusan National University School of Medicine, Busan, Korea; Biomedical Research Institute, Pusan National University Hospital, Busan, Korea
| | - Sang Heon Song
- Department of Internal Medicine, Pusan National University School of Medicine, Busan, Korea; Biomedical Research Institute, Pusan National University Hospital, Busan, Korea
| | - Ihm Soo Kwak
- Department of Internal Medicine, Pusan National University School of Medicine, Busan, Korea; Biomedical Research Institute, Pusan National University Hospital, Busan, Korea
| | - Eun Young Seong
- Department of Internal Medicine, Pusan National University School of Medicine, Busan, Korea; Biomedical Research Institute, Pusan National University Hospital, Busan, Korea
| |
Collapse
|
37
|
Abstract
Chronic kidney disease-mineral and bone disorder (CKD-MBD) is characterized by bone abnormalities, vascular calcification, and an array of laboratory abnormalities. The latter classically include disturbances in the parathyroid hormone/vitamin D axis. More recently, fibroblast growth factor 23 (FGF23) and klotho also have been identified as important regulators of mineral metabolism. Klotho deficiency and high circulating FGF23 levels precede secondary hyperparathyroidism in CKD patients. Levels of FGF23 and parathyroid hormone increase along the progression of CKD to maintain mineral homeostasis and to overcome end-organ resistance. It is hard to define when the increase of both hormones becomes maladaptive. CKD-MBD is associated with adverse outcomes including cardiovascular disease and mortality. This review summarizes the complex pathophysiology of CKD-MBD and outlines which laboratory abnormalities represent biomarkers of disease severity, which laboratory abnormalities are predictors of cardiovascular disease, and which laboratory abnormalities should be considered (direct) uremic toxins exerting organ damage. This information may help to streamline current and future therapeutic efforts.
Collapse
|
38
|
de Brito Galvao JF, Nagode LA, Schenck PA, Chew DJ. Calcitriol, calcidiol, parathyroid hormone, and fibroblast growth factor-23 interactions in chronic kidney disease. J Vet Emerg Crit Care (San Antonio) 2013; 23:134-62. [PMID: 23566108 PMCID: PMC3677418 DOI: 10.1111/vec.12036] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2012] [Accepted: 02/05/2013] [Indexed: 12/13/2022]
Abstract
Objective To review the inter-relationships between calcium, phosphorus, parathyroid hormone (PTH), parent and activated vitamin D metabolites (vitamin D, 25(OH)-vitamin D, 1,25(OH)2-vitamin D, 24,25(OH)2-vitamin D), and fibroblast growth factor-23 (FGF-23) during chronic kidney disease (CKD) in dogs and cats. Data Sources Human and veterinary literature. Human Data Synthesis Beneficial effects of calcitriol treatment during CKD have traditionally been attributed to regulation of PTH but new perspectives emphasize direct renoprotective actions independent of PTH and calcium. It is now apparent that calcitriol exerts an important effect on renal tubular reclamation of filtered 25(OH)-vitamin D, which may be important in maintaining adequate circulating 25(OH)-vitamin D. This in turn may be vital for important pleiotropic actions in peripheral tissues through autocrine/paracrine mechanisms that impact the health of those local tissues. Veterinary Data Synthesis Limited information is available reporting the benefit of calcitriol treatment in dogs and cats with CKD. Conclusions A survival benefit has been shown for dogs with CKD treated with calcitriol compared to placebo. The concentrations of circulating 25(OH)-vitamin D have recently been shown to be low in people and dogs with CKD and are related to survival in people with CKD. Combination therapy for people with CKD using both parental and activated vitamin D compounds is common in human nephrology and there is a developing emphasis using combination treatment with activated vitamin D and renin-angiotensin-aldosterone-system (RAAS) inhibitors.
Collapse
|
39
|
Gracia-Iguacel C, Gonzalez-Parra E, Rodriguez-Osorio L, Sanz AB, Almaden Y, de la Piedra C, Egido J, Rodriguez M, Ortiz A. Correction of hypocalcemia allows optimal recruitment of FGF-23-dependent phosphaturic mechanisms in acute hyperphosphatemia post-phosphate enema. J Bone Miner Metab 2013; 31:703-7. [PMID: 23677707 DOI: 10.1007/s00774-013-0435-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2012] [Accepted: 01/31/2013] [Indexed: 01/21/2023]
Abstract
Both parathyroid hormone (PTH) and fibroblast growth factor 23 (FGF23) are phosphaturic hormones. These hormones should increase in response to phosphate excess. However, they also regulate serum calcium; PTH increases serum calcium concentration and FGF23 suppresses renal production of calcitriol, favoring hypocalcemia. We report the case of an 83-year-old woman with hyperphosphatemia and hypocalcemia resulting from phosphate-containing enemas. PTH and calcitriol increased in response to hypocalcemia, and FGF23 increased in response to hyperphosphatemia. Unexpectedly, peak FGF23 did not coincide with peak serum phosphate. Rather, peak FG23 was observed only after severe hypocalcemia was partially corrected with exogenous calcium administration, even though serum phosphate had been already decreasing for 32 h. Correction of severe hypocalcemia was thus associated with peak FGF23 values and with a precipitous decrease in PTH. Peak FGF23 was followed by an accelerated decrease in serum phosphate and significant phosphaturia. This clinical report is consistent with experimental data in rats showing a blunted FGF23 response to high phosphate in the presence of severe hypocalcemia. Thus, complementary experimental and clinical data suggest that partial correction of severe hypocalcemia is required for optimal FGF23-mediated phosphaturia, which takes place despite correction of PTH levels. We believe this the first human report suggesting blunting of the FGF23 response to high phosphate by severe hypocalcemia.
Collapse
Affiliation(s)
- Carolina Gracia-Iguacel
- IIS-Fundación Jiménez Díaz, Unidad de Diálisis, Avd. Reyes Católicos 2, 28040, Madrid, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Yousaf F, Charytan C. Review of cinacalcet hydrochloride in the management of secondary hyperparathyroidism. Ren Fail 2013; 36:131-8. [DOI: 10.3109/0886022x.2013.832319] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
|
41
|
Block GA, Ix JH, Ketteler M, Martin KJ, Thadhani RI, Tonelli M, Wolf M, Jüppner H, Hruska K, Wheeler DC. Phosphate Homeostasis in CKD: Report of a Scientific Symposium Sponsored by the National Kidney Foundation. Am J Kidney Dis 2013; 62:457-73. [DOI: 10.1053/j.ajkd.2013.03.042] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2012] [Accepted: 03/19/2013] [Indexed: 02/08/2023]
|
42
|
Silver J, Naveh-Many T. FGF-23 and secondary hyperparathyroidism in chronic kidney disease. Nat Rev Nephrol 2013; 9:641-9. [PMID: 23877588 DOI: 10.1038/nrneph.2013.147] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The metabolic changes that occur in patients with chronic kidney disease (CKD) have a profound influence on mineral and bone metabolism. CKD results in altered levels of serum phosphate, vitamin D, calcium, parathyroid hormone (PTH) and fibroblast growth factor 23 (FGF-23); the increased levels of serum phosphate, PTH and FGF-23 contribute to the increased cardiovascular mortality in affected patients. FGF-23 is produced by osteocytes and osteoblasts and acts physiologically in the kidney to induce phosphaturia and inhibit the synthesis of 1,25-dihydroxyvitamin D3. PTH acts directly on osteocytes to increase FGF-23 expression. In addition, the high levels of PTH associated with CKD contribute to changes in bone remodelling that result in decreased levels of dentin matrix protein 1 and the release of low-molecular-weight fibroblast growth factors from the bone matrix, which stimulate FGF-23 transcription. A prolonged oral phosphorus load increases FGF-23 expression by a mechanism that includes local changes in the ratio of inorganic phosphate to pyrophosphate in bone. Other factors such as dietary vitamin D compounds, calcium, and metabolic acidosis all increase FGF-23 levels. This Review discusses the mechanisms by which secondary hyperparathyroidism associated with CKD stimulates bone cells to overexpress FGF-23 levels.
Collapse
Affiliation(s)
- Justin Silver
- Hadassah Hebrew University Medical Center, Minerva Center for Calcium and Bone Metabolism, Nephrology, Ein Karem, Jerusalem 91120, Israel
| | | |
Collapse
|
43
|
Covic A, Passlick-Deetjen J, Kroczak M, Büschges-Seraphin B, Ghenu A, Ponce P, Marzell B, de Francisco ALM. A comparison of calcium acetate/magnesium carbonate and sevelamer-hydrochloride effects on fibroblast growth factor-23 and bone markers: post hoc evaluation from a controlled, randomized study. Nephrol Dial Transplant 2013; 28:2383-92. [PMID: 23787550 PMCID: PMC3769980 DOI: 10.1093/ndt/gft203] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Different phosphate binders exert differing effects on bone mineral metabolism and levels of regulating hormones. The objective of this post hoc evaluation of the CALcium acetate MAGnesium carbonate (CALMAG) study was to compare the effects of calcium acetate/magnesium carbonate (CaMg) and a calcium-free phosphate binder, sevelamer-hydrochloride (HCl), on serum levels of fibroblast growth factor-23 (FGF-23) and markers of bone turnover. METHODS This secondary analysis of the controlled, randomized CALMAG study, comparing the effect of CaMg and sevelamer-HCl on serum phosphorus (P), aimed to investigate the parameters described above. The analysis included 204 patients who completed the initial study per protocol (CaMg, n = 105; sevelamer-HCl, n = 99). RESULTS The study showed that serum levels of FGF-23 were significantly reduced with CaMg and sevelamer-HCl, with no difference between groups at Week 25 [analysis of covariance (ANCOVA); log-intact FGF-23 (iFGF-23), P = 0.1573]. FGF-23 levels strongly correlated with serum P levels at all time points in both groups. The bone turnover parameters alkaline phosphatase (AP), bone AP (BAP), procollagen type 1 amino-terminal propeptide 1 (P1NP), osteoprotegerin (OPG), beta-crosslaps (β-CTX) and tartrate-resistant acid phosphatase 5b (TRAP 5b) increased significantly in the sevelamer-HCl group; they remained almost unchanged in the CaMg group, after the initial phase of P lowering (ANCOVA, P < 0.0001 for all except OPG, P = 0.1718). CONCLUSIONS CaMg and sevelamer-HCl comparably lower serum levels of iFGF-23. Changes in bone parameters were dependent on characteristics of the phosphate binder; in contrast with sevelamer-HCl, CaMg had no influence on bone turnover markers.
Collapse
Affiliation(s)
- Adrian Covic
- Clinic of Nephrology, C. I. Parhon University Hospital, Gr T. Popa; University of Medicine and Pharmacy, IASI, Romania
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Drüeke TB, Olgaard K. Report on 2012 ISN Nexus Symposium: ‘Bone and the Kidney’. Kidney Int 2013; 83:557-62. [DOI: 10.1038/ki.2012.453] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
45
|
Enhanced induction of Cyp24a1 by FGF23 but low serum 24,25-dihydroxyvitamin D in CKD: implications for therapy. Kidney Int 2012; 82:1046-9. [DOI: 10.1038/ki.2012.273] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|