1
|
Inhibition of platelet-derived growth factor pathway suppresses tubulointerstitial injury in renal congestion. J Hypertens 2022; 40:1935-1949. [PMID: 35983805 PMCID: PMC9451920 DOI: 10.1097/hjh.0000000000003191] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
OBJECTIVE Increased central venous pressure in congestive heart failure is responsible for renal dysfunction, which is mediated by renal venous congestion. Pericyte detachment from capillaries after renal congestion might trigger renal fibrogenesis via pericyte-myofibroblast transition (PMT). Platelet-derived growth factor receptors (PDGFRs), which are PMT indicators, were upregulated in our recently established renal congestion model. This study was designed to determine whether inhibition of the PDGFR pathway could suppress tubulointerstitial injury after renal congestion. METHODS The inferior vena cava between the renal veins was ligated in male Sprague-Dawley rats, inducing congestion only in the left kidney. Imatinib mesylate or vehicle were injected intraperitoneally daily from 1 day before the operation. Three days after the surgery, the effect of imatinib was assessed by physiological, morphological and molecular methods. The inhibition of PDGFRs against transforming growth factor-β1 (TGFB1)-induced fibrosis was also tested in human pericyte cell culture. RESULTS Increased kidney weight and renal fibrosis were observed in the congested kidneys. Upstream inferior vena cava (IVC) pressure immediately increased to around 20 mmHg after IVC ligation in both the imatinib and saline groups. Although vasa recta dilatation and pericyte detachment under renal congestion were maintained, imatinib ameliorated the increased kidney weight and suppressed renal fibrosis around the vasa recta. TGFB1-induced elevation of fibrosis markers in human pericytes was suppressed by PDGFR inhibitors at the transcriptional level. CONCLUSION The activation of the PDGFR pathway after renal congestion was responsible for renal congestion-induced fibrosis. This mechanism could be a candidate therapeutic target for renoprotection against renal congestion-induced tubulointerstitial injury.
Collapse
|
2
|
Alfaro R, Martínez-Banaclocha H, Llorente S, Jimenez-Coll V, Galián JA, Botella C, Moya-Quiles MR, Parrado A, Muro-Perez M, Minguela A, Legaz I, Muro M. Computational Prediction of Biomarkers, Pathways, and New Target Drugs in the Pathogenesis of Immune-Based Diseases Regarding Kidney Transplantation Rejection. Front Immunol 2022; 12:800968. [PMID: 34975915 PMCID: PMC8714745 DOI: 10.3389/fimmu.2021.800968] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Accepted: 11/29/2021] [Indexed: 01/04/2023] Open
Abstract
Background The diagnosis of graft rejection in kidney transplantation (KT) patients is made by evaluating the histological characteristics of biopsy samples. The evolution of omics sciences and bioinformatics techniques has contributed to the advancement in searching and predicting biomarkers, pathways, and new target drugs that allow a more precise and less invasive diagnosis. The aim was to search for differentially expressed genes (DEGs) in patients with/without antibody-mediated rejection (AMR) and find essential cells involved in AMR, new target drugs, protein-protein interactions (PPI), and know their functional and biological analysis. Material and Methods Four GEO databases of kidney biopsies of kidney transplantation with/without AMR were analyzed. The infiltrating leukocyte populations in the graft, new target drugs, protein-protein interactions (PPI), functional and biological analysis were studied by different bioinformatics tools. Results Our results show DEGs and the infiltrating leukocyte populations in the graft. There is an increase in the expression of genes related to different stages of the activation of the immune system, antigenic presentation such as antibody-mediated cytotoxicity, or leukocyte migration during AMR. The importance of the IRF/STAT1 pathways of response to IFN in controlling the expression of genes related to humoral rejection. The genes of this biological pathway were postulated as potential therapeutic targets and biomarkers of AMR. These biological processes correlated showed the infiltration of NK cells and monocytes towards the allograft. Besides the increase in dendritic cell maturation, it plays a central role in mediating the damage suffered by the graft during AMR. Computational approaches to the search for new therapeutic uses of approved target drugs also showed that imatinib might theoretically be helpful in KT for the prevention and/or treatment of AMR. Conclusion Our results suggest the importance of the IRF/STAT1 pathways in humoral kidney rejection. NK cells and monocytes in graft damage have an essential role during rejection, and imatinib improves KT outcomes. Our results will have to be validated for the potential use of overexpressed genes as rejection biomarkers that can be used as diagnostic and prognostic markers and as therapeutic targets to avoid graft rejection in patients undergoing kidney transplantation.
Collapse
Affiliation(s)
- Rafael Alfaro
- Immunology Services, University Clinical Hospital Virgen de la Arrixaca-Biomedical Research Institute of Murcia (IMIB), Murcia, Spain
| | - Helios Martínez-Banaclocha
- Immunology Services, University Clinical Hospital Virgen de la Arrixaca-Biomedical Research Institute of Murcia (IMIB), Murcia, Spain
| | - Santiago Llorente
- Nephrology Services, University Clinical Hospital Virgen de la Arrixaca-Biomedical Research Institute of Murcia (IMIB), Murcia, Spain
| | - Victor Jimenez-Coll
- Immunology Services, University Clinical Hospital Virgen de la Arrixaca-Biomedical Research Institute of Murcia (IMIB), Murcia, Spain
| | - José Antonio Galián
- Immunology Services, University Clinical Hospital Virgen de la Arrixaca-Biomedical Research Institute of Murcia (IMIB), Murcia, Spain
| | - Carmen Botella
- Immunology Services, University Clinical Hospital Virgen de la Arrixaca-Biomedical Research Institute of Murcia (IMIB), Murcia, Spain
| | - María Rosa Moya-Quiles
- Immunology Services, University Clinical Hospital Virgen de la Arrixaca-Biomedical Research Institute of Murcia (IMIB), Murcia, Spain
| | - Antonio Parrado
- Immunology Services, University Clinical Hospital Virgen de la Arrixaca-Biomedical Research Institute of Murcia (IMIB), Murcia, Spain
| | - Manuel Muro-Perez
- Immunology Services, University Clinical Hospital Virgen de la Arrixaca-Biomedical Research Institute of Murcia (IMIB), Murcia, Spain
| | - Alfredo Minguela
- Immunology Services, University Clinical Hospital Virgen de la Arrixaca-Biomedical Research Institute of Murcia (IMIB), Murcia, Spain
| | - Isabel Legaz
- Department of Legal and Forensic Medicine, Biomedical Research Institute (IMIB), University of Murcia, Murcia, Spain
| | - Manuel Muro
- Immunology Services, University Clinical Hospital Virgen de la Arrixaca-Biomedical Research Institute of Murcia (IMIB), Murcia, Spain
| |
Collapse
|
3
|
Fogueri U, Charkoftaki G, Roda G, Tuey S, Ibrahim M, Persaud I, Wempe MF, Brown JM, Thurman JM, Anchordoquy TJ, Joy MS. An evaluation of a novel nanoformulation of imatinib mesylate in a mouse model of lupus nephritis. Drug Deliv Transl Res 2021; 12:1445-1454. [PMID: 34322850 DOI: 10.1007/s13346-021-01022-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/29/2021] [Indexed: 11/24/2022]
Abstract
Studies have suggested imatinib mesylate (ImM) as a potential treatment for systemic lupus erythematosus nephritis (SLEN). However, ImM has limited renal excretion. The goal of the current research was to develop an ImM containing nanoformulation, conduct studies to evaluate pharmacokinetics, and determine whether kidney deposition can be enhanced in a mouse model of SLEN. A fish oil-based ImM oil-in-water nanoemulsion was developed and characterized for particle size, zeta potential, pH, and stability. MRL/MpJ-Faslrp (model of SLEN) and MRL/MpJ (control) mice (12-13 weeks) received one dose of ImM as either a nanoemulsion or naked drug. Pharmacokinetics and kidney deposition studies were performed. Statistics were conducted with a student's T-test. The nanoemulsion characteristics included particle size range of 60-80 nm, zeta potential of -6.6 to -7.8 mV, polydispersity index < 0.3, 3-day stability at 4 °C, and limited ImM leakage from the nanoemulsion in serum. Pharmacokinetics of the nanoformulation showed changes to pharmacokinetic parameters suggesting reduced systemic exposures (with reduced potential for toxicities) to ImM. Kidney deposition of ImM was threefold higher after 4 h in the MRL/MpJ-Faslrp mice that received the nanoformulation vs. naked drug. The current study showed encouraging results for development of a stable and well-characterized nanoemulsion for optimizing kidney deposition of ImM. Future strategies will define dose-efficacy and dose-toxicity relationships and evaluate approaches to further enhance kidney delivery and optimize deposition to the mesangial location of the kidney.
Collapse
Affiliation(s)
- Uma Fogueri
- Skaggs School of Pharmacy and Pharmaceutical Sciences, Department of Pharmaceutical Sciences, University of Colorado, Aurora, CO, USA
| | - Georgia Charkoftaki
- Skaggs School of Pharmacy and Pharmaceutical Sciences, Department of Pharmaceutical Sciences, University of Colorado, Aurora, CO, USA
| | - Gavriel Roda
- Skaggs School of Pharmacy and Pharmaceutical Sciences, Department of Pharmaceutical Sciences, University of Colorado, Aurora, CO, USA
| | - Stacey Tuey
- Skaggs School of Pharmacy and Pharmaceutical Sciences, Department of Pharmaceutical Sciences, University of Colorado, Aurora, CO, USA
| | - Mustafa Ibrahim
- Skaggs School of Pharmacy and Pharmaceutical Sciences, Department of Pharmaceutical Sciences, University of Colorado, Aurora, CO, USA
| | - Indushekhar Persaud
- Skaggs School of Pharmacy and Pharmaceutical Sciences, Department of Pharmaceutical Sciences, University of Colorado, Aurora, CO, USA
| | - Michael F Wempe
- Skaggs School of Pharmacy and Pharmaceutical Sciences, Department of Pharmaceutical Sciences, University of Colorado, Aurora, CO, USA
| | - Jared M Brown
- Skaggs School of Pharmacy and Pharmaceutical Sciences, Department of Pharmaceutical Sciences, University of Colorado, Aurora, CO, USA
| | - Joshua M Thurman
- School of Medicine, Division of Renal Diseases and Hypertension, University of Colorado, Aurora, CO, USA
| | - Thomas J Anchordoquy
- Skaggs School of Pharmacy and Pharmaceutical Sciences, Department of Pharmaceutical Sciences, University of Colorado, Aurora, CO, USA
| | - Melanie S Joy
- Skaggs School of Pharmacy and Pharmaceutical Sciences, Department of Pharmaceutical Sciences, University of Colorado, Aurora, CO, USA. .,School of Medicine, Division of Renal Diseases and Hypertension, University of Colorado, Aurora, CO, USA.
| |
Collapse
|
4
|
Predictive Value of Precision-Cut Kidney Slices as an Ex Vivo Screening Platform for Therapeutics in Human Renal Fibrosis. Pharmaceutics 2020; 12:pharmaceutics12050459. [PMID: 32443499 PMCID: PMC7285118 DOI: 10.3390/pharmaceutics12050459] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 05/10/2020] [Accepted: 05/13/2020] [Indexed: 12/20/2022] Open
Abstract
Animal models are a valuable tool in preclinical research. However, limited predictivity of human biological responses in the conventional models has stimulated the search for reliable preclinical tools that show translational robustness. Here, we used precision-cut kidney slices (PCKS) as a model of renal fibrosis and investigated its predictive capacity for screening the effects of anti-fibrotics. Murine and human PCKS were exposed to TGFβ or PDGF pathway inhibitors with established anti-fibrotic efficacy. For each treatment modality, we evaluated whether it affected: (1) culture-induced collagen type I gene expression and interstitial accumulation; (2) expression of markers of TGFβ and PDGF signaling; and (3) expression of inflammatory markers. We summarized the outcomes of published in vivo animal and human studies testing the three inhibitors in renal fibrosis, and drew a parallel to the PCKS data. We showed that the responses of murine PCKS to anti-fibrotics highly corresponded with the known in vivo responses observed in various animal models of renal fibrosis. Moreover, our results suggested that human PCKS can be used to predict drug efficacy in clinical trials. In conclusion, our study demonstrated that the PCKS model is a powerful predictive tool for ex vivo screening of putative drugs for renal fibrosis.
Collapse
|
5
|
Rizzo AN, Belvitch P, Demeritte R, Garcia JGN, Letsiou E, Dudek SM. Arg mediates LPS-induced disruption of the pulmonary endothelial barrier. Vascul Pharmacol 2020; 128-129:106677. [PMID: 32240815 DOI: 10.1016/j.vph.2020.106677] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 02/23/2020] [Accepted: 03/21/2020] [Indexed: 12/12/2022]
Abstract
Acute Respiratory Distress Syndrome (ARDS) is a devastating disease process that involves dysregulated inflammation and decreased alveolar-capillary barrier function. Despite increased understanding of the pathophysiology, no effective targeted therapies exist to treat ARDS. Recent preclinical studies suggest that the multi-tyrosine kinase inhibitor, imatinib, which targets the Abl kinases c-Abl and Arg, has the potential to restore endothelial dysfunction caused by inflammatory agonists. Prior work demonstrates that imatinib attenuates LPS (lipopolysaccharide)-induced vascular leak and inflammation; however, the mechanisms underlying these effects remain incompletely understood. In the current study, we demonstrate that imatinib inhibits LPS-induced increase in the phosphorylation of CrkL, a specific substrate of Abl kinases, in human pulmonary endothelial cells. Specific silencing of Arg, and not c-Abl, attenuated LPS-induced pulmonary vascular permeability as measured by electrical cellular impedance sensing (ECIS) and gap formation assays. In addition, direct activation of Abl family kinases with the small molecule activator DPH resulted in endothelial barrier disruption that was attenuated by Arg siRNA. In complementary studies to characterize the mechanisms by which Arg mediates endothelial barrier function, Arg silencing was found to inhibit LPS-induced disruption of adherens junctions and phosphorylation of myosin light chains (MLC). Overall, these results characterize the mechanisms by which imatinib protects against LPS-induced endothelial barrier disruption and suggest that Arg inhibition may represent a novel strategy to enhance endothelial barrier function.
Collapse
Affiliation(s)
- Alicia N Rizzo
- Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado School of Medicine, Aurora, CO, United States of America
| | - Patrick Belvitch
- Division of Pulmonary, Critical Care, Sleep and Allergy, University of Illinois at Chicago, Chicago, IL, United States of America
| | - Regaina Demeritte
- Division of Pulmonary, Critical Care, Sleep and Allergy, University of Illinois at Chicago, Chicago, IL, United States of America
| | - Joe G N Garcia
- Department of Medicine, University of Arizona, Tucson, AZ, United States of America
| | - Eleftheria Letsiou
- Division of Pulmonary, Critical Care, Sleep and Allergy, University of Illinois at Chicago, Chicago, IL, United States of America
| | - Steven M Dudek
- Division of Pulmonary, Critical Care, Sleep and Allergy, University of Illinois at Chicago, Chicago, IL, United States of America.
| |
Collapse
|
6
|
Kanazawa N, Iyoda M, Tachibana S, Matsumoto K, Wada Y, Suzuki T, Iseri K, Shibata T. Therapeutic Potential of Thrombomodulin in Renal Fibrosis of Nephrotoxic Serum Nephritis in Wistar-Kyoto Rats. Kidney Blood Press Res 2020; 45:391-406. [PMID: 32146474 DOI: 10.1159/000506286] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Accepted: 01/30/2020] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Recombinant human soluble thrombomodulin (rhTM) was approved in 2008 and has been used for treatment of disseminated intravascular coagulation in Japan. The antifibrotic effects of rhTM in acute exacerbation of idiopathic pulmonary fibrosis are well established, but the therapeutic potential of rhTM in renal fibrosis remains poorly understood. METHODS Nephrotoxic serum nephritis (NTS-N) was induced in 22 female Wistar-Kyoto (WKY) rats on day 0. Rats were administered either rhTM or vehicle intraperitoneally, every day from day 4 to day 55. Rats were sacrificed on day 56 when renal fibrosis was established and renal morphological investigations were performed. In vitro, rat renal fibroblasts (NRK-49F) were pretreated with rhTM or saline, and expression levels of profibrogenic gene induced by thrombin were analyzed by real-time reverse transcription polymerase chain reaction. RESULTS Compared to WKY-GN-vehicle rats, the body weights of WKY-GN-rhTM rats were significantly greater on day 55. By day 56, rhTM had significantly reduced serum creatinine levels in NTS-N. On the other hand, urinary protein excretion was comparable between the two treatment groups throughout the study. The percentage of Masson trichrome-positive areas in WKY-GN-rhTM rats was significantly lower compared to that in WKY-GN-vehicle rats. Glomerular fibrin deposition was significantly reduced in WKY-GN-rhTM rats. In addition, rhTM significantly reduced the renal cortical mRNA expression levels of TNF-α, Toll-like receptor 4, MYD88, TGF-β, αSMA, collagen I, collagen III, fibronectin, and protease-activated receptor 1 (PAR1), a thrombin receptor. In vitro, thrombin stimulation of NRK-49F cells significantly enhanced the mRNA expression levels of αSMA and PAR1, and these upregulations were significantly reduced by pretreatment with rhTM. CONCLUSIONS Administration of rhTM after establishment of crescentic glomerulonephritis (GN) attenuated the subsequent development of renal fibrosis in NTS-N, possibly in part by inhibiting thrombin-mediated fibrogenesis. Our results suggest that rhTM may offer a therapeutic option for limiting the progression of chronic kidney disease in crescentic GN.
Collapse
Affiliation(s)
- Nobuhiro Kanazawa
- Division of Nephrology, Department of Medicine, Showa University School of Medicine, Tokyo, Japan
| | - Masayuki Iyoda
- Division of Nephrology, Department of Medicine, Showa University School of Medicine, Tokyo, Japan,
| | - Shohei Tachibana
- Division of Nephrology, Department of Medicine, Showa University School of Medicine, Tokyo, Japan
| | - Kei Matsumoto
- Division of Nephrology, Department of Medicine, Showa University School of Medicine, Tokyo, Japan
| | - Yukihiro Wada
- Division of Nephrology, Department of Medicine, Showa University School of Medicine, Tokyo, Japan
| | - Taihei Suzuki
- Division of Nephrology, Department of Medicine, Showa University School of Medicine, Tokyo, Japan
| | - Ken Iseri
- Division of Nephrology, Department of Medicine, Showa University School of Medicine, Tokyo, Japan
| | - Takanori Shibata
- Division of Nephrology, Department of Medicine, Showa University School of Medicine, Tokyo, Japan
| |
Collapse
|
7
|
Shi Y, Jia XY, Gu QH, Wang M, Cui Z, Zhao MH. A Modified Peptide Derived from Goodpasture Autoantigen Arrested and Attenuated Kidney Injuries in a Rat Model of Anti-GBM Glomerulonephritis. J Am Soc Nephrol 2019; 31:40-53. [PMID: 31666297 DOI: 10.1681/asn.2019010067] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Accepted: 09/09/2019] [Indexed: 01/16/2023] Open
Abstract
BACKGROUND In Goodpasture disease, the noncollagenous domain 1 of the α3 chain (α3NC1) of type IV collagen is the main target antigen of antibodies against glomerular basement membrane (GBM). We previously identified a nephritogenic epitope, P14 (α3127-148), that could induce crescentic nephritis in WKY rats, and defined its core motif. Designing a modified peptide, replacing critical pathogenic residues with nonpathogenic ones (on the basis of homologous regions in α1NC1 chain of type IV collagen, known to be nonpathogenic), might provide a therapeutic option for anti-GBM GN. METHODS We synthesized a modified peptide, replacing a single amino acid, and injected it into α3-P14-immunized rats from day 0 (the early-treatment group) or a later-treatment group (from days 17 to 21). A scrambled peptide administrated with the same protocol served as a control. RESULTS The modified peptide, but not the scrambled peptide, attenuated anti-GBM GN in both treatment groups, and halted further crescent formation even after disease onset. Kidneys from the modified peptide-treated rats exhibited reductions in IgG deposits, complement activation, and infiltration by T cells and macrophages. Treatment also resulted in an anti-inflammatory cytokine profile versus a proinflammatory profile for animals not receiving the modified peptide; it also reduced α3-P14-specific T cell activation, modulated T cell differentiation by decreasing Th17 cells and enhancing the ratio of Treg/Th17 cells, and inhibited binding of α3-P14 to antibodies and MHC II molecules. CONCLUSIONS A modified peptide involving alteration of a critical motif in a nephritogenic T cell epitope alleviated anti-GBM GN in a rat model. Our findings may provide insights into an immunotherapeutic approach for autoimmune kidney disorders such as Goodpasture disease.
Collapse
Affiliation(s)
- Yue Shi
- Renal Division, Peking University First Hospital, Beijing, China.,Institute of Nephrology, Peking University, Beijing, China.,Key Laboratory of Renal Disease, Ministry of Health of China, Beijing, China.,Key Laboratory of CKD Prevention and Treatment, Ministry of Education of China, Beijing, China; and
| | - Xiao-Yu Jia
- Renal Division, Peking University First Hospital, Beijing, China; .,Institute of Nephrology, Peking University, Beijing, China.,Key Laboratory of Renal Disease, Ministry of Health of China, Beijing, China.,Key Laboratory of CKD Prevention and Treatment, Ministry of Education of China, Beijing, China; and
| | - Qiu-Hua Gu
- Renal Division, Peking University First Hospital, Beijing, China.,Institute of Nephrology, Peking University, Beijing, China.,Key Laboratory of Renal Disease, Ministry of Health of China, Beijing, China.,Key Laboratory of CKD Prevention and Treatment, Ministry of Education of China, Beijing, China; and
| | - Miao Wang
- Renal Division, Peking University First Hospital, Beijing, China.,Institute of Nephrology, Peking University, Beijing, China.,Key Laboratory of Renal Disease, Ministry of Health of China, Beijing, China.,Key Laboratory of CKD Prevention and Treatment, Ministry of Education of China, Beijing, China; and
| | - Zhao Cui
- Renal Division, Peking University First Hospital, Beijing, China; .,Institute of Nephrology, Peking University, Beijing, China.,Key Laboratory of Renal Disease, Ministry of Health of China, Beijing, China.,Key Laboratory of CKD Prevention and Treatment, Ministry of Education of China, Beijing, China; and
| | - Ming-Hui Zhao
- Renal Division, Peking University First Hospital, Beijing, China.,Institute of Nephrology, Peking University, Beijing, China.,Key Laboratory of Renal Disease, Ministry of Health of China, Beijing, China.,Key Laboratory of CKD Prevention and Treatment, Ministry of Education of China, Beijing, China; and.,Peking-Tsinghua Center for Life Sciences, Beijing, China
| |
Collapse
|
8
|
The effectiveness of chitosan-mediated silencing of PDGF-B and PDGFR-β in the mesangial proliferative glomerulonephritis therapy. Exp Mol Pathol 2019; 110:104280. [DOI: 10.1016/j.yexmp.2019.104280] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 06/18/2019] [Accepted: 06/28/2019] [Indexed: 12/13/2022]
|
9
|
Sakhi H, Moktefi A, Bouachi K, Audard V, Hénique C, Remy P, Ollero M, El Karoui K. Podocyte Injury in Lupus Nephritis. J Clin Med 2019; 8:jcm8091340. [PMID: 31470591 PMCID: PMC6780135 DOI: 10.3390/jcm8091340] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 08/22/2019] [Accepted: 08/27/2019] [Indexed: 12/14/2022] Open
Abstract
Systemic lupus erythematosus (SLE) is characterized by a broad spectrum of renal lesions. In lupus glomerulonephritis, histological classifications are based on immune-complex (IC) deposits and hypercellularity lesions (mesangial and/or endocapillary) in the glomeruli. However, there is compelling evidence to suggest that glomerular epithelial cells, and podocytes in particular, are also involved in glomerular injury in patients with SLE. Podocytes now appear to be not only subject to collateral damage due to glomerular capillary lesions secondary to IC and inflammatory processes, but they are also a potential direct target in lupus nephritis. Improvements in our understanding of podocyte injury could improve the classification of lupus glomerulonephritis. Indeed, podocyte injury may be prominent in two major presentations: lupus podocytopathy and glomerular crescent formation, in which glomerular parietal epithelial cells play also a key role. We review here the contribution of podocyte impairment to different presentations of lupus nephritis, focusing on the podocyte signaling pathways involved in these lesions.
Collapse
Affiliation(s)
- Hamza Sakhi
- AP-HP (Assistance Publique des Hôpitaux de Paris), Department of Nephrology and Renal Transplantation, Groupe Hospitalier Henri-Mondor, 94010 Créteil, France
- UPEC (Université Paris Est Créteil), UMR-S955, 94010 Créteil, France
- INSERM (Institut National de la Santé et de la Recherche Médicale) U955, Institut Mondor de Recherche Biomédicale (IMRB), Équipe 21, 94010 Créteil, France
| | - Anissa Moktefi
- UPEC (Université Paris Est Créteil), UMR-S955, 94010 Créteil, France
- INSERM (Institut National de la Santé et de la Recherche Médicale) U955, Institut Mondor de Recherche Biomédicale (IMRB), Équipe 21, 94010 Créteil, France
- AP-HP (Assistance Publique des Hôpitaux de Paris), Department of Pathology, Groupe Hospitalier Henri-Mondor, 94010 Créteil, France
| | - Khedidja Bouachi
- AP-HP (Assistance Publique des Hôpitaux de Paris), Department of Nephrology and Renal Transplantation, Groupe Hospitalier Henri-Mondor, 94010 Créteil, France
| | - Vincent Audard
- AP-HP (Assistance Publique des Hôpitaux de Paris), Department of Nephrology and Renal Transplantation, Groupe Hospitalier Henri-Mondor, 94010 Créteil, France
- UPEC (Université Paris Est Créteil), UMR-S955, 94010 Créteil, France
- INSERM (Institut National de la Santé et de la Recherche Médicale) U955, Institut Mondor de Recherche Biomédicale (IMRB), Équipe 21, 94010 Créteil, France
| | - Carole Hénique
- UPEC (Université Paris Est Créteil), UMR-S955, 94010 Créteil, France
- INSERM (Institut National de la Santé et de la Recherche Médicale) U955, Institut Mondor de Recherche Biomédicale (IMRB), Équipe 21, 94010 Créteil, France
| | - Philippe Remy
- AP-HP (Assistance Publique des Hôpitaux de Paris), Department of Nephrology and Renal Transplantation, Groupe Hospitalier Henri-Mondor, 94010 Créteil, France
| | - Mario Ollero
- UPEC (Université Paris Est Créteil), UMR-S955, 94010 Créteil, France
- INSERM (Institut National de la Santé et de la Recherche Médicale) U955, Institut Mondor de Recherche Biomédicale (IMRB), Équipe 21, 94010 Créteil, France
| | - Khalil El Karoui
- AP-HP (Assistance Publique des Hôpitaux de Paris), Department of Nephrology and Renal Transplantation, Groupe Hospitalier Henri-Mondor, 94010 Créteil, France.
- UPEC (Université Paris Est Créteil), UMR-S955, 94010 Créteil, France.
- INSERM (Institut National de la Santé et de la Recherche Médicale) U955, Institut Mondor de Recherche Biomédicale (IMRB), Équipe 21, 94010 Créteil, France.
| |
Collapse
|
10
|
Lazareth H, Henique C, Lenoir O, Puelles VG, Flamant M, Bollée G, Fligny C, Camus M, Guyonnet L, Millien C, Gaillard F, Chipont A, Robin B, Fabrega S, Dhaun N, Camerer E, Kretz O, Grahammer F, Braun F, Huber TB, Nochy D, Mandet C, Bruneval P, Mesnard L, Thervet E, Karras A, Le Naour F, Rubinstein E, Boucheix C, Alexandrou A, Moeller MJ, Bouzigues C, Tharaux PL. The tetraspanin CD9 controls migration and proliferation of parietal epithelial cells and glomerular disease progression. Nat Commun 2019; 10:3303. [PMID: 31341160 PMCID: PMC6656772 DOI: 10.1038/s41467-019-11013-2] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Accepted: 06/07/2019] [Indexed: 01/02/2023] Open
Abstract
The mechanisms driving the development of extracapillary lesions in focal segmental glomerulosclerosis (FSGS) and crescentic glomerulonephritis (CGN) remain poorly understood. A key question is how parietal epithelial cells (PECs) invade glomerular capillaries, thereby promoting injury and kidney failure. Here we show that expression of the tetraspanin CD9 increases markedly in PECs in mouse models of CGN and FSGS, and in kidneys from individuals diagnosed with these diseases. Cd9 gene targeting in PECs prevents glomerular damage in CGN and FSGS mouse models. Mechanistically, CD9 deficiency prevents the oriented migration of PECs into the glomerular tuft and their acquisition of CD44 and β1 integrin expression. These findings highlight a critical role for de novo expression of CD9 as a common pathogenic switch driving the PEC phenotype in CGN and FSGS, while offering a potential therapeutic avenue to treat these conditions. In both focal segmental glomerulosclerosis (FSGS) and crescentic glomerulonephritis (CGN), kidney injury is characterised by the invasion of glomerular tufts by parietal epithelial cells (PECs). Here Lazareth et al. identify the tetraspanin CD9 as a key regulator of PEC migration, and find its upregulation in FSGS and CGN contributes to kidney injury in both diseases.
Collapse
Affiliation(s)
- Hélène Lazareth
- Institut National de la Santé et de la Recherche Médicale (Inserm), Unit 970, Paris Cardiovascular Center - PARCC, 56 rue Leblanc, F-75015, Paris, France.,Université de Paris, UMR-S970, 56 rue Leblanc, F-75015, Paris, France.,Renal Division, Georges Pompidou European Hospital, Assistance Publique-Hôpitaux de Paris, Université de Paris, Paris, F-75015, France.,Laboratoire d'Optique et Biosciences, Ecole polytechnique, CNRS UMR7645, INSERM U1182, Université Paris-Saclay, Palaiseau, F-91128, France
| | - Carole Henique
- Institut National de la Santé et de la Recherche Médicale (Inserm), Unit 970, Paris Cardiovascular Center - PARCC, 56 rue Leblanc, F-75015, Paris, France. .,Université de Paris, UMR-S970, 56 rue Leblanc, F-75015, Paris, France. .,Institut Mondor de Recherche Biomédicale, Inserm U955, Equipe 21, Université Paris Est Créteil, Créteil, F-94010, France.
| | - Olivia Lenoir
- Institut National de la Santé et de la Recherche Médicale (Inserm), Unit 970, Paris Cardiovascular Center - PARCC, 56 rue Leblanc, F-75015, Paris, France.,Université de Paris, UMR-S970, 56 rue Leblanc, F-75015, Paris, France
| | - Victor G Puelles
- Department of Nephrology and Clinical Immunology, University Hospital RWTH Aachen, Pauwelsstrasse 30, D-52074, Aachen, Germany.,Department of Medicine III, Faculty of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, D-20246, Germany.,Department of Nephrology and Center for Inflammatory Diseases, Monash University, Melbourne, VIC 3168, Australia
| | - Martin Flamant
- Xavier Bichat University Hospital, Université de Paris, Paris, F-75018, France
| | - Guillaume Bollée
- Institut National de la Santé et de la Recherche Médicale (Inserm), Unit 970, Paris Cardiovascular Center - PARCC, 56 rue Leblanc, F-75015, Paris, France.,Université de Paris, UMR-S970, 56 rue Leblanc, F-75015, Paris, France
| | - Cécile Fligny
- Institut National de la Santé et de la Recherche Médicale (Inserm), Unit 970, Paris Cardiovascular Center - PARCC, 56 rue Leblanc, F-75015, Paris, France.,Université de Paris, UMR-S970, 56 rue Leblanc, F-75015, Paris, France
| | - Marine Camus
- Institut National de la Santé et de la Recherche Médicale (Inserm), Unit 970, Paris Cardiovascular Center - PARCC, 56 rue Leblanc, F-75015, Paris, France.,Université de Paris, UMR-S970, 56 rue Leblanc, F-75015, Paris, France
| | - Lea Guyonnet
- National Cytometry Platform, Department of Infection and Immunity, Luxembourg Institute of Health, Luxembourg, L-4354, Luxembourg
| | - Corinne Millien
- Institut National de la Santé et de la Recherche Médicale (Inserm), Unit 970, Paris Cardiovascular Center - PARCC, 56 rue Leblanc, F-75015, Paris, France.,Université de Paris, UMR-S970, 56 rue Leblanc, F-75015, Paris, France
| | - François Gaillard
- Institut National de la Santé et de la Recherche Médicale (Inserm), Unit 970, Paris Cardiovascular Center - PARCC, 56 rue Leblanc, F-75015, Paris, France.,Université de Paris, UMR-S970, 56 rue Leblanc, F-75015, Paris, France
| | - Anna Chipont
- Institut National de la Santé et de la Recherche Médicale (Inserm), Unit 970, Paris Cardiovascular Center - PARCC, 56 rue Leblanc, F-75015, Paris, France.,Université de Paris, UMR-S970, 56 rue Leblanc, F-75015, Paris, France
| | - Blaise Robin
- Institut National de la Santé et de la Recherche Médicale (Inserm), Unit 970, Paris Cardiovascular Center - PARCC, 56 rue Leblanc, F-75015, Paris, France.,Université de Paris, UMR-S970, 56 rue Leblanc, F-75015, Paris, France
| | - Sylvie Fabrega
- Université de Paris, Institut Imagine, Plateforme Vecteurs Viraux et Transfert de Gènes, IFR94, Hôpital Necker Enfants-Malades, Paris, F-75015, France
| | - Neeraj Dhaun
- Department of Renal Medicine, Royal Infirmary of Edinburgh, Edinburgh, EH16 4SA, Scotland, UK
| | - Eric Camerer
- Institut National de la Santé et de la Recherche Médicale (Inserm), Unit 970, Paris Cardiovascular Center - PARCC, 56 rue Leblanc, F-75015, Paris, France.,Université de Paris, UMR-S970, 56 rue Leblanc, F-75015, Paris, France
| | - Oliver Kretz
- Department of Medicine III, Faculty of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, D-20246, Germany.,Renal Division, Faculty of Medicine, Medical Centre, University of Freiburg, Freiburg, D-79106, Germany
| | - Florian Grahammer
- Department of Medicine III, Faculty of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, D-20246, Germany.,Renal Division, Faculty of Medicine, Medical Centre, University of Freiburg, Freiburg, D-79106, Germany
| | - Fabian Braun
- Department of Medicine III, Faculty of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, D-20246, Germany.,Renal Division, Faculty of Medicine, Medical Centre, University of Freiburg, Freiburg, D-79106, Germany
| | - Tobias B Huber
- Department of Medicine III, Faculty of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, D-20246, Germany.,Renal Division, Faculty of Medicine, Medical Centre, University of Freiburg, Freiburg, D-79106, Germany
| | - Dominique Nochy
- Department of Pathology, Georges Pompidou European Hospital, Assistance Publique-Hôpitaux de Paris, Paris, F-75015, France
| | - Chantal Mandet
- Department of Pathology, Georges Pompidou European Hospital, Assistance Publique-Hôpitaux de Paris, Paris, F-75015, France
| | - Patrick Bruneval
- Department of Pathology, Georges Pompidou European Hospital, Assistance Publique-Hôpitaux de Paris, Paris, F-75015, France
| | - Laurent Mesnard
- Critical Care Nephrology and Kidney Transplantation, Hôpital Tenon, Assistance Publique-Hôpitaux de Paris, Unité Mixte de Recherche S1155, Pierre and Marie Curie University, Paris, F-75020, France
| | - Eric Thervet
- Institut National de la Santé et de la Recherche Médicale (Inserm), Unit 970, Paris Cardiovascular Center - PARCC, 56 rue Leblanc, F-75015, Paris, France.,Université de Paris, UMR-S970, 56 rue Leblanc, F-75015, Paris, France.,Renal Division, Georges Pompidou European Hospital, Assistance Publique-Hôpitaux de Paris, Université de Paris, Paris, F-75015, France
| | - Alexandre Karras
- Institut National de la Santé et de la Recherche Médicale (Inserm), Unit 970, Paris Cardiovascular Center - PARCC, 56 rue Leblanc, F-75015, Paris, France.,Université de Paris, UMR-S970, 56 rue Leblanc, F-75015, Paris, France.,Renal Division, Georges Pompidou European Hospital, Assistance Publique-Hôpitaux de Paris, Université de Paris, Paris, F-75015, France
| | | | - Eric Rubinstein
- Inserm U935, Université Paris-Sud, Villejuif, F-94800, France
| | - Claude Boucheix
- Inserm U935, Université Paris-Sud, Villejuif, F-94800, France
| | - Antigoni Alexandrou
- Laboratoire d'Optique et Biosciences, Ecole polytechnique, CNRS UMR7645, INSERM U1182, Université Paris-Saclay, Palaiseau, F-91128, France
| | - Marcus J Moeller
- Department of Nephrology and Clinical Immunology, University Hospital RWTH Aachen, Pauwelsstrasse 30, D-52074, Aachen, Germany
| | - Cédric Bouzigues
- Laboratoire d'Optique et Biosciences, Ecole polytechnique, CNRS UMR7645, INSERM U1182, Université Paris-Saclay, Palaiseau, F-91128, France
| | - Pierre-Louis Tharaux
- Institut National de la Santé et de la Recherche Médicale (Inserm), Unit 970, Paris Cardiovascular Center - PARCC, 56 rue Leblanc, F-75015, Paris, France. .,Université de Paris, UMR-S970, 56 rue Leblanc, F-75015, Paris, France. .,Renal Division, Georges Pompidou European Hospital, Assistance Publique-Hôpitaux de Paris, Université de Paris, Paris, F-75015, France.
| |
Collapse
|
11
|
Moll S, Yasui Y, Abed A, Murata T, Shimada H, Maeda A, Fukushima N, Kanamori M, Uhles S, Badi L, Cagarelli T, Formentini I, Drawnel F, Georges G, Bergauer T, Gasser R, Bonfil RD, Fridman R, Richter H, Funk J, Moeller MJ, Chatziantoniou C, Prunotto M. Selective pharmacological inhibition of DDR1 prevents experimentally-induced glomerulonephritis in prevention and therapeutic regime. J Transl Med 2018; 16:148. [PMID: 29859097 PMCID: PMC5984769 DOI: 10.1186/s12967-018-1524-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Accepted: 05/23/2018] [Indexed: 11/10/2022] Open
Abstract
Background Discoidin domain receptor 1 (DDR1) is a collagen-activated receptor tyrosine kinase extensively implicated in diseases such as cancer, atherosclerosis and fibrosis. Multiple preclinical studies, performed using either a gene deletion or a gene silencing approaches, have shown this receptor being a major driver target of fibrosis and glomerulosclerosis. Methods The present study investigated the role and relevance of DDR1 in human crescentic glomerulonephritis (GN). Detailed DDR1 expression was first characterized in detail in human GN biopsies using a novel selective anti-DDR1 antibody using immunohistochemistry. Subsequently the protective role of DDR1 was investigated using a highly selective, novel, small molecule inhibitor in a nephrotoxic serum (NTS) GN model in a prophylactic regime and in the NEP25 GN mouse model using a therapeutic intervention regime. Results DDR1 expression was shown to be mainly limited to renal epithelium. In humans, DDR1 is highly induced in injured podocytes, in bridging cells expressing both parietal epithelial cell (PEC) and podocyte markers and in a subset of PECs forming the cellular crescents in human GN. Pharmacological inhibition of DDR1 in NTS improved both renal function and histological parameters. These results, obtained using a prophylactic regime, were confirmed in the NEP25 GN mouse model using a therapeutic intervention regime. Gene expression analysis of NTS showed that pharmacological blockade of DDR1 specifically reverted fibrotic and inflammatory gene networks and modulated expression of the glomerular cell gene signature, further validating DDR1 as a major mediator of cell fate in podocytes and PECs. Conclusions Together, these results suggest that DDR1 inhibition might be an attractive and promising pharmacological intervention for the treatment of GN, predominantly by targeting the renal epithelium. Electronic supplementary material The online version of this article (10.1186/s12967-018-1524-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Solange Moll
- Department of Pathology, University Hospital of Geneva, Geneva, Switzerland
| | - Yukari Yasui
- Research Division, Chugai Pharmaceutical Co., Ltd, Tokyo, Japan
| | - Ahmed Abed
- INSERM, UMR S 1155, Hôpital Tenon, 75020, Paris, France
| | - Takeshi Murata
- Research Division, Chugai Pharmaceutical Co., Ltd, Tokyo, Japan
| | - Hideaki Shimada
- Research Division, Chugai Pharmaceutical Co., Ltd, Tokyo, Japan.,Chugai Pharmabody Research Pte. Ltd., Singapore, Singapore
| | - Akira Maeda
- Research Division, Chugai Pharmaceutical Co., Ltd, Tokyo, Japan
| | | | - Masakazu Kanamori
- Research Division, Chugai Pharmaceutical Co., Ltd, Tokyo, Japan.,Chugai Pharmabody Research Pte. Ltd., Singapore, Singapore
| | - Sabine Uhles
- Roche Pharma Research and Early Development, Roche Innovation Center Basel, Basel, Switzerland
| | - Laura Badi
- Roche Pharma Research and Early Development, Roche Innovation Center Basel, Basel, Switzerland
| | - Thomas Cagarelli
- Department of Pathology, University Hospital of Geneva, Geneva, Switzerland
| | - Ivan Formentini
- Roche Pharma Research and Early Development, Roche Innovation Center Basel, Basel, Switzerland.,Late Stage, AstraZeneca, Göteborgs, Sweden
| | - Faye Drawnel
- Roche Pharma Research and Early Development, Roche Innovation Center Basel, Basel, Switzerland
| | - Guy Georges
- Roche Pharma Research and Early Development, Roche Innovation Center Munich, Munich, Germany
| | - Tobias Bergauer
- Roche Pharma Research and Early Development, Roche Innovation Center Basel, Basel, Switzerland
| | - Rodolfo Gasser
- Roche Pharma Research and Early Development, Roche Innovation Center Basel, Basel, Switzerland
| | - R Daniel Bonfil
- Department of Pathology, College of Medical Sciences, Nova Southeastern University, Fort Lauderdale, FL, USA
| | - Rafael Fridman
- Department of Pathology, Wayne State University, Detroit, MI, USA
| | - Hans Richter
- Roche Pharma Research and Early Development, Roche Innovation Center Basel, Basel, Switzerland
| | - Juergen Funk
- Roche Pharma Research and Early Development, Roche Innovation Center Basel, Basel, Switzerland
| | - Marcus J Moeller
- Department of Nephrology and Clinical Immunology, RWTH University, Aachen, Germany
| | | | - Marco Prunotto
- Roche Pharma Research and Early Development, Roche Innovation Center Basel, Basel, Switzerland. .,Office of Innovation, Immunology, Infectious Diseases & Ophthalmology (I2O), Roche and Genentech Late Stage Development, 124 Grenzacherstrasse, 4070, Basel, Switzerland. .,School of Pharmaceutical Sciences, University of Geneva, Geneva, Switzerland.
| |
Collapse
|
12
|
Ma TKW, McAdoo SP, Tam FWK. Targeting the tyrosine kinase signalling pathways for treatment of immune-mediated glomerulonephritis: from bench to bedside and beyond. Nephrol Dial Transplant 2017; 32:i129-i138. [PMID: 28391340 PMCID: PMC5410974 DOI: 10.1093/ndt/gfw336] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Accepted: 08/18/2016] [Indexed: 12/25/2022] Open
Abstract
Glomerulonephritis (GN) affects patients of all ages and is an important cause of morbidity and mortality. Non-selective immunosuppressive drugs have been used in immune-mediated GN but often result in systemic side effects and occasionally fatal infective complications. There is increasing evidence from both preclinical and clinical studies that abnormal activation of receptor and non-receptor tyrosine kinase signalling pathways are implicated in the pathogenesis of immune-mediated GN. Activation of spleen tyrosine kinase (SYK), Bruton's tyrosine kinase (BTK), platelet-derived growth factor receptor (PDGFR), epidermal growth factor receptor (EGFR) and discoidin domain receptor 1 (DDR1) have been demonstrated in anti-GBM disease. SYK is implicated in the pathogenesis of ANCA-associated GN. SYK, BTK, PDGFR, EFGR, DDR1 and Janus kinase are implicated in the pathogenesis of lupus nephritis. A representative animal model of IgA nephropathy (IgAN) is lacking. Based on the results from in vitro and human renal biopsy study results, a phase II clinical trial is ongoing to evaluate the efficacy and safety of fostamatinib (an oral SYK inhibitor) in high-risk IgAN patient. Various tyrosine kinase inhibitors (TKIs) have been approved for cancer treatment. Clinical trials of TKIs in GN may be justified given their long-term safety data. In this review we will discuss the current unmet medical needs in GN treatment and research as well as the current stage of development of TKIs in GN treatment and propose an accelerated translational research approach to investigate whether selective inhibition of tyrosine kinase provides a safer and more efficacious option for GN treatment.
Collapse
Affiliation(s)
- Terry King-Wing Ma
- Renal and Vascular Inflammation Section, Department of Medicine, Imperial College London, Hammersmith Hospital, Du Cane Road, London, UK.,Carol and Richard Yu Peritoneal Dialysis Research Centre, Department of Medicine and Therapeutics, Prince of Wales Hospital, Chinese University of Hong Kong, Sha Tin, Hong Kong
| | - Stephen P McAdoo
- Renal and Vascular Inflammation Section, Department of Medicine, Imperial College London, Hammersmith Hospital, Du Cane Road, London, UK
| | - Frederick Wai Keung Tam
- Renal and Vascular Inflammation Section, Department of Medicine, Imperial College London, Hammersmith Hospital, Du Cane Road, London, UK
| |
Collapse
|
13
|
Jhaveri KD, Wanchoo R, Sakhiya V, Ross DW, Fishbane S. Adverse Renal Effects of Novel Molecular Oncologic Targeted Therapies: A Narrative Review. Kidney Int Rep 2016; 2:108-123. [PMID: 29318210 PMCID: PMC5720524 DOI: 10.1016/j.ekir.2016.09.055] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Revised: 09/13/2016] [Accepted: 09/14/2016] [Indexed: 12/21/2022] Open
Abstract
Novel targeted anti-cancer therapies have resulted in improvement in patient survival compared to standard chemotherapy. Renal toxicities of targeted agents are increasingly being recognized. The incidence, severity, and pattern of renal toxicities may vary according to the respective target of the drug. Here we review the adverse renal effects associated with a selection of currently approved targeted cancer therapies, directed to EGFR, HER2, BRAF, MEK, ALK, PD1/PDL1, CTLA-4, and novel agents targeted to VEGF/R and TKIs. In summary, electrolyte disorders, renal impairment and hypertension are the most commonly reported events. Of the novel targeted agents, ipilumumab and cetuximab have the most nephrotoxic events reported. The early diagnosis and prompt recognition of these renal adverse events are essential for the general nephrologist taking care of these patients.
Collapse
Affiliation(s)
- Kenar D Jhaveri
- Department of Internal Medicine, Division of Kidney Diseases and Hypertension, Hofstra Northwell School of Medicine, Northwell Health, Great Neck, New York, USA
| | - Rimda Wanchoo
- Department of Internal Medicine, Division of Kidney Diseases and Hypertension, Hofstra Northwell School of Medicine, Northwell Health, Great Neck, New York, USA
| | - Vipulbhai Sakhiya
- Department of Internal Medicine, Division of Kidney Diseases and Hypertension, Hofstra Northwell School of Medicine, Northwell Health, Great Neck, New York, USA
| | - Daniel W Ross
- Department of Internal Medicine, Division of Kidney Diseases and Hypertension, Hofstra Northwell School of Medicine, Northwell Health, Great Neck, New York, USA
| | - Steven Fishbane
- Department of Internal Medicine, Division of Kidney Diseases and Hypertension, Hofstra Northwell School of Medicine, Northwell Health, Great Neck, New York, USA
| |
Collapse
|
14
|
Antineoplastic Treatment and Renal Injury: An Update on Renal Pathology Due to Cytotoxic and Targeted Therapies. Adv Anat Pathol 2016; 23:310-29. [PMID: 27403615 DOI: 10.1097/pap.0000000000000122] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Cancer patients experience kidney injury from multiple sources, including the tumor itself, diagnostic procedures, hypovolemia, infection, and drug exposure, superimposed upon baseline chronic damage. This review will focus on cytotoxic or targeted chemotherapy-associated renal injury. In this setting, tubulointerstitial injury and thrombotic microangiopathy (vascular injury) are more common than other forms of kidney injury including glomerular. Cisplatin, pemetrexed, and ifosfamide are well-known causes of acute tubular injury/necrosis. Acute interstitial nephritis seems underrecognized in this clinical setting. Interstitial nephritis is emerging as an "immune-related adverse effect" (irAE's) with immune checkpoint inhibitors in small numbers of patients. Acute kidney injury is rarely reported with targeted therapies such as BRAF inhibitors (vemurafinib, dabrafenib), ALK inhibitors (crizotinib), and mTOR inhibitors (everolimus, temsirolimus), but additional biopsy data are needed. Tyrosine kinase inhibitors and monoclonal antibodies that block the vascular endothelial growth factor pathway are most commonly associated with thrombotic microangiopathy. Other causes of thrombotic microangiopathy in the cancer patients include cytotoxic chemotherapies such as gemcitabine and mitomycin C, hematopoietic stem cell transplant, and cancer itself (usually high-stage adenocarcinoma with marrow and vascular invasion). Cancer patients are historically underbiopsied, but biopsy can reveal type, acuity, and chronicity of renal injury, and facilitate decisions concerning continuation of chemotherapy and/or initiation of renoprotective therapy. Biopsy may also reveal unrelated and unanticipated findings in need of treatment.
Collapse
|
15
|
Yamazaki T, Sasaki S, Okamoto T, Sato Y, Hayashi A, Ariga T. Up-Regulation of CD74 Expression in Parietal Epithelial Cells in a Mouse Model of Focal Segmental Glomerulosclerosis. Nephron Clin Pract 2016; 134:238-252. [PMID: 27463800 DOI: 10.1159/000448221] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Accepted: 07/04/2016] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND/AIMS De novo expression of CD44 is considered as a marker of parietal epithelial cell (PEC) activation. The aim of our study was to explore CD74 expression, which can form a complex with CD44, in PECs during the progression of focal segmental glomerulosclerosis (FSGS). To clarify the role of CD74 expression and of its interaction with CD44, we generated a new mouse model with enhanced PEC activation through lipopolysaccharide (LPS) application to adriamycin (ADR)-induced nephropathy mice (LPS-treated ADR mice). METHODS As a new model, LPS was intraperitoneally injected into the mice 3 weeks after ADR injection. The mice were divided into 3 categories: control mice, ADR mice and LPS-treated ADR mice. Renal function parameters, histologic changes and immunohistochemical expression of CD74 and other PEC activation markers were analyzed after LPS application. RESULTS After LPS stimulation, the glomeruli were characterized by enlarged epithelial cells with strong CD74 expression, followed by pseudo-crescent formation. By double staining, CD74-positive enlarged cells showed co-expression of classical PEC markers, but not of Lotus tetragonolobus lectin (marker of proximal tubular cells), suggesting amplification of PEC activation. Time-course analysis displayed marked upregulation of CD74 expression during rapid PEC activation compared with CD44. Additionally, the time-dependent change in ERK phosphorylation showed a similar pattern to CD74. CONCLUSION Our results indicate that CD74 can be a marker for PEC activation in FSGS. By modifying the ADR mouse model through LPS treatment, we found that CD74 upregulation better reflects a rapid amplification of PEC activation than CD44 expression.
Collapse
Affiliation(s)
- Takeshi Yamazaki
- Department of Pediatrics, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | | | | | | | | | | |
Collapse
|
16
|
Zhang YU, Zhou N, Wang H, Wang S, He J. Effect of Shenkang granules on the progression of chronic renal failure in 5/6 nephrectomized rats. Exp Ther Med 2015; 9:2034-2042. [PMID: 26136932 DOI: 10.3892/etm.2015.2383] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2014] [Accepted: 11/16/2014] [Indexed: 12/23/2022] Open
Abstract
Shenkang granules (SKGs) are a Chinese herbal medicinal formula, consisting of rhubarb (Rheum palmatum L.), Salvia miltiorrhiza, milkvetch root [Astragalus membranaceus (Fisch.) Bunge] and safflower (Carthamus tinctorius L.). The aim of the present study was to investigate the effect of SKG on chronic renal failure (CRF) in 5/6 nephrectomized (5/6 Nx) rats. The rats were randomly divided into seven groups (n=10 per group) as follows: (i) 5/6 Nx (model group; 2.25 ml/kg/day normal saline); (ii) SKGL (low dose; 5/6 Nx treated with 2 g crude drug/kg/day SKG); (iii) SKGM (moderate dose; 5/6 Nx treated with 4 g crude drug/kg/day SKG); (iv) SKGH (high dose; 5/6 Nx treated with 8 g crude drug/kg/day SKG); (v) benazepril treatment group (5/6 Nx treated with 5 mg/kg/day benazepril); (vi) Shenkang injection (SKI) group (5/6 Nx with 13.3 ml/kg/day SKI); and (vii) sham-operated group (2.25 ml/kg/day normal saline). After 30 days, the levels of microalbumin, total protein, serum creatinine, blood urea nitrogen and serum lipid were found to be significantly decreased in the SKGL and SKGM rats, showing histological improvement compared with the untreated 5/6 Nx rats, as determined by hematoxylin and eosin, and Masson's trichrome staining. In addition, SKG was found to significantly improve the levels of glutathione peroxidase and reduce the damage caused by free radicals to the kidney tissues. Furthermore, SKG prevented the accumulation of extracellular matrix by decreasing the expression of collagen I and III and inhibiting the expression of matrix metalloproteinases-2 and -9 in the renal tissue, as determined by western blot analysis. SKG was also shown to decrease the concentrations of serum transforming growth factor-β1, as determined by ELISA, and kidney angiotensin II, as determined using a radioimmunoassay kit. In conclusion, SKG was demonstrated to ameliorate renal injury in a 5/6 Nx rat model of CRF. Thus, SKG may exert a good therapeutic effect on CRF.
Collapse
Affiliation(s)
- Y U Zhang
- School of Medicine, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Nan Zhou
- School of Medicine, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Hongying Wang
- School of Medicine, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Sicen Wang
- School of Medicine, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Jianyu He
- School of Medicine, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| |
Collapse
|
17
|
Pawar RD, Goilav B, Xia Y, Herlitz L, Doerner J, Chalmers S, Ghosh K, Zang X, Putterman C. B7x/B7-H4 modulates the adaptive immune response and ameliorates renal injury in antibody-mediated nephritis. Clin Exp Immunol 2015; 179:329-43. [PMID: 25205493 DOI: 10.1111/cei.12452] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/07/2014] [Indexed: 12/12/2022] Open
Abstract
Kidney disease is one of the leading causes of death in patients with lupus and other autoimmune diseases affecting the kidney, and is associated with deposition of antibodies as well as infiltration of T lymphocytes and macrophages, which are responsible for initiation and/or exacerbation of inflammation and tissue injury. Current treatment options have relatively limited efficacy; therefore, novel targets need to be explored. The co-inhibitory molecule, B7x, a new member of the B7 family expressed predominantly by non-lymphoid tissues, has been shown to inhibit the proliferation, activation and functional responses of CD4 and CD8 T cells. In this study, we found that B7x was expressed by intrinsic renal cells, and was up-regulated upon stimulation with inflammatory triggers. After passive administration of antibodies against glomerular antigens, B7x(-/-) mice developed severe renal injury accompanied by a robust adaptive immune response and kidney up-regulation of inflammatory mediators, as well as local infiltration of T cells and macrophages. Furthermore, macrophages in the spleen of B7x(-/-) mice were polarized to an inflammatory phenotype. Finally, treatment with B7x-immunoglobulin (Ig) in this nephritis model decreased kidney damage and reduced local inflammation. We propose that B7x can modulate kidney damage in autoimmune diseases including lupus nephritis and anti-glomerular basement membrane disease. Thus, B7x mimetics may be a novel therapeutic option for treatment of immune-mediated kidney disease.
Collapse
Affiliation(s)
- R D Pawar
- The Division of Rheumatology, Albert Einstein College of Medicine, NY, USA; Department of Microbiology & Immunology, Albert Einstein College of Medicine, NY, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Abstract
The use of novel targeted anticancer agents has led to overall improvement in the prognosis of many patients affected by various malignancies, but has also been associated with an increased risk of poorly characterized toxic effects to different organs, including the kidneys. The high prevalence of kidney impairment in the general population complicates the issue further. Nephrologists most frequently work with patients with cancer when they are asked to investigate kidney function to assess the need for dose adjustments in anticancer therapy. A thorough knowledge of the renal safety profile of novel life-prolonging anticancer therapies, specific features of their metabolism, and pharmacokinetic and pharmacodynamic properties (under normal circumstances as well as in the setting of renal replacement therapy) is, therefore, necessary to preserve kidney function as far as possible and to ensure optimum treatment. In this Review we summarize the present knowledge of renal toxic effects from novel targeted anticancer agents and discuss whether the management of patients' treatment needs to be modified. We also advocate the development of a new onconephrology subspeciality.
Collapse
|
19
|
Greenhall GHB, Salama AD. What is new in the management of rapidly progressive glomerulonephritis? Clin Kidney J 2015; 8:143-50. [PMID: 25815169 PMCID: PMC4370308 DOI: 10.1093/ckj/sfv008] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2015] [Accepted: 01/23/2015] [Indexed: 12/20/2022] Open
Abstract
Rapidly progressive glomerulonephritis (RPGN) results from severe crescentic damage to glomeruli and leads to irreversible kidney failure if not diagnosed and managed in a timely fashion. Traditional treatment has relied on glucocorticoids and cyclophosphamide, with additional plasmapheresis for certain conditions. Here we describe updates in the management of RPGN, according to the underlying renal pathology. However, there remains a paucity of trials that have enrolled patients with more advanced renal disease, dialysis dependence or with RPGN, and we are therefore still reliant on extrapolation of data from studies of patients with a less severe form of disease. In addition, reporting bias results in publication of cases or cohorts showing benefit for newer agents in advanced disease or RPGN, but it remains unclear how many unsuccessful outcomes in these circumstances take place. Since clinical trials specifically in RPGN are unlikely, use of biologic registries or combination of sufficient sized cohort series may provide indications of benefit outside of a clinical trial setting and should be encouraged, in order to provide some evidence for the efficacy of therapeutic regimens in RPGN and advanced renal disease.
Collapse
Affiliation(s)
| | - Alan D Salama
- UCL Centre for Nephrology , Royal Free Hospital , London , UK
| |
Collapse
|
20
|
Boor P, Ostendorf T, Floege J. PDGF and the progression of renal disease. Nephrol Dial Transplant 2014; 29 Suppl 1:i45-i54. [PMID: 24493869 DOI: 10.1093/ndt/gft273] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Progressive renal diseases represent a global medical problem, in part because we currently lack effective treatment strategies. Inhibition of platelet-derived growth factors (PDGFs) might represent one such novel strategy. PDGFs are required for normal kidney development by the recruitment of mesenchymal cells to both glomeruli and the interstitium. PDGFs are expressed in renal mesenchymal cells and, upon injury, in epithelial and infiltrating cells. They exert autocrine and paracrine effects on PDGF receptor-bearing mesenchymal cells, i.e. mesangial cells, fibroblasts and vascular smooth-muscle cells, which are crucially involved in progressive renal diseases. Proliferation but also migration and activation of these mesenchymal cells are the major effects mediated by PDGFs. These actions predefine the major roles of PDGFs in renal pathology, particularly in mesangioproliferative glomerulonephritis and interstitial fibrosis. Whereas for the former, the role of PDGFs is very well described and established, the latter is increasingly better documented as well. An involvement of PDGFs in other renal diseases, e.g. acute kidney injury, vascular injury and hypertensive as well as diabetic nephropathy, is less well established or presently unknown. Nevertheless, PDGFs represent a promising therapeutic option for progressive renal diseases, especially those characterized by mesangial cell proliferation and interstitial fibrosis. Clinical studies are eagerly awaited, in particular, since several drugs inhibiting PDGF signalling are available for clinical testing.
Collapse
Affiliation(s)
- Peter Boor
- Department of Nephrology, RWTH University of Aachen, Aachen, Germany
| | | | | |
Collapse
|
21
|
Kok HM, Falke LL, Goldschmeding R, Nguyen TQ. Targeting CTGF, EGF and PDGF pathways to prevent progression of kidney disease. Nat Rev Nephrol 2014; 10:700-11. [PMID: 25311535 DOI: 10.1038/nrneph.2014.184] [Citation(s) in RCA: 128] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Chronic kidney disease (CKD) is a major health and economic burden with a rising incidence. During progression of CKD, the sustained release of proinflammatory and profibrotic cytokines and growth factors leads to an excessive accumulation of extracellular matrix. Transforming growth factor β (TGF-β) and angiotensin II are considered to be the two main driving forces in fibrotic development. Blockade of the renin-angiotensin-aldosterone system has become the mainstay therapy for preservation of kidney function, but this treatment is not sufficient to prevent progression of fibrosis and CKD. Several factors that induce fibrosis have been identified, not only by TGF-β-dependent mechanisms, but also by TGF-β-independent mechanisms. Among these factors are the (partially) TGF-β-independent profibrotic pathways involving connective tissue growth factor, epidermal growth factor and platelet-derived growth factor and their receptors. In this Review, we discuss the specific roles of these pathways, their interactions and preclinical evidence supporting their qualification as additional targets for novel antifibrotic therapies.
Collapse
Affiliation(s)
- Helena M Kok
- Department of Pathology, H04.312, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, Netherlands
| | - Lucas L Falke
- Department of Pathology, H04.312, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, Netherlands
| | - Roel Goldschmeding
- Department of Pathology, H04.312, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, Netherlands
| | - Tri Q Nguyen
- Department of Pathology, H04.312, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, Netherlands
| |
Collapse
|
22
|
Les glomérulopathies associées aux néoplasies myéloprolifératives. Rev Med Interne 2014; 35:222-30. [DOI: 10.1016/j.revmed.2013.04.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2012] [Revised: 02/25/2013] [Accepted: 04/25/2013] [Indexed: 11/20/2022]
|
23
|
Shankland SJ, Smeets B, Pippin JW, Moeller MJ. The emergence of the glomerular parietal epithelial cell. Nat Rev Nephrol 2014; 10:158-73. [PMID: 24468766 DOI: 10.1038/nrneph.2014.1] [Citation(s) in RCA: 112] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Glomerular diseases are the leading causes of chronic and end-stage kidney disease. In the 1980s and 1990s, attention was focused on the biology and role of glomerular endothelial and mesangial cells. For the past two decades, seminal discoveries have been made in podocyte biology in health and disease. More recently, the glomerular parietal epithelial cell (PEC)-the fourth resident glomerular cell type-has been under active study, leading to a better understanding and definition of how these cells behave normally, and their potential roles in glomerular disease. Accordingly, this Review will focus on our current knowledge of PECs, in both health and disease. We discuss model systems to study PECs, how PECs might contribute to glomerulosclerosis, crescent and pseudocrescent formation and how PECs handle filtered albumin. These events have consequences on PEC structure and function, and PECs have potential roles as stem or progenitor cells for podocytes in glomerular regeneration, which will also be described.
Collapse
Affiliation(s)
- Stuart J Shankland
- Division of Nephrology, University of Washington, 1959 North East Pacific Avenue, Box 356521, Room BB1269, Seattle, WA 98195-6521, USA
| | - Bart Smeets
- Nephrology and Clinical Immunology, University Hospital of the RWTH Aachen University, Pauwelsstraße 30, 52074 Aachen, Germany
| | - Jeffrey W Pippin
- Division of Nephrology, University of Washington, 1959 North East Pacific Avenue, Box 356521, Room BB1269, Seattle, WA 98195-6521, USA
| | - Marcus J Moeller
- Nephrology and Clinical Immunology, University Hospital of the RWTH Aachen University, Pauwelsstraße 30, 52074 Aachen, Germany
| |
Collapse
|