1
|
Woo IS, Kim YR, Kim SW, Choi JY, Yoon HY, Bae K, Yoon KA, Kim JH. Successful post-incomplete resection management of gastrointestinal stromal tumor using imatinib based on adenosine triphosphate-based tumor sensitivity assay in a dog. THE CANADIAN VETERINARY JOURNAL = LA REVUE VETERINAIRE CANADIENNE 2024; 65:553-558. [PMID: 38827592 PMCID: PMC11132173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 06/04/2024]
Abstract
Gastrointestinal stromal tumors arising from gastric cardia are uncommon in dogs. A few studies have shown the effectiveness of tyrosine kinase inhibitors in the treatment of canine gastrointestinal stromal tumors, but no standardized protocols are currently available. An 11-year-old spayed female Maltese dog was diagnosed with a gastrointestinal stromal tumor using histopathological and immunohistochemical analyses. An adenosine triphosphate-based tumor chemosensitivity assay revealed that imatinib at lower concentrations had a stronger inhibitory effect than toceranib. Based on the results of the assay, the dog was treated with imatinib after surgery. After 28 mo of therapy, there was no recurrence of the tumor. Key clinical message: Adenosine triphosphate-based tumor chemosensitivity assays may help clinicians to select appropriate postoperative chemotherapeutic drugs for incompletely resected gastrointestinal stromal tumors in dogs.
Collapse
Affiliation(s)
- In-Sun Woo
- KU Animal Cancer Center, Konkuk University Veterinary Medical Teaching Hospital, No. 120, Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea (Woo, Y-R Kim, S-W Kim, Choi, H-Y Yoon, Bae, K-A Yoon, J-H Kim); Department of Veterinary Internal Medicine (Woo, Y-R Kim, S-W Kim, J-H Kim) and Department of Veterinary Surgery (Choi, H-Y Yoon) and Department of Veterinary Biochemistry (Bae, K-A Yoon), College of Veterinary Medicine, Konkuk University, No. 120, Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Young-Rok Kim
- KU Animal Cancer Center, Konkuk University Veterinary Medical Teaching Hospital, No. 120, Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea (Woo, Y-R Kim, S-W Kim, Choi, H-Y Yoon, Bae, K-A Yoon, J-H Kim); Department of Veterinary Internal Medicine (Woo, Y-R Kim, S-W Kim, J-H Kim) and Department of Veterinary Surgery (Choi, H-Y Yoon) and Department of Veterinary Biochemistry (Bae, K-A Yoon), College of Veterinary Medicine, Konkuk University, No. 120, Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Sang-Won Kim
- KU Animal Cancer Center, Konkuk University Veterinary Medical Teaching Hospital, No. 120, Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea (Woo, Y-R Kim, S-W Kim, Choi, H-Y Yoon, Bae, K-A Yoon, J-H Kim); Department of Veterinary Internal Medicine (Woo, Y-R Kim, S-W Kim, J-H Kim) and Department of Veterinary Surgery (Choi, H-Y Yoon) and Department of Veterinary Biochemistry (Bae, K-A Yoon), College of Veterinary Medicine, Konkuk University, No. 120, Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Jin-Young Choi
- KU Animal Cancer Center, Konkuk University Veterinary Medical Teaching Hospital, No. 120, Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea (Woo, Y-R Kim, S-W Kim, Choi, H-Y Yoon, Bae, K-A Yoon, J-H Kim); Department of Veterinary Internal Medicine (Woo, Y-R Kim, S-W Kim, J-H Kim) and Department of Veterinary Surgery (Choi, H-Y Yoon) and Department of Veterinary Biochemistry (Bae, K-A Yoon), College of Veterinary Medicine, Konkuk University, No. 120, Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Hun-Young Yoon
- KU Animal Cancer Center, Konkuk University Veterinary Medical Teaching Hospital, No. 120, Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea (Woo, Y-R Kim, S-W Kim, Choi, H-Y Yoon, Bae, K-A Yoon, J-H Kim); Department of Veterinary Internal Medicine (Woo, Y-R Kim, S-W Kim, J-H Kim) and Department of Veterinary Surgery (Choi, H-Y Yoon) and Department of Veterinary Biochemistry (Bae, K-A Yoon), College of Veterinary Medicine, Konkuk University, No. 120, Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Kieun Bae
- KU Animal Cancer Center, Konkuk University Veterinary Medical Teaching Hospital, No. 120, Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea (Woo, Y-R Kim, S-W Kim, Choi, H-Y Yoon, Bae, K-A Yoon, J-H Kim); Department of Veterinary Internal Medicine (Woo, Y-R Kim, S-W Kim, J-H Kim) and Department of Veterinary Surgery (Choi, H-Y Yoon) and Department of Veterinary Biochemistry (Bae, K-A Yoon), College of Veterinary Medicine, Konkuk University, No. 120, Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Kyong-Ah Yoon
- KU Animal Cancer Center, Konkuk University Veterinary Medical Teaching Hospital, No. 120, Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea (Woo, Y-R Kim, S-W Kim, Choi, H-Y Yoon, Bae, K-A Yoon, J-H Kim); Department of Veterinary Internal Medicine (Woo, Y-R Kim, S-W Kim, J-H Kim) and Department of Veterinary Surgery (Choi, H-Y Yoon) and Department of Veterinary Biochemistry (Bae, K-A Yoon), College of Veterinary Medicine, Konkuk University, No. 120, Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Jung-Hyun Kim
- KU Animal Cancer Center, Konkuk University Veterinary Medical Teaching Hospital, No. 120, Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea (Woo, Y-R Kim, S-W Kim, Choi, H-Y Yoon, Bae, K-A Yoon, J-H Kim); Department of Veterinary Internal Medicine (Woo, Y-R Kim, S-W Kim, J-H Kim) and Department of Veterinary Surgery (Choi, H-Y Yoon) and Department of Veterinary Biochemistry (Bae, K-A Yoon), College of Veterinary Medicine, Konkuk University, No. 120, Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| |
Collapse
|
2
|
Nachiappa Ganesh R, Garcia G, Truong L. Monocytes and Macrophages in Kidney Disease and Homeostasis. Int J Mol Sci 2024; 25:3763. [PMID: 38612574 PMCID: PMC11012230 DOI: 10.3390/ijms25073763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 03/19/2024] [Accepted: 03/25/2024] [Indexed: 04/14/2024] Open
Abstract
The monocyte-macrophage lineage of inflammatory cells is characterized by significant morphologic and functional plasticity. Macrophages have broad M1 and M2 phenotype subgroups with distinctive functions and dual reno-toxic and reno-protective effects. Macrophages are a major contributor to injury in immune-complex-mediated, as well as pauci-immune, glomerulonephritis. Macrophages are also implicated in tubulointerstitial and vascular disease, though there have not been many human studies. Patrolling monocytes in the intravascular compartment have been reported in auto-immune injury in the renal parenchyma, manifesting as acute kidney injury. Insights into the pathogenetic roles of macrophages in renal disease suggest potentially novel therapeutic and prognostic biomarkers and targeted therapy. This review provides a concise overview of the macrophage-induced pathogenetic mechanism as a background for the latest findings about macrophages' roles in different renal compartments and common renal diseases.
Collapse
Affiliation(s)
- Rajesh Nachiappa Ganesh
- Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, TX 77030, USA;
- Department of Pathology, Jawaharlal Institute of Postgraduate Medical Education and Research, Puducherry 605006, India
| | - Gabriela Garcia
- Department of Medicine, Renal Division, University of Colorado, Anschutz Medical Campus, Aurora, CO 605006, USA;
| | - Luan Truong
- Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, TX 77030, USA;
| |
Collapse
|
3
|
Su H, Wu H, Wu S, Zhou M. Effects of electroacupuncture at KI3 and ST36 on the hypothalamic paraventricular nucleus in a rat model of chronic glomerulonephritis. Acupunct Med 2023; 41:307-316. [PMID: 37166069 DOI: 10.1177/09645284231166718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
OBJECTIVE The hypothalamic paraventricular nucleus (PVN) acts as a critical integrating center of endocrine/autonomic responses and regulates visceral functional activities. However, its involvement in electroacupuncture (EA) treatment of chronic glomerulonephritis (CGN) remains unclear. METHODS Over four experiments, we randomized 111 rats into: control, untreated model (CGN) or EA-treated model (CGN + EA) groups, a model group receiving EA after PVN damage (CGN + EA + Lesion) or untreated model groups injected with adeno-associated viral vectors encoding human M4 muscarinic receptor (CGN + hM4D) or enhanced green fluorescent protein (CGN + EGFP). CGN was modeled by intraperitoneal injection of bovine serum albumin for 2 weeks. Rats in the CGN + EA and CGN + EA + Lesion groups received EA at bilateral ST36 and KI3 for 14 days. Urine/serum samples were collected to evaluate inflammatory factors and changes in renal function. RESULTS EA inhibited the release of interleukin (IL)-6, tumor necrosis factor (TNF)-α and IL-1β, and decreased urine protein (PRO), creatinine (Cre) and blood urea nitrogen (BUN) levels. PVN damage influenced the effect of EA on the levels of these parameters. EA appeared to inhibit the firing frequency and spectral energy of PVN neurons. In the viral vector experiment, levels of PRO, Cre, IL-6, IL-1β and TNF-α in the CGN group were increased in CGN versus control groups (p < 0.0001), decreased in CGN + hM4D versus CGN groups (p < 0.05) and did not differ between CGN + EGFP and control groups (p > 0.05). CONCLUSION Our findings indicate that EA at ST36 and KI3 improves CGN in this rat model by weakening the activity of PVN neurons, alleviating impairment of renal function impairment and restricting the release of inflammatory factors.
Collapse
Affiliation(s)
- Hang Su
- Graduate School of Anhui University of Traditional Chinese Medicine, Hefei, China
| | - Haosheng Wu
- Graduate School of Anhui University of Traditional Chinese Medicine, Hefei, China
| | - Shengbing Wu
- Key Laboratory of Xin'an Medicine, Ministry of Education, Anhui University of Chinese Medicine, Hefei, China
| | - Meiqi Zhou
- Anhui Academy of Traditional Medicine, Bozhou Institute of Chinese Medicine, Bozhou, China
| |
Collapse
|
4
|
Li S, Wang X, Liu Y, Xiao J, Yi J. The implication of necroptosis-related lncRNAs in orchestrating immune infiltration and predicting therapeutic efficacy in colon adenocarcinoma: an integrated bioinformatic analysis with preliminarily experimental validation. Front Genet 2023; 14:1170640. [PMID: 37600653 PMCID: PMC10433646 DOI: 10.3389/fgene.2023.1170640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 04/17/2023] [Indexed: 08/22/2023] Open
Abstract
Background: Necroptosis contributes significantly to colon adenocarcinoma (COAD). We aim to assess the relationship between immunoinfiltration and stemness in COAD patients through the development of a risk score profile using necroptosis-related long noncoding RNAs (NRLs). Methods: Our study was based on gene expression data and relevant clinical information from The Cancer Genome Atlas (TCGA). Necroptosis-related genes (NRGs) were obtained from the Kyoto Encyclopedia of Genes and Genome (KEGG) database. Pearson correlation analysis, Cox regression, and least absolute shrinkage and selection operator (LASSO) regression were used to determine the NRL prognositic signature (NRLPS). NRLs expression was examined using qRT-PCR method. Several algorithms were used to identify relationships between immune cell infiltration and NRLPS risk scores. Further analysis of somatic mutations, tumor stemness index (TSI), and drug sensitivity were also explored. Results: To construct NRLPS, 15 lncRNAs were investigated. Furthermore, NRLPS patients with high-risk subgroups had lower survival rates than that of patients with low-risk subgroups. Using GSEA analysis, NRL was found to be enriched in Notch, Hedgehog and Smoothened pathways. Immune infiltration analysis showed significant differences in CD8+ T cells, dendritic cell DCs, and CD4+ T cells between the two risk groups. In addition, our NRLPS showed a relevance with the regulation of tumor microenvironment, tumor mutation burden (TMB) and stemness. Finally, NRLPS demonstrated potential applications in predicting the efficacy of immunotherapy and chemotherapy in patients with COAD. Conclusion: Based on NRLs, a prognostic model was developed for COAD patients that allows a personalized tailoring immunotherapy and chemotherapy to be tailored.
Collapse
Affiliation(s)
- Shizhe Li
- Xiangya Hospital, Central South University, Changsha, China
- Hunan Provincial People’s Hospital, Changsha, Hunan, China
| | - Xiaotong Wang
- Xiangya Hospital, Central South University, Changsha, China
- Hunan Provincial People’s Hospital, Changsha, Hunan, China
| | - Yajun Liu
- Hunan Provincial People’s Hospital, Changsha, Hunan, China
| | - Junbo Xiao
- Xiangya Hospital, Central South University, Changsha, China
- Hunan Provincial People’s Hospital, Changsha, Hunan, China
| | - Jun Yi
- Xiangya Hospital, Central South University, Changsha, China
- Hunan Provincial People’s Hospital, Changsha, Hunan, China
| |
Collapse
|
5
|
Hu W, Chen X. Identification of hub ferroptosis-related genes and immune infiltration in lupus nephritis using bioinformatics. Sci Rep 2022; 12:18826. [PMID: 36335193 PMCID: PMC9637192 DOI: 10.1038/s41598-022-23730-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 11/04/2022] [Indexed: 11/08/2022] Open
Abstract
Lupus nephritis (LN) is one of the most severe and more common organ manifestations of the autoimmune disease, systemic lupus erythematosus. Ferroptosis, a novel type of programmed cell death, so far its role in LN remains uncertain. In the present study, we explored the role of ferroptosis in LN and its relationship with the immune response. The GSE112943 LN dataset was downloaded from the Gene Expression Omnibus database. Ferroptosis-Related Genes (FRGs) that drive, suppress or mark ferroptosis were retrieved from the public FerrDb database. The gene expression matrix of the GSE112943 dataset was analyzed with the "limma" package in R to obtain differentially expressed genes (DEGs) between LN and healthy samples. Subsequently, the crossover genes between DEGs and FRGs were identified as differentially expressed ferroptosis-related genes (DE-FRGs). Protein-protein interaction (PPI) network analysis, visualization, and identification of hub lupus nephritis ferroptosis-related genes (LN-FRGs) were performed with STRING and Cytoscape, while their Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways were determined with the clusterProfiler package. Immune cell infiltration was calculated with CIBERSORT. The relationship between hub LN-FRGs and immune-infiltrated cells in LN was determined by Pearson correlation. A total of 96 DE-FRGs and 8 hub LN-FRGs (KRAS, PIK3CA, EGFR, MAPK14, SRC, MAPK3, VEGFA, and ATM) were identified. GO and KEGG functional classification indicated these genes enrichment in apoptotic process, programmed cell death, autophagy-animal, FoxO signaling pathway, relaxin signaling pathway, and VEGF signaling pathway. Infiltration matrix analysis of immune cells showed abundant Monocytes and M0/M1/M2 macrophages in LN kidney tissues. Correlation analysis revealed 8 hub LN-FRGs associated with immune-infiltrated cells in LN. In summary, overproduction of ROS and abnormal infiltration of immune cells would be implicated in the LN caused by ferroptosis. 8 hub lupus nephritis ferroptosis-related genes (LN-FRGs) which might be good biomarkers of ferroptosis in LN were identified in this study. These findings point to the immune response playing an important role in LN caused by ferroptosis via mutual regulation between hub LN-FRGs and immune-infiltrated cells.
Collapse
Affiliation(s)
- Weitao Hu
- grid.488542.70000 0004 1758 0435Department of Rheumatology, The Second Affiliated Hospital of Fujian Medical University, 34 North Zhongshan Road, Licheng District, Quanzhou, 362000 Fujian People’s Republic of China
| | - Xiaoqing Chen
- grid.488542.70000 0004 1758 0435Department of Rheumatology, The Second Affiliated Hospital of Fujian Medical University, 34 North Zhongshan Road, Licheng District, Quanzhou, 362000 Fujian People’s Republic of China
| |
Collapse
|
6
|
Bian Q, Anderson JC, Zhang XW, Huang ZQ, Ebefors K, Nyström J, Hall S, Novak L, Julian BA, Willey CD, Novak J. Mesangioproliferative Kidney Diseases and Platelet-Derived Growth Factor-Mediated AXL Phosphorylation. Kidney Med 2021; 3:1003-1013.e1. [PMID: 34939009 PMCID: PMC8664734 DOI: 10.1016/j.xkme.2021.06.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Abstract
RATIONALE & OBJECTIVE Immunoglobulin A nephropathy (IgAN) is a common glomerular disease, with mesangial cell proliferation as a major feature. There is no disease-specific treatment. Platelet-derived growth factor (PDGF) contributes to the pathogenesis of IgAN. To better understand its pathogenic mechanisms, we assessed PDGF-mediated AXL phosphorylation in human mesangial cells and kidney tissue biopsy specimens. STUDY DESIGN Immunostaining using human kidney biopsy specimens and in vitro studies using primary human mesangial cells. SETTING & PARTICIPANTS Phosphorylation of AXL was assessed in cultured mesangial cells and 10 kidney-biopsy specimens from 5 patients with IgAN, 3 with minimal change disease, 1 with membranous nephropathy, and 1 with mesangioproliferative glomerulonephritis (GN). PREDICTOR Glomerular staining for phospho-AXL in kidney biopsy specimens of patients with mesangioproliferative diseases. OUTCOMES Phosphorylated AXL detected in biopsy tissues of patients with IgAN and mesangioproliferative GN and in cultured mesangial cells stimulated with PDGF. ANALYTIC APPROACH t test, Mann-Whitney test, and analysis of variance were used to assess the significance of mesangial cell proliferative changes. RESULTS Immunohistochemical staining revealed enhanced phosphorylation of glomerular AXL in IgAN and mesangioproliferative GN, but not in minimal change disease and membranous nephropathy. Confocal-microscopy immunofluorescence analysis indicated that mesangial cells rather than endothelial cells or podocytes expressed phospho-AXL. Kinomic profiling of primary mesangial cells treated with PDGF revealed activation of several protein-tyrosine kinases, including AXL. Immunoprecipitation experiments indicated association of AXL and PDGF receptor proteins. An AXL-specific inhibitor (bemcentinib) partially blocked PDGF-induced cellular proliferation and reduced phosphorylation of AXL and PDGF receptor and the downstream signals (AKT1 and ERK1/2). LIMITATIONS Small number of kidney biopsy specimens to correlate the activation of AXL with disease severity. CONCLUSIONS PDGF-mediated signaling in mesangial cells involves transactivation of AXL. Finding appropriate inhibitors to block PDGF-mediated transactivation of AXL may provide new therapeutic options for mesangioproliferative kidney diseases such as IgAN.
Collapse
Affiliation(s)
- Qi Bian
- University of Alabama at Birmingham, Birmingham, AL
- Changhai Hospital, Second Military Medical University/Naval Medical University, Shanghai, China
| | | | - Xian Wen Zhang
- University of Alabama at Birmingham, Birmingham, AL
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | | | | | | | - Stacy Hall
- University of Alabama at Birmingham, Birmingham, AL
| | - Lea Novak
- University of Alabama at Birmingham, Birmingham, AL
| | | | | | - Jan Novak
- University of Alabama at Birmingham, Birmingham, AL
| |
Collapse
|
7
|
Scionti K, Molyneux K, Selvaskandan H, Barratt J, Cheung CK. New Insights into the Pathogenesis and Treatment Strategies in IgA Nephropathy. GLOMERULAR DISEASES 2021; 2:15-29. [PMID: 36751267 PMCID: PMC9677740 DOI: 10.1159/000519973] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 09/24/2021] [Indexed: 11/19/2022]
Abstract
Background Immunoglobulin A nephropathy (IgAN) is the most common form of primary glomerulonephritis worldwide. It is defined by mesangial IgA deposition, with consequent mesangial cell proliferation, inflammation, and tubulointerstitial fibrosis. Summary Approximately 30% of affected patients will progress to end-stage kidney disease within 20 years of diagnosis. Currently, there is no disease-specific treatment available and management recommendations are, in general, limited to optimization of lifestyle measures and use of renin-angiotensin-aldosterone system blockers. More recently, advances in the understanding of the pathogenesis of IgAN have informed the development of novel therapeutic strategies that are now being tested in clinical trials. These have focused on different areas that include modulating the production of poorly galactosylated IgA1, which is central to the development of IgAN, and inhibiting the downstream signaling pathways and complement activation that are triggered following mesangial IgA1 deposition. In this review, we will summarize important pathogenic mechanisms in IgAN and highlight important areas of interest where treatment strategies are being developed. Key messages IgAN is a common form of primary glomerulonephritis for which there is no current approved specific therapy. Recent advances in the understanding of its pathogenesis have led to the development of novel therapies, with the hope that new treatment options will be available soon to treat this condition.
Collapse
Affiliation(s)
- Katrin Scionti
- Department of Cardiovascular Sciences, University of Leicester, Leicester, United Kingdom
| | - Karen Molyneux
- John Walls Renal Unit, University Hospitals of Leicester NHS Trust, Leicester, United Kingdom
| | - Haresh Selvaskandan
- Department of Cardiovascular Sciences, University of Leicester, Leicester, United Kingdom,John Walls Renal Unit, University Hospitals of Leicester NHS Trust, Leicester, United Kingdom
| | - Jonathan Barratt
- Department of Cardiovascular Sciences, University of Leicester, Leicester, United Kingdom,John Walls Renal Unit, University Hospitals of Leicester NHS Trust, Leicester, United Kingdom,*Jonathan Barratt,
| | - Chee Kay Cheung
- Department of Cardiovascular Sciences, University of Leicester, Leicester, United Kingdom,John Walls Renal Unit, University Hospitals of Leicester NHS Trust, Leicester, United Kingdom
| |
Collapse
|
8
|
Geyer CE, Mes L, Newling M, den Dunnen J, Hoepel W. Physiological and Pathological Inflammation Induced by Antibodies and Pentraxins. Cells 2021; 10:1175. [PMID: 34065953 PMCID: PMC8150799 DOI: 10.3390/cells10051175] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 05/05/2021] [Accepted: 05/06/2021] [Indexed: 12/12/2022] Open
Abstract
Macrophages play a key role in induction of inflammatory responses. These inflammatory responses are mostly considered to be instigated by activation of pattern recognition receptors (PRRs) or cytokine receptors. However, recently it has become clear that also antibodies and pentraxins, which can both activate Fc receptors (FcRs), induce very powerful inflammatory responses by macrophages that can even be an order of magnitude greater than PRRs. While the physiological function of this antibody-dependent inflammation (ADI) is to counteract infections, undesired activation or over-activation of this mechanism will lead to pathology, as observed in a variety of disorders, including viral infections such as COVID-19, chronic inflammatory disorders such as Crohn's disease, and autoimmune diseases such as rheumatoid arthritis. In this review we discuss how physiological ADI provides host defense by inducing pathogen-specific immunity, and how erroneous activation of this mechanism leads to pathology. Moreover, we will provide an overview of the currently known signaling and metabolic pathways that underlie ADI, and how these can be targeted to counteract pathological inflammation.
Collapse
Affiliation(s)
- Chiara Elisabeth Geyer
- Amsterdam Rheumatology and Immunology Center, Department of Rheumatology and Clinical Immunology, Amsterdam UMC, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
- Department of Experimental Immunology, Amsterdam UMC, Amsterdam Infection and Immunity Institute, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
| | - Lynn Mes
- Amsterdam Rheumatology and Immunology Center, Department of Rheumatology and Clinical Immunology, Amsterdam UMC, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
- Department of Experimental Immunology, Amsterdam UMC, Amsterdam Infection and Immunity Institute, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
- Department of Medical Microbiology, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
| | - Melissa Newling
- Amsterdam Rheumatology and Immunology Center, Department of Rheumatology and Clinical Immunology, Amsterdam UMC, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
- Department of Experimental Immunology, Amsterdam UMC, Amsterdam Infection and Immunity Institute, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
| | - Jeroen den Dunnen
- Amsterdam Rheumatology and Immunology Center, Department of Rheumatology and Clinical Immunology, Amsterdam UMC, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
- Department of Experimental Immunology, Amsterdam UMC, Amsterdam Infection and Immunity Institute, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
| | - Willianne Hoepel
- Amsterdam Rheumatology and Immunology Center, Department of Rheumatology and Clinical Immunology, Amsterdam UMC, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
- Department of Experimental Immunology, Amsterdam UMC, Amsterdam Infection and Immunity Institute, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
| |
Collapse
|
9
|
Yiu WH, Chan KW, Chan LYY, Leung JCK, Lai KN, Tang SCW. Spleen Tyrosine Kinase Inhibition Ameliorates Tubular Inflammation in IgA Nephropathy. Front Physiol 2021; 12:650888. [PMID: 33790807 PMCID: PMC8006276 DOI: 10.3389/fphys.2021.650888] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 02/01/2021] [Indexed: 12/15/2022] Open
Abstract
Spleen tyrosine kinase (Syk) is a non-receptor tyrosine kinase involved in signal transduction in a variety of immune responses. It has been demonstrated that Syk plays a pathogenic role in orchestrating inflammatory responses and cell proliferation in human mesangial cells (HMC) in IgA nephropathy (IgAN). However, whether Syk is involved in tubular damage in IgAN remains unknown. Using human kidney biopsy specimens, we found that Syk was activated in renal tubules of biopsy-proven IgAN patients with an increase in total and phosphorylated levels compared to that from healthy control subjects. In vitro, cultured proximal tubular epithelial cells (PTECs) were stimulated with conditioned medium prepared from human mesangial cells incubated with polymeric IgA (IgA-HMC) from patients with IgAN or healthy control. Induction of IL-6, IL-8, and ICAM-1 synthesis from cultured PTECs incubated with IgA-HMC conditioned medium was significantly suppressed by treatment with the Syk inhibitor R406 compared to that from healthy control. Furthermore, R406 downregulated expression of phosphorylated p65 NF-κB and p-42/p-44 MAPK, and attenuated TNF-α-induced cytokine production in PTECs. Taken together, our findings suggest that Syk mediates IgA-HMC conditioned medium-induced inflammation in tubular cells via activation of NF-κB and p-42/p-44 MAPK signaling. Inhibition of Syk may be a potential therapeutic approach for tubulointerstitial injury in IgAN.
Collapse
Affiliation(s)
- Wai Han Yiu
- Department of Medicine, The University of Hong Kong, Queen Mary Hospital, Pokfulam, Hong Kong
| | - Kam Wa Chan
- Department of Medicine, The University of Hong Kong, Queen Mary Hospital, Pokfulam, Hong Kong
| | - Loretta Y Y Chan
- Department of Medicine, The University of Hong Kong, Queen Mary Hospital, Pokfulam, Hong Kong
| | - Joseph C K Leung
- Department of Medicine, The University of Hong Kong, Queen Mary Hospital, Pokfulam, Hong Kong
| | - Kar Neng Lai
- Department of Medicine, The University of Hong Kong, Queen Mary Hospital, Pokfulam, Hong Kong
| | - Sydney C W Tang
- Department of Medicine, The University of Hong Kong, Queen Mary Hospital, Pokfulam, Hong Kong
| |
Collapse
|
10
|
Wang S, Shang J, Xiao J, Zhao Z. Clinicopathologic characteristics and outcomes of lupus nephritis with positive antineutrophil cytoplasmic antibody. Ren Fail 2021; 42:244-254. [PMID: 32228220 PMCID: PMC7067160 DOI: 10.1080/0886022x.2020.1735416] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Aims: The aim was to determine whether anti-neutrophil cytoplasmic antibody (ANCA)-positive serology in patients with lupus nephritis (LN) is associated with different clinicopathologic features and outcomes.Methods: In our retrospective analysis, 283 patients were enrolled between 2013 and 2018. Thirty-six patients were ANCA-positive, and this group was compared with the remaining 247 patients who were confirmed as ANCA-negative at the time of biopsy.Results: ANCA-positive LN patients exhibited higher anti-dsDNA antibody titers and serum creatinine levels and lower serum hemoglobin concentrations than ANCA-negative LN patients. On pathological evaluation, segmental endocapillary hypercellularity observed by light microscopy was significantly more common in the ANCA-positive group. This feature was not significantly different in the treatment group, but the response to treatment was significantly different, as was remission (76.1% vs 69.4%, p < 0.001), between the ANCA-negative and ANCA-positive groups. During follow-up, the times to renal replacement therapy (RRT) and death were significantly different between the two unmatched groups (chi-square test, p = 0.041). Multivariate Cox analysis revealed that neurological disorders, ANCA positivity, and the chronicity index (CI) remained independent risk factors for patient survival. Pulmonary infection was the main cause of death and was most often due to fungal infection.Conclusion: ANCA-positive LN patients typically exhibited higher anti-dsDNA antibody titers, lower serum hemoglobin concentrations and worse renal function than ANCA-negative LN patients. Fungal infection was the main cause of death. We observed that ANCA positivity was an independent risk factor for patient survival.
Collapse
Affiliation(s)
- Shuai Wang
- Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jin Shang
- Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jing Xiao
- Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zhanzheng Zhao
- Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
11
|
Maixnerova D, Tesar V. Emerging Modes of Treatment of IgA Nephropathy. Int J Mol Sci 2020; 21:E9064. [PMID: 33260613 PMCID: PMC7730306 DOI: 10.3390/ijms21239064] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 11/18/2020] [Accepted: 11/19/2020] [Indexed: 12/12/2022] Open
Abstract
IgA nephropathy is the most common primary glomerulonephritis with potentially serious outcome leading to end stage renal disease in 30 to 50% of patients within 20 to 30 years. Renal biopsy, which might be associated with risks of complications (bleeding and others), still remains the only reliable diagnostic tool for IgA nephropathy. Therefore, the search for non-invasive diagnostic and prognostic markers for detection of subclinical types of IgA nephropathy, evaluation of disease activity, and assessment of treatment effectiveness, is of utmost importance. In this review, we summarize treatment options for patients with IgA nephropathy including the drugs currently under evaluation in randomized control trials. An early initiation of immunosupressive regimens in patients with IgA nephropathy at risk of progression should result in the slowing down of the progression of renal function to end stage renal disease.
Collapse
Affiliation(s)
- Dita Maixnerova
- 1st Faculty of Medicine, General University Hospital, Department of Nephrology, Charles University, 128 08 Prague, Czech Republic;
| | | |
Collapse
|
12
|
Park S, Yang SH, Jeong CW, Moon KC, Kim DK, Joo KW, Kim YS, Lee JW, Lee H. RNA-Seq profiling of microdissected glomeruli identifies potential biomarkers for human IgA nephropathy. Am J Physiol Renal Physiol 2020; 319:F809-F821. [PMID: 32954852 DOI: 10.1152/ajprenal.00037.2020] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Few studies have examined gene expression changes occurring in the glomeruli of IgA nephropathy (IgAN) using a sensitive transcriptomic profiling method such as RNA sequencing (RNA-Seq). We collected glomeruli from biopsy specimens from patients with IgAN with relatively preserved kidney function (estimated glomerular filtration rate ≥ 60 mL·min-1·1.73 m-2 and urine protein-to-creatinine ratio < 3 g/g) and from normal kidney cortexes by hand microdissection and performed RNA-Seq. Differentially expressed genes were identified, and gene ontology term annotation and pathway analysis were performed. Immunohistochemical labeling and primary mesangial cell cultures were performed to confirm the findings of RNA-Seq analysis. Fourteen patients with IgAN and ten controls were included in this study. Glomerulus-specific genes were highly abundant. Principal component analysis showed clear separation between the IgAN and control groups. There were 2,497 differentially expressed genes, of which 1,380 were upregulated and 1,117 were downregulated (false discovery rate < 0.01). The enriched gene ontology terms included motility/migration, protein/vesicle transport, and immune system, and kinase binding was the molecular function overrepresented in IgAN. B cell signaling, chemokine signal transduction, and Fcγ receptor-mediated phagocytosis were the canonical pathways overrepresented. In vitro experiments confirmed that spleen tyrosine kinase (SYK), reported as upregulated in the IgAN transcriptome, was also upregulated in glomeruli from an independent set of patients with IgAN and that treatment with patient-derived IgA1 increased the expression of SYK in mesangial cells. In conclusion, transcriptomic profiling of the IgAN glomerulus provides insights in the intraglomerular pathophysiology of IgAN before it reaches profound kidney dysfunction. SYK may have a pathogenetic role in IgAN.
Collapse
Affiliation(s)
- Sehoon Park
- Department of Internal Medicine, Armed Forces Capital Hospital, Seoul, Korea.,Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Korea
| | - Seung Hee Yang
- Kidney Research Institute, Seoul National University, Seoul, Korea
| | - Chang Wook Jeong
- Department of Urology, Seoul National University Hospital, Seoul, Korea
| | - Kyung Chul Moon
- Department of Pathology, Seoul National University Hospital, Seoul, Korea
| | - Dong Ki Kim
- Kidney Research Institute, Seoul National University, Seoul, Korea.,Department of Internal Medicine, Seoul National University Hospital, Seoul, Korea.,Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Korea
| | - Kwon Wook Joo
- Kidney Research Institute, Seoul National University, Seoul, Korea.,Department of Internal Medicine, Seoul National University Hospital, Seoul, Korea.,Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Korea
| | - Yon Su Kim
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Korea.,Kidney Research Institute, Seoul National University, Seoul, Korea.,Department of Internal Medicine, Seoul National University Hospital, Seoul, Korea.,Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Korea
| | - Jae Wook Lee
- Kidney Research Institute, Seoul National University, Seoul, Korea.,Division of Nephrology, Department of Internal Medicine, National Cancer Center, Goyang, Korea
| | - Hajeong Lee
- Department of Internal Medicine, Seoul National University Hospital, Seoul, Korea.,Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Korea
| |
Collapse
|
13
|
Koinuma K, Sakairi T, Watanabe Y, IIzuka A, Watanabe M, Hamatani H, Nakasatomi M, Ishizaki T, Ikeuchi H, Kaneko Y, Hiromura K. A case of long-term dasatinib-induced proteinuria and glomerular injury. CEN Case Rep 2020; 9:359-364. [PMID: 32388829 DOI: 10.1007/s13730-020-00484-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Accepted: 04/21/2020] [Indexed: 12/16/2022] Open
Abstract
A 52-year-old woman was diagnosed with chronic myeloid leukemia. Treatment with dasatinib, a second-generation Bcr-Abl tyrosine kinase inhibitor, was initiated, and complete cytogenetic remission was achieved. Two years later, proteinuria occurred, and the urinary protein level increased gradually in the next 3 years. Moreover, the serum creatinine level increased mildly during this period. The urinary protein level reached 2.18 g/gCr; hence, a renal biopsy was conducted. Light microscopy revealed mild proliferation of mesangial cells, and immunofluorescence analysis revealed IgG and C3 depositions in the mesangial area. Electron microscopy revealed electron-dense deposition in the paramesangial area, partial podocyte foot process effacement, and segmental endothelial cell swelling with a slight expansion of the subendothelial space. Dasatinib was discontinued, and within 3 weeks, the proteinuria disappeared, with improvements in her renal function. After switching to bosutinib, a new second-generation of tyrosine kinase inhibitor, the proteinuria remained negative. The rapid cessation of proteinuria following dasatinib discontinuation indicated that proteinuria was induced by the long-term administration of dasatinib. Proteinuria and renal function should be regularly monitored during dasatinib therapy.
Collapse
Affiliation(s)
- Kana Koinuma
- Department of Nephrology and Rheumatology, Gunma University Graduate School of Medicine, 3-39-22 Showa, Maebashi, Gunma, 371-8511, Japan
| | - Toru Sakairi
- Department of Nephrology and Rheumatology, Gunma University Graduate School of Medicine, 3-39-22 Showa, Maebashi, Gunma, 371-8511, Japan.
| | - Yoshikazu Watanabe
- Department of Nephrology and Rheumatology, Gunma University Graduate School of Medicine, 3-39-22 Showa, Maebashi, Gunma, 371-8511, Japan
| | - Azusa IIzuka
- Department of Nephrology and Rheumatology, Gunma University Graduate School of Medicine, 3-39-22 Showa, Maebashi, Gunma, 371-8511, Japan
| | - Mitsuharu Watanabe
- Department of Nephrology and Rheumatology, Gunma University Graduate School of Medicine, 3-39-22 Showa, Maebashi, Gunma, 371-8511, Japan
| | - Hiroko Hamatani
- Department of Nephrology and Rheumatology, Gunma University Graduate School of Medicine, 3-39-22 Showa, Maebashi, Gunma, 371-8511, Japan
| | - Masao Nakasatomi
- Department of Nephrology and Rheumatology, Gunma University Graduate School of Medicine, 3-39-22 Showa, Maebashi, Gunma, 371-8511, Japan
| | - Takuma Ishizaki
- Department of Hematology, Gunma University Graduate School of Medicine, Maebashi, Gunma, Japan
| | - Hidekazu Ikeuchi
- Department of Nephrology and Rheumatology, Gunma University Graduate School of Medicine, 3-39-22 Showa, Maebashi, Gunma, 371-8511, Japan
| | - Yoriaki Kaneko
- Department of Nephrology and Rheumatology, Gunma University Graduate School of Medicine, 3-39-22 Showa, Maebashi, Gunma, 371-8511, Japan
| | - Keiju Hiromura
- Department of Nephrology and Rheumatology, Gunma University Graduate School of Medicine, 3-39-22 Showa, Maebashi, Gunma, 371-8511, Japan
| |
Collapse
|
14
|
Protecting the kidney in systemic lupus erythematosus: from diagnosis to therapy. Nat Rev Rheumatol 2020; 16:255-267. [PMID: 32203285 DOI: 10.1038/s41584-020-0401-9] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/25/2020] [Indexed: 12/20/2022]
Abstract
Lupus nephritis (LN) is a common manifestation of systemic lupus erythematosus that can lead to irreversible renal impairment. Although the prognosis of LN has improved substantially over the past 50 years, outcomes have plateaued in the USA in the past 20 years as immunosuppressive therapies have failed to reverse disease in more than half of treated patients. This failure might reflect disease complexity and heterogeneity, as well as social and economic barriers to health-care access that can delay intervention until after damage has already occurred. LN progression is still poorly understood and involves multiple cell types and both immune and non-immune mechanisms. Single-cell analysis of intrinsic renal cells and infiltrating cells from patients with LN is a new approach that will help to define the pathways of renal injury at a cellular level. Although many new immune-modulating therapies are being tested in the clinic, the development of therapies to improve regeneration of the injured kidney and to prevent fibrosis requires a better understanding of the mechanisms of LN progression. This mechanistic understanding, together with the development of clinical measures to evaluate risk and detect early disease and better access to expert health-care providers, should improve outcomes for patients with LN.
Collapse
|
15
|
Almaani S, Rovin BH. B-cell therapy in lupus nephritis: an overview. Nephrol Dial Transplant 2019; 34:22-29. [PMID: 30165690 DOI: 10.1093/ndt/gfy267] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Accepted: 07/13/2018] [Indexed: 12/28/2022] Open
Abstract
Systemic lupus erythematosus (SLE) is an autoimmune multisystem disease that commonly affects the kidneys. It is characterized by persistent autoantibody production that targets a multitude of self-antigens. B-cells, plasmablasts and plasma cells, as the source of these autoantibodies, play a major role in the development of lupus nephritis (LN), and are therefore promising therapeutic targets. To date, however, randomized clinical trials of B-cell therapies in LN have not lived up to expectations, whereas uncontrolled cohort and observational studies of B-cell antagonists have been more promising. In this article, we will review the current experience with B-cell therapy in LN and highlight the pitfalls that may have limited their success. We will conclude by suggesting B-cell-centric approaches to the management of LN based on what has been learned from the overall B-cell experience in SLE.
Collapse
Affiliation(s)
- Salem Almaani
- Division of Nephrology, Department of Internal Medicine and Davis Heart and Lung Research Institute, The Ohio State University Medical Center, Columbus, OH, USA
| | - Brad H Rovin
- Division of Nephrology, Department of Internal Medicine and Davis Heart and Lung Research Institute, The Ohio State University Medical Center, Columbus, OH, USA
| |
Collapse
|
16
|
Keshari S, Sipayung AD, Hsieh CC, Su LJ, Chiang YR, Chang HC, Yang WC, Chuang TH, Chen CL, Huang CM. IL-6/p-BTK/p-ERK signaling mediates calcium phosphate-induced pruritus. FASEB J 2019; 33:12036-12046. [PMID: 31365830 DOI: 10.1096/fj.201900016rr] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Uremic pruritus with elevated levels of calcium phosphate (CaP) in skin is a common symptom in patients with chronic kidney disease (CKD). In this study, we demonstrate that intradermal injection of CaP into mice triggered scratching by up-regulating the IL-6 in skin and phosphorylation of ERKs in dorsal root ganglion (DRG) in a dose-dependent manner. IL-6 is essential because the CaP-induced up-regulation of phosphorylated (p)-ERK in DRG was considerably reduced in the IL-6 knockout mice. Microarray analysis in conjunction with real-time PCR revealed a higher mRNA expression of Bruton's tyrosine kinase (BTK) gene in DRG after CaP injection. The inhibition of BTK by ibrutinib noticeably diminish the CaP-induced up-regulation of IL-6 and p-ERK in mice. A high amount of IL-6 was detected in itchy skin and blood of patients with CKD. The expressions of p-BTK and p-ERK in DRG primary cells reached maximum levels at 1 and 10 min, respectively, after treatment of recombinant IL-6 and were significantly reduced by treatment of IL-6 along with ibrutinib. The mechanism by which the CaP-induced pruritus mediated by the IL-6/p-BTK/p-ERK signaling was revealed.-Keshari, S., Sipayung, A. D., Hsieh, C.-C., Su, L.-J., Chiang, Y.-R., Chang, H.-C., Yang, W.-C., Chuang, T.-H., Chen, C.-L., Huang, C.-M. IL-6/p-BTK/p-ERK signaling mediates calcium phosphate-induced pruritus.
Collapse
Affiliation(s)
- Sunita Keshari
- Department of Life Sciences, National Central University, Taoyuan, Taiwan
| | | | - Ching-Chuan Hsieh
- Division of General Surgery, Department of Surgery, Chang Gung Memorial Hospital, Chia-Yi, Taiwan
| | - Li-Jen Su
- Department of Biomedical Sciences and Engineering, National Central University, Taoyuan, Taiwan
| | - Yun-Ru Chiang
- Department of Biomedical Sciences and Engineering, National Central University, Taoyuan, Taiwan
| | | | - Wu-Chang Yang
- Division of Nephrology, Landseed Hospital, Taoyuan, Taiwan
| | - Tsung-Hsien Chuang
- Immunology Research Center, National Health Research Institutes, Zhunan, Taiwan
| | - Chien-Lung Chen
- Department of Biomedical Sciences and Engineering, National Central University, Taoyuan, Taiwan.,Division of Nephrology, Landseed Hospital, Taoyuan, Taiwan
| | - Chun-Ming Huang
- Department of Life Sciences, National Central University, Taoyuan, Taiwan.,Department of Biomedical Sciences and Engineering, National Central University, Taoyuan, Taiwan.,Department of Dermatology, University of California-San Diego, San Diego, California, USA
| |
Collapse
|
17
|
Castro-Dopico T, Dennison TW, Ferdinand JR, Mathews RJ, Fleming A, Clift D, Stewart BJ, Jing C, Strongili K, Labzin LI, Monk EJM, Saeb-Parsy K, Bryant CE, Clare S, Parkes M, Clatworthy MR. Anti-commensal IgG Drives Intestinal Inflammation and Type 17 Immunity in Ulcerative Colitis. Immunity 2019; 50:1099-1114.e10. [PMID: 30876876 PMCID: PMC6477154 DOI: 10.1016/j.immuni.2019.02.006] [Citation(s) in RCA: 126] [Impact Index Per Article: 25.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 12/17/2018] [Accepted: 02/11/2019] [Indexed: 02/07/2023]
Abstract
Inflammatory bowel disease is a chronic, relapsing condition with two subtypes, Crohn's disease (CD) and ulcerative colitis (UC). Genome-wide association studies (GWASs) in UC implicate a FCGR2A variant that alters the binding affinity of the antibody receptor it encodes, FcγRIIA, for immunoglobulin G (IgG). Here, we aimed to understand the mechanisms whereby changes in FcγRIIA affinity would affect inflammation in an IgA-dominated organ. We found a profound induction of anti-commensal IgG and a concomitant increase in activating FcγR signaling in the colonic mucosa of UC patients. Commensal-IgG immune complexes engaged gut-resident FcγR-expressing macrophages, inducing NLRP3- and reactive-oxygen-species-dependent production of interleukin-1β (IL-1β) and neutrophil-recruiting chemokines. These responses were modulated by the FCGR2A genotype. In vivo manipulation of macrophage FcγR signal strength in a mouse model of UC determined the magnitude of intestinal inflammation and IL-1β-dependent type 17 immunity. The identification of an important contribution of IgG-FcγR-dependent inflammation to UC has therapeutic implications.
Collapse
Affiliation(s)
- Tomas Castro-Dopico
- Molecular Immunity Unit, University of Cambridge Department of Medicine, Cambridge CB2 0QH, UK
| | - Thomas W Dennison
- Molecular Immunity Unit, University of Cambridge Department of Medicine, Cambridge CB2 0QH, UK
| | - John R Ferdinand
- Molecular Immunity Unit, University of Cambridge Department of Medicine, Cambridge CB2 0QH, UK
| | - Rebeccah J Mathews
- Molecular Immunity Unit, University of Cambridge Department of Medicine, Cambridge CB2 0QH, UK
| | - Aaron Fleming
- Molecular Immunity Unit, University of Cambridge Department of Medicine, Cambridge CB2 0QH, UK
| | - Dean Clift
- Medical Research Council, Laboratory of Molecular Biology, Cambridge CB2 0QH, UK
| | - Benjamin J Stewart
- Molecular Immunity Unit, University of Cambridge Department of Medicine, Cambridge CB2 0QH, UK
| | - Chenzhi Jing
- Molecular Immunity Unit, University of Cambridge Department of Medicine, Cambridge CB2 0QH, UK
| | - Konstantina Strongili
- Division of Gastroenterology, Cambridge Universities NHS Foundation Trust, Cambridge CB2 0QQ, UK
| | - Larisa I Labzin
- Medical Research Council, Laboratory of Molecular Biology, Cambridge CB2 0QH, UK
| | - Edward J M Monk
- Molecular Immunity Unit, University of Cambridge Department of Medicine, Cambridge CB2 0QH, UK
| | | | - Clare E Bryant
- Department of Veterinary Medicine, University of Cambridge, Cambridge CB3 0ES, UK
| | - Simon Clare
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton CB10 1SA, UK
| | - Miles Parkes
- Division of Gastroenterology, Cambridge Universities NHS Foundation Trust, Cambridge CB2 0QQ, UK
| | - Menna R Clatworthy
- Molecular Immunity Unit, University of Cambridge Department of Medicine, Cambridge CB2 0QH, UK; Cellular Genetics, Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinton CB10 1SA, UK.
| |
Collapse
|
18
|
Macrophages: versatile players in renal inflammation and fibrosis. Nat Rev Nephrol 2019; 15:144-158. [PMID: 30692665 DOI: 10.1038/s41581-019-0110-2] [Citation(s) in RCA: 555] [Impact Index Per Article: 111.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/11/2018] [Indexed: 12/15/2022]
Abstract
Macrophages have important roles in immune surveillance and in the maintenance of kidney homeostasis; their response to renal injury varies enormously depending on the nature and duration of the insult. Macrophages can adopt a variety of phenotypes: at one extreme, M1 pro-inflammatory cells contribute to infection clearance but can also promote renal injury; at the other extreme, M2 anti-inflammatory cells have a reparative phenotype and can contribute to the resolution phase of the response to injury. In addition, bone marrow monocytes can differentiate into myeloid-derived suppressor cells that can regulate T cell immunity in the kidney. However, macrophages can also promote renal fibrosis, a major driver of progression to end-stage renal disease, and the CD206+ subset of M2 macrophages is strongly associated with renal fibrosis in both human and experimental diseases. Myofibroblasts are important contributors to renal fibrosis and recent studies provide evidence that macrophages recruited from the bone marrow can transition directly into myofibroblasts within the injured kidney. This process is termed macrophage-to-myofibroblast transition (MMT) and is driven by transforming growth factor-β1 (TGFβ1)-Smad3 signalling via a Src-centric regulatory network. MMT may serve as a key checkpoint for the progression of chronic inflammation into pathogenic fibrosis.
Collapse
|