1
|
Wang Y, Zhang Y, Ma M, Zhuang X, Lu Y, Miao L, Lu X, Cui Y, Cui W. Mechanisms underlying the involvement of peritoneal macrophages in the pathogenesis and novel therapeutic strategies for dialysis-induced peritoneal fibrosis. Front Immunol 2024; 15:1507265. [PMID: 39749340 PMCID: PMC11693514 DOI: 10.3389/fimmu.2024.1507265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Accepted: 12/06/2024] [Indexed: 01/04/2025] Open
Abstract
Long-term exposure of the peritoneum to peritoneal dialysate results in pathophysiological changes in the anatomical organization of the peritoneum and progressive development of peritoneal fibrosis. This leads to a decline in peritoneal function and ultrafiltration failure, ultimately necessitating the discontinuation of peritoneal dialysis, severely limiting the potential for long-term maintenance. Additionally, encapsulating peritoneal sclerosis, a serious consequence of peritoneal fibrosis, resulting in patients discontinuing PD and significant mortality. The causes and mechanisms underlying peritoneal fibrosis in patients undergoing peritoneal dialysis remain unknown, with no definitive treatment available. However, abnormal activation of the immune system appears to be involved in altering the structure of the peritoneum and promoting fibrotic changes. Macrophage infiltration and polarization are key contributors to pathological injury within the peritoneum, showing a strong correlation with the epithelial-to-mesenchymal transition of mesothelial cells and driving the process of fibrosis. This article discusses the role and mechanisms underlying macrophage activation-induced peritoneal fibrosis resulting from PD by analyzing relevant literature from the past decade and provides an overview of recent therapeutic approaches targeting macrophages to treat this condition.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Yingchun Cui
- Department of Nephrology, Second Hospital of Jilin University,
Changchun, China
| | - Wenpeng Cui
- Department of Nephrology, Second Hospital of Jilin University,
Changchun, China
| |
Collapse
|
2
|
Su H, Zou R, Su J, Chen X, Yang H, An N, Yang C, Tang J, Liu H, Yao C. Sterile inflammation of peritoneal membrane caused by peritoneal dialysis: focus on the communication between immune cells and peritoneal stroma. Front Immunol 2024; 15:1387292. [PMID: 38779674 PMCID: PMC11109381 DOI: 10.3389/fimmu.2024.1387292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Accepted: 04/16/2024] [Indexed: 05/25/2024] Open
Abstract
Peritoneal dialysis is a widely used method for treating kidney failure. However, over time, the peritoneal structure and function can deteriorate, leading to the failure of this therapy. This deterioration is primarily caused by infectious and sterile inflammation. Sterile inflammation, which is inflammation without infection, is particularly concerning as it can be subtle and often goes unnoticed. The onset of sterile inflammation involves various pathological processes. Peritoneal cells detect signals that promote inflammation and release substances that attract immune cells from the bloodstream. These immune cells contribute to the initiation and escalation of the inflammatory response. The existing literature extensively covers the involvement of different cell types in the sterile inflammation, including mesothelial cells, fibroblasts, endothelial cells, and adipocytes, as well as immune cells such as macrophages, lymphocytes, and mast cells. These cells work together to promote the occurrence and progression of sterile inflammation, although the exact mechanisms are not fully understood. This review aims to provide a comprehensive overview of the signals from both stromal cells and components of immune system, as well as the reciprocal interactions between cellular components, during the initiation of sterile inflammation. By understanding the cellular and molecular mechanisms underlying sterile inflammation, we may potentially develop therapeutic interventions to counteract peritoneal membrane damage and restore normal function.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Huafeng Liu
- Guangdong Provincial Key Laboratory of Autophagy and Major Chronic Non-communicable Diseases, Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang City, Institute of Nephrology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Cuiwei Yao
- Guangdong Provincial Key Laboratory of Autophagy and Major Chronic Non-communicable Diseases, Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang City, Institute of Nephrology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China
| |
Collapse
|
3
|
Sheng L, Shan Y, Dai H, Yu M, Sun J, Huang L, Wang F, Sheng M. Intercellular communication in peritoneal dialysis. Front Physiol 2024; 15:1331976. [PMID: 38390449 PMCID: PMC10882094 DOI: 10.3389/fphys.2024.1331976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 01/26/2024] [Indexed: 02/24/2024] Open
Abstract
Long-term peritoneal dialysis (PD) causes structural and functional alterations of the peritoneal membrane. Peritoneal deterioration and fibrosis are multicellular and multimolecular processes. Under stimulation by deleterious factors such as non-biocompatibility of PD solution, various cells in the abdominal cavity show differing characteristics, such as the secretion of different cytokines, varying protein expression levels, and transdifferentiation into other cells. In this review, we discuss the role of various cells in the abdominal cavity and their interactions in the pathogenesis of PD. An in-depth understanding of intercellular communication and inter-organ communication in PD will lead to a better understanding of the pathogenesis of this disease, enabling the development of novel therapeutic targets.
Collapse
Affiliation(s)
- Li Sheng
- Department of Nephrology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
- First Clinic Medical School, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yun Shan
- Department of Nephrology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Huibo Dai
- Department of Nephrology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
- First Clinic Medical School, Nanjing University of Chinese Medicine, Nanjing, China
| | - Manshu Yu
- Department of Nephrology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Jinyi Sun
- Department of Nephrology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
- First Clinic Medical School, Nanjing University of Chinese Medicine, Nanjing, China
| | - Liyan Huang
- Department of Nephrology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
- First Clinic Medical School, Nanjing University of Chinese Medicine, Nanjing, China
| | - Funing Wang
- Department of Nephrology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
- First Clinic Medical School, Nanjing University of Chinese Medicine, Nanjing, China
| | - Meixiao Sheng
- Department of Nephrology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|
4
|
Lu X, Wu K, Jiang S, Li Y, Wang Y, Li H, Li G, Liu Q, Zhou Y, Chen W, Mao H. Therapeutic mechanism of baicalein in peritoneal dialysis-associated peritoneal fibrosis based on network pharmacology and experimental validation. Front Pharmacol 2023; 14:1153503. [PMID: 37266145 PMCID: PMC10229821 DOI: 10.3389/fphar.2023.1153503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Accepted: 05/03/2023] [Indexed: 06/03/2023] Open
Abstract
Baicalein (5,6,7-trihydroxyflavone) is a traditional Chinese medicine with multiple pharmacological and biological activities including anti-inflammatory and anti-fibrotic effects. However, whether baicalein has a therapeutic impact on peritoneal fibrosis has not been reported yet. In the present study, network pharmacology and molecular docking approaches were performed to evaluate the role and the potential mechanisms of baicalein in attenuating peritoneal dialysis-associated peritoneal fibrosis. The results were validated in both animal models and the cultured human mesothelial cell line. Nine intersection genes among baicalein targets and the human peritoneum RNA-seq dataset including four encapsulating peritoneal sclerosis samples and four controls were predicted by network analysis. Among them, MMP2, BAX, ADORA3, HIF1A, PIM1, CA12, and ALOX5 exhibited higher expression in the peritoneum with encapsulating peritoneal sclerosis compared with those in the control, which might be crucial targets of baicalein against peritoneal fibrosis. Furthermore, KEGG and GO enrichment analyses suggested that baicalein played an anti-peritoneal fibrosis role through the regulating cell proliferation, inflammatory response, and AGE-RAGE signaling pathway. Moreover, molecular docking analysis revealed a strong potential binding between baicalein and MMP2, which was consistent with the predictive results. Importantly, using a mouse model of peritoneal fibrosis by intraperitoneally injecting 4.25% glucose dialysate, we found that baicalein treatment significantly attenuated peritoneal fibrosis, as evident by decreased collagen deposition, protein expression of α-SMA and fibronectin, and peritoneal thickness, at least, by reducing the expression of MMP2, suggesting that baicalein may have therapeutic potential in suppressing peritoneal dialysis-related fibrosis.
Collapse
Affiliation(s)
- Xiaohui Lu
- Department of Nephrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- NHC Key Laboratory of Clinical Nephrology, Guangdong Provincial Key Laboratory of Nephrology, Sun Yat-sen University, Guangzhou, China
| | - Kefei Wu
- Department of Nephrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- NHC Key Laboratory of Clinical Nephrology, Guangdong Provincial Key Laboratory of Nephrology, Sun Yat-sen University, Guangzhou, China
| | - Simin Jiang
- Department of Nephrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- NHC Key Laboratory of Clinical Nephrology, Guangdong Provincial Key Laboratory of Nephrology, Sun Yat-sen University, Guangzhou, China
| | - Yi Li
- Department of Nephrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- NHC Key Laboratory of Clinical Nephrology, Guangdong Provincial Key Laboratory of Nephrology, Sun Yat-sen University, Guangzhou, China
| | - Yating Wang
- Department of Nephrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- NHC Key Laboratory of Clinical Nephrology, Guangdong Provincial Key Laboratory of Nephrology, Sun Yat-sen University, Guangzhou, China
| | - Hongyu Li
- Department of Nephrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- NHC Key Laboratory of Clinical Nephrology, Guangdong Provincial Key Laboratory of Nephrology, Sun Yat-sen University, Guangzhou, China
| | - Guanglan Li
- Department of Nephrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- NHC Key Laboratory of Clinical Nephrology, Guangdong Provincial Key Laboratory of Nephrology, Sun Yat-sen University, Guangzhou, China
| | - Qinghua Liu
- Department of Nephrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- NHC Key Laboratory of Clinical Nephrology, Guangdong Provincial Key Laboratory of Nephrology, Sun Yat-sen University, Guangzhou, China
| | - Yi Zhou
- Department of Nephrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- NHC Key Laboratory of Clinical Nephrology, Guangdong Provincial Key Laboratory of Nephrology, Sun Yat-sen University, Guangzhou, China
| | - Wei Chen
- Department of Nephrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- NHC Key Laboratory of Clinical Nephrology, Guangdong Provincial Key Laboratory of Nephrology, Sun Yat-sen University, Guangzhou, China
| | - Haiping Mao
- Department of Nephrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- NHC Key Laboratory of Clinical Nephrology, Guangdong Provincial Key Laboratory of Nephrology, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
5
|
Liu J, Jin B, Lu J, Feng Y, Li N, Wan C, Zhang QY, Jiang CM. Angiotensin II type 2 receptor prevents extracellular matrix accumulation in human peritoneal mesothelial cell by ameliorating lipid disorder via LOX-1 suppression. Ren Fail 2022; 44:1687-1697. [PMID: 36226438 PMCID: PMC9578471 DOI: 10.1080/0886022x.2022.2133729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Evidence suggests that intracellular angiotensin II type 1 receptor (AT1) contributes to peritoneal fibrosis (PF) under high glucose (HG)-based dialysates. It is generally believed that AT2 antagonisticly affects AT1 function. The aim of this study was to explore whether AT2 activation is beneficial for attenuating human peritoneal mesothelial cell (HPMC) injury due to HG. We treated a HPMC line with HG to induce extracellular matrix (ECM) formation. AT2 was increased and blocked using CGP42112A and AT2 siRNA. Lipid deposition was detected, signaling molecules associated with lectin-like oxidized lipoprotein receptor-1 (LOX-1) and ECM proteins were evaluated by real-time PCR and western blot. The results showed that HG led to AT2 inhibition in HPMCs, inhibition of AT2 further aggravated the expression of ECM proteins, including α-smooth muscle actin, fibroblast specific protein-1 and collagen I, while AT2 decreased the expression of ECM proteins, even during HG stimulation. Interestingly, there was a parallel change in lipid accumulation and ECM formation when AT2 was increased or depressed. Moreover, AT2-mediated decreased ECM production was associated with reduced lipid accumulation in HPMCs and depended on the downregulation of LOX-1. Further analysis showed that HG increased oxidized low-density lipoprotein (ox-LDL) deposition in HPMCs concomitant with an enhanced expression of ECM components, whereas blocking LOX-1 reversed ox-LDL deposition even in the presence of HG. This effect was also accompanied by the remission of ECM accumulation. Our results suggested that AT2 prevented ECM formation in HG-stimulated HPMCs by ameliorating lipid via LOX‐1 suppression.
Collapse
Affiliation(s)
- Jing Liu
- Institute of Nephrology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Bo Jin
- Institute of Nephrology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Jian Lu
- Institute of Nephrology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Yuan Feng
- Institute of Nephrology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Nan Li
- Institute of Nephrology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Cheng Wan
- Institute of Nephrology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Qing-Yan Zhang
- Institute of Nephrology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Chun-Ming Jiang
- Institute of Nephrology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| |
Collapse
|
6
|
Wang R, Guo T, Li J. Mechanisms of Peritoneal Mesothelial Cells in Peritoneal Adhesion. Biomolecules 2022; 12:biom12101498. [PMID: 36291710 PMCID: PMC9599397 DOI: 10.3390/biom12101498] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 10/08/2022] [Accepted: 10/14/2022] [Indexed: 11/24/2022] Open
Abstract
A peritoneal adhesion (PA) is a fibrotic tissue connecting the abdominal or visceral organs to the peritoneum. The formation of PAs can induce a variety of clinical diseases. However, there is currently no effective strategy for the prevention and treatment of PAs. Damage to peritoneal mesothelial cells (PMCs) is believed to cause PAs by promoting inflammation, fibrin deposition, and fibrosis formation. In the early stages of PA formation, PMCs undergo mesothelial–mesenchymal transition and have the ability to produce an extracellular matrix. The PMCs may transdifferentiate into myofibroblasts and accelerate the formation of PAs. Therefore, the aim of this review was to understand the mechanism of action of PMCs in PAs, and to offer a theoretical foundation for the treatment and prevention of PAs.
Collapse
Affiliation(s)
- Ruipeng Wang
- The First School of Clinical Medical, Gansu University of Chinese Medicine, Lanzhou 730030, China
| | - Tiankang Guo
- Department of General Surgery, Gansu Provincial Hospital, Lanzhou 730030, China
- The First School of Clinical Medicine, Lanzhou University, Lanzhou 730030, China
| | - Junliang Li
- The First School of Clinical Medical, Gansu University of Chinese Medicine, Lanzhou 730030, China
- Department of General Surgery, Gansu Provincial Hospital, Lanzhou 730030, China
- The First School of Clinical Medicine, Lanzhou University, Lanzhou 730030, China
- Correspondence:
| |
Collapse
|
7
|
Fibrosis of Peritoneal Membrane as Target of New Therapies in Peritoneal Dialysis. Int J Mol Sci 2022; 23:ijms23094831. [PMID: 35563220 PMCID: PMC9102299 DOI: 10.3390/ijms23094831] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 04/25/2022] [Accepted: 04/25/2022] [Indexed: 01/27/2023] Open
Abstract
Peritoneal dialysis (PD) is an efficient renal replacement therapy for patients with end-stage renal disease. Even if it ensures an outcome equivalent to hemodialysis and a better quality of life, in the long-term, PD is associated with the development of peritoneal fibrosis and the consequents patient morbidity and PD technique failure. This unfavorable effect is mostly due to the bio-incompatibility of PD solution (mainly based on high glucose concentration). In the present review, we described the mechanisms and the signaling pathway that governs peritoneal fibrosis, epithelial to mesenchymal transition of mesothelial cells, and angiogenesis. Lastly, we summarize the present and future strategies for developing more biocompatible PD solutions.
Collapse
|
8
|
Guo Y, Wang L, Gou R, Wang Y, Shi X, Zhang Y, Pang X, Tang L. Ameliorative role of SIRT1 in peritoneal fibrosis: an in vivo and in vitro study. Cell Biosci 2021; 11:79. [PMID: 33906673 PMCID: PMC8077771 DOI: 10.1186/s13578-021-00591-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 04/20/2021] [Indexed: 12/12/2022] Open
Abstract
Background Peritoneal fibrosis is one of the major complications induced by peritoneal dialysis (PD). Damaged integrity and function of peritoneum caused by peritoneal fibrosis not only limits the curative efficacy of PD and but affects the prognosis of patients. However, the detailed mechanisms underlying the process remain unclear and therapeutic strategy targeting TGF‐β is deficient. Transforming growth factor‐β (TGF‐β) signaling participates in the progression of peritoneal fibrosis through enhancing mesothelial-mesenchymal transition of mesothelial cells. Methods The study aims to demonstrate the regulatory role of Sirtuin1 (SIRT1) to the TGF‐β signaling mediated peritoneal fibrosis. SIRT1−/− mice were used to establish animal model. Masson’s staining and peritoneal equilibration assay were performed to evaluate the degree of peritoneal fibrosis. QRT-PCR assays were used to estimate the RNA levels of Sirt1 and matrix genes related to peritoneal fibrosis, and their protein levels were examined by Western blot assays. Results SIRT1 significantly decreased in vivo post PD treatment. SIRT1 knockout exacerbated peritoneal fibrosis both in vivo and vitro. Overexpression of SIRT1 efficiently inhibited peritoneal fibrosis by inhibiting the peritoneal inflammation and the activation of TGF‐β signaling. Conclusion SIRT1 ameliorated peritoneal fibrosis both in vivo and in vitro through inhibiting the expression of protein matrix induced by TGF‐β signaling.
Collapse
Affiliation(s)
- Yanhong Guo
- Department of Nephropathy, The First Affiliated Hospital of Zhengzhou University, No. 1 East Jianshe Road, Zhengzhou, 450052, Henan, China
| | - Liuwei Wang
- Department of Nephropathy, The First Affiliated Hospital of Zhengzhou University, No. 1 East Jianshe Road, Zhengzhou, 450052, Henan, China
| | - Rong Gou
- Department of Nephropathy, The First Affiliated Hospital of Zhengzhou University, No. 1 East Jianshe Road, Zhengzhou, 450052, Henan, China
| | - Yulin Wang
- Department of Nephropathy, The First Affiliated Hospital of Zhengzhou University, No. 1 East Jianshe Road, Zhengzhou, 450052, Henan, China
| | - Xiujie Shi
- Department of Nephropathy, Henan Provincial Hospital of Traditional Chinese Medicine (The Second Hospital Affiliated to Henan University of Chinese Medicine), NO. 6, Dongfeng Road, Jinshui District, Zhengzhou, 450002, Henan, China
| | - Yage Zhang
- Department of Nephropathy, Henan Provincial Hospital of Traditional Chinese Medicine (The Second Hospital Affiliated to Henan University of Chinese Medicine), NO. 6, Dongfeng Road, Jinshui District, Zhengzhou, 450002, Henan, China
| | - Xinxin Pang
- Department of Nephropathy, Henan Provincial Hospital of Traditional Chinese Medicine (The Second Hospital Affiliated to Henan University of Chinese Medicine), NO. 6, Dongfeng Road, Jinshui District, Zhengzhou, 450002, Henan, China.
| | - Lin Tang
- Department of Nephropathy, The First Affiliated Hospital of Zhengzhou University, No. 1 East Jianshe Road, Zhengzhou, 450052, Henan, China.
| |
Collapse
|
9
|
Terri M, Trionfetti F, Montaldo C, Cordani M, Tripodi M, Lopez-Cabrera M, Strippoli R. Mechanisms of Peritoneal Fibrosis: Focus on Immune Cells-Peritoneal Stroma Interactions. Front Immunol 2021; 12:607204. [PMID: 33854496 PMCID: PMC8039516 DOI: 10.3389/fimmu.2021.607204] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 01/19/2021] [Indexed: 12/12/2022] Open
Abstract
Peritoneal fibrosis is characterized by abnormal production of extracellular matrix proteins leading to progressive thickening of the submesothelial compact zone of the peritoneal membrane. This process may be caused by a number of insults including pathological conditions linked to clinical practice, such as peritoneal dialysis, abdominal surgery, hemoperitoneum, and infectious peritonitis. All these events may cause acute/chronic inflammation and injury to the peritoneal membrane, which undergoes progressive fibrosis, angiogenesis, and vasculopathy. Among the cellular processes implicated in these peritoneal alterations is the generation of myofibroblasts from mesothelial cells and other cellular sources that are central in the induction of fibrosis and in the subsequent functional deterioration of the peritoneal membrane. Myofibroblast generation and activity is actually integrated in a complex network of extracellular signals generated by the various cellular types, including leukocytes, stably residing or recirculating along the peritoneal membrane. Here, the main extracellular factors and the cellular players are described with emphasis on the cross-talk between immune system and cells of the peritoneal stroma. The understanding of cellular and molecular mechanisms underlying fibrosis of the peritoneal membrane has both a basic and a translational relevance, since it may be useful for setup of therapies aimed at counteracting the deterioration as well as restoring the homeostasis of the peritoneal membrane.
Collapse
Affiliation(s)
- Michela Terri
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
- National Institute for Infectious Diseases L. Spallanzani, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy
| | - Flavia Trionfetti
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
- National Institute for Infectious Diseases L. Spallanzani, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy
| | - Claudia Montaldo
- National Institute for Infectious Diseases L. Spallanzani, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy
| | - Marco Cordani
- instituto Madrileño de Estudios Avanzados en Nanociencia (IMDEA) Nanociencia, Madrid, Spain
| | - Marco Tripodi
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
- National Institute for Infectious Diseases L. Spallanzani, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy
- Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Sapienza University of Rome, Rome, Italy
| | - Manuel Lopez-Cabrera
- Programa de Homeostasis de Tejidos y Organos, Centro de Biología Molecular “Severo Ochoa”-Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Raffaele Strippoli
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
- National Institute for Infectious Diseases L. Spallanzani, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy
| |
Collapse
|
10
|
Kiyan Y, Tkachuk S, Rong S, Gorrasi A, Ragno P, Dumler I, Haller H, Shushakova N. TLR4 Response to LPS Is Reinforced by Urokinase Receptor. Front Immunol 2020; 11:573550. [PMID: 33362762 PMCID: PMC7757075 DOI: 10.3389/fimmu.2020.573550] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 10/26/2020] [Indexed: 12/18/2022] Open
Abstract
GPI-anchored uPAR is the receptor for the extracellular serine protease urokinase-type plasminogen activator (uPA). Though uPAR role in inflammatory processes is documented, underlying mechanisms are not fully understood. In this study we demonstrate that uPAR is a part of Toll-like receptor 4 (TLR4) interactome. Downregulation of uPAR expression resulted in diminished LPS-induced TLR4 signaling, less activation of NFκB, and decreased secretion of inflammatory mediators in myeloid and non-myeloid cells in vitro. In vivo uPAR−/− mice demonstrated better survival, strongly diminished inflammatory response and better organ functions in cecal ligation and puncture mouse polymicrobial sepsis model. Mechanistically, GPI-uPAR and soluble uPAR colocalized with TLR4 on the cell membrane and interacted with scavenger receptor CD36. Our data show that uPAR can interfere with innate immunity response via TLR4 and this mechanism represents a potentially important target in inflammation and sepsis therapy.
Collapse
Affiliation(s)
- Yulia Kiyan
- Nephrology Department, Hannover Medical School, Hannover, Germany
| | - Sergey Tkachuk
- Nephrology Department, Hannover Medical School, Hannover, Germany
| | | | | | - Pia Ragno
- Department of Chemistry and Biology, University of Salerno, Salerno, Italy
| | - Inna Dumler
- Nephrology Department, Hannover Medical School, Hannover, Germany
| | - Hermann Haller
- Nephrology Department, Hannover Medical School, Hannover, Germany
| | - Nelli Shushakova
- Nephrology Department, Hannover Medical School, Hannover, Germany.,Phenos GmbH, Hannover, Germany
| |
Collapse
|
11
|
SGLT2 Inhibition by Intraperitoneal Dapagliflozin Mitigates Peritoneal Fibrosis and Ultrafiltration Failure in a Mouse Model of Chronic Peritoneal Exposure to High-Glucose Dialysate. Biomolecules 2020; 10:biom10111573. [PMID: 33228017 PMCID: PMC7699342 DOI: 10.3390/biom10111573] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 11/15/2020] [Accepted: 11/16/2020] [Indexed: 01/04/2023] Open
Abstract
Peritoneal dialysis (PD) is limited by glucose-mediated peritoneal membrane (PM) fibrosis, angiogenesis, and ultrafiltration failure. Influencing PM integrity by pharmacologically targeting sodium-dependent glucose transporter (SGLT)-mediated glucose uptake has not been studied. In this study, wildtype C57Bl/6N mice were treated with high-glucose dialysate via an intraperitoneal catheter, with or without addition of selective SGLT2 inhibitor dapagliflozin. PM structural changes, ultrafiltration capacity, and peritoneal equilibration testing (PET) status for glucose, urea, and creatinine were analyzed. Expression of SGLT and facilitative glucose transporters (GLUT) was analyzed by real-time PCR, immunofluorescence, and immunohistochemistry. Peritoneal effluents were analyzed for cellular and cytokine composition. We found that peritoneal SGLT2 was expressed in mesothelial cells and in skeletal muscle. Dapagliflozin significantly reduced effluent transforming growth factor (TGF-β) concentrations, peritoneal thickening, and fibrosis, as well as microvessel density, resulting in improved ultrafiltration, despite the fact that it did not affect development of high-glucose transporter status. In vitro, dapagliflozin reduced monocyte chemoattractant protein-1 release under high-glucose conditions in human and murine peritoneal mesothelial cells. Proinflammatory cytokine release in macrophages was reduced only when cultured in high-glucose conditions with an additional inflammatory stimulus. In summary, dapagliflozin improved structural and functional peritoneal health in the context of high-glucose PD.
Collapse
|
12
|
Balzer MS. Molecular pathways in peritoneal fibrosis. Cell Signal 2020; 75:109778. [PMID: 32926960 DOI: 10.1016/j.cellsig.2020.109778] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 09/07/2020] [Accepted: 09/08/2020] [Indexed: 01/02/2023]
Abstract
Peritoneal dialysis (PD) is a renal replacement therapy for patients with end-stage renal disease that is equivalent to hemodialysis with respect to adequacy, mortality, and other outcome parameters, yet providing superior quality-of-life measures and cost savings. However, long-term usage of the patient's peritoneal membrane as a dialyzer filter is unphysiological and leads to peritoneal fibrosis, which is a major factor of patient morbidity and PD technique failure, resulting in a transfer to hemodialysis or death. Peritoneal fibrosis pathophysiology involves chronic inflammation and the fibrotic process itself. Frequently, inflammation precedes membrane fibrosis development, although a bidirectional relationship of one inducing the other exists. This review aims at highlighting the histopathological definition of peritoneal fibrosis, outlining the interplay of fibrosis, angiogenesis and epithelial-to-mesenchymal transition (EMT), delineating important fibrogenic pathways involving Smad-dependent and Smad-independent transforming growth factor-β (TGF-β) as well as connective tissue growth factor (CTGF) signaling, and summarizing historic and recent studies of inflammatory pathways involving NOD-like receptor protein 3 (NLRP3)/interleukin (IL)-1β, IL-6, IL-17, and other cytokines.
Collapse
Affiliation(s)
- Michael S Balzer
- Department of Nephrology and Hypertension, Hannover Medical School, Hannover, Germany.
| |
Collapse
|
13
|
Lu H, Chen W, Liu W, Si Y, Zhao T, Lai X, Kang Z, Sun X, Guo Z. Molecular hydrogen regulates PTEN-AKT-mTOR signaling via ROS to alleviate peritoneal dialysis-related peritoneal fibrosis. FASEB J 2020; 34:4134-4146. [PMID: 31930571 DOI: 10.1096/fj.201901981r] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2019] [Revised: 12/16/2019] [Accepted: 01/02/2020] [Indexed: 12/11/2022]
Abstract
As a convenient, effective and economical kidney replacement therapy for end-stage renal disease (ESRD), peritoneal dialysis is available in approximately 11% of ESRD patients worldwide. However, long-term peritoneal dialysis treatment causes peritoneal fibrosis. In recent years, the application potential of molecular hydrogen in the biomedicine has been well recognized. Molecular hydrogen selectively scavenges cytotoxic reactive oxygen species (ROS) and acts as an antioxidant. In this experiment, a high glucose-induced peritoneal fibrosis mouse model was successfully established by intraperitoneal injection of high glucose peritoneal dialysate, and peritoneal fibrosis mice were treated with hydrogen-rich peritoneal dialysate. In addition, in vitro studies of high glucose-induced peritoneal fibrosis were performed using MeT-5A cells. In vitro and in vivo experiments show that molecular hydrogen could inhibit peritoneal fibrosis progress induced by high glucose effectively. Furthermore, it has been found that molecular hydrogen alleviate fibrosis by eliminating intracellular ROS and inhibiting the activation of the PTEN/AKT/mTOR pathway. The present data proposes that molecular hydrogen exerts the capacity of anti-peritoneal fibrosis through the ROS/PTEN/AKT/mTOR pathway. Therefore, molecule hydrogen is a potential, safe, and effective treatment agent, with peritoneal protective property and great clinical significance.
Collapse
Affiliation(s)
- Hongtao Lu
- Department of Nephrology, Changhai Hospital, Naval Medical University, Shanghai, China.,Department of Naval Medicine, Naval Medical University, Shanghai, China
| | - Wei Chen
- Department of Nephrology, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Wenrui Liu
- Department of Nephrology, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Yachen Si
- Department of Nephrology, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Tingting Zhao
- Department of Nephrology, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Xueli Lai
- Department of Nephrology, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Zhimin Kang
- Shanghai Huikang Hydrogen Medical Research Center, Shanghai, China
| | - Xuejun Sun
- Department of Naval Medicine, Naval Medical University, Shanghai, China
| | - Zhiyong Guo
- Department of Nephrology, Changhai Hospital, Naval Medical University, Shanghai, China
| |
Collapse
|