1
|
Cilleros-Rodríguez D, Toledo-Lobo MV, Martínez-Martínez D, Baquero P, Angulo JC, Chiloeches A, Iglesias T, Lasa M. Protein kinase D activity is a risk biomarker in prostate cancer that drives cell invasion by a Snail/ERK dependent mechanism. Biochim Biophys Acta Mol Basis Dis 2024; 1870:166851. [PMID: 37611675 DOI: 10.1016/j.bbadis.2023.166851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 07/20/2023] [Accepted: 08/15/2023] [Indexed: 08/25/2023]
Abstract
Protein kinase D (PKD) family members play controversial roles in prostate cancer (PC). Thus, PKD1 is nearly absent in advanced tumours, where PKD2 and PKD3 are upregulated. Additionally, consequences of activation of these kinases on PC progression remain largely unclear. Here, we first investigated PKD function on PC cell motility, analysing the underlying molecular mechanisms. We find a striking decrease of Snail levels after PKD inhibition followed by cell migration and invasion impairment, demonstrating an unprecedented role of PKD activity on the regulation of this key transcription factor in PC progression. Specifically, we show that PKD2 activity mediates the effects of MEK/ERK pathway on Snail expression, establishing a joint function of ERK/PKD2/Snail cascade in PC cell invasion regulation. These results led us to address the clinical relevance of the correlation between PKD2 and ERK activities with Snail abundance in samples from PC patients at different stages, analysing its impact on tumour prognosis and patients´ survival. Importantly, this is the first study defining a direct correlation between active PKD2 and Snail levels, further linked to ERK activity. We also evidence that PKD2 activity is associated with important poor prognostic factors. Thus, PC patients with the expression pattern: active PKD2high/active ERKhigh/Snailhigh exhibit increased invasiveness and metastasis, and decreased survival. Our findings provide new insights for understanding the molecular mechanisms involved in PC progression, pinpointing the combination of active PKD2 and Snail levels, with the additional measurement of active ERK, as a confident biomarker to predict clinical outcome of patients with advanced PC.
Collapse
Affiliation(s)
- Darío Cilleros-Rodríguez
- Departamento de Bioquímica-Instituto de Investigaciones Biomédicas "Alberto Sols", Universidad Autónoma de Madrid-Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - María Val Toledo-Lobo
- Departamento de Biomedicina y Biotecnología, Universidad de Alcalá, Madrid, Spain; IRYCIS, Instituto de Investigaciones Sanitarias Ramón y Cajal, Madrid, Spain
| | - Desirée Martínez-Martínez
- Departamento de Bioquímica-Instituto de Investigaciones Biomédicas "Alberto Sols", Universidad Autónoma de Madrid-Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Pablo Baquero
- Departamento de Biología de Sistemas, Unidad de Bioquímica y Biología Molecular, Facultad de Medicina, Universidad de Alcalá, Madrid, Spain
| | - Javier C Angulo
- Servicio de Urología, Hospital Universitario de Getafe, Madrid, Spain
| | - Antonio Chiloeches
- Departamento de Biología de Sistemas, Unidad de Bioquímica y Biología Molecular, Facultad de Medicina, Universidad de Alcalá, Madrid, Spain
| | - Teresa Iglesias
- Departamento de Bioquímica-Instituto de Investigaciones Biomédicas "Alberto Sols", Universidad Autónoma de Madrid-Consejo Superior de Investigaciones Científicas, Madrid, Spain; CIBERNED, Centro de Investigación Biomédica en Red de Enfermedades Neuro-degenerativas, Instituto de Salud Carlos III, Madrid, Spain
| | - Marina Lasa
- Departamento de Bioquímica-Instituto de Investigaciones Biomédicas "Alberto Sols", Universidad Autónoma de Madrid-Consejo Superior de Investigaciones Científicas, Madrid, Spain.
| |
Collapse
|
2
|
Munquad S, Si T, Mallik S, Li A, Das AB. Subtyping and grading of lower-grade gliomas using integrated feature selection and support vector machine. Brief Funct Genomics 2022; 21:408-421. [PMID: 35923100 DOI: 10.1093/bfgp/elac025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 06/23/2022] [Accepted: 07/17/2022] [Indexed: 11/13/2022] Open
Abstract
Classifying lower-grade gliomas (LGGs) is a crucial step for accurate therapeutic intervention. The histopathological classification of various subtypes of LGG, including astrocytoma, oligodendroglioma and oligoastrocytoma, suffers from intraobserver and interobserver variability leading to inaccurate classification and greater risk to patient health. We designed an efficient machine learning-based classification framework to diagnose LGG subtypes and grades using transcriptome data. First, we developed an integrated feature selection method based on correlation and support vector machine (SVM) recursive feature elimination. Then, implementation of the SVM classifier achieved superior accuracy compared with other machine learning frameworks. Most importantly, we found that the accuracy of subtype classification is always high (>90%) in a specific grade rather than in mixed grade (~80%) cancer. Differential co-expression analysis revealed higher heterogeneity in mixed grade cancer, resulting in reduced prediction accuracy. Our findings suggest that it is necessary to identify cancer grades and subtypes to attain a higher classification accuracy. Our six-class classification model efficiently predicts the grades and subtypes with an average accuracy of 91% (±0.02). Furthermore, we identify several predictive biomarkers using co-expression, gene set enrichment and survival analysis, indicating our framework is biologically interpretable and can potentially support the clinician.
Collapse
Affiliation(s)
- Sana Munquad
- Department of Biotechnology, National Institute of Technology Warangal, Warangal 506004, Telangana, India
| | - Tapas Si
- Department of Computer Science and Engineering, Bankura Unnayani Institute of Engineering, Bankura 722146, West Bengal, India
| | - Saurav Mallik
- Department of Environmental Epigenetics, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Aimin Li
- Center for Precision Health, School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Asim Bikas Das
- Department of Biotechnology, National Institute of Technology Warangal, Warangal 506004, Telangana, India
| |
Collapse
|
3
|
Spano D, Colanzi A. Golgi Complex: A Signaling Hub in Cancer. Cells 2022; 11:1990. [PMID: 35805075 PMCID: PMC9265605 DOI: 10.3390/cells11131990] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 06/17/2022] [Accepted: 06/19/2022] [Indexed: 02/01/2023] Open
Abstract
The Golgi Complex is the central hub in the endomembrane system and serves not only as a biosynthetic and processing center but also as a trafficking and sorting station for glycoproteins and lipids. In addition, it is an active signaling hub involved in the regulation of multiple cellular processes, including cell polarity, motility, growth, autophagy, apoptosis, inflammation, DNA repair and stress responses. As such, the dysregulation of the Golgi Complex-centered signaling cascades contributes to the onset of several pathological conditions, including cancer. This review summarizes the current knowledge on the signaling pathways regulated by the Golgi Complex and implicated in promoting cancer hallmarks and tumor progression.
Collapse
Affiliation(s)
- Daniela Spano
- Institute of Biochemistry and Cell Biology, National Research Council, Via Pietro Castellino 111, 80131 Naples, Italy
| | - Antonino Colanzi
- Institute for Endocrinology and Experimental Oncology “G. Salvatore”, National Research Council, 80131 Naples, Italy;
| |
Collapse
|
4
|
Cooke M, Kazanietz MG. Overarching roles of diacylglycerol signaling in cancer development and antitumor immunity. Sci Signal 2022; 15:eabo0264. [PMID: 35412850 DOI: 10.1126/scisignal.abo0264] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Diacylglycerol (DAG) is a lipid second messenger that is generated in response to extracellular stimuli and channels intracellular signals that affect mammalian cell proliferation, survival, and motility. DAG exerts a myriad of biological functions through protein kinase C (PKC) and other effectors, such as protein kinase D (PKD) isozymes and small GTPase-regulating proteins (such as RasGRPs). Imbalances in the fine-tuned homeostasis between DAG generation by phospholipase C (PLC) enzymes and termination by DAG kinases (DGKs), as well as dysregulation in the activity or abundance of DAG effectors, have been widely associated with tumor initiation, progression, and metastasis. DAG is also a key orchestrator of T cell function and thus plays a major role in tumor immunosurveillance. In addition, DAG pathways shape the tumor ecosystem by arbitrating the complex, dynamic interaction between cancer cells and the immune landscape, hence representing powerful modifiers of immune checkpoint and adoptive T cell-directed immunotherapy. Exploiting the wide spectrum of DAG signals from an integrated perspective could underscore meaningful advances in targeted cancer therapy.
Collapse
Affiliation(s)
- Mariana Cooke
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.,Department of Medicine, Einstein Medical Center Philadelphia, Philadelphia, PA 19141, USA
| | - Marcelo G Kazanietz
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
5
|
In Silico Analysis of Ion Channels and Their Correlation with Epithelial to Mesenchymal Transition in Breast Cancer. Cancers (Basel) 2022; 14:cancers14061444. [PMID: 35326596 PMCID: PMC8946083 DOI: 10.3390/cancers14061444] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 02/09/2022] [Accepted: 02/11/2022] [Indexed: 02/01/2023] Open
Abstract
Simple Summary Breast cancer involves changes in the healthy cells of the breast resulting in rapid and abnormal division of cells that later spread to other parts of the body through the process of metastasis, which involves epithelial mesenchymal transition (EMT). Ion channels play a significant role in the switch from epithelial to mesenchymal transition through their contributions to cellular motility, cell volume regulation and cell cycle progression. Comprehensive computational analyses were performed to understand the role of ion channels in tumor/metastatic samples of breast cancer and their correlation with EMT. Abstract Uncontrolled growth of breast cells due to altered gene expression is a key feature of breast cancer. Alterations in the expression of ion channels lead to variations in cellular activities, thus contributing to attributes of cancer hallmarks. Changes in the expression levels of ion channels were observed as a consequence of EMT. Additionally, ion channels were reported in the activation of EMT and maintenance of a mesenchymal phenotype. Here, to identify altered ion channels in breast cancer patients, differential gene expression and weighted gene co-expression network analyses were performed using transcriptomic data. Protein–protein interactions network analysis was carried out to determine the ion channels interacting with hub EMT-related genes in breast cancer. Thirty-two ion channels were found interacting with twenty-six hub EMT-related genes. The identified ion channels were further correlated with EMT scores, indicating mesenchymal phenotype. Further, the pathway map was generated to represent a snapshot of deregulated cellular processes by altered ion channels and EMT-related genes. Kaplan–Meier five-year survival analysis and Cox regressions indicated the expression of CACNA1B, ANO6, TRPV3, VDAC1 and VDAC2 to be potentially associated with poor survival. Deregulated ion channels correlate with EMT-related genes and have a crucial role in breast cancer-associated tumorigenesis. Most likely, they are potential candidates for the determination of prognosis in patients with breast cancer.
Collapse
|
6
|
Chen L, Liu Y, Becher A, Diepold K, Schmid E, Fehn A, Brunner C, Rouhi A, Chiosis G, Cronauer M, Seufferlein T, Azoitei N. Sildenafil triggers tumor lethality through altered expression of HSP90 and degradation of PKD2. Carcinogenesis 2021; 41:1421-1431. [PMID: 31917403 DOI: 10.1093/carcin/bgaa001] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 12/13/2019] [Accepted: 01/07/2020] [Indexed: 12/24/2022] Open
Abstract
The repurposing of existing drugs has emerged as an attractive additional strategy to the development of novel compounds in the fight against cancerous diseases. Inhibition of phosphodiesterase 5 (PDE5) has been claimed as a potential approach to target various cancer subtypes in recent years. However, data on the treatment of tumors with PDE5 inhibitors as well as the underlying mechanisms are as yet very scarce. Here, we report that treatment of tumor cells with low concentrations of Sildenafil was associated with decreased cancer cell proliferation and augmented apoptosis in vitro and resulted in impaired tumor growth in vivo. Notably, incubation of cancer cells with Sildenafil was associated with altered expression of HSP90 chaperone followed by degradation of protein kinase D2, a client protein previously reported to be involved in tumor growth. Furthermore, the involvement of low doses of PU-H71, an HSP90 inhibitor currently under clinical evaluation, in combination with low concentrations of Sildenafil, synergistically and negatively impacted on the viability of cancer cells in vivo. Taken together, our study suggests that repurposing of already approved drugs, alone or in combination with oncology-dedicated compounds, may represent a novel cancer therapeutic strategy.
Collapse
Affiliation(s)
- Lu Chen
- Department of Internal Medicine I, University Hospital Ulm, Ulm, Germany.,Department of Gastroenterology and Hepatology, Zhongda Hospital, Southeast University, Nanjing, China
| | - Yang Liu
- Department of Gastroenterology and Hepatology, Zhongda Hospital, Southeast University, Nanjing, China
| | - Alexander Becher
- Department of Internal Medicine I, University Hospital Ulm, Ulm, Germany
| | - Kristina Diepold
- Department of Internal Medicine I, University Hospital Ulm, Ulm, Germany
| | - Evi Schmid
- Department of Pediatric Surgery and Pediatric Urology, University of Tübingen, Tübingen, Germany
| | - Adrian Fehn
- Department of Otorhinolaryngology, University Hospital Ulm, Ulm, Germany
| | - Cornelia Brunner
- Department of Otorhinolaryngology, University Hospital Ulm, Ulm, Germany
| | | | - Gabriela Chiosis
- Department of Molecular Pharmacology and Chemistry, Memorial Sloan-Kettering Institute, New York, NY, USA
| | - Marcus Cronauer
- Department of Urology, University Hospital Schleswig-Holstein, Campus Lübeck, Lübeck, Germany
| | - Thomas Seufferlein
- Department of Internal Medicine I, University Hospital Ulm, Ulm, Germany
| | - Ninel Azoitei
- Department of Internal Medicine I, University Hospital Ulm, Ulm, Germany
| |
Collapse
|
7
|
Zhang X, Connelly J, Chao Y, Wang QJ. Multifaceted Functions of Protein Kinase D in Pathological Processes and Human Diseases. Biomolecules 2021; 11:biom11030483. [PMID: 33807058 PMCID: PMC8005150 DOI: 10.3390/biom11030483] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 03/13/2021] [Accepted: 03/15/2021] [Indexed: 02/06/2023] Open
Abstract
Protein kinase D (PKD) is a family of serine/threonine protein kinases operating in the signaling network of the second messenger diacylglycerol. The three family members, PKD1, PKD2, and PKD3, are activated by a variety of extracellular stimuli and transduce cell signals affecting many aspects of basic cell functions including secretion, migration, proliferation, survival, angiogenesis, and immune response. Dysregulation of PKD in expression and activity has been detected in many human diseases. Further loss- or gain-of-function studies at cellular levels and in animal models provide strong support for crucial roles of PKD in many pathological conditions, including cancer, metabolic disorders, cardiac diseases, central nervous system disorders, inflammatory diseases, and immune dysregulation. Complexity in enzymatic regulation and function is evident as PKD isoforms may act differently in different biological systems and disease models, and understanding the molecular mechanisms underlying these differences and their biological significance in vivo is essential for the development of safer and more effective PKD-targeted therapies. In this review, to provide a global understanding of PKD function, we present an overview of the PKD family in several major human diseases with more focus on cancer-associated biological processes.
Collapse
|
8
|
Gilles P, Kashyap RS, Freitas MJ, Ceusters S, Van Asch K, Janssens A, De Jonghe S, Persoons L, Cobbaut M, Daelemans D, Van Lint J, Voet AR, De Borggraeve WM. Design, synthesis and biological evaluation of pyrazolo[3,4-d]pyrimidine-based protein kinase D inhibitors. Eur J Med Chem 2020; 205:112638. [DOI: 10.1016/j.ejmech.2020.112638] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 05/12/2020] [Accepted: 07/01/2020] [Indexed: 10/23/2022]
|
9
|
Zembrzuska K, Ostrowski RP, Matyja E. Hyperbaric oxygen increases glioma cell sensitivity to antitumor treatment with a novel isothiourea derivative in vitro. Oncol Rep 2019; 41:2703-2716. [PMID: 30896865 PMCID: PMC6448092 DOI: 10.3892/or.2019.7064] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Accepted: 03/04/2019] [Indexed: 12/27/2022] Open
Abstract
Glioblastoma (GBM) is the most common primary brain tumor. Tumor hypoxia is a pivotal factor responsible for the progression of this malignant glioma, and its resistance to radiation and chemotherapy. Thus, improved tumor tissue oxygenation may promote greater sensitivity to anticancer treatment. Protein kinase D1 (PKD1) protects cells from oxidative stress, and its abnormal activity serves an important role in multiple malignancies. The present study examined the effects of various oxygen conditions on the cytotoxic potential of the novel isothiourea derivate N,N′-dimethyl-S-(2,3,4,5,6-pentabromobenzyl)- isothiouronium bromide (ZKK-3) against the T98G GBM cell line. ZKK-3 was applied at concentrations of 10, 25 and 50 µM, and cells were maintained under conditions of normoxia, anoxia, hypoxia, hyperbaric oxygen (HBO), hypoxia/hypoxia and hypoxia/HBO. The proliferation and viability of neoplastic cells, and protein expression levels of hypoxia-inducible factor 1α (HIF-1α), PKD1, phosphorylated (p)PKD1 (Ser 916) and pPKD1 (Ser 744/748) kinases were evaluated. Oxygen deficiency, particularly regarding hypoxia, could diminish the cytotoxic effect of ZKK-3 at 25 and 50 µM and improve T98G cell survival compared with normoxia. HBO significantly reduced cell proliferation and increased T98G cell sensitivity to ZKK-3 when compared with normoxia. HIF-1α expression levels were increased under hypoxia compared with normoxia and decreased under HBO compared with hypoxia/hypoxia at 0, 10 and 50 µM ZKK-3, suggesting that HBO improved oxygenation of the cells. ZKK-3 exhibited inhibitory activity against pPKD1 (Ser 916) kinase; however, the examined oxygen conditions did not appear to significantly influence the expression of this phosphorylated form in cells treated with the tested compound. Regarding pPKD1 (Ser 744/748), a significant difference in expression was observed only for cells treated with 10 µM ZKK-3 and hypoxia/hypoxia compared with normoxia. However, there were significant differences in the expression levels of both phosphorylated forms of PKD1 under different oxygen conditions in the controls. In conclusion, the combination of isothiourea derivatives and hyperbaric oxygenation appears to be a promising therapeutic approach for malignant glioma treatment.
Collapse
Affiliation(s)
- Katarzyna Zembrzuska
- Department of Experimental and Clinical Neuropathology, Mossakowski Medical Research Centre, Polish Academy of Sciences, 02‑106 Warsaw, Poland
| | - Robert P Ostrowski
- Department of Experimental and Clinical Neuropathology, Mossakowski Medical Research Centre, Polish Academy of Sciences, 02‑106 Warsaw, Poland
| | - Ewa Matyja
- Department of Experimental and Clinical Neuropathology, Mossakowski Medical Research Centre, Polish Academy of Sciences, 02‑106 Warsaw, Poland
| |
Collapse
|
10
|
Pang Z, Wang Y, Ding N, Chen X, Yang Y, Wang G, Liu Q, Du J. High PKD2 predicts poor prognosis in lung adenocarcinoma via promoting Epithelial-mesenchymal Transition. Sci Rep 2019; 9:1324. [PMID: 30718593 PMCID: PMC6362154 DOI: 10.1038/s41598-018-37285-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Accepted: 11/30/2018] [Indexed: 12/14/2022] Open
Abstract
Protein kinase D2 (PKD2) has been reported to be related with progression and invasion in various cancers. However, its prognostic value and the underlying mechanism in lung cancer remains unclear. Herein we evaluated the expression of PKD2 in lung adenocarcinoma and investigated its relationship with EMT. GSEA, TCGA and K-M plotter database were applied and revealed that high PKD2 expression predicted poor outcome and related with lymph nodes metastasis in lung cancer. IHC and qRT-PCR were performed and found PKD2 was elevated in lung adenocarcinoma and negatively related with OS (p = 0.015), PFS (p = 0.006) and the level of E-cadherin (p = 0.021). Experiment in lung adenocarcinoma cell lines demonstrated up-regulation of PKD2 led to high expression of mesenchymal markers (N-cadherin, vim, mmp9 et al.) and EMT transcription factors(zeb1, twist, snail), and the results were reversed when PKD2 was knocked down. Further investigation showed that abrogation of PKD2 inhibited A549 cell migration, invasion, proliferation and induced cell arrest in G2/M phase. We concluded that high expression of PKD2 was associated with poor prognosis and cancer progression in lung adenocarcinoma patients by promoting EMT.
Collapse
Affiliation(s)
- Zhaofei Pang
- Institute of Oncology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, People's Republic of China
| | - Yu Wang
- Institute of Oncology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, People's Republic of China
| | - Nan Ding
- Institute of Oncology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, People's Republic of China
| | - Xiaowei Chen
- Institute of Oncology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, People's Republic of China
| | - Yufan Yang
- Institute of Oncology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, People's Republic of China
| | - Guanghui Wang
- Department of Thoracic Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, People's Republic of China
| | - Qi Liu
- Institute of Oncology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, People's Republic of China
| | - Jiajun Du
- Institute of Oncology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, People's Republic of China. .,Department of Thoracic Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, People's Republic of China.
| |
Collapse
|
11
|
Silva VAO, Rosa MN, Miranda-Gonçalves V, Costa AM, Tansini A, Evangelista AF, Martinho O, Carloni AC, Jones C, Lima JP, Pianowski LF, Reis RM. Euphol, a tetracyclic triterpene, from Euphorbia tirucalli induces autophagy and sensitizes temozolomide cytotoxicity on glioblastoma cells. Invest New Drugs 2018; 37:223-237. [DOI: 10.1007/s10637-018-0620-y] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Accepted: 06/07/2018] [Indexed: 02/06/2023]
|
12
|
Min W, Liu J, Zhang S. Network-Regularized Sparse Logistic Regression Models for Clinical Risk Prediction and Biomarker Discovery. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2018; 15:944-953. [PMID: 28113328 DOI: 10.1109/tcbb.2016.2640303] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Molecular profiling data (e.g., gene expression) has been used for clinical risk prediction and biomarker discovery. However, it is necessary to integrate other prior knowledge like biological pathways or gene interaction networks to improve the predictive ability and biological interpretability of biomarkers. Here, we first introduce a general regularized Logistic Regression (LR) framework with regularized term , which can reduce to different penalties, including Lasso, elastic net, and network-regularized terms with different . This framework can be easily solved in a unified manner by a cyclic coordinate descent algorithm which can avoid inverse matrix operation and accelerate the computing speed. However, if those estimated and have opposite signs, then the traditional network-regularized penalty may not perform well. To address it, we introduce a novel network-regularized sparse LR model with a new penalty to consider the difference between the absolute values of the coefficients. We develop two efficient algorithms to solve it. Finally, we test our methods and compare them with the related ones using simulated and real data to show their efficiency.
Collapse
|
13
|
Azoitei N, Cobbaut M, Becher A, Van Lint J, Seufferlein T. Protein kinase D2: a versatile player in cancer biology. Oncogene 2017; 37:1263-1278. [PMID: 29259300 DOI: 10.1038/s41388-017-0052-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Revised: 09/14/2017] [Accepted: 09/15/2017] [Indexed: 12/23/2022]
Abstract
Protein kinase D2 (PKD2) is a serine/threonine kinase that belongs to the PKD family of calcium-calmodulin kinases, which comprises three isoforms: PKD1, PKD2, and PKD3. PKD2 is activated by many stimuli including growth factors, phorbol esters, and G-protein-coupled receptor agonists. PKD2 participation to uncontrolled growth, survival, neovascularization, metastasis, and invasion has been documented in various tumor types including pancreatic, colorectal, gastric, hepatic, lung, prostate, and breast cancer, as well as glioma multiforme and leukemia. This review discusses the versatile functions of PKD2 from the perspective of cancer hallmarks as described by Hanahan and Weinberg. The PKD2 status, signaling pathways affected in different tumor types and the molecular mechanisms that lead to tumorigenesis and tumor progression are presented. The latest developments of small-molecule inhibitors selective for PKD/PKD2, as well as the need for further chemotherapies that prevent, slow down, or eliminate tumors are also discussed in this review.
Collapse
Affiliation(s)
- Ninel Azoitei
- Center for Internal Medicine I, University of Ulm, Ulm, Germany.
| | - Mathias Cobbaut
- Laboratory for Protein Phosphorylation and Proteomics, Department of Cellular and Molecular Medicine, Leuven Cancer Institute, KU Leuven, Leuven, Belgium
| | | | - Johan Van Lint
- Laboratory for Protein Phosphorylation and Proteomics, Department of Cellular and Molecular Medicine, Leuven Cancer Institute, KU Leuven, Leuven, Belgium
| | | |
Collapse
|
14
|
Zhang L, Zhao Z, Xu S, Tandon M, LaValle CR, Deng F, Wang QJ. Androgen suppresses protein kinase D1 expression through fibroblast growth factor receptor substrate 2 in prostate cancer cells. Oncotarget 2017; 8:12800-12811. [PMID: 28077787 PMCID: PMC5355056 DOI: 10.18632/oncotarget.14536] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2016] [Accepted: 12/27/2016] [Indexed: 01/08/2023] Open
Abstract
In prostate cancer, androgen/androgen receptor (AR) and their downstream targets play key roles in all stages of disease progression. The protein kinase D (PKD) family, particularly PKD1, has been implicated in prostate cancer biology. Here, we examined the cross-regulation of PKD1 by androgen signaling in prostate cancer cells. Our data showed that the transcription of PKD1 was repressed by androgen in androgen-sensitive prostate cancer cells. Steroid depletion caused up regulation of PKD1 transcript and protein, an effect that was reversed by the AR agonist R1881 in a time- and concentration-dependent manner, thus identifying PKD1 as a novel androgen-repressed gene. Kinetic analysis indicated that the repression of PKD1 by androgen required the induction of a repressor protein. Furthermore, inhibition or knockdown of AR reversed AR agonist-induced PKD1 repression, indicating that AR was required for the suppression of PKD1 expression by androgen. Downstream of AR, we identified fibroblast growth factor receptor substrate 2 (FRS2) and its downstream MEK/ERK pathway as mediators of androgen-induced PKD1 repression. In summary, PKD1 was identified as a novel androgen-suppressed gene and could be downregulated by androgen through a novel AR/FRS2/MEK/ERK pathway. The upregulation of prosurvival PKD1 by anti-androgens may contribute to therapeutic resistance in prostate cancer treatment.
Collapse
Affiliation(s)
- Liyong Zhang
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Zhenlong Zhao
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.,Department of Anesthesiology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Shuping Xu
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Manuj Tandon
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Courtney R LaValle
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Fan Deng
- Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
| | - Q Jane Wang
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| |
Collapse
|
15
|
Durand N, Bastea LI, Döppler H, Eiseler T, Storz P. Src-mediated tyrosine phosphorylation of Protein Kinase D2 at focal adhesions regulates cell adhesion. Sci Rep 2017; 7:9524. [PMID: 28842658 PMCID: PMC5573332 DOI: 10.1038/s41598-017-10210-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Accepted: 08/07/2017] [Indexed: 01/09/2023] Open
Abstract
Dependent on their cellular localization, Protein Kinase D (PKD) enzymes regulate different processes including Golgi transport, cell signaling and response to oxidative stress. The localization of PKD within cells is mediated by interaction with different lipid or protein binding partners. With the example of PKD2, we here show that phosphorylation events can also contribute to localization of subcellular pools of this kinase. Specifically, in the present study, we show that tyrosine phosphorylation of PKD2 at residue Y87 defines its localization to the focal adhesions and leads to activation. This phosphorylation occurs downstream of RhoA signaling and is mediated via Src. Moreover, mutation of this residue blocks PKD2's interaction with Focal Adhesion Kinase (FAK). The presence and regulation of PKD2 at focal adhesions identifies a novel function for this kinase as a modulator of cell adhesion and migration.
Collapse
Affiliation(s)
- Nisha Durand
- Department of Cancer Biology, Mayo Clinic, Jacksonville, Florida, 32224, USA
| | - Ligia I Bastea
- Department of Cancer Biology, Mayo Clinic, Jacksonville, Florida, 32224, USA
| | - Heike Döppler
- Department of Cancer Biology, Mayo Clinic, Jacksonville, Florida, 32224, USA
| | - Tim Eiseler
- Department of Internal Medicine I, Ulm University, D-89081, Ulm, Germany
| | - Peter Storz
- Department of Cancer Biology, Mayo Clinic, Jacksonville, Florida, 32224, USA.
| |
Collapse
|
16
|
Moloney JN, Cotter TG. ROS signalling in the biology of cancer. Semin Cell Dev Biol 2017; 80:50-64. [PMID: 28587975 DOI: 10.1016/j.semcdb.2017.05.023] [Citation(s) in RCA: 1173] [Impact Index Per Article: 167.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Revised: 05/17/2017] [Accepted: 05/29/2017] [Indexed: 12/19/2022]
Abstract
Increased reactive oxygen species (ROS) production has been detected in various cancers and has been shown to have several roles, for example, they can activate pro-tumourigenic signalling, enhance cell survival and proliferation, and drive DNA damage and genetic instability. Counterintuitively ROS can also promote anti-tumourigenic signalling, initiating oxidative stress-induced tumour cell death. Tumour cells express elevated levels of antioxidant proteins to detoxify elevated ROS levels, establish a redox balance, while maintaining pro-tumourigenic signalling and resistance to apoptosis. Tumour cells have an altered redox balance to that of their normal counterparts and this identifies ROS manipulation as a potential target for cancer therapies. This review discusses the generation and sources of ROS within tumour cells, the regulation of ROS by antioxidant defence systems, as well as the effect of elevated ROS production on their signalling targets in cancer. It also provides an insight into how pro- and anti-tumourigenic ROS signalling pathways could be manipulated in the treatment of cancer.
Collapse
Affiliation(s)
- Jennifer N Moloney
- Tumour Biology Laboratory, School of Biochemistry and Cell Biology, Bioscience Research Institute, University College Cork, Cork, Ireland
| | - Thomas G Cotter
- Tumour Biology Laboratory, School of Biochemistry and Cell Biology, Bioscience Research Institute, University College Cork, Cork, Ireland.
| |
Collapse
|
17
|
Perkhofer L, Walter K, Costa IG, Carrasco MCR, Eiseler T, Hafner S, Genze F, Zenke M, Bergmann W, Illing A, Hohwieler M, Köhntop R, Lin Q, Holzmann KH, Seufferlein T, Wagner M, Liebau S, Hermann PC, Kleger A, Müller M. Tbx3 fosters pancreatic cancer growth by increased angiogenesis and activin/nodal-dependent induction of stemness. Stem Cell Res 2016; 17:367-378. [DOI: 10.1016/j.scr.2016.08.007] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Revised: 07/05/2016] [Accepted: 08/08/2016] [Indexed: 01/03/2023] Open
|
18
|
Durand N, Borges S, Storz P. Protein Kinase D Enzymes as Regulators of EMT and Cancer Cell Invasion. J Clin Med 2016; 5:jcm5020020. [PMID: 26848698 PMCID: PMC4773776 DOI: 10.3390/jcm5020020] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Revised: 12/15/2015] [Accepted: 01/18/2016] [Indexed: 12/20/2022] Open
Abstract
The Protein Kinase D (PKD) isoforms PKD1, PKD2, and PKD3 are effectors of the novel Protein Kinase Cs (nPKCs) and diacylglycerol (DAG). PKDs impact diverse biological processes like protein transport, cell migration, proliferation, epithelial to mesenchymal transition (EMT) and apoptosis. PKDs however, have distinct effects on these functions. While PKD1 blocks EMT and cell migration, PKD2 and PKD3 tend to drive both processes. Given the importance of EMT and cell migration to the initiation and progression of various malignancies, abnormal expression of PKDs has been reported in multiple types of cancers, including breast, pancreatic and prostate cancer. In this review, we discuss how EMT and cell migration are regulated by PKD isoforms and the significance of this regulation in the context of cancer development.
Collapse
Affiliation(s)
- Nisha Durand
- Department of Cancer Biology, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL 32224, USA.
| | - Sahra Borges
- Department of Cancer Biology, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL 32224, USA.
| | - Peter Storz
- Department of Cancer Biology, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL 32224, USA.
| |
Collapse
|
19
|
Bernhart E, Damm S, Heffeter P, Wintersperger A, Asslaber M, Frank S, Hammer A, Strohmaier H, DeVaney T, Mrfka M, Eder H, Windpassinger C, Ireson CR, Mischel PS, Berger W, Sattler W. Silencing of protein kinase D2 induces glioma cell senescence via p53-dependent and -independent pathways. Neuro Oncol 2015; 16:933-45. [PMID: 24463355 PMCID: PMC4057133 DOI: 10.1093/neuonc/not303] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Background Glioblastoma multiforme (GBM) is a highly aggressive tumor of the central nervous system with a dismal prognosis for affected patients. Aberrant protein kinase C (PKC) signaling has been implicated in gliomagenesis, and a member of the PKC-activated protein kinase D (PRKD) family, PRKD2, was identified as mediator of GBM growth in vitro and in vivo. Methods The outcome of PRKD2 silencing and pharmacological inhibition on glioma cell proliferation was established with different glioma cell lines. Western blotting, senescence assays, co-immunoprecipitation, fluorescence activated cell sorting, quantitative PCR, and immunofluorescence microscopy were utilized to analyze downstream signaling. Results RNA-interference (21-mer siRNA) and pharmacological inhibition (CRT0066101) of PRKD2 profoundly inhibited proliferation of p53wt (U87MG, A172, and primary GBM2), and p53mut (GM133, T98G, U251, and primary Gli25) glioma cells. In a xenograft experiment, PRKD2 silencing significantly delayed tumor growth of U87MG cells. PRKD2 silencing in p53wt and p53mut cells was associated with typical hallmarks of senescence and cell cycle arrest in G1. Attenuated AKT/PKB phosphorylation in response to PRKD2 silencing was a common observation made in p53wt and p53mut GBM cells. PRKD2 knockdown in p53wt cells induced upregulation of p53, p21, and p27 expression, decreased phosphorylation of CDK2 and/or CDK4, hypophosphorylation of retinoblastoma protein (pRb), and reduced transcription of E2F1. In p53mut GM133 and primary Gli25 cells, PRKD2 silencing increased p27 and p15 and reduced E2F1 transcription but did not affect pRb phosphorylation. Conclusions PRKD2 silencing induces glioma cell senescence via p53-dependent and -independent pathways.
Collapse
|
20
|
Müller M, Schröer J, Azoitei N, Eiseler T, Bergmann W, Köhntop R, Lin Q, Costa IG, Zenke M, Genze F, Weidgang C, Seufferlein T, Liebau S, Kleger A. A time frame permissive for Protein Kinase D2 activity to direct angiogenesis in mouse embryonic stem cells. Sci Rep 2015; 5:11742. [PMID: 26148697 PMCID: PMC4493579 DOI: 10.1038/srep11742] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2014] [Accepted: 05/15/2015] [Indexed: 01/18/2023] Open
Abstract
The protein kinase D isoenzymes PKD1/2/3 are prominent downstream targets of PKCs (Protein Kinase Cs) and phospholipase D in various biological systems. Recently, we identified PKD isoforms as novel mediators of tumour cell-endothelial cell communication, tumour cell motility and metastasis. Although PKD isoforms have been implicated in physiological/tumour angiogenesis, a role of PKDs during embryonic development, vasculogenesis and angiogenesis still remains elusive. We investigated the role of PKDs in germ layer segregation and subsequent vasculogenesis and angiogenesis using mouse embryonic stem cells (ESCs). We show that mouse ESCs predominantly express PKD2 followed by PKD3 while PKD1 displays negligible levels. Furthermore, we demonstrate that PKD2 is specifically phosphorylated/activated at the time of germ layer segregation. Time-restricted PKD2-activation limits mesendoderm formation and subsequent cardiovasculogenesis during early differentiation while leading to branching angiogenesis during late differentiation. In line, PKD2 loss-of-function analyses showed induction of mesendodermal differentiation in expense of the neuroectodermal germ layer. Our in vivo findings demonstrate that embryoid bodies transplanted on chicken chorioallantoic membrane induced an angiogenic response indicating that timed overexpression of PKD2 from day 4 onwards leads to augmented angiogenesis in differentiating ESCs. Taken together, our results describe novel and time-dependent facets of PKD2 during early cell fate determination.
Collapse
Affiliation(s)
- Martin Müller
- Department of Internal Medicine I, Ulm University, Ulm, Germany
| | - Jana Schröer
- Department of Internal Medicine I, Ulm University, Ulm, Germany
| | - Ninel Azoitei
- Department of Internal Medicine I, Ulm University, Ulm, Germany
| | - Tim Eiseler
- Department of Internal Medicine I, Ulm University, Ulm, Germany
| | - Wendy Bergmann
- Department of Internal Medicine I, Ulm University, Ulm, Germany
| | - Ralf Köhntop
- Department of Internal Medicine I, Ulm University, Ulm, Germany
| | - Qiong Lin
- Department of Cell Biology, Institute for Biomedical Engineering, RWTH Aachen University Medical School, Aachen, Germany
| | - Ivan G Costa
- IZKF Computational Biology Research Group, RWTH Aachen University Medical School, Aachen, Germany
| | - Martin Zenke
- Department of Cell Biology, Institute for Biomedical Engineering, RWTH Aachen University Medical School, Aachen, Germany
| | | | - Clair Weidgang
- Department of Internal Medicine I, Ulm University, Ulm, Germany
| | | | - Stefan Liebau
- Institute of Neuroanatomy, Eberhard Karls University Tuebingen, Tuebingen, Germany
| | | |
Collapse
|
21
|
Azoitei N, Diepold K, Brunner C, Rouhi A, Genze F, Becher A, Kestler H, van Lint J, Chiosis G, Koren J, Fröhling S, Scholl C, Seufferlein T. HSP90 supports tumor growth and angiogenesis through PRKD2 protein stabilization. Cancer Res 2014; 74:7125-36. [PMID: 25297628 DOI: 10.1158/0008-5472.can-14-1017] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The kinase PRKD2 (protein kinase D) is a crucial regulator of tumor cell-endothelial cell communication in gastrointestinal tumors and glioblastomas, but its mechanistic contributions to malignant development are not understood. Here, we report that the oncogenic chaperone HSP90 binds to and stabilizes PRKD2 in human cancer cells. Pharmacologic inhibition of HSP90 with structurally divergent small molecules currently in clinical development triggered proteasome-dependent degradation of PRKD2, augmenting apoptosis in human cancer cells of various tissue origins. Conversely, ectopic expression of PRKD2 protected cancer cells from the apoptotic effects of HSP90 abrogation, restoring blood vessel formation in two preclinical models of solid tumors. Mechanistic studies revealed that PRKD2 is essential for hypoxia-induced accumulation of hypoxia-inducible factor-1α (HIF1α) and activation of NF-κB in tumor cells. Notably, ectopic expression of PRKD2 was able to partially restore HIF1α and secreted VEGF-A levels in hypoxic cancer cells treated with HSP90 inhibitors. Taken together, our findings indicate that signals from hypoxia and HSP90 pathways are interconnected and funneled by PRKD2 into the NF-κB/VEGF-A signaling axis to promote tumor angiogenesis and tumor growth.
Collapse
Affiliation(s)
- Ninel Azoitei
- Center for Internal Medicine I, University of Ulm, Ulm, Germany.
| | | | - Cornelia Brunner
- Institute for Physiological Chemistry, University of Ulm, Ulm, Germany
| | - Arefeh Rouhi
- Center for Internal Medicine III, University of Ulm, Ulm, Germany
| | | | | | - Hans Kestler
- Institute for Neuroinformatic, Ulm University, Ulm, Germany
| | - Johan van Lint
- Department of Molecular Cell Biology, Katholieke Universiteit, Leuven, Belgium
| | - Gabriela Chiosis
- Department of Molecular Pharmacology and Chemistry, Memorial Sloan-Kettering Institute, New York, New York
| | - John Koren
- Department of Molecular Pharmacology and Chemistry, Memorial Sloan-Kettering Institute, New York, New York
| | - Stefan Fröhling
- Department of Translational Oncology, National Center for Tumor Diseases and German Cancer Research Center, Heidelberg, Germany
| | - Claudia Scholl
- Center for Internal Medicine III, University of Ulm, Ulm, Germany
| | | |
Collapse
|
22
|
Zhou X, Xue P, Yang M, Shi H, Lu D, Wang Z, Shi Q, Hu J, Xie S, Zhan W, Yu R. Protein kinase D2 promotes the proliferation of glioma cells by regulating Golgi phosphoprotein 3. Cancer Lett 2014; 355:121-9. [PMID: 25218347 DOI: 10.1016/j.canlet.2014.09.008] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2014] [Revised: 09/03/2014] [Accepted: 09/04/2014] [Indexed: 01/16/2023]
Abstract
Protein kinase D2 (PKD2) has been demonstrated to promote tumorigenesis in many types of cancers. However, how PKD2 regulates cancer cell growth is largely unknown. In this study, we found that over-expression of PKD2 promoted glioma cell growth but down-regulation of PKD2 inhibited it. Further investigation indicated that PKD2 down-regulation decreased the protein level of Golgi phosphoprotein 3(GOLPH3) as well as p-AKT level. On the contrary, over-expression of PKD2 increased the protein level of GOLPH3 and p-AKT. In addition, GOLPH3 exhibited similar effect on glioma cell growth to that of PKD2. Importantly, GOLPH3 down-regulation partially abolished glioma cell proliferation induced by PKD2 over-expression, while over-expression of GOLPH3 also partially rescued the inhibition effect of PKD2 down-regulation on glioma cell growth. Interestingly, the level of PKD2 and GOLPH3 significantly increased and was positively correlated in a cohort of glioma patients, as well as in patients from TCGA database. Taken together, these results reveal that PKD2 promotes glioma cell proliferation by regulating GOLPH3 and then AKT activation. Our findings indicate that both PKD2 and GOLPH3 play important roles in the progression of human gliomas and PKD2-GOLPH3-AKT signaling pathway might be a potential glioma therapeutic target.
Collapse
Affiliation(s)
- Xiuping Zhou
- Brain Hospital, Affiliated Hospital of Xuzhou Medical College, Xuzhou, Jiangsu, China; Insititute of Nervous System Diseases, Xuzhou Medical College, Xuzhou, Jiangsu, China.
| | - Pengfei Xue
- The Graduate School, Xuzhou Medical College, Xuzhou, Jiangsu, China
| | - Minglin Yang
- The Graduate School, Xuzhou Medical College, Xuzhou, Jiangsu, China
| | - Hengliang Shi
- Brain Hospital, Affiliated Hospital of Xuzhou Medical College, Xuzhou, Jiangsu, China; Insititute of Nervous System Diseases, Xuzhou Medical College, Xuzhou, Jiangsu, China
| | - Dong Lu
- Brain Hospital, Affiliated Hospital of Xuzhou Medical College, Xuzhou, Jiangsu, China; Insititute of Nervous System Diseases, Xuzhou Medical College, Xuzhou, Jiangsu, China
| | - Zhaohao Wang
- The Graduate School, Xuzhou Medical College, Xuzhou, Jiangsu, China
| | - Qiong Shi
- Brain Hospital, Affiliated Hospital of Xuzhou Medical College, Xuzhou, Jiangsu, China; Insititute of Nervous System Diseases, Xuzhou Medical College, Xuzhou, Jiangsu, China
| | - Jinxia Hu
- Brain Hospital, Affiliated Hospital of Xuzhou Medical College, Xuzhou, Jiangsu, China; Insititute of Nervous System Diseases, Xuzhou Medical College, Xuzhou, Jiangsu, China
| | - Shao Xie
- Brain Hospital, Affiliated Hospital of Xuzhou Medical College, Xuzhou, Jiangsu, China; Insititute of Nervous System Diseases, Xuzhou Medical College, Xuzhou, Jiangsu, China
| | - Wenjian Zhan
- Brain Hospital, Affiliated Hospital of Xuzhou Medical College, Xuzhou, Jiangsu, China; Insititute of Nervous System Diseases, Xuzhou Medical College, Xuzhou, Jiangsu, China
| | - Rutong Yu
- Brain Hospital, Affiliated Hospital of Xuzhou Medical College, Xuzhou, Jiangsu, China; Insititute of Nervous System Diseases, Xuzhou Medical College, Xuzhou, Jiangsu, China.
| |
Collapse
|
23
|
Wei N, Chu E, Wipf P, Schmitz JC. Protein kinase d as a potential chemotherapeutic target for colorectal cancer. Mol Cancer Ther 2014; 13:1130-41. [PMID: 24634417 DOI: 10.1158/1535-7163.mct-13-0880] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Protein kinase D (PKD) signaling plays a critical role in the regulation of DNA synthesis, proliferation, cell survival, adhesion, invasion/migration, motility, and angiogenesis. To date, relatively little is known about the potential role of PKD in the development and/or progression of human colorectal cancer. We evaluated the expression of different PKD isoforms in colorectal cancer and investigated the antitumor activity of PKD inhibitors against human colorectal cancer. PKD2 was the dominant isoform expressed in human colon cancer cells. PKD3 expression was also observed but PKD1 expression, at both the RNA and protein levels, was not detected. Suppression of PKD using the small molecule inhibitors CRT0066101 and kb-NB142-70 resulted in low micromolar in vitro antiproliferative activity against multiple human colorectal cancer cell lines. Drug treatment was associated with dose-dependent suppression of PKD2 activation. Incubation with CRT0066101 resulted in G(2)-M phase arrest and induction of apoptosis in human colorectal cancer cells. Further studies showed that CRT0066101 treatment gave rise to a dose-dependent increase in expression of cleaved PARP and activated caspase-3, in addition to inhibition of AKT and ERK signaling, and suppression of NF-κB activity. Transfection of PKD2-targeted siRNAs resulted in similar effects on downstream pathways as observed with small molecule inhibitors. Daily administration of CRT0066101 resulted in significant inhibition of tumor growth in HCT116 xenograft nude mice. Taken together, our studies show that PKD plays a significant role in mediating growth signaling in colorectal cancer and may represent a novel chemotherapeutic target for the treatment of colorectal cancer.
Collapse
Affiliation(s)
- Ning Wei
- Authors' Affiliations: Division of Hematology-Oncology, Department of Medicine, University of Pittsburgh School of Medicine; Cancer Therapeutics Program, University of Pittsburgh Cancer Institute; and Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania
| | | | | | | |
Collapse
|
24
|
Sayegh ET, Kaur G, Bloch O, Parsa AT. Systematic review of protein biomarkers of invasive behavior in glioblastoma. Mol Neurobiol 2013; 49:1212-44. [PMID: 24271659 DOI: 10.1007/s12035-013-8593-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2013] [Accepted: 11/11/2013] [Indexed: 12/26/2022]
Abstract
Glioblastoma (GBM) is an aggressive and incurable brain tumor with a grave prognosis. Recurrence is inevitable even with maximal surgical resection, in large part because GBM is a highly invasive tumor. Invasiveness also contributes to the failure of multiple cornerstones of GBM therapy, including radiotherapy, temozolomide chemotherapy, and vascular endothelial growth factor blockade. In recent years there has been significant progress in the identification of protein biomarkers of invasive phenotype in GBM. In this article, we comprehensively review the literature and survey a broad spectrum of biomarkers, including proteolytic enzymes, extracellular matrix proteins, cell adhesion molecules, neurodevelopmental factors, cell signaling and transcription factors, angiogenic effectors, metabolic proteins, membrane channels, and cytokines and chemokines. In light of the marked variation seen in outcomes in GBM patients, the systematic use of these biomarkers could be used to form a framework for better prediction, prognostication, and treatment selection, as well as the identification of molecular targets for further laboratory investigation and development of nascent, directed therapies.
Collapse
Affiliation(s)
- Eli T Sayegh
- Department of Neurological Surgery, Northwestern University Feinberg School of Medicine, 676 N. St. Clair Street, Suite 2210, Chicago, IL, 60611-2911, USA
| | | | | | | |
Collapse
|
25
|
Fuchs SY. Hope and fear for interferon: the receptor-centric outlook on the future of interferon therapy. J Interferon Cytokine Res 2013; 33:211-25. [PMID: 23570388 DOI: 10.1089/jir.2012.0117] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
After several decades of intense clinical research, the great promise of Type I interferons (IFN1) as the anticancer wonder drugs that could cure or, at the very least, curb the progression of various oncological diseases has regrettably failed to deliver. Severe side effects and low efficacy of IFN1-based pharmaceutics greatly limited use of these drugs and further reduced the enthusiasm of clinical oncologists for future optimization of IFN1-based therapeutic modalities. Incredibly, extensive clinical studies to assess the efficacy of IFN1 alone or in combination with other anticancer drugs have not been paralleled by an equal scope in defining the determinants that confer cell sensitivity or refractoriness to IFN1. Given that all effects of IFN1 on malignant and benign cells alike are mediated by its receptor, the mechanisms regulating these receptor cell surface levels should play a paramount role in shaping the magnitude and duration of IFN1-elicited effects. These mechanisms and their role in controlling IFN1 responses, as well as an ability of a growing tumor to commandeer these events, are the focus of our review. We postulate that activation of numerous signaling pathways leading to elimination of IFN1 receptor occurs in cancer cells and benign cells that contribute to tumor tissue. We further hypothesize that activation of these eliminative pathways enables the escape from IFN1-driven suppression of tumorigenesis and elicits the primary refractoriness of tumor to the pharmaceutical IFN1.
Collapse
Affiliation(s)
- Serge Y Fuchs
- Department of Animal Biology and Mari Lowe Center for Comparative Oncology, School of Veterinary Medicine, University of Pennsylvania , Philadelphia, PA 19104-4539, USA.
| |
Collapse
|
26
|
Tandon M, Johnson J, Li Z, Xu S, Wipf P, Wang QJ. New pyrazolopyrimidine inhibitors of protein kinase d as potent anticancer agents for prostate cancer cells. PLoS One 2013; 8:e75601. [PMID: 24086585 PMCID: PMC3781056 DOI: 10.1371/journal.pone.0075601] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2013] [Accepted: 08/18/2013] [Indexed: 12/04/2022] Open
Abstract
The emergence of protein kinase D (PKD) as a potential therapeutic target for several diseases including cancer has triggered the search for potent, selective, and cell-permeable small molecule inhibitors. In this study, we describe the identification, in vitro characterization, structure-activity analysis, and biological evaluation of a novel PKD inhibitory scaffold exemplified by 1-naphthyl PP1 (1-NA-PP1). 1-NA-PP1 and IKK-16 were identified as pan-PKD inhibitors in a small-scale targeted kinase inhibitor library assay. Both screening hits inhibited PKD isoforms at about 100 nM and were ATP-competitive inhibitors. Analysis of several related kinases indicated that 1-NA-PP1 was highly selective for PKD as compared to IKK-16. SAR analysis showed that 1-NA-PP1 was considerably more potent and showed distinct substituent effects at the pyrazolopyrimidine core. 1-NA-PP1 was cell-active, and potently blocked prostate cancer cell proliferation by inducing G2/M arrest. It also potently blocked the migration and invasion of prostate cancer cells, demonstrating promising anticancer activities on multiple fronts. Overexpression of PKD1 or PKD3 almost completely reversed the growth arrest and the inhibition of tumor cell invasion caused by 1-NA-PP1, indicating that its anti-proliferative and anti-invasive activities were mediated through the inhibition of PKD. Interestingly, a 12-fold increase in sensitivity to 1-NA-PP1 could be achieved by engineering a gatekeeper mutation in the active site of PKD1, suggesting that 1-NA-PP1 could be paired with the analog-sensitive PKD1M659G for dissecting PKD-specific functions and signaling pathways in various biological systems.
Collapse
Affiliation(s)
- Manuj Tandon
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - James Johnson
- Department of Chemistry and Center for Chemical Methodologies and Library Development, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Zhihong Li
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Shuping Xu
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Peter Wipf
- Department of Chemistry and Center for Chemical Methodologies and Library Development, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- * E-mail: (PW); (QJW)
| | - Qiming Jane Wang
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- * E-mail: (PW); (QJW)
| |
Collapse
|
27
|
Bernhart E, Damm S, Wintersperger A, DeVaney T, Zimmer A, Raynham T, Ireson C, Sattler W. Protein kinase D2 regulates migration and invasion of U87MG glioblastoma cells in vitro. Exp Cell Res 2013; 319:2037-2048. [PMID: 23562655 PMCID: PMC3715702 DOI: 10.1016/j.yexcr.2013.03.029] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2013] [Revised: 03/26/2013] [Accepted: 03/27/2013] [Indexed: 11/25/2022]
Abstract
Glioblastoma multiforme (GBM) is the most common malignant brain tumor, which, despite combined modality treatment, reoccurs and is invariably fatal for affected patients. Recently, a member of the serine/threonine protein kinase D (PRKD) family, PRKD2, was shown to be a potent mediator of glioblastoma growth. Here we studied the role of PRKD2 in U87MG glioblastoma cell migration and invasion in response to sphingosine-1-phosphate (S1P), an activator of PRKD2 and a GBM mitogen. Time-lapse microscopy demonstrated that random cell migration was significantly diminished in response to PRKD2 silencing. The pharmacological PRKD family inhibitor CRT0066101 decreased chemotactic migration and invasion across uncoated or matrigel-coated Transwell inserts. Silencing of PRKD2 attenuated migration and invasion of U87MG cells even more effectively. In terms of downstream signaling, CRT0066101 prevented PRKD2 autophosphorylation and inhibited p44/42 MAPK and to a smaller extent p54/46 JNK and p38 MAPK activation. PRKD2 silencing impaired activation of p44/42 MAPK and p54/46 JNK, downregulated nuclear c-Jun protein levels and decreased c-JunS73 phosphorylation without affecting the NFκB pathway. Finally, qPCR array analyses revealed that silencing of PRKD2 downregulates mRNA levels of integrin alpha-2 and -4 (ITGA2 and -4), plasminogen activator urokinase (PLAU), plasminogen activator urokinase receptor (PLAUR), and matrix metallopeptidase 1 (MMP1). Findings of the present study identify PRKD2 as a potential target to interfere with glioblastoma cell migration and invasion, two major determinants contributing to recurrence of glioblastoma after multimodality treatment. Sphingosine-1-phosphate induces glioma cell migration and invasion. Part of the effects is mediated by protein kinase D2 (PRKD2) activation. Inactivation of PRKD2 attenuates glioblastoma cell migration and invasion. Both, RNAi and pharmacological inhibition of PRKD2 inhibits MAPK signaling. PRKD2 regulates transcription of gene products implicated in migration and invasion.
Collapse
Affiliation(s)
- Eva Bernhart
- Institute of Molecular Biology and Biochemistry, Medical University of Graz, Graz, Austria
| | - Sabine Damm
- Institute of Molecular Biology and Biochemistry, Medical University of Graz, Graz, Austria
| | - Andrea Wintersperger
- Institute of Molecular Biology and Biochemistry, Medical University of Graz, Graz, Austria
| | - Trevor DeVaney
- Institute of Biophysics, Medical University of Graz, Austria
| | - Andreas Zimmer
- Institute of Pharmaceutical Sciences, Department of Pharmaceutical Technology, Karl-Franzens University, Graz, Austria
| | | | | | - Wolfgang Sattler
- Institute of Molecular Biology and Biochemistry, Medical University of Graz, Graz, Austria.
| |
Collapse
|
28
|
Armacki M, Joodi G, Nimmagadda SC, de Kimpe L, Pusapati GV, Vandoninck S, Van Lint J, Illing A, Seufferlein T. A novel splice variant of calcium and integrin-binding protein 1 mediates protein kinase D2-stimulated tumour growth by regulating angiogenesis. Oncogene 2013; 33:1167-80. [DOI: 10.1038/onc.2013.43] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2012] [Revised: 01/08/2013] [Accepted: 01/11/2013] [Indexed: 12/25/2022]
|
29
|
Ca2+ activated K channels-new tools to induce cardiac commitment from pluripotent stem cells in mice and men. Stem Cell Rev Rep 2012; 8:720-40. [PMID: 22038332 DOI: 10.1007/s12015-011-9324-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
|
30
|
Fujishima K, Horie R, Mochizuki A, Kengaku M. Principles of branch dynamics governing shape characteristics of cerebellar Purkinje cell dendrites. Development 2012; 139:3442-55. [PMID: 22912417 PMCID: PMC3491647 DOI: 10.1242/dev.081315] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Neurons develop dendritic arbors in cell type-specific patterns. Using growing Purkinje cells in culture as a model, we performed a long-term time-lapse observation of dendrite branch dynamics to understand the rules that govern the characteristic space-filling dendrites. We found that dendrite architecture was sculpted by a combination of reproducible dynamic processes, including constant tip elongation, stochastic terminal branching, and retraction triggered by contacts between growing dendrites. Inhibition of protein kinase C/protein kinase D signaling prevented branch retraction and significantly altered the characteristic morphology of long proximal segments. A computer simulation of dendrite branch dynamics using simple parameters from experimental measurements reproduced the time-dependent changes in the dendrite configuration in live Purkinje cells. Furthermore, perturbation analysis to parameters in silico validated the important contribution of dendritic retraction in the formation of the characteristic morphology. We present an approach using live imaging and computer simulations to clarify the fundamental mechanisms of dendrite patterning in the developing brain.
Collapse
Affiliation(s)
- Kazuto Fujishima
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Yoshida Honmachi, Kyoto 606-8501, Japan.
| | | | | | | |
Collapse
|
31
|
A targeted library screen reveals a new inhibitor scaffold for protein kinase D. PLoS One 2012; 7:e44653. [PMID: 23028574 PMCID: PMC3445516 DOI: 10.1371/journal.pone.0044653] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2012] [Accepted: 08/06/2012] [Indexed: 12/31/2022] Open
Abstract
Protein kinase D (PKD) has emerged as a potential therapeutic target in multiple pathological conditions, including cancer and heart diseases. Potent and selective small molecule inhibitors of PKD are valuable for dissecting PKD-mediated cellular signaling pathways and for therapeutic application. In this study, we evaluated a targeted library of 235 small organic kinase inhibitors for PKD1 inhibitory activity at a single concentration. Twenty-eight PKD inhibitory chemotypes were identified and six exhibited excellent PKD1 selectivity. Five of the six lead structures share a common scaffold, with compound 139 being the most potent and selective for PKD vs PKC and CAMK. Compound 139 was an ATP-competitive PKD1 inhibitor with a low double-digit nanomolar potency and was also cell-active. Kinase profiling analysis identified this class of small molecules as pan-PKD inhibitors, confirmed their selectivity again PKC and CAMK, and demonstrated an overall favorable selectivity profile that could be further enhanced through structural modification. Furthermore, using a PKD homology model based on similar protein kinase structures, docking modes for compound 139 were explored and compared to literature examples of PKD inhibition. Modeling of these compounds at the ATP-binding site of PKD was used to rationalize its high potency and provide the foundation for future further optimization. Accordingly, using biochemical screening of a small number of privileged scaffolds and computational modeling, we have identified a new core structure for highly potent PKD inhibition with promising selectivity against closely related kinases. These lead structures represent an excellent starting point for the further optimization and the design of selective and therapeutically effective small molecule inhibitors of PKD.
Collapse
|
32
|
Khoshnevisan A. An overview of therapeutic approaches to brain tumor stem cells. Med J Islam Repub Iran 2012; 26:31-40. [PMID: 23483074 PMCID: PMC3587894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2012] [Revised: 02/14/2012] [Accepted: 02/18/2012] [Indexed: 11/16/2022] Open
Abstract
Primary and secondary malignant central nervous system (CNS) tumors are devastating invasive tumors able to give rise to many kinds of differentiated tumor cells. Glioblastoma multiform (GBM), is the most malignant brain tumor, in which its growth and persistence depend on cancer stem cells with enhanced DNA damage repair program that also induces recurrence and resists current chemo- and radiotherapies. Unlike non-tumor stem cells, tumor stem cells lack the normal mechanisms that regulate proliferation and differentiation, resulting in uncontrolled production and incomplete differentiation of tumor cells. In current paper recent developments and new researches in the field of brain tumor stem cells have been reviewed.
Collapse
Affiliation(s)
- Alireza Khoshnevisan
- Department of Neurosurgery, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|