1
|
Mo H, Zhang X, Ren L. Analysis of neuroglia and immune cells in the tumor microenvironment of breast cancer brain metastasis. Cancer Biol Ther 2024; 25:2398285. [PMID: 39238191 PMCID: PMC11382727 DOI: 10.1080/15384047.2024.2398285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 08/15/2024] [Accepted: 08/26/2024] [Indexed: 09/07/2024] Open
Abstract
Breast cancer stands as the most prevalent cancer diagnosed worldwide, often leading to brain metastasis, a challenging complication characterized by high mortality rates and a grim prognosis. Understanding the intricate mechanisms governing breast cancer brain metastasis (BCBM) remains an ongoing challenge. The unique microenvironment in the brain fosters an ideal setting for the colonization of breast cancer cells. The tumor microenvironment (TME) in brain metastases plays a pivotal role in the initiation and progression of BCBM, shaping the landscape for targeted therapeutic interventions. Current research primarily concentrates on unraveling the complexities of the TME in BCBM, with a particular emphasis on neuroglia and immune cells, such as microglia, monocyte-derived macrophages (MDMs), astrocytes and T cells. This comprehensive review delves deeply into these elements within the TME of BCBM, shedding light on their interplay, mechanisms, and potential as therapeutic targets to combat BCBM.
Collapse
Affiliation(s)
- Haixin Mo
- Clinical Experimental Center, Jiangmen Engineering Technology Research Center of Clinical Biobank and Translational Research, Jiangmen Central Hospital, Jiangmen, China
| | - Xin Zhang
- Clinical Experimental Center, Jiangmen Engineering Technology Research Center of Clinical Biobank and Translational Research, Jiangmen Central Hospital, Jiangmen, China
- Dongguan Key Laboratory of Medical Bioactive Molecular Developmental and Translational Research, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan, China
- Collaborative Innovation Center for Antitumor Active Substance Research and Development, Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Liangliang Ren
- Clinical Experimental Center, Jiangmen Engineering Technology Research Center of Clinical Biobank and Translational Research, Jiangmen Central Hospital, Jiangmen, China
| |
Collapse
|
2
|
Zheng M, Qu J, Xiang D, Xing L. Organoids in lung cancer brain metastasis: Foundational research, clinical translation, and prospective outlooks. Biochim Biophys Acta Rev Cancer 2024; 1880:189235. [PMID: 39647672 DOI: 10.1016/j.bbcan.2024.189235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 12/01/2024] [Accepted: 12/01/2024] [Indexed: 12/10/2024]
Abstract
Brain metastasis stands as a leading contributor to mortality in lung cancer patients, yet the intricate mechanism underlying this phenomenon remains elusive. This underscores the need for robust preclinical models and effective treatment strategies. Emerging as viable in vitro models that closely replicate actual tumors, three-dimensional culture systems, particularly organoids derived from non-malignant cells or cancer organoids, have emerged as promising avenues. This review delves into the forefronts of fundamental research and clinical applications focused on lung cancer brain metastasis-derived organoids, highlighting current challenges and delineating prospects. These studies offer tremendous potential for clinical application despite being in nascent status.
Collapse
Affiliation(s)
- Mei Zheng
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan 250117, China
| | - Jialin Qu
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan 250117, China
| | - Dongxi Xiang
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Shanghai Jiaotong University School of Medicine, Shanghai 200127, China; Department of Biliary-Pancreatic Surgery, the Renji Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai 200127, China.
| | - Ligang Xing
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan 250117, China.
| |
Collapse
|
3
|
Rodríguez-Candela Mateos M, Carpintero-Fernández P, Freijanes PS, Mosquera J, Nebril BA, Mayán MD. Insights into the role of connexins and specialized intercellular communication pathways in breast cancer: Mechanisms and applications. Biochim Biophys Acta Rev Cancer 2024; 1879:189173. [PMID: 39154967 DOI: 10.1016/j.bbcan.2024.189173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 07/31/2024] [Accepted: 08/14/2024] [Indexed: 08/20/2024]
Abstract
Gap junctions, membrane-based channels comprised of connexin proteins (Cxs), facilitate direct communication among neighbouring cells and between cells and the extracellular space through their hemichannels. The normal human breast expresses various Cxs family proteins, such as Cx43, Cx30, Cx32, Cx46, and Cx26, crucial for proper tissue development and function. These proteins play a significant role in breast cancer development, progression, and therapy response. In primary tumours, there is often a reduction and cytoplasmic mislocalization of Cx43 and Cx26, while metastatic lesions show an upregulation of these and other Cxs. Although existing research predominantly supports the tumour-suppressing role of Cxs in primary carcinomas through channel-dependent and independent functions, controversies persist regarding their involvement in the metastatic process. This review aims to provide an updated perspective on Cxs in human breast cancer, with a specific focus on intrinsic subtypes due to the heterogeneous nature of this disease. Additionally, the manuscript will explore the role of Cxs in immune interactions and novel forms of intercellular communication, such as tunneling nanotubes and extracellular vesicles, within the breast tumour context and tumour microenvironment. Recent findings suggest that Cxs hold potential as therapeutic targets for mitigating metastasis and drug resistance. Furthermore, they may serve as novel biomarkers for cancer prognosis, offering promising avenues for future research and clinical applications.
Collapse
Affiliation(s)
- Marina Rodríguez-Candela Mateos
- Instituto de Investigación Biomédica de A Coruña (INIBIC), Servizo Galego de Saúde (SERGAS), Xubias de Arriba, 84, 15006 A Coruña, Spain
| | - Paula Carpintero-Fernández
- Instituto de Investigación Biomédica de A Coruña (INIBIC), Servizo Galego de Saúde (SERGAS), Xubias de Arriba, 84, 15006 A Coruña, Spain; CellCOM Research Group, Center for Research in Nanomaterials and Biomedicine (CINBIO), Universidade de Vigo, Edificio Olimpia Valencia, Campus Universitario Lagoas Marcosende, 36310 Vigo, Spain; Galicia Sur Health Research Institute (IIS Galicia Sur), SERGAS, Spain
| | - Paz Santiago Freijanes
- Instituto de Investigación Biomédica de A Coruña (INIBIC), Servizo Galego de Saúde (SERGAS), Xubias de Arriba, 84, 15006 A Coruña, Spain; Anatomic Pathology Department, Breast Unit, A Coruña University Hospital, SERGAS, A Coruña, Spain
| | - Joaquin Mosquera
- Instituto de Investigación Biomédica de A Coruña (INIBIC), Servizo Galego de Saúde (SERGAS), Xubias de Arriba, 84, 15006 A Coruña, Spain; Surgery Department, Breast Unit, A Coruña University Hospital, SERGAS, A Coruña, Spain
| | - Benigno Acea Nebril
- Instituto de Investigación Biomédica de A Coruña (INIBIC), Servizo Galego de Saúde (SERGAS), Xubias de Arriba, 84, 15006 A Coruña, Spain; Surgery Department, Breast Unit, A Coruña University Hospital, SERGAS, A Coruña, Spain
| | - María D Mayán
- Instituto de Investigación Biomédica de A Coruña (INIBIC), Servizo Galego de Saúde (SERGAS), Xubias de Arriba, 84, 15006 A Coruña, Spain; CellCOM Research Group, Center for Research in Nanomaterials and Biomedicine (CINBIO), Universidade de Vigo, Edificio Olimpia Valencia, Campus Universitario Lagoas Marcosende, 36310 Vigo, Spain; Galicia Sur Health Research Institute (IIS Galicia Sur), SERGAS, Spain.
| |
Collapse
|
4
|
Khan MS, Wong GL, Zhuang C, Najjar MK, Lo HW. Crosstalk between breast cancer-derived microRNAs and brain microenvironmental cells in breast cancer brain metastasis. Front Oncol 2024; 14:1436942. [PMID: 39175471 PMCID: PMC11338853 DOI: 10.3389/fonc.2024.1436942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 07/11/2024] [Indexed: 08/24/2024] Open
Abstract
Breast cancer is the most frequent malignancy in women, constituting 15.2% of all new cancers diagnosed in the United States. Distant breast cancer metastasis accounts for the majority of breast cancer-related deaths; brain metastasis is the third most common site for metastatic breast cancer but is associated with worst prognosis of approximately eight months of survival. Current treatment options for breast cancer brain metastasis (BCBM) are limited and ineffective. To help identify new and effective therapies for BCBM, it is important to investigate the mechanisms by which breast cancer cells metastasize to the brain and thrive in the brain microenvironment. To this end, studies have reported that primary breast tumor cells can prime brain microenvironmental cells, including, astrocytes and microglia, to promote the formation of BCBM through the release of extracellular vesicle-microRNAs (miRNAs). Breast tumor-derived miRNAs can also promote breast cancer cell invasion through the blood-brain barrier by disrupting the integrity of the brain microvascular endothelial cells. In this review, we summarize current literature on breast cancer-derived BCBM-promoting miRNAs, cover their roles in the complex steps of BCBM particularly their interactions with microenvironmental cells within the brain metastatic niche, and finally discuss their therapeutic applications in the management of BCBM.
Collapse
Affiliation(s)
- Munazza S. Khan
- Vivian L. Smith Department of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, United States
- The University of Texas MD Anderson Cancer Center UTHealth Houston Graduate School of Biomedical Sciences, The University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Grace L. Wong
- Vivian L. Smith Department of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, United States
- The University of Texas MD Anderson Cancer Center UTHealth Houston Graduate School of Biomedical Sciences, The University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Chuling Zhuang
- Vivian L. Smith Department of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, United States
- The University of Texas MD Anderson Cancer Center UTHealth Houston Graduate School of Biomedical Sciences, The University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Mariana K. Najjar
- Vivian L. Smith Department of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, United States
- The University of Texas MD Anderson Cancer Center UTHealth Houston Graduate School of Biomedical Sciences, The University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Hui-Wen Lo
- Vivian L. Smith Department of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, United States
- The University of Texas MD Anderson Cancer Center UTHealth Houston Graduate School of Biomedical Sciences, The University of Texas Health Science Center at Houston, Houston, TX, United States
- Department of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, United States
| |
Collapse
|
5
|
Arndt P, Turkowski K, Cekay M, Eul B, Grimminger F, Savai R. Endothelin and the tumor microenvironment: a finger in every pie. Clin Sci (Lond) 2024; 138:617-634. [PMID: 38785410 PMCID: PMC11130555 DOI: 10.1042/cs20240426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 05/07/2024] [Accepted: 05/08/2024] [Indexed: 05/25/2024]
Abstract
The tumor microenvironment (TME) plays a central role in the development of cancer. Within this complex milieu, the endothelin (ET) system plays a key role by triggering epithelial-to-mesenchymal transition, causing degradation of the extracellular matrix and modulating hypoxia response, cell proliferation, composition, and activation. These multiple effects of the ET system on cancer progression have prompted numerous preclinical studies targeting the ET system with promising results, leading to considerable optimism for subsequent clinical trials. However, these clinical trials have not lived up to the high expectations; in fact, the clinical trials have failed to demonstrate any substantiated benefit of targeting the ET system in cancer patients. This review discusses the major and recent advances of the ET system with respect to TME and comments on past and ongoing clinical trials of the ET system.
Collapse
Affiliation(s)
- Philipp F. Arndt
- Lung Microenvironmental Niche in Cancerogenesis, Institute for Lung Health (ILH), Justus Liebig University, Giessen, Germany
- Department of Internal Medicine, Justus-Liebig-University Giessen, Universities of Giessen and Marburg Lung Centre (UGMLC), Member of the Cardio-Pulmonary Institute (CPI), Member of the German Centre for Lung Research (DZL), Giessen, Germany
- Max Planck Institute for Heart and Lung Research, Member of the DZL, Member of the CPI, Bad Nauheim, Germany
| | - Kati Turkowski
- Lung Microenvironmental Niche in Cancerogenesis, Institute for Lung Health (ILH), Justus Liebig University, Giessen, Germany
- Max Planck Institute for Heart and Lung Research, Member of the DZL, Member of the CPI, Bad Nauheim, Germany
| | - Michael J. Cekay
- Lung Microenvironmental Niche in Cancerogenesis, Institute for Lung Health (ILH), Justus Liebig University, Giessen, Germany
- Department of Internal Medicine, Justus-Liebig-University Giessen, Universities of Giessen and Marburg Lung Centre (UGMLC), Member of the Cardio-Pulmonary Institute (CPI), Member of the German Centre for Lung Research (DZL), Giessen, Germany
| | - Bastian Eul
- Department of Internal Medicine, Justus-Liebig-University Giessen, Universities of Giessen and Marburg Lung Centre (UGMLC), Member of the Cardio-Pulmonary Institute (CPI), Member of the German Centre for Lung Research (DZL), Giessen, Germany
| | - Friedrich Grimminger
- Lung Microenvironmental Niche in Cancerogenesis, Institute for Lung Health (ILH), Justus Liebig University, Giessen, Germany
- Department of Internal Medicine, Justus-Liebig-University Giessen, Universities of Giessen and Marburg Lung Centre (UGMLC), Member of the Cardio-Pulmonary Institute (CPI), Member of the German Centre for Lung Research (DZL), Giessen, Germany
| | - Rajkumar Savai
- Lung Microenvironmental Niche in Cancerogenesis, Institute for Lung Health (ILH), Justus Liebig University, Giessen, Germany
- Department of Internal Medicine, Justus-Liebig-University Giessen, Universities of Giessen and Marburg Lung Centre (UGMLC), Member of the Cardio-Pulmonary Institute (CPI), Member of the German Centre for Lung Research (DZL), Giessen, Germany
- Max Planck Institute for Heart and Lung Research, Member of the DZL, Member of the CPI, Bad Nauheim, Germany
| |
Collapse
|
6
|
Monteran L, Zait Y, Erez N. It's all about the base: stromal cells are central orchestrators of metastasis. Trends Cancer 2024; 10:208-229. [PMID: 38072691 DOI: 10.1016/j.trecan.2023.11.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 11/14/2023] [Accepted: 11/15/2023] [Indexed: 03/16/2024]
Abstract
The tumor microenvironment (TME) is an integral part of tumors and plays a central role in all stages of carcinogenesis and progression. Each organ has a unique and heterogeneous microenvironment, which affects the ability of disseminated cells to grow in the new and sometimes hostile metastatic niche. Resident stromal cells, such as fibroblasts, osteoblasts, and astrocytes, are essential culprits in the modulation of metastatic progression: they transition from being sentinels of tissue integrity to being dysfunctional perpetrators that support metastatic outgrowth. Therefore, better understanding of the complexity of their reciprocal interactions with cancer cells and with other components of the TME is essential to enable the design of novel therapeutic approaches to prevent metastatic relapse.
Collapse
Affiliation(s)
- Lea Monteran
- Department of Pathology, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Yael Zait
- Department of Pathology, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Neta Erez
- Department of Pathology, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.
| |
Collapse
|
7
|
Lee JE, Park J, Kim EJ, Ko YH, Hong SA, Yang SH, Ahn YH. Noggin contributes to brain metastatic colonization of lung cancer cells. Cancer Cell Int 2023; 23:299. [PMID: 38012621 PMCID: PMC10683317 DOI: 10.1186/s12935-023-03155-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 11/21/2023] [Indexed: 11/29/2023] Open
Abstract
BACKGROUND Brain metastasis is a common complication among patients with lung cancer, yet the underlying mechanisms remain unclear. In this study, we aimed to investigate the pathogenesis of brain metastasis in lung cancer. METHODS We established highly colonizing metastatic lung cancer cells, A549-M2, through multiple implantations of A549 human lung cancer cells in the carotid artery of athymic nude mice. RESULTS Compared to parental cells (M0), M2 cells demonstrated slower growth in culture plates and soft agar, as well as lower motility and higher adhesion, key characteristics of mesenchymal-epithelial transition (MET). Further analysis revealed that M2 cells exhibited decreased expression of epithelial-mesenchymal transition markers, including ZEB1 and Vimentin. M2 cells also demonstrated reduced invasiveness in co-culture systems. RNA sequencing and gene set enrichment analysis confirmed that M2 cells underwent MET. Intriguingly, depletion of Noggin, a BMP antagonist, was observed in M2 cells, and replenishment of Noggin restored suppressed migration and invasion of M2 cells. In addition, Noggin knockdown in control M0 cells promoted cell attachment and suppressed cell migration, suggesting that Noggin reduction during brain colonization causes inhibition of migration and invasion of metastatic lung cancer cells. CONCLUSIONS Our results suggest that lung cancer cells undergo MET and lose their motility and invasiveness during brain metastatic colonization, which is dependent on Noggin.
Collapse
Affiliation(s)
- Jung Eun Lee
- Department of Neurosurgery, St. Vincent's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Jihye Park
- Department of Molecular Medicine and Inflammation-Cancer Microenvironment Research Center, College of Medicine, Ewha Womans University, 25 Magokdong-ro 2-gil, Gangseo-gu, Seoul, 07804, Republic of Korea
| | - Eun Ju Kim
- Department of Molecular Medicine and Inflammation-Cancer Microenvironment Research Center, College of Medicine, Ewha Womans University, 25 Magokdong-ro 2-gil, Gangseo-gu, Seoul, 07804, Republic of Korea
| | - Yoon Ho Ko
- Department of Internal Medicine, Division of Oncology, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Soon Auck Hong
- Department of Pathology, College of Medicine, Chung-Ang University, Seoul, Republic of Korea
| | - Seung Ho Yang
- Department of Neurosurgery, St. Vincent's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea.
- Department of Neurosurgery, St. Vincent's Hospital, College of Medicine, The Catholic University of Korea, 93 Jungbu-daero, Paldal-gu, Suwon, 16247, Republic of Korea.
| | - Young-Ho Ahn
- Department of Molecular Medicine and Inflammation-Cancer Microenvironment Research Center, College of Medicine, Ewha Womans University, 25 Magokdong-ro 2-gil, Gangseo-gu, Seoul, 07804, Republic of Korea.
| |
Collapse
|
8
|
Martinez-Espinosa I, Serrato JA, Ortiz-Quintero B. The Role of Exosome-Derived microRNA on Lung Cancer Metastasis Progression. Biomolecules 2023; 13:1574. [PMID: 38002256 PMCID: PMC10669807 DOI: 10.3390/biom13111574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 10/16/2023] [Accepted: 10/19/2023] [Indexed: 11/26/2023] Open
Abstract
The high mortality from lung cancer is mainly attributed to the presence of metastases at the time of diagnosis. Despite being the leading cause of lung cancer death, the underlying molecular mechanisms driving metastasis progression are still not fully understood. Recent studies suggest that tumor cell exosomes play a significant role in tumor progression through intercellular communication between tumor cells, the microenvironment, and distant organs. Furthermore, evidence shows that exosomes release biologically active components to distant sites and organs, which direct metastasis by preparing metastatic pre-niche and stimulating tumorigenesis. As a result, identifying the active components of exosome cargo has become a critical area of research in recent years. Among these components are microRNAs, which are associated with tumor progression and metastasis in lung cancer. Although research into exosome-derived microRNA (exosomal miRNAs) is still in its early stages, it holds promise as a potential target for lung cancer therapy. Understanding how exosomal microRNAs promote metastasis will provide evidence for developing new targeted treatments. This review summarizes current research on exosomal miRNAs' role in metastasis progression mechanisms, focusing on lung cancer.
Collapse
Affiliation(s)
| | | | - Blanca Ortiz-Quintero
- Department of Molecular Biomedicine and Translational Research, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City CP 14080, Mexico; (I.M.-E.); (J.A.S.)
| |
Collapse
|
9
|
Kim AE, Nieblas-Bedolla E, de Sauvage MA, Brastianos PK. Leveraging translational insights toward precision medicine approaches for brain metastases. NATURE CANCER 2023; 4:955-967. [PMID: 37491527 PMCID: PMC10644911 DOI: 10.1038/s43018-023-00585-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 05/15/2023] [Indexed: 07/27/2023]
Abstract
Due to increasing incidence and limited treatments, brain metastases (BM) are an emerging unmet need in modern oncology. Development of effective therapeutics has been hindered by unique challenges. Individual steps of the brain metastatic cascade are driven by distinctive biological processes, suggesting that BM possess intrinsic biological differences compared to primary tumors. Here, we discuss the unique physiology and metabolic constraints specific to BM as well as emerging treatment strategies that leverage potential vulnerabilities.
Collapse
Affiliation(s)
- Albert E Kim
- Center for Cancer Research, Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA, USA
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Edwin Nieblas-Bedolla
- Center for Cancer Research, Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA, USA
| | - Magali A de Sauvage
- Center for Cancer Research, Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA, USA
| | - Priscilla K Brastianos
- Center for Cancer Research, Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
10
|
Long L, Yi Z, Zeng Y, Liu Z. The progress of microenvironment-targeted therapies in brain metastases. Front Mol Biosci 2023; 10:1141994. [PMID: 37056723 PMCID: PMC10086249 DOI: 10.3389/fmolb.2023.1141994] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 03/17/2023] [Indexed: 03/30/2023] Open
Abstract
The incidence of brain metastases (BrM) has become a growing concern recently. It is a common and often fatal manifestation in the brain during the end-stage of many extracranial primary tumors. Increasing BrM diagnoses can be attributed to improvements in primary tumor treatments, which have extended patients’ lifetime, and allowed for earlier and more efficient detection of brain lesions. Currently, therapies for BrM encompass systemic chemotherapy, targeted therapy, and immunotherapy. Systemic chemotherapy regimens are controversial due to their associated side effects and limited efficacy. Targeted and immunotherapies have garnered significant attention in the medical field: they target specific molecular sites and modulate specific cellular components. However, multiple difficulties such as drug resistance and low permeability of the blood-brain barrier (BBB) remain significant challenges. Thus, there is an urgent need for novel therapies. Brain microenvironments consist of cellular components including immune cells, neurons, endothelial cells as well as molecular components like metal ions, nutrient molecules. Recent research indicates that malignant tumor cells can manipulate the brain microenvironment to change the anti-tumoral to a pro-tumoral microenvironment, both before, during, and after BrM. This review compares the characteristics of the brain microenvironment in BrM with those in other sites or primary tumors. Furthermore, it evaluates the preclinical and clinical studies of microenvironment-targeted therapies for BrM. These therapies, due to their diversity, are expected to overcome drug resistance or low permeability of the BBB with low side effects and high specificity. This will ultimately lead to improved outcomes for patients with secondary brain tumors.
Collapse
Affiliation(s)
- Lifu Long
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, HN, China
- XiangYa School of Medicine, Central South University, Changsha, HN, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, HN, China
| | - Zhenjie Yi
- XiangYa School of Medicine, Central South University, Changsha, HN, China
| | - Yu Zeng
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, HN, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, HN, China
- *Correspondence: Yu Zeng, ; Zhixiong Liu,
| | - Zhixiong Liu
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, HN, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, HN, China
- *Correspondence: Yu Zeng, ; Zhixiong Liu,
| |
Collapse
|
11
|
Abstract
ABSTRACT Brain metastasis (BM) is the leading cause of mortality in lung cancer patients. The process of BM (from initial primary tumor development, migration and intravasation, dissemination and survival in the bloodstream, extravasation, to colonization and growth to metastases) is a complex process for which few tumor cells complete the entire process. Recent research on BM of lung cancer has recently stressed the essential role of tumor microenvironment (TME) in assisting tumor cells in the completion of each BM step. This review summarizes recent studies regarding the effects of TME on tumor cells in the entire process of BM derived from lung cancer. The identification of vulnerable targets in the TME and their prospects to provide novel therapeutic opportunities are also discussed.
Collapse
|
12
|
Siegl F, Vecera M, Roskova I, Smrcka M, Jancalek R, Kazda T, Slaby O, Sana J. The Significance of MicroRNAs in the Molecular Pathology of Brain Metastases. Cancers (Basel) 2022; 14:cancers14143386. [PMID: 35884446 PMCID: PMC9322877 DOI: 10.3390/cancers14143386] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 07/07/2022] [Accepted: 07/10/2022] [Indexed: 12/07/2022] Open
Abstract
Brain metastases are the most frequent intracranial tumors in adults and the cause of death in almost one-fourth of cases. The incidence of brain metastases is steadily increasing. The main reason for this increase could be the introduction of new and more efficient therapeutic strategies that lead to longer survival but, at the same time, cause a higher risk of brain parenchyma infiltration. In addition, the advances in imaging methodology, which provide earlier identification of brain metastases, may also be a reason for the higher recorded number of patients with these tumors. Metastasis is a complex biological process that is still largely unexplored, influenced by many factors and involving many molecules. A deeper understanding of the process will allow the discovery of more effective diagnostic and therapeutic approaches that could improve the quality and length of patient survival. Recent studies have shown that microRNAs (miRNAs) are essential molecules that are involved in specific steps of the metastatic cascade. MiRNAs are endogenously expressed small non-coding RNAs that act as post-transcriptional regulators of gene expression and thus regulate most cellular processes. The dysregulation of these molecules has been implicated in many cancers, including brain metastases. Therefore, miRNAs represent promising diagnostic molecules and therapeutic targets in brain metastases. This review summarizes the current knowledge on the importance of miRNAs in brain metastasis, focusing on their involvement in the metastatic cascade and their potential clinical implications.
Collapse
Affiliation(s)
- Frantisek Siegl
- Central European Institute of Technology, Masaryk University, 625 00 Brno, Czech Republic; (F.S.); (M.V.); (O.S.)
| | - Marek Vecera
- Central European Institute of Technology, Masaryk University, 625 00 Brno, Czech Republic; (F.S.); (M.V.); (O.S.)
| | - Ivana Roskova
- Department of Neurosurgery, University Hospital Brno and Faculty of Medicine of Masaryk University, 625 00 Brno, Czech Republic; (I.R.); (M.S.)
| | - Martin Smrcka
- Department of Neurosurgery, University Hospital Brno and Faculty of Medicine of Masaryk University, 625 00 Brno, Czech Republic; (I.R.); (M.S.)
| | - Radim Jancalek
- Department of Neurosurgery, St. Annes University Hospital Brno and Faculty of Medicine of Masaryk University, 656 91 Brno, Czech Republic;
| | - Tomas Kazda
- Department of Radiation Oncology, Masaryk Memorial Cancer Institute and Faculty of Medicine of Masaryk University, 656 53 Brno, Czech Republic;
| | - Ondrej Slaby
- Central European Institute of Technology, Masaryk University, 625 00 Brno, Czech Republic; (F.S.); (M.V.); (O.S.)
- Department of Biology, Faculty of Medicine, Masaryk University, 625 00 Brno, Czech Republic
| | - Jiri Sana
- Central European Institute of Technology, Masaryk University, 625 00 Brno, Czech Republic; (F.S.); (M.V.); (O.S.)
- Department of Comprehensive Cancer Care, Masaryk Memorial Cancer Institute and Faculty of Medicine of Masaryk University, 656 53 Brno, Czech Republic
- Department of Pathology, University Hospital Brno, 625 00 Brno, Czech Republic
- Correspondence: ; Tel.: +420-549-495-246
| |
Collapse
|
13
|
Strickland MR, Alvarez-Breckenridge C, Gainor JF, Brastianos PK. Tumor Immune Microenvironment of Brain Metastases: Toward Unlocking Antitumor Immunity. Cancer Discov 2022; 12:1199-1216. [PMID: 35394521 PMCID: PMC11440428 DOI: 10.1158/2159-8290.cd-21-0976] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 12/19/2021] [Accepted: 02/17/2022] [Indexed: 11/16/2022]
Abstract
Brain metastasis (BrM) is a devastating complication of solid tumors associated with poor outcomes. Immune-checkpoint inhibitors (ICI) have revolutionized the treatment of cancer, but determinants of response are incompletely understood. Given the rising incidence of BrM, improved understanding of immunobiologic principles unique to the central nervous system (CNS) and dissection of those that govern the activity of ICIs are paramount toward unlocking BrM-specific antitumor immunity. In this review, we seek to discuss the current clinical landscape of ICI activity in the CNS and CNS immunobiology, and we focus, in particular, on the role of glial cells in the CNS immune response to BrM. SIGNIFICANCE There is an urgent need to improve patient selection for and clinical activity of ICIs in patients with cancer with concomitant BrM. Increased understanding of the unique immunobiologic principles that govern response to ICIs in the CNS is critical toward identifying targets in the tumor microenvironment that may potentiate antitumor immunity.
Collapse
Affiliation(s)
| | | | - Justin F Gainor
- Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | | |
Collapse
|
14
|
Lim AR, Ghajar CM. Thorny ground, rocky soil: Tissue-specific mechanisms of tumor dormancy and relapse. Semin Cancer Biol 2022; 78:104-123. [PMID: 33979673 PMCID: PMC9595433 DOI: 10.1016/j.semcancer.2021.05.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 04/30/2021] [Accepted: 05/04/2021] [Indexed: 02/07/2023]
Abstract
Disseminated tumor cells (DTCs) spread systemically yet distinct patterns of metastasis indicate a range of tissue susceptibility to metastatic colonization. Distinctions between permissive and suppressive tissues are still being elucidated at cellular and molecular levels. Although there is a growing appreciation for the role of the microenvironment in regulating metastatic success, we have a limited understanding of how diverse tissues regulate DTC dormancy, the state of reversible quiescence and subsequent awakening thought to contribute to delayed relapse. Several themes of microenvironmental regulation of dormancy are beginning to emerge, including vascular association, co-option of pre-existing niches, metabolic adaptation, and immune evasion, with tissue-specific nuances. Conversely, DTC awakening is often associated with injury or inflammation-induced activation of the stroma, promoting a proliferative environment with DTCs following suit. We review what is known about tissue-specific regulation of tumor dormancy on a tissue-by-tissue basis, profiling major metastatic organs including the bone, lung, brain, liver, and lymph node. An aerial view of the barriers to metastatic growth may reveal common targets and dependencies to inform the therapeutic prevention of relapse.
Collapse
Affiliation(s)
- Andrea R Lim
- Public Health Sciences Division/Translational Research Program, Fred Hutchinson Cancer Research Center, Seattle, WA, USA; Graduate Program in Molecular and Cellular Biology, University of Washington/Fred Hutchinson Cancer Research Center, Seattle, WA, USA; Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA.
| | - Cyrus M Ghajar
- Public Health Sciences Division/Translational Research Program, Fred Hutchinson Cancer Research Center, Seattle, WA, USA; Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA.
| |
Collapse
|
15
|
Giridharan N, Glitza Oliva IC, O'Brien BJ, Parker Kerrigan BC, Heimberger AB, Ferguson SD. Targeting the Tumor Microenvironment in Brain Metastasis. Neurosurg Clin N Am 2021; 31:641-649. [PMID: 32921358 DOI: 10.1016/j.nec.2020.06.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Dynamic interplay between cancer cells and the surrounding microenvironment is a feature of the metastatic process. Successful metastatic brain colonization requires complex mechanisms that ultimately allow tumor cells to adapt to the unique microenvironment of the central nervous system, evade immune destruction, survive, and grow. Accumulating evidence suggests that components of the brain tumor microenvironment (TME) play a vital role in the metastatic cascade. In this review, the authors summarize the contribution of the TME to the development and progression of brain metastasis. They also highlight opportunities for TME-directed targeted therapy.
Collapse
Affiliation(s)
- Nisha Giridharan
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Unit 422, Houston, TX 77030, USA
| | - Isabella C Glitza Oliva
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Unit 430, Houston, TX 77030, USA
| | - Barbara J O'Brien
- Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Unit 431, Houston, TX 77030-4009, USA
| | - Brittany C Parker Kerrigan
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Unit 422, Houston, TX 77030, USA
| | - Amy B Heimberger
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Unit 422, Houston, TX 77030, USA
| | - Sherise D Ferguson
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Unit 422, Houston, TX 77030, USA.
| |
Collapse
|
16
|
Sato H, Shimizu A, Okawa T, Uzu M, Goto M, Hisaka A. Metabolome Shift in Both Metastatic Breast Cancer Cells and Astrocytes Which May Contribute to the Tumor Microenvironment. Int J Mol Sci 2021; 22:ijms22147430. [PMID: 34299050 PMCID: PMC8308096 DOI: 10.3390/ijms22147430] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Revised: 06/26/2021] [Accepted: 07/09/2021] [Indexed: 12/17/2022] Open
Abstract
The role of astrocytes in the periphery of metastatic brain tumors is unclear. Since astrocytes regulate central nervous metabolism, we hypothesized that changes in astrocytes induced by contact with cancer cells would appear in the metabolome of both cells and contribute to malignant transformation. Coculture of astrocytes with breast cancer cell supernatants altered glutamate (Glu)-centered arginine–proline metabolism. Similarly, the metabolome of cancer cells was also altered by astrocyte culture supernatants, and the changes were further amplified in astrocytes exposed to Glu. Inhibition of Glu uptake in astrocytes reduces the variability in cancer cells. Principal component analysis of the cancer cells revealed that all these changes were in the first principal component (PC1) axis, where the responsible metabolites were involved in the metabolism of the arginine–proline, pyrimidine, and pentose phosphate pathways. The contribution of these changes to the tumor microenvironment needs to be further pursued.
Collapse
Affiliation(s)
- Hiromi Sato
- Laboratory of Clinical Pharmacology and Pharmacometrics, Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba-shi, Chiba 260-8675, Japan; (A.S.); (T.O.); (M.U.); (M.G.); (A.H.)
- Correspondence:
| | - Ayaka Shimizu
- Laboratory of Clinical Pharmacology and Pharmacometrics, Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba-shi, Chiba 260-8675, Japan; (A.S.); (T.O.); (M.U.); (M.G.); (A.H.)
| | - Toya Okawa
- Laboratory of Clinical Pharmacology and Pharmacometrics, Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba-shi, Chiba 260-8675, Japan; (A.S.); (T.O.); (M.U.); (M.G.); (A.H.)
| | - Miaki Uzu
- Laboratory of Clinical Pharmacology and Pharmacometrics, Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba-shi, Chiba 260-8675, Japan; (A.S.); (T.O.); (M.U.); (M.G.); (A.H.)
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization, 1-2 Owashi, Tsukuba, Ibaraki 305-8634, Japan
| | - Momoko Goto
- Laboratory of Clinical Pharmacology and Pharmacometrics, Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba-shi, Chiba 260-8675, Japan; (A.S.); (T.O.); (M.U.); (M.G.); (A.H.)
| | - Akihiro Hisaka
- Laboratory of Clinical Pharmacology and Pharmacometrics, Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba-shi, Chiba 260-8675, Japan; (A.S.); (T.O.); (M.U.); (M.G.); (A.H.)
| |
Collapse
|
17
|
Breast cancer brain metastasis: insight into molecular mechanisms and therapeutic strategies. Br J Cancer 2021; 125:1056-1067. [PMID: 34226684 DOI: 10.1038/s41416-021-01424-8] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Revised: 04/14/2021] [Accepted: 04/21/2021] [Indexed: 11/09/2022] Open
Abstract
Breast cancer is one of the most prevalent malignancies in women worldwide. Early-stage breast cancer is considered a curable disease; however, once distant metastasis occurs, the 5-year overall survival rate of patients becomes significantly reduced. There are four distinct metastatic patterns in breast cancer: bone, lung, liver and brain. Among these, breast cancer brain metastasis (BCBM) is the leading cause of death; it is highly associated with impaired quality of life and poor prognosis due to the limited permeability of the blood-brain barrier and consequent lack of effective treatments. Although the sequence of events in BCBM is universally accepted, the underlying mechanisms have not yet been fully elucidated. In this review, we outline progress surrounding the molecular mechanisms involved in BCBM as well as experimental methods and research models to better understand the process. We further discuss the challenges in the management of brain metastases, as well as providing an overview of current therapies and highlighting innovative research towards developing novel efficacious targeted therapies.
Collapse
|
18
|
Gutiérrez LM, Valenzuela Alvarez M, Yang Y, Spinelli F, Cantero MJ, Alaniz L, García MG, Kleinerman ES, Correa A, Bolontrade MF. Up-regulation of pro-angiogenic molecules and events does not relate with an angiogenic switch in metastatic osteosarcoma cells but to cell survival features. Apoptosis 2021; 26:447-459. [PMID: 34024019 DOI: 10.1007/s10495-021-01677-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/30/2021] [Indexed: 01/22/2023]
Abstract
Osteosarcoma (OS) is the most frequent malignant bone tumor, affecting predominantly children. Metastases represent a major clinical challenge and an estimated 80% would present undetectable micrometastases at diagnosis. The identification of metastatic traits and molecules would impact in micrometastasis management. We demonstrated that OS LM7 metastatic cells secretome was able to induce microvascular endothelium cell rearrangements, an angiogenic-related trait. A proteomic analysis indicated a gain in angiogenic-related pathways in these cells, as compared to their parental-non-metastatic OS SAOS2 cells counterpart. Further, factors with proangiogenic functions like VEGF and PDGF were upregulated in LM7 cells. However, no differential angiogenic response was induced by LM7 cells in vivo. Regulation of the Fas-FasL axis is key for OS cells to colonize the lungs in this model. Analysis of the proteomic data with emphasis in apoptosis pathways and related processes revealed that the percentage of genes associated with those, presented similar levels in SAOS2 and LM7 cells. Further, the balance of expression levels of proteins with pro- and antiapoptotic functions in both cell types was subtle. Interestingly and of relevance to the model, Fas associated Factor 1 (FAF1), which participates in Fas signaling, was present in LM7 cells and was not detected in SAOS2 cells. The subtle differences in apoptosis-related events and molecules, together with the reported cell-survival functions of the identified angiogenic factors and the increased survival features that we observed in LM7 cells, suggest that the gain in angiogenesis-related pathways in metastatic OS cells would relate to a prosurvival switch rather to an angiogenic switch as an advantage feature to colonize the lungs. OS metastatic cells also displayed higher adhesion towards microvascular endothelium cells suggesting an advantage for tissue colonization. A gain in angiogenesis pathways and molecules does not result in major angiogenic potential. Together, our results suggest that metastatic OS cells would elicit signaling associated to a prosurvival phenotype, allowing homing into the hostile site for metastasis. During the gain of metastatic traits process, cell populations displaying higher adhesive ability to microvascular endothelium, negative regulation of the Fas-FasL axis in the lung parenchyma and a prosurvival switch, would be selected. This opens a new scenario where antiangiogenic treatments would affect cell survival rather than angiogenesis, and provides a molecular panel of expression that may help in distinguishing OS cells with different metastatic potential.
Collapse
Affiliation(s)
- Luciana M Gutiérrez
- Remodeling Processes and Cellular Niches Laboratory, Instituto de Medicina Traslacional e Ingeniería Biomédica (IMTIB) - CONICET - Hospital Italiano Buenos Aires (HIBA), Instituto Universitario del Hospital Italiano (IUHI), Potosí 4240, C1199ACL, CABA, Argentina
| | - Matías Valenzuela Alvarez
- Remodeling Processes and Cellular Niches Laboratory, Instituto de Medicina Traslacional e Ingeniería Biomédica (IMTIB) - CONICET - Hospital Italiano Buenos Aires (HIBA), Instituto Universitario del Hospital Italiano (IUHI), Potosí 4240, C1199ACL, CABA, Argentina
| | - Yuanzheng Yang
- Division of Pediatrics and Department of Cancer Biology, University of Texas M. D. Anderson Cancer Center, 1515 Holcombe Boulevard, Unit #853, Houston, TX, 77030, USA
| | | | - María José Cantero
- Facultad de Ciencias Biomédicas, Instituto de Investigaciones en Medicina Traslacional (IIMT), CONICET, Universidad Austral, Pilar, Buenos Aires, Argentina
| | - Laura Alaniz
- CITNOBA CONICET-UNNOBA, Jorge Newbery 261, B6000, Junín, Argentina
| | - Mariana G García
- Facultad de Ciencias Biomédicas, Instituto de Investigaciones en Medicina Traslacional (IIMT), CONICET, Universidad Austral, Pilar, Buenos Aires, Argentina
| | - Eugenie S Kleinerman
- Division of Pediatrics and Department of Cancer Biology, University of Texas M. D. Anderson Cancer Center, 1515 Holcombe Boulevard, Unit #853, Houston, TX, 77030, USA
| | | | - Marcela F Bolontrade
- Remodeling Processes and Cellular Niches Laboratory, Instituto de Medicina Traslacional e Ingeniería Biomédica (IMTIB) - CONICET - Hospital Italiano Buenos Aires (HIBA), Instituto Universitario del Hospital Italiano (IUHI), Potosí 4240, C1199ACL, CABA, Argentina.
| |
Collapse
|
19
|
Srinivasan ES, Tan AC, Anders CK, Pendergast AM, Sipkins DA, Ashley DM, Fecci PE, Khasraw M. Salting the Soil: Targeting the Microenvironment of Brain Metastases. Mol Cancer Ther 2021; 20:455-466. [PMID: 33402399 PMCID: PMC8041238 DOI: 10.1158/1535-7163.mct-20-0579] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 08/31/2020] [Accepted: 12/31/2020] [Indexed: 12/14/2022]
Abstract
Paget's "seed and soil" hypothesis of metastatic spread has acted as a foundation of the field for over a century, with continued evolution as mechanisms of the process have been elucidated. The central nervous system (CNS) presents a unique soil through this lens, relatively isolated from peripheral circulation and immune surveillance with distinct cellular and structural composition. Research in primary and metastatic brain tumors has demonstrated that this tumor microenvironment (TME) plays an essential role in the growth of CNS tumors. In each case, the cancerous cells develop complex and bidirectional relationships that reorganize the local TME and reprogram the CNS cells, including endothelial cells, pericytes, astrocytes, microglia, infiltrating monocytes, and lymphocytes. These interactions create a structurally and immunologically permissive TME with malignant processes promoting positive feedback loops and systemic consequences. Strategies to interrupt interactions with the native CNS components, on "salting the soil," to create an inhospitable environment are promising in the preclinical setting. This review aims to examine the general and specific pathways thus far investigated in brain metastases and related work in glioma to identify targetable mechanisms that may have general application across the spectrum of intracranial tumors.
Collapse
Affiliation(s)
- Ethan S Srinivasan
- Duke Brain and Spine Metastases Center, Duke University, Durham, North Carolina
| | - Aaron C Tan
- Division of Medical Oncology, National Cancer Centre Singapore, Singapore
| | - Carey K Anders
- Duke Brain and Spine Metastases Center, Duke University, Durham, North Carolina
| | | | - Dorothy A Sipkins
- Duke Brain and Spine Metastases Center, Duke University, Durham, North Carolina
| | - David M Ashley
- Duke Brain and Spine Metastases Center, Duke University, Durham, North Carolina
| | - Peter E Fecci
- Duke Brain and Spine Metastases Center, Duke University, Durham, North Carolina
| | - Mustafa Khasraw
- Duke Brain and Spine Metastases Center, Duke University, Durham, North Carolina.
| |
Collapse
|
20
|
Kang Y, Jin Y, Li Q, Yuan X. Advances in Lung Cancer Driver Genes Associated With Brain Metastasis. Front Oncol 2021; 10:606300. [PMID: 33537237 PMCID: PMC7848146 DOI: 10.3389/fonc.2020.606300] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 12/01/2020] [Indexed: 12/24/2022] Open
Abstract
Brain metastasis, one of the common complications of lung cancer, is an important cause of death in patients with advanced cancer, despite progress in treatment strategies. Lung cancers with positive driver genes have higher incidence and risk of brain metastases, suggesting that driver events associated with these genes might be biomarkers to detect and prevent disease progression. Common lung cancer driver genes mainly encode receptor tyrosine kinases (RTKs), which are important internal signal molecules that interact with external signals. RTKs and their downstream signal pathways are crucial for tumor cell survival, invasion, and colonization in the brain. In addition, new tumor driver genes, which also encode important molecules closely related to the RTK signaling pathway, have been found to be closely related to the brain metastases of lung cancer. In this article, we reviewed the relationship between lung cancer driver genes and brain metastasis, and summarized the mechanism of driver gene-associated pathways in brain metastasis. By understanding the molecular characteristics during brain metastasis, we can better stratify lung cancer patients and alert those at high risk of brain metastasis, which helps to promote individual therapy for lung cancer.
Collapse
Affiliation(s)
- Yalin Kang
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yu Jin
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qianxia Li
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xianglin Yuan
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
21
|
Pro-Inflammatory Cytokines in the Formation of the Pre-Metastatic Niche. Cancers (Basel) 2020; 12:cancers12123752. [PMID: 33322216 PMCID: PMC7764404 DOI: 10.3390/cancers12123752] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 12/10/2020] [Accepted: 12/11/2020] [Indexed: 12/12/2022] Open
Abstract
Simple Summary The formation of the pre-metastatic niche, a favorable microenvironment in an organ distant from a primary tumor, is critical for tumor metastasis. We review the role of a key player, a class of proteins named pro-inflammatory cytokines secreted from both tumor cells and other cells in tissues, in helping to build the pre-metastatic niche. Various drugs have been developed to target pro-inflammatory cytokines, and their effects on tumor metastases are under investigation. Future clinical studies should focus on combining those drugs and applying them during cancer surgery, a critical moment for the establishment of the pre-metastatic niche. Abstract In the presence of a primary tumor, the pre-metastatic niche is established in secondary organs as a favorable microenvironment for subsequent tumor metastases. This process is orchestrated by bone marrow-derived cells, primary tumor-derived factors, and extracellular matrix. In this review, we summarize the role of pro-inflammatory cytokines including interleukin (IL)-6, IL-1β, CC-chemokine ligand 2 (CCL2), granulocyte-colony stimulating factor (G-CSF), granulocyte–macrophage colony-stimulating factor (GM-CSF), stromal cell-derived factor (SDF)-1, macrophage migration inhibitory factor (MIF), and Chemokine (C–X–C motif) ligand 1 (CXCL1) in the formation of the pre-metastatic niche according to the most recent studies. Pro-inflammatory cytokines released from tumor cells or stromal cells act in both autocrine and paracrine manners to induce phenotype changes in tumor cells, recruit bone marrow-derived cells, and form an inflammatory milieu, all of which prime a secondary organ’s microenvironment for metastatic cell colonization. Considering the active involvement of pro-inflammatory cytokines in niche formation, clinical strategies targeting them offer ways to inhibit the establishment of the pre-metastatic niche and therefore attenuate metastatic progression. We review clinical trials targeting different inflammatory cytokines in patients with metastatic cancers. Due to the pleiotropy and redundancy of pro-inflammatory cytokines, combined therapies should be designed in the future.
Collapse
|
22
|
Zhu T, Bao X, Chen M, Lin R, Zhuyan J, Zhen T, Xing K, Zhou W, Zhu S. Mechanisms and Future of Non-Small Cell Lung Cancer Metastasis. Front Oncol 2020; 10:585284. [PMID: 33262947 PMCID: PMC7686569 DOI: 10.3389/fonc.2020.585284] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 10/14/2020] [Indexed: 12/12/2022] Open
Abstract
Lung cancer, renowned for its fast progression and metastatic potency, is rising to become a leading cause of death globally. It has been long observed that lung cancer is particularly ept in spawning distant metastasis at its early stages, and it can readily colonize virtually any human organ. In recent years, cancer research has shed light on why lung cancer is endowed with its exceptional ability to metastasize. In this review, we will take a comprehensive look at the current research on lung cancer metastasis, including molecular pathways, anatomical features and genetic traits that make lung cancer intrinsically metastatic, as we go from lung cancer’s general metastatic potential to the particular metastasis mechanisms in multiple organs. We highly concerned about the advanced discovery and development of lung cancer metastasis, indicating the importance of lung cancer specific gene mutations, heterogeneity or biomarker discovery, and discussing potential opportunities and challenges. We will also introduce some current treatments that targets certain metastatic strategies of non-small cell lung cancer (NSCLC). Advances made in these regards could be critical to our current knowledge base of lung cancer metastasis.
Collapse
Affiliation(s)
- Tianhao Zhu
- School of Life Sciences, Fudan University, Shanghai, China.,Shanghai Starriver Bilingual School, Shanghai, China
| | | | - Mingyu Chen
- Department of Neurosurgery, Huashan Hospital, Shanghai, China
| | - Rui Lin
- Department of General Surgery, Tongji Hospital, School of Medicine, Tongji University Medical School, Shanghai, China
| | - Jianan Zhuyan
- Shanghai Starriver Bilingual School, Shanghai, China
| | | | | | - Wei Zhou
- Department of Emergency, Souths Campus, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Sibo Zhu
- School of Life Sciences, Fudan University, Shanghai, China
| |
Collapse
|
23
|
Celia C, Cristiano MC, Froiio F, Di Francesco M, d'Avanzo N, Di Marzio L, Fresta M. Nanoliposomes as Multidrug Carrier of Gemcitabine/Paclitaxel for the Effective Treatment of Metastatic Breast Cancer Disease: A Comparison with Gemzar and Taxol. ADVANCED THERAPEUTICS 2020. [DOI: 10.1002/adtp.202000121] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Christian Celia
- Department of Pharmacy University of Chieti‐Pescara “G. d'Annunzio” Via dei Vestini 31 Chieti I‐66010 Italy
| | - Maria Chiara Cristiano
- Department of Clinical and Experimental Medicine University of Catanzaro “Magna Græcia” Viale “S. Venuta” s.n.c. Catanzaro I‐88100 Italy
| | - Francesca Froiio
- Department of Clinical and Experimental Medicine University of Catanzaro “Magna Græcia” Viale “S. Venuta” s.n.c. Catanzaro I‐88100 Italy
| | - Martina Di Francesco
- Department of Health Science University of Catanzaro “Magna Græcia” Viale “S. Venuta” s.n.c. Catanzaro I‐88100 Italy
- Laboratory of Nanotechnology for Precision Medicine Fondazione Istituto Italiano di Tecnologia Via Morego 30 Genoa I‐16163 Italy
| | - Nicola d'Avanzo
- Department of Pharmacy University of Chieti‐Pescara “G. d'Annunzio” Via dei Vestini 31 Chieti I‐66010 Italy
- Department of Health Science University of Catanzaro “Magna Græcia” Viale “S. Venuta” s.n.c. Catanzaro I‐88100 Italy
| | - Luisa Di Marzio
- Department of Pharmacy University of Chieti‐Pescara “G. d'Annunzio” Via dei Vestini 31 Chieti I‐66010 Italy
| | - Massimo Fresta
- Department of Health Science University of Catanzaro “Magna Græcia” Viale “S. Venuta” s.n.c. Catanzaro I‐88100 Italy
| |
Collapse
|
24
|
Zhuyan J, Chen M, Zhu T, Bao X, Zhen T, Xing K, Wang Q, Zhu S. Critical steps to tumor metastasis: alterations of tumor microenvironment and extracellular matrix in the formation of pre-metastatic and metastatic niche. Cell Biosci 2020; 10:89. [PMID: 32742634 PMCID: PMC7388444 DOI: 10.1186/s13578-020-00453-9] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 07/21/2020] [Indexed: 02/07/2023] Open
Abstract
For decades, cancer metastasis has been a heated topic for its high mortality. Previous research has shown that pre-metastatic niche and metastatic niche are the 2 crucial steps in cancer metastasis, assisting cancerous cells' infiltration, survival, and colonization at target sites. More recent studies have unraveled details about the specific mechanisms related to the modification of pro-invasion environments. Here, we will review literatures on extracellular matrix (ECM) alterations, general cancer metastasis, organ specificity, pre-metastatic niche, metastatic niche, colony formation and impact on the course of metastasis. Respectively, the metastatic mechanisms like effect of hypoxia or inflammation on pre-metastatic niche construction, as well as the interaction between cancer cells and local milieu will be discussed. Based on the evidences of metastatic niches, we revisit and discussed the "Seed and Soil" hypothesis by Paget. This review will seek to provide insight into the mechanism of metastatic organ specificity which pre-metastatic niche and metastatic niche might suggest from an evolutionary aspect.
Collapse
Affiliation(s)
- Jianan Zhuyan
- School of Life Sciences, Fudan University, 2005 Songhu Road, Shanghai, 200438 China
- Shanghai Starriver Bilingual School, Shanghai, 201100 China
| | - Mingyu Chen
- Department of Neurosurgery, Huashan Hospital, Shanghai, 200040 China
| | - Tianhao Zhu
- Shanghai Starriver Bilingual School, Shanghai, 201100 China
| | - Xunxia Bao
- School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai, 200093 China
| | - Timing Zhen
- School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai, 200093 China
| | - Kaichen Xing
- School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai, 200093 China
| | - Qiubo Wang
- Department of Clinical Laboratory, Wuxi 9th Affiliated Hospital of Soochow University, No.999 Liangxi Road, Wuxi, China
| | - Sibo Zhu
- School of Life Sciences, Fudan University, 2005 Songhu Road, Shanghai, 200438 China
| |
Collapse
|
25
|
Vilariño N, Bruna J, Bosch-Barrera J, Valiente M, Nadal E. Immunotherapy in NSCLC patients with brain metastases. Understanding brain tumor microenvironment and dissecting outcomes from immune checkpoint blockade in the clinic. Cancer Treat Rev 2020; 89:102067. [PMID: 32682248 DOI: 10.1016/j.ctrv.2020.102067] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Revised: 06/01/2020] [Accepted: 06/26/2020] [Indexed: 12/25/2022]
Abstract
BACKGROUND Brain metastases are frequent complications in patients with non-small-cell lung cancer (NSCLC) associated with significant morbidity and poor prognosis. Our goal is to give a global overlook on clinical efficacy from immune checkpoint inhibitors in this setting and to review the role of biomarkers and molecular interactions in brain metastases from patients with NSCLC. METHODS We reviewed clinical trials reporting clinical outcomes of patients with NSCLC with brain metastases as well as publications assessing the tumor microenvironment and the complex molecular interactions of tumor cells with immune and resident cells in brain metastases from NSCLC biopsies or preclinical models. RESULTS Although limited data are available on immunotherapy in patients with brain metastases, immune checkpoint inhibitors alone or in combination with chemotherapy have shown promising intracranial efficacy and safety results. The underlying mechanism of action of immune checkpoint inhibitors in the brain niche and their influence on tumor microenvironment are still not known. Lower PD-L1 expression and less T CD8+ infiltration were found in brain metastases compared with matched NSCLC primary tumors, suggesting an immunosuppressive microenvironment in the brain. Reactive astrocytes and tumor associated macrophages are paramount in NSCLC brain metastases and play a role in promoting tumor progression and immune evasion. CONCLUSIONS Discordances in the immune profile between primary tumours and brain metastases underscore differences in the tumour microenvironment and immune system interactions within the lung and brain niche. The characterization of immune phenotype of brain metastases and dissecting the interplay among immune cells and resident stromal cells along with cancer cells is crucial to unravel effective immunotherapeutic approaches in patients with NSCLC and brain metastases.
Collapse
Affiliation(s)
- N Vilariño
- Department of Medical Oncology, Catalan Institute of Oncology, Hospital Duran i Reynals, Avinguda de la Gran Via de l'Hospitalet, 199-203, L'Hospitalet de Llobregat, Barcelona, Spain; Clinical Research in Solid Tumors (CReST) Group, Molecular Mechanisms and Experimental Therapeutics in Cancer (Oncobell). IDIBELL, Avinguda de la Gran Via de l'Hospitalet, 199-203, L'Hospitalet de Llobregat, Barcelona, Spain.
| | - J Bruna
- Neuro-Oncology Unit, Bellvitge University Hospital-ICO (IDIBELL), Avinguda de la Gran Via de l'Hospitalet, 199-203, L'Hospitalet de Llobregat, Barcelona, Spain.
| | - J Bosch-Barrera
- Department of Medical Oncology, Catalan Institute of Oncology, Doctor Josep Trueta University Hospital, Avinguda França-Sant Ponç, 0, 17007 Girona, Spain.
| | - M Valiente
- Brain Metastases Group, Spanish National Cancer Research Centre (CNIO), Calle Melchor Fernández Almagro, 3, 28029 Madrid, Spain.
| | - E Nadal
- Department of Medical Oncology, Catalan Institute of Oncology, Hospital Duran i Reynals, Avinguda de la Gran Via de l'Hospitalet, 199-203, L'Hospitalet de Llobregat, Barcelona, Spain; Clinical Research in Solid Tumors (CReST) Group, Molecular Mechanisms and Experimental Therapeutics in Cancer (Oncobell). IDIBELL, Avinguda de la Gran Via de l'Hospitalet, 199-203, L'Hospitalet de Llobregat, Barcelona, Spain.
| |
Collapse
|
26
|
Halaka M, Hired ZA, Rutledge GE, Hedgepath CM, Anderson MP, St John H, Do JM, Majmudar PR, Walker C, Alawawdeh A, Stephen HM, Reagor CC, Adereti J, Jamison K, Iglesias KP, Kirmani KZ, Conway RE. Differences in Endothelin B Receptor Isoforms Expression and Function in Breast Cancer Cells. J Cancer 2020; 11:2688-2701. [PMID: 32201539 PMCID: PMC7066022 DOI: 10.7150/jca.41004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Accepted: 01/31/2020] [Indexed: 12/12/2022] Open
Abstract
The endothelins and their receptors are best known for their regulation of the vascular system. Their widespread expression in epithelial cells and their overexpression in some tumors has prompted investigation into their ability to regulate cancer progression. In this study, we assessed the mRNA expression of the major endothelin B receptor gene (EDNRB) isoforms and found differences in both mRNA and protein expression in normal breast cells and breast cancer cell lines. Knocking down the EDNRB gene in breast cancer cells altered invasiveness toward endothelin 3 (ET3), and we observed EDNRB isoform-specific regulation of breast cancer cell invasion and cell signaling, as well as isoform- and subtype-specific differences in breast cancer patient survival. The results reported in this study emphasize the importance of the endothelin B receptor in breast cancer. To our knowledge, this study is the first to clarify the differential expression and roles of specific EDNRB isoforms in breast cancer.
Collapse
Affiliation(s)
- Meena Halaka
- Department of Biology, College of Liberal Arts and Sciences, Lipscomb University, 1 University Park Drive, Nashville, TN 37204, USA
| | - Zuhaila A Hired
- Department of Biology, College of Liberal Arts and Sciences, Lipscomb University, 1 University Park Drive, Nashville, TN 37204, USA
| | - Grace E Rutledge
- Department of Biology, College of Liberal Arts and Sciences, Lipscomb University, 1 University Park Drive, Nashville, TN 37204, USA
| | - Carly M Hedgepath
- Department of Biology, College of Liberal Arts and Sciences, Lipscomb University, 1 University Park Drive, Nashville, TN 37204, USA
| | - Michael P Anderson
- Department of Biology, College of Liberal Arts and Sciences, Lipscomb University, 1 University Park Drive, Nashville, TN 37204, USA
| | - Haley St John
- Department of Biology, College of Liberal Arts and Sciences, Lipscomb University, 1 University Park Drive, Nashville, TN 37204, USA
| | - Jessica M Do
- Department of Biology, College of Liberal Arts and Sciences, Lipscomb University, 1 University Park Drive, Nashville, TN 37204, USA
| | - Parth R Majmudar
- Department of Biology, College of Liberal Arts and Sciences, Lipscomb University, 1 University Park Drive, Nashville, TN 37204, USA
| | - Caleb Walker
- Department of Biology, College of Liberal Arts and Sciences, Lipscomb University, 1 University Park Drive, Nashville, TN 37204, USA
| | - Asma Alawawdeh
- Department of Biology, College of Liberal Arts and Sciences, Lipscomb University, 1 University Park Drive, Nashville, TN 37204, USA
| | - Hannah M Stephen
- Department of Biology, College of Liberal Arts and Sciences, Lipscomb University, 1 University Park Drive, Nashville, TN 37204, USA
| | - Caleb C Reagor
- Department of Biology, College of Liberal Arts and Sciences, Lipscomb University, 1 University Park Drive, Nashville, TN 37204, USA
| | - Jeanette Adereti
- Department of Biology, College of Liberal Arts and Sciences, Lipscomb University, 1 University Park Drive, Nashville, TN 37204, USA
| | - Kiara Jamison
- Department of Biology, College of Liberal Arts and Sciences, Lipscomb University, 1 University Park Drive, Nashville, TN 37204, USA
| | - Katherine P Iglesias
- Department of Biology, College of Liberal Arts and Sciences, Lipscomb University, 1 University Park Drive, Nashville, TN 37204, USA
| | - Khadija Z Kirmani
- Department of Biology, College of Liberal Arts and Sciences, Lipscomb University, 1 University Park Drive, Nashville, TN 37204, USA
| | - Rebecca E Conway
- Department of Biology, College of Liberal Arts and Sciences, Lipscomb University, 1 University Park Drive, Nashville, TN 37204, USA
| |
Collapse
|
27
|
Kanchan RK, Siddiqui JA, Mahapatra S, Batra SK, Nasser MW. microRNAs Orchestrate Pathophysiology of Breast Cancer Brain Metastasis: Advances in Therapy. Mol Cancer 2020; 19:29. [PMID: 32059676 PMCID: PMC7023699 DOI: 10.1186/s12943-020-1140-x] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Accepted: 01/16/2020] [Indexed: 02/06/2023] Open
Abstract
Brain metastasis (BM) predominantly occurs in triple-negative (TN) and epidermal growth factor 2 (HER2)-positive breast cancer (BC) patients, and currently, there is an unmet need for the treatment of these patients. BM is a complex process that is regulated by the formation of a metastatic niche. A better understanding of the brain metastatic processes and the crosstalk between cancer cells and brain microenvironment is essential for designing a novel therapeutic approach. In this context, the aberrant expression of miRNA has been shown to be associated with BM. These non-coding RNAs/miRNAs regulate metastasis through modulating the formation of a metastatic niche and metabolic reprogramming via regulation of their target genes. However, the role of miRNA in breast cancer brain metastasis (BCBM) is poorly explored. Thus, identification and understanding of miRNAs in the pathobiology of BCBM may identify a novel candidate miRNA for the early diagnosis and prevention of this devastating process. In this review, we focus on understanding the role of candidate miRNAs in the regulation of BC brain metastatic processes as well as designing novel miRNA-based therapeutic strategies for BCBM.
Collapse
Affiliation(s)
- Ranjana K Kanchan
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Jawed A Siddiqui
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Sidharth Mahapatra
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska, USA.,Department of Pediatrics, University of Nebraska Medical Center, Omaha, NE, USA
| | - Surinder K Batra
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska, USA.,Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE, USA.,Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, USA
| | - Mohd W Nasser
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska, USA. .,Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, USA.
| |
Collapse
|
28
|
Fecci PE, Champion CD, Hoj J, McKernan CM, Goodwin CR, Kirkpatrick JP, Anders CK, Pendergast AM, Sampson JH. The Evolving Modern Management of Brain Metastasis. Clin Cancer Res 2019; 25:6570-6580. [PMID: 31213459 PMCID: PMC8258430 DOI: 10.1158/1078-0432.ccr-18-1624] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 04/23/2019] [Accepted: 06/13/2019] [Indexed: 12/11/2022]
Abstract
The incidence of brain metastases is increasing as cancer therapies improve and patients live longer, providing new challenges to the multidisciplinary teams that care for these patients. Brain metastatic cancer cells possess unique characteristics that allow them to penetrate the blood-brain barrier, colonize the brain parenchyma, and persist in the intracranial environment. In addition, brain metastases subvert the innate and adaptive immune system, permitting evasion of the antitumor immune response. Better understanding of the above mechanisms will allow for development and delivery of more effective therapies for brain metastases. In this review, we outline the molecular mechanisms underlying development, survival, and immunosuppression of brain metastases. We also discuss current and emerging treatment strategies, including surgery, radiation, disease-specific and mutation-targeted systemic therapy, and immunotherapy.
Collapse
Affiliation(s)
- Peter E Fecci
- Department of Neurosurgery, Duke University Medical Center, Durham, North Carolina
- Duke Center for Brain and Spinal Metastases, Duke University Medical Center, Durham, North Carolina
| | - Cosette D Champion
- Department of Neurosurgery, Duke University Medical Center, Durham, North Carolina
- Duke Center for Brain and Spinal Metastases, Duke University Medical Center, Durham, North Carolina
| | - Jacob Hoj
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, North Carolina
| | - Courtney M McKernan
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, North Carolina
| | - C Rory Goodwin
- Department of Neurosurgery, Duke University Medical Center, Durham, North Carolina
- Duke Center for Brain and Spinal Metastases, Duke University Medical Center, Durham, North Carolina
| | - John P Kirkpatrick
- Department of Neurosurgery, Duke University Medical Center, Durham, North Carolina
- Duke Center for Brain and Spinal Metastases, Duke University Medical Center, Durham, North Carolina
- Department of Radiation Oncology, Duke University Medical Center, Durham, North Carolina
| | - Carey K Anders
- Duke Cancer Institute, Division of Medical Oncology, Duke University Medical Center, Durham, North Carolina
| | - Ann Marie Pendergast
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, North Carolina
| | - John H Sampson
- Department of Neurosurgery, Duke University Medical Center, Durham, North Carolina.
- Duke Center for Brain and Spinal Metastases, Duke University Medical Center, Durham, North Carolina
| |
Collapse
|
29
|
Zhang C, Liu CF, Chen AB, Yao Z, Li WG, Xu SJ, Ma XY. Prognostic and Clinic Pathological Value of Cx43 Expression in Glioma: A Meta-Analysis. Front Oncol 2019; 9:1209. [PMID: 31781504 PMCID: PMC6861382 DOI: 10.3389/fonc.2019.01209] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 10/23/2019] [Indexed: 12/26/2022] Open
Abstract
Gap junctional intercellular communication (GJIC) composed of connexin proteins is considered vital to cancer onset and progression since 50 years ago based on Lowenstein and Kano's works, however altered expression of connexins is still a lesser known “hallmark” of cancer. Although many studies support the hypothesis that connexins are tumor suppressors, recent evidence indicates that, in some tumor types including glioma, they may play contradictory role in some specific stages of tumor progression. We thus conduct a meta-analysis to evaluate the prognostic role of Cx43 in glioma for the unanswered questions that whether Cx43 is a beneficial or insalubrity factor for glioma. Eight studies with 1,706 patients were included for meta-analysis. The results showed that Cx43 expression was a clearly negative factor with tumor grades (I2 = 34%, P < 0.001) and beneficial for OS (n = 3, HR 2.62, 95%CI 1.47–4.68; P = 0.001). Subgroup analysis also found that Cx43 had different expression in Asian young patients vs. other groups. In conclusion, this article summarize the prognostic value of Cx43 and offer a clinical evidence for the notion that Cx43 is generally a tumor suppressor and beneficial for the patients' survival time.
Collapse
Affiliation(s)
- Chao Zhang
- Department of Neurosurgery, Qilu Hospital, Shandong University, Jinan, China.,Brain Science Research Institute, Shandong University, Jinan, China
| | - Cheng-Fen Liu
- Department of Neurosurgery, Qilu Hospital, Shandong University, Jinan, China
| | - An-Bin Chen
- Department of Neurosurgery, Qilu Hospital, Shandong University, Jinan, China.,Brain Science Research Institute, Shandong University, Jinan, China
| | - Zhong Yao
- Department of Neurosurgery, Qilu Hospital, Shandong University, Jinan, China.,Brain Science Research Institute, Shandong University, Jinan, China
| | - Wei-Guo Li
- Department of Neurosurgery, Qilu Hospital, Shandong University, Jinan, China.,Brain Science Research Institute, Shandong University, Jinan, China
| | - Shu-Jun Xu
- Department of Neurosurgery, Qilu Hospital, Shandong University, Jinan, China.,Brain Science Research Institute, Shandong University, Jinan, China
| | - Xiang-Yu Ma
- Department of Neurosurgery, Qilu Hospital, Shandong University, Jinan, China.,Brain Science Research Institute, Shandong University, Jinan, China
| |
Collapse
|
30
|
Pedrosa RMSM, Mustafa DA, Soffietti R, Kros JM. Breast cancer brain metastasis: molecular mechanisms and directions for treatment. Neuro Oncol 2019; 20:1439-1449. [PMID: 29566179 DOI: 10.1093/neuonc/noy044] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The development of brain metastasis (BM) of breast cancer is usually a late event with deleterious effect on the prognosis. Treatment options for intracerebral seeding of breast cancer are limited and, so far, nonspecific. Molecular detailing of subsequent events of penetration, seeding, and outgrowth in brain is highly relevant for developing therapeutic strategies to treat, or prevent, BM.We scrutinize recent literature for molecules and pathways that are operative in the formation of breast cancer BM. We also summarize current data on therapeutic efforts to specifically address BM of breast cancer. Data on molecular pathways underlying the formation of BM of breast cancer are sketchy and to some extent inconsistent. The molecular makeup of BM differs from that of the primary tumors, as well as from metastases at other sites. Current efforts to treat breast cancer BM are limited, and drugs used have proven effects on the primary tumors but lack specificity for the intracerebral tumors.More basic research is necessary to better characterize BM of breast cancer. Apart from the identification of drug targets defined by the intracerebral tumors, also targets in the molecular pathways involved in passing the blood-brain barrier and intracerebral tumor cell growth should be revealed.
Collapse
Affiliation(s)
- Rute M S M Pedrosa
- Department of Pathology, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Dana A Mustafa
- Department of Pathology, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Riccardo Soffietti
- Department of Neuro-Oncology, University of Turin and City of Health and Science Hospital, Turin, Italy
| | - Johan M Kros
- Department of Pathology, Erasmus Medical Center, Rotterdam, the Netherlands
| |
Collapse
|
31
|
Dong R, Ji J, Liu H, He X. The evolving role of trastuzumab emtansine (T-DM1) in HER2-positive breast cancer with brain metastases. Crit Rev Oncol Hematol 2019; 143:20-26. [PMID: 31449983 DOI: 10.1016/j.critrevonc.2019.07.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2018] [Revised: 06/23/2019] [Accepted: 07/10/2019] [Indexed: 12/26/2022] Open
Abstract
Approximately 30-50% of advanced human epidermal growth factor receptor 2 (HER2) positive breast cancer patients will develop brain metastases (BMs) during the disease course. Brain metastases may become a main limitation of life expectancy and a half of them will die from brain progression. Even in patients with early HER2-positive breast cancer managed with curative therapy, the risk of brain metastases is also increased. Central nervous system (CNS) may usually present as the first site of recurrence in HER2-positive breast cancer. Local treatments including radiotherapy and surgery are essential while new chemotherapy and biological agents appear to contribute a significant role in the future treatment field of CNS metastases. This article will review recent progresses in HER2-positive breast cancer with BM, with a focus on the efficacy of the HER2 targeted agents-trastuzumab emtansine (T-DM1).
Collapse
Affiliation(s)
- Rongrong Dong
- Children's Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| | - Jiali Ji
- Department of Medical Oncology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.
| | - Hong Liu
- Department of Medical Oncology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.
| | - Xuexin He
- Department of Medical Oncology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.
| |
Collapse
|
32
|
Mihanfar A, Sadigh AR, Fattahi A, Latifi Z, Hasanzadeh-Moghadam M, Samadi M, Farzadi L, Hamdi K, Ghasemzadeh A, Nejabati HR, Nouri M. Endothelins and their receptors in embryo implantation. J Cell Biochem 2019; 120:14274-14284. [PMID: 31106465 DOI: 10.1002/jcb.28983] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Revised: 03/31/2019] [Accepted: 04/08/2019] [Indexed: 12/12/2022]
Abstract
As a critical stage of pregnancy, the implantation of blastocysts into the endometrium is a progressive, excessively regulated local tissue remodeling step involving a complex sequence of genetic and cellular interplay executed within an optimal time frame. For better understanding the causes of infertility and, more importantly, for developing powerful strategies for successful implantations and combating infertility, an increasing number of recent studies have been focused on the identification and study of newly described substances in the reproductive tree. The endothelins (ET), a 21-aminoacidic family of genes, have been reported to be responsible for the contraction of vascular and nonvascular smooth muscles, including the smooth muscles of the uterus. Therefore, this review aims to comprehensively discuss the physiological role of endothelins and signaling through their receptors, as well as their probable involvement in the implantation process.
Collapse
Affiliation(s)
- Aynaz Mihanfar
- Department of Biochemistry, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Aydin Raei Sadigh
- Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Amir Fattahi
- Department of Reproductive Biology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Zeinab Latifi
- Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.,Stem Cell and Regenerative Medicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Mahrokh Samadi
- Nephrology and Kidney Transplant Research Center, Urmia University of Medical Sciences, Urmia, Iran
| | - Laya Farzadi
- Department of Reproductive Biology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Kobra Hamdi
- Department of Reproductive Biology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Aliyeh Ghasemzadeh
- Department of Reproductive Biology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hamid Reza Nejabati
- Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.,Stem Cell and Regenerative Medicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran.,Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran.,Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Nouri
- Department of Reproductive Biology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.,Stem Cell and Regenerative Medicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
33
|
Gu X, Han S, Cui M, Xue J, Ai L, Sun L, Zhu X, Wang Y, Liu C. Knockdown of endothelin receptor B inhibits the progression of triple-negative breast cancer. Ann N Y Acad Sci 2019; 1448:5-18. [PMID: 30900271 DOI: 10.1111/nyas.14039] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 01/24/2019] [Accepted: 01/31/2019] [Indexed: 12/17/2022]
Abstract
Endothelin receptor B (EDNRB) is one of the receptors in the endothelin axis and its upregulated expression is associated with tumorigenesis and metastasis of several types of solid tumors. However, the expression profile of EDNRB in breast cancer and its role in the progression of breast cancer are unclear. Here, we show that EDNRB expression is higher in metastatic tumors than in primary breast cancer, and is associated significantly with lymph node metastasis and poor survival in Chinese patients with breast cancer. EDNRB expression was particularly upregulated in triple-negative breast cancer (TNBC) cells. Moreover, EDNRB silencing by a specific shRNA significantly attenuated the proliferation, migration, and invasiveness of MDA-MB-231 and BT549 cells and increased their apoptosis, as well as retarded the growth of implanted tumors in mice. Tandem mass spectrometry analysis indicated that 248 proteins were differentially expressed in EDNRB-silenced cells and their cellular organelles, and these proteins participate in many processes. EDNRB silencing decreased protein kinase B and extracellular regulated protein kinase phosphorylation and promoted the mesenchymal-to-epithelial transition process in MDA-MB-231 cells. Therefore, our findings provide strong evidence for the first time that knockdown of EDNRB expression inhibits the progression of TNBC and that EDNRB can serve as a prognostic biomarker and therapeutic target for the treatment of TNBC.
Collapse
Affiliation(s)
- Xi Gu
- Department of Breast Surgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Shuai Han
- Department of Neurosurgery, the First Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Meizi Cui
- Department of Cadre Ward, the First Hospital of Jilin University, Changchun, China
| | - Jinqi Xue
- Department of Breast Surgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Liping Ai
- Department of Breast Surgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Lisha Sun
- Department of Breast Surgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Xudong Zhu
- Department of Breast Surgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Yulun Wang
- Department of Breast Surgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Caigang Liu
- Department of Breast Surgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning Province, China
| |
Collapse
|
34
|
Doron H, Pukrop T, Erez N. A Blazing Landscape: Neuroinflammation Shapes Brain Metastasis. Cancer Res 2019; 79:423-436. [PMID: 30679177 DOI: 10.1158/0008-5472.can-18-1805] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 09/22/2018] [Accepted: 11/16/2018] [Indexed: 12/18/2022]
Abstract
Brain metastases are more common than primary CNS tumors and confer grave prognosis on patients, as existing treatments have very limited efficacy. The tumor microenvironment has a central role in facilitating tumorigenesis and metastasis. In recent years, there has been much progress in our understanding of the functional role of the brain metastatic microenvironment. In this review, we discuss the latest advances in brain metastasis research, with special emphasis on the role of the brain microenvironment and neuroinflammation, integrating insights from comparable findings in neuropathologies and primary CNS tumors. In addition, we overview findings on the formation of a hospitable metastatic niche and point out the major gaps in knowledge toward developing new therapeutics that will cotarget the stromal compartment in an effort to improve the treatment and prevention of brain metastases.
Collapse
Affiliation(s)
- Hila Doron
- Department of Pathology, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Tobias Pukrop
- Department of Internal Medicine III, Hematology and Medical Oncology, University Hospital Regensburg, Regensburg, Germany
| | - Neta Erez
- Department of Pathology, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel.
| |
Collapse
|
35
|
Askoxylakis V, Ferraro GB, Badeaux M, Kodack DP, Kirst I, Shankaraiah RC, Wong CSF, Duda DG, Fukumura D, Jain RK. Dual endothelin receptor inhibition enhances T-DM1 efficacy in brain metastases from HER2-positive breast cancer. NPJ Breast Cancer 2019; 5:4. [PMID: 30675514 PMCID: PMC6333771 DOI: 10.1038/s41523-018-0100-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Accepted: 12/20/2018] [Indexed: 12/26/2022] Open
Abstract
The effective treatment of cerebral metastases from HER2-positive breast cancer remains an unmet need. Recent studies indicate that activated astrocytes and brain endothelial cells exert chemoprotective effects on cancer cells through direct physical interaction. Here we report that the endothelin axis mediates protection of HER2-amplified brain metastatic breast cancers to the anti-HER2 antibody-drug conjugate ado-trastuzumab emtansine (T-DM1). Macitentan, a dual inhibitor of endothelin receptors A and B, improves the efficacy of T-DM1 against breast cancers grown in the brain. We show that direct contact of brain stroma with cancer cells is required for protection to T-DM1. Our data suggest that targeting the endothelin axis may be beneficial when anti-signaling agent and cytotoxic agent are combined. These findings may contribute to the development of therapeutic approaches with enhanced efficacy in the brain microenvironment.
Collapse
Affiliation(s)
- Vasileios Askoxylakis
- Edwin L. Steele Laboratories, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA USA
| | - Gino B Ferraro
- Edwin L. Steele Laboratories, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA USA
| | - Mark Badeaux
- Edwin L. Steele Laboratories, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA USA
| | - David P Kodack
- Edwin L. Steele Laboratories, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA USA
| | - Isabelle Kirst
- Edwin L. Steele Laboratories, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA USA
| | - Ram C Shankaraiah
- Edwin L. Steele Laboratories, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA USA
| | - Christina S F Wong
- Edwin L. Steele Laboratories, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA USA
| | - Dan G Duda
- Edwin L. Steele Laboratories, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA USA
| | - Dai Fukumura
- Edwin L. Steele Laboratories, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA USA
| | - Rakesh K Jain
- Edwin L. Steele Laboratories, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA USA
| |
Collapse
|
36
|
Liu Y, Gao Y, Li D, He L, IW L, Hao B, Chen X, Cao Y. LASP1 promotes glioma cell proliferation and migration and is negatively regulated by miR-377-3p. Biomed Pharmacother 2018; 108:845-851. [DOI: 10.1016/j.biopha.2018.09.068] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Revised: 09/11/2018] [Accepted: 09/11/2018] [Indexed: 10/28/2022] Open
|
37
|
Franchino F, Rudà R, Soffietti R. Mechanisms and Therapy for Cancer Metastasis to the Brain. Front Oncol 2018; 8:161. [PMID: 29881714 PMCID: PMC5976742 DOI: 10.3389/fonc.2018.00161] [Citation(s) in RCA: 94] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Accepted: 04/30/2018] [Indexed: 12/12/2022] Open
Abstract
Advances in chemotherapy and targeted therapies have improved survival in cancer patients with an increase of the incidence of newly diagnosed brain metastases (BMs). Intracranial metastases are symptomatic in 60–70% of patients. Magnetic resonance imaging (MRI) with gadolinium is more sensitive than computed tomography and advanced neuroimaging techniques have been increasingly used in the detection, treatment planning, and follow-up of BM. Apart from the morphological analysis, the most effective tool for characterizing BM is immunohistochemistry. Molecular alterations not always reflect those of the primary tumor. More sophisticated methods of tumor analysis detecting circulating biomarkers in fluids (liquid biopsy), including circulating DNA, circulating tumor cells, and extracellular vesicles, containing tumor DNA and macromolecules (microRNA), have shown promise regarding tumor treatment response and progression. The choice of therapeutic approaches is guided by prognostic scores (Recursive Partitioning Analysis and diagnostic-specific Graded Prognostic Assessment-DS-GPA). The survival benefit of surgical resection seems limited to the subgroup of patients with controlled systemic disease and good performance status. Leptomeningeal disease (LMD) can be a complication, especially in posterior fossa metastases undergoing a “piecemeal” resection. Radiosurgery of the resection cavity may offer comparable survival and local control as postoperative whole-brain radiotherapy (WBRT). WBRT alone is now the treatment of choice only for patients with single or multiple BMs not amenable to surgery or radiosurgery, or with poor prognostic factors. To reduce the neurocognitive sequelae of WBRT intensity modulated radiotherapy with hippocampal sparing, and pharmacological approaches (memantine and donepezil) have been investigated. In the last decade, a multitude of molecular abnormalities have been discovered. Approximately 33% of patients with non-small cell lung cancer (NSCLC) tumors and epidermal growth factor receptor mutations develop BMs, which are targetable with different generations of tyrosine kinase inhibitors (TKIs: gefitinib, erlotinib, afatinib, icotinib, and osimertinib). Other “druggable” alterations seen in up to 5% of NSCLC patients are the rearrangements of the “anaplastic lymphoma kinase” gene TKI (crizotinib, ceritinib, alectinib, brigatinib, and lorlatinib). In human epidermal growth factor receptor 2-positive, breast cancer targeted therapies have been widely used (trastuzumab, trastuzumab-emtansine, lapatinib-capecitabine, and neratinib). Novel targeted and immunotherapeutic agents have also revolutionized the systemic management of melanoma (ipilimumab, nivolumab, pembrolizumab, and BRAF inhibitors dabrafenib and vemurafenib).
Collapse
Affiliation(s)
- Federica Franchino
- Department of Neuro-Oncology, University and City of Health and Science Hospital, Turin, Italy
| | - Roberta Rudà
- Department of Neuro-Oncology, University and City of Health and Science Hospital, Turin, Italy
| | - Riccardo Soffietti
- Department of Neuro-Oncology, University and City of Health and Science Hospital, Turin, Italy
| |
Collapse
|
38
|
Conflicting Roles of Connexin43 in Tumor Invasion and Growth in the Central Nervous System. Int J Mol Sci 2018; 19:ijms19041159. [PMID: 29641478 PMCID: PMC5979343 DOI: 10.3390/ijms19041159] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Revised: 04/05/2018] [Accepted: 04/09/2018] [Indexed: 12/24/2022] Open
Abstract
The tumor microenvironment is known to have increased levels of cytokines and metabolites, such as glutamate, due to their release from the surrounding cells. A normal cell around the tumor that responds to the inflammatory environment is likely to be subsequently altered. We discuss how these abnormalities will support tumor survival via the actions of gap junctions (GJs) and hemichannels (HCs) which are composed of hexamer of connexin43 (Cx43) protein. In particular, we discuss how GJ intercellular communication (GJIC) in glioma cells, the primary brain tumor, is a regulatory factor and its attenuation leads to tumor invasion. In contrast, the astrocytes, which are normal cells around the glioma, are “hijacked” by tumor cells, either by receiving the transmission of malignant substances from the cancer cells via GJIC, or perhaps via astrocytic HC activity through the paracrine signaling which enable the delivery of these substances to the distal astrocytes. This astrocytic signaling would promote tumor expansion in the brain. In addition, brain metastasis from peripheral tissues has also been known to be facilitated by GJs formed between cerebral vascular endothelial cells and cancer cells. Astrocytes and microglia are generally thought to eliminate cancer cells at the blood–brain barrier. In contrast, some reports suggest they facilitate tumor progression as tumor cells take advantage of the normal functions of astrocytes that support the survival of the neurons by exchanging nutrients and metabolites. In summary, GJIC is essential for the normal physiological function of growth and allowing the diffusion of physiological substances. Therefore, whether GJIC is cancer promoting or suppressing may be dependent on what permeates through GJs, when it is active, and to which cells. The nature of GJs, which has been ambiguous in brain tumor progression, needs to be revisited and understood together with new findings on Cx proteins and HC activities.
Collapse
|
39
|
Wilhelm I, Fazakas C, Molnár K, Végh AG, Haskó J, Krizbai IA. Foe or friend? Janus-faces of the neurovascular unit in the formation of brain metastases. J Cereb Blood Flow Metab 2018; 38:563-587. [PMID: 28920514 PMCID: PMC5888855 DOI: 10.1177/0271678x17732025] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Revised: 07/13/2017] [Accepted: 08/21/2017] [Indexed: 12/11/2022]
Abstract
Despite the potential obstacle represented by the blood-brain barrier for extravasating malignant cells, metastases are more frequent than primary tumors in the central nervous system. Not only tightly interconnected endothelial cells can hinder metastasis formation, other cells of the brain microenvironment (like astrocytes and microglia) can also be very hostile, destroying the large majority of metastatic cells. However, malignant cells that are able to overcome these harmful mechanisms may benefit from the shielding and even support provided by cerebral endothelial cells, astrocytes and microglia, rendering the brain a sanctuary site against anti-tumor strategies. Thus, cells of the neurovascular unit have a Janus-faced attitude towards brain metastatic cells, being both destructive and protective. In this review, we present the main mechanisms of brain metastasis formation, including those involved in extravasation through the brain vasculature and survival in the cerebral environment.
Collapse
Affiliation(s)
- Imola Wilhelm
- Institute of Biophysics, Biological Research Centre, Hungarian Academy of Sciences, Szeged, Hungary
- Institute of Life Sciences, Vasile Goldiş Western University of Arad, Arad, Romania
| | - Csilla Fazakas
- Institute of Biophysics, Biological Research Centre, Hungarian Academy of Sciences, Szeged, Hungary
| | - Kinga Molnár
- Institute of Biophysics, Biological Research Centre, Hungarian Academy of Sciences, Szeged, Hungary
| | - Attila G Végh
- Institute of Biophysics, Biological Research Centre, Hungarian Academy of Sciences, Szeged, Hungary
| | - János Haskó
- Institute of Biophysics, Biological Research Centre, Hungarian Academy of Sciences, Szeged, Hungary
| | - István A Krizbai
- Institute of Biophysics, Biological Research Centre, Hungarian Academy of Sciences, Szeged, Hungary
- Institute of Life Sciences, Vasile Goldiş Western University of Arad, Arad, Romania
| |
Collapse
|
40
|
Preusser M, Winkler F, Valiente M, Manegold C, Moyal E, Widhalm G, Tonn JC, Zielinski C. Recent advances in the biology and treatment of brain metastases of non-small cell lung cancer: summary of a multidisciplinary roundtable discussion. ESMO Open 2018; 3:e000262. [PMID: 29387475 PMCID: PMC5786916 DOI: 10.1136/esmoopen-2017-000262] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Revised: 11/21/2017] [Accepted: 11/29/2017] [Indexed: 12/21/2022] Open
Abstract
This article is the result of a round table discussion held at the European Lung Cancer Conference (ELCC) in Geneva in May 2017. Its purpose is to explore and discuss the advances in the knowledge about the biology and treatment of brain metastases originating from non-small cell lung cancer. The authors propose a series of recommendations for research and treatment within the discussed context.
Collapse
Affiliation(s)
- Matthias Preusser
- Clinical Division of Oncology, Department of Medicine I, Comprehensive Cancer Centre, Medical University Vienna - General Hospital, Vienna, Austria
| | - Frank Winkler
- Neurology Clinic and National Center for Tumor Diseases, University Hospital Heidelberg, Heidelberg, Germany.,Clinical Cooperation Unit Neuro-oncology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Manuel Valiente
- Brain Metastasis Group, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Christian Manegold
- Medical Faculty Mannheim, University of Heidelberg, Mannheim, Baden-Württemberg, Germany
| | - Elizabeth Moyal
- Radiation Oncology Department, Radiobiology team 11, UMR1037 INSERM, Institut Universitaire du Cancer de Toulouse Oncopole, Centre de Recherche contre le Cancer, Toulouse, France
| | - Georg Widhalm
- Department of Neurosurgery, Medical University of Vienna (MUV), Vienna, Austria.,Department of Neurosurgery, University of California San Francisco (UCSF), San Francisco, USA.,Comprehensive Cancer Center-Central Nervous System Tumours Unit (CCC-CNS), Medical University Vienna (MUV), Vienna, Austria
| | - Jörg-Christian Tonn
- Department of Neurosurgery, Ludwig-Maximilians University, Munich-Grosshadern, Germany and German Cancer Consortium (DKTK) at the German Cancer Research Centre (DKFZ), Heidelberg, Germany
| | - Christoph Zielinski
- Clinical Division of Oncology, Department of Medicine I, Comprehensive Cancer Centre, Medical University Vienna - General Hospital, Vienna, Austria
| |
Collapse
|
41
|
Menachem A, Makovski V, Bodner O, Pasmanik-Chor M, Stein R, Shomron N, Kloog Y. Intercellular transfer of small RNAs from astrocytes to lung tumor cells induces resistance to chemotherapy. Oncotarget 2017; 7:12489-504. [PMID: 26871466 PMCID: PMC4914300 DOI: 10.18632/oncotarget.7273] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2015] [Accepted: 01/23/2016] [Indexed: 12/17/2022] Open
Abstract
Brain metastases are resistant to chemotherapy and carry a poor prognosis. Studies have shown that tumor cells are surrounded by activated astrocytes, whose cytoprotective properties they exploit for protection from chemotherapy-induced apoptosis. The mechanism of such astrocytic protection is poorly understood. A non-mutational mechanism of resistance to chemotherapy that is receiving increased attention is the regulation of gene translation mediated by small noncoding RNAs (sRNAs), and particularly microRNAs (miRNAs). With the aim of examining the role of astrocytic sRNAs in promoting resistance of human lung tumor PC14 cells to chemotherapy-induced apoptosis, here we used a miRNA microarray to compare sRNA profiles of human lung tumor cells cultured with and without astrocytes. We found that sRNAs are transferred from astrocytes to PC14 cells in a contact-dependent manner. Transfer was rapid, reaching a plateau after only 6 hours in culture. The sRNA transfer was inhibited by the broad-spectrum gap-junction antagonist carbenoxolone, indicating that transfer occurs via gap junctions. Among the transferred sRNAs were several that are implicated in survival pathways. Enforced expression of these sRNAs in PC14 cells increased their resistance to the chemotherapeutic agent paclitaxel. These novel findings might be of clinical relevance for the treatment of patients with brain metastases.
Collapse
Affiliation(s)
- Assaf Menachem
- Department of Neurobiology, Tel Aviv University, 69978 Tel Aviv, Israel
| | - Victoria Makovski
- Department of Neurobiology, Tel Aviv University, 69978 Tel Aviv, Israel
| | - Or Bodner
- Department of Neurobiology, Tel Aviv University, 69978 Tel Aviv, Israel
| | - Metsada Pasmanik-Chor
- Bioinformatics Unit, The George S. Wise Faculty of Life Sciences, Tel Aviv University, 69978 Tel Aviv, Israel
| | - Reuven Stein
- Department of Neurobiology, Tel Aviv University, 69978 Tel Aviv, Israel
| | - Noam Shomron
- Department of Cell and Developmental Biology, Sackler Faculty of Medicine, Tel Aviv University, 69978 Tel Aviv, Israel
| | - Yoel Kloog
- Department of Neurobiology, Tel Aviv University, 69978 Tel Aviv, Israel
| |
Collapse
|
42
|
Wasilewski D, Priego N, Fustero-Torre C, Valiente M. Reactive Astrocytes in Brain Metastasis. Front Oncol 2017; 7:298. [PMID: 29312881 PMCID: PMC5732246 DOI: 10.3389/fonc.2017.00298] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Accepted: 11/20/2017] [Indexed: 11/13/2022] Open
Abstract
Brain metastasis, the secondary growth of malignant cells within the central nervous system (CNS), exceeds the incidence of primary brain tumors (i.e., gliomas) by tenfold and are seemingly on the rise owing to the emergence of novel targeted therapies that are more effective in controlling extracranial disease relatively to intracranial lesions. Despite the fact that metastasis to the brain poses a unmet clinical problem, with afflicted patients carrying significant morbidity and a fatal prognosis, our knowledge as to how metastatic cells manage to adapt to the tissue environment of the CNS remains limited. Answering this question could pave the way for novel and more specific therapeutic modalities in brain metastasis by targeting the specific makeup of the brain metastatic niche. In regard to this, astrocytes have emerged as the major host cell type that cancer cells encounter and interact with during brain metastasis formation. Similarly to other CNS disorders, astrocytes become reactive and respond to the presence of cancer cells by changing their phenotype and significantly influencing the outcome of disseminated cancer cells within the CNS. Here, we summarize the current knowledge on the contribution of reactive astrocytes in brain metastasis by focusing on the signaling pathways and types of interactions that play a crucial part in the communication with cancer cells and how these could be translated into innovative therapies.
Collapse
Affiliation(s)
- David Wasilewski
- Brain Metastasis Group, Spanish National Cancer Research Center (CNIO), Madrid, Spain
| | - Neibla Priego
- Brain Metastasis Group, Spanish National Cancer Research Center (CNIO), Madrid, Spain
| | - Coral Fustero-Torre
- Bioinformatics Unit, Spanish National Cancer Research Center (CNIO), Madrid, Spain
| | - Manuel Valiente
- Brain Metastasis Group, Spanish National Cancer Research Center (CNIO), Madrid, Spain
| |
Collapse
|
43
|
Stuhlmiller TJ, Zawistowski JS, Chen X, Sciaky N, Angus SP, Hicks ST, Parry TL, Huang W, Beak JY, Willis MS, Johnson GL, Jensen BC. Kinome and Transcriptome Profiling Reveal Broad and Distinct Activities of Erlotinib, Sunitinib, and Sorafenib in the Mouse Heart and Suggest Cardiotoxicity From Combined Signal Transducer and Activator of Transcription and Epidermal Growth Factor Receptor Inhibition. J Am Heart Assoc 2017; 6:e006635. [PMID: 29051215 PMCID: PMC5721866 DOI: 10.1161/jaha.117.006635] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Accepted: 09/11/2017] [Indexed: 01/22/2023]
Abstract
BACKGROUND Most novel cancer therapeutics target kinases that are essential to tumor survival. Some of these kinase inhibitors are associated with cardiotoxicity, whereas others appear to be cardiosafe. The basis for this distinction is unclear, as are the molecular effects of kinase inhibitors in the heart. METHODS AND RESULTS We administered clinically relevant doses of sorafenib, sunitinib (cardiotoxic multitargeted kinase inhibitors), or erlotinib (a cardiosafe epidermal growth factor receptor inhibitor) to mice daily for 2 weeks. We then compared the effects of these 3 kinase inhibitors on the cardiac transcriptome using RNAseq and the cardiac kinome using multiplexed inhibitor beads coupled with mass spectrometry. We found unexpectedly broad molecular effects of all 3 kinase inhibitors, suggesting that target kinase selectivity does not define either the molecular response or the potential for cardiotoxicity. Using in vivo drug administration and primary cardiomyocyte culture, we also show that the cardiosafety of erlotinib treatment may result from upregulation of the cardioprotective signal transducer and activator of transcription 3 pathway, as co-treatment with erlotinib and a signal transducer and activator of transcription inhibitor decreases cardiac contractile function and cardiomyocyte fatty acid oxidation. CONCLUSIONS Collectively our findings indicate that preclinical kinome and transcriptome profiling may predict the cardiotoxicity of novel kinase inhibitors, and suggest caution for the proposed therapeutic strategy of combined signal transducer and activator of transcription/epidermal growth factor receptor inhibition for cancer treatment.
Collapse
Affiliation(s)
- Timothy J Stuhlmiller
- Department of Pharmacology, University of North Carolina School of Medicine, Chapel Hill, NC
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC
| | - Jon S Zawistowski
- Department of Pharmacology, University of North Carolina School of Medicine, Chapel Hill, NC
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC
| | - Xin Chen
- Department of Pharmacology, University of North Carolina School of Medicine, Chapel Hill, NC
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC
| | - Noah Sciaky
- Department of Pharmacology, University of North Carolina School of Medicine, Chapel Hill, NC
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC
| | - Steven P Angus
- Department of Pharmacology, University of North Carolina School of Medicine, Chapel Hill, NC
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC
| | - Sean T Hicks
- University of North Carolina McAllister Heart Institute, Chapel Hill, NC
| | - Traci L Parry
- Department of Pathology and Laboratory Medicine, University of North Carolina School of Medicine, Chapel Hill, NC
- University of North Carolina McAllister Heart Institute, Chapel Hill, NC
| | - Wei Huang
- University of North Carolina McAllister Heart Institute, Chapel Hill, NC
| | - Ju Youn Beak
- University of North Carolina McAllister Heart Institute, Chapel Hill, NC
| | - Monte S Willis
- Department of Pharmacology, University of North Carolina School of Medicine, Chapel Hill, NC
- Department of Pathology and Laboratory Medicine, University of North Carolina School of Medicine, Chapel Hill, NC
- University of North Carolina McAllister Heart Institute, Chapel Hill, NC
| | - Gary L Johnson
- Department of Pharmacology, University of North Carolina School of Medicine, Chapel Hill, NC
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC
| | - Brian C Jensen
- Department of Pharmacology, University of North Carolina School of Medicine, Chapel Hill, NC
- Division of Cardiology, University of North Carolina School of Medicine, Chapel Hill, NC
- University of North Carolina McAllister Heart Institute, Chapel Hill, NC
| |
Collapse
|
44
|
Lung cancer-associated brain metastasis: Molecular mechanisms and therapeutic options. Cell Oncol (Dordr) 2017; 40:419-441. [PMID: 28921309 DOI: 10.1007/s13402-017-0345-5] [Citation(s) in RCA: 101] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/16/2017] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Lung cancer is the most common cause of cancer-related mortality in humans. There are several reasons for this high rate of mortality, including metastasis to several organs, especially the brain. In fact, lung cancer is responsible for approximately 50% of all brain metastases, which are very difficult to manage. Understanding the cellular and molecular mechanisms underlying lung cancer-associated brain metastasis brings up novel therapeutic promises with the hope to ameliorate the severity of the disease. Here, we provide an overview of the molecular mechanisms underlying the pathogenesis of lung cancer dissemination and metastasis to the brain, as well as promising horizons for impeding lung cancer brain metastasis, including the role of cancer stem cells, the blood-brain barrier, interactions of lung cancer cells with the brain microenvironment and lung cancer-driven systemic processes, as well as the role of growth factor/receptor tyrosine kinases, cell adhesion molecules and non-coding RNAs. In addition, we provide an overview of current and novel therapeutic approaches, including radiotherapy, surgery and stereotactic radiosurgery, chemotherapy, as also targeted cancer stem cell and epithelial-mesenchymal transition (EMT)-based therapies, micro-RNA-based therapies and other small molecule or antibody-based therapies. We will also discuss the daunting potential of some combined therapies. CONCLUSIONS The identification of molecular mechanisms underlying lung cancer metastasis has opened up new avenues towards their eradication and provides interesting opportunities for future research aimed at the development of novel targeted therapies.
Collapse
|
45
|
Hoshide R, Jandial R. The role of the neural niche in brain metastasis. Clin Exp Metastasis 2017; 34:369-376. [DOI: 10.1007/s10585-017-9857-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Accepted: 07/22/2017] [Indexed: 12/17/2022]
|
46
|
Rosanò L, Cianfrocca R, Sestito R, Tocci P, Di Castro V, Bagnato A. Targeting endothelin-1 receptor/β-arrestin1 network for the treatment of ovarian cancer. Expert Opin Ther Targets 2017; 21:925-932. [DOI: 10.1080/14728222.2017.1361930] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Laura Rosanò
- Preclinical Models and New Therapeutic Agents Unit, Translational Research Functional Departmental Area, Regina Elena National Cancer Institute, Rome, Italy
| | - Roberta Cianfrocca
- Preclinical Models and New Therapeutic Agents Unit, Translational Research Functional Departmental Area, Regina Elena National Cancer Institute, Rome, Italy
| | - Rosanna Sestito
- Preclinical Models and New Therapeutic Agents Unit, Translational Research Functional Departmental Area, Regina Elena National Cancer Institute, Rome, Italy
| | - Piera Tocci
- Preclinical Models and New Therapeutic Agents Unit, Translational Research Functional Departmental Area, Regina Elena National Cancer Institute, Rome, Italy
| | - Valeriana Di Castro
- Preclinical Models and New Therapeutic Agents Unit, Translational Research Functional Departmental Area, Regina Elena National Cancer Institute, Rome, Italy
| | - Anna Bagnato
- Preclinical Models and New Therapeutic Agents Unit, Translational Research Functional Departmental Area, Regina Elena National Cancer Institute, Rome, Italy
| |
Collapse
|
47
|
Zhong W, Hu C. [Tumor Cells and Micro-environment in Brain Metastases]. ZHONGGUO FEI AI ZA ZHI = CHINESE JOURNAL OF LUNG CANCER 2017; 19:626-35. [PMID: 27666556 PMCID: PMC5972957 DOI: 10.3779/j.issn.1009-3419.2016.09.12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
近年来,随着早期诊断的方法的出现及精准治疗的应用,肺癌患者的生存及生活质量都得到很大改善。然而,对于肺癌的脑转移病灶,目前仍缺乏一个理想的治疗方案,严重影响了该部分患者生存状态。了解肿瘤细胞如何在中枢神经系统定植、生长和侵袭等相关生物学行为及其产生机制对预防及治疗肿瘤细胞脑转移病灶具有重大的意义。“种子-土壤”这一假说可以很好的解释这一过程,这一假说的关键即肿瘤细胞可与中枢神经系统微环境各组成之间产生相互适应性变化,正是这种相互作用决定了脑转移病灶的发生发展。本文就脑转移肿瘤细胞、脑转移肿瘤微环境及他们之间的相互作用进行综述,旨在为脑转移病灶的治疗提供新的思路。
Collapse
Affiliation(s)
- Wen Zhong
- Department of Respiratory Medicine, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Chengping Hu
- Department of Respiratory Medicine, Xiangya Hospital, Central South University, Changsha 410008, China
| |
Collapse
|
48
|
Abstract
The spread of cancer from a primary tumor to distant organ sites is the most devastating aspect of malignancy. Dissemination to specific organs depends upon blood flow patterns and characteristics of the distant organ environment, such as the vascular architecture, stromal cell content, and the biochemical milieu of growth factors, signaling molecules, and metabolic substrates, which can be permissive or antagonistic to metastatic colonization. Metastatic tumor cells possess intrinsic cellular properties selected for adaptation to specific organ environments, where they co-opt growth and survival signals, undergo metabolic reprogramming, and subvert resident stromal cell activities to promote extravasation, immune evasion, angiogenesis, and overt metastatic growth. Recent work and new experimental models of metastatic organotropism are uncovering crucial details of how malignant cells metastasize to specific tissues, revealing key mediators that prepare metastatic niches in specific organs and identifying new targets that offer attractive options for therapeutic intervention.
Collapse
Affiliation(s)
- Heath A. Smith
- Department of Molecular Biology, Princeton University, Princeton, New Jersey 08544
| | - Yibin Kang
- Department of Molecular Biology, Princeton University, Princeton, New Jersey 08544
| |
Collapse
|
49
|
Lee HJ, Hanibuchi M, Kim SJ, Yu H, Kim MS, He J, Langley RR, Lehembre F, Regenass U, Fidler IJ. Treatment of experimental human breast cancer and lung cancer brain metastases in mice by macitentan, a dual antagonist of endothelin receptors, combined with paclitaxel. Neuro Oncol 2016; 18:486-96. [PMID: 26995790 DOI: 10.1093/neuonc/now037] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND We recently demonstrated that brain endothelial cells and astrocytes protect cancer cells from chemotherapy through an endothelin-dependent signaling mechanism. Here, we evaluated the efficacy of macitentan, a dual endothelin receptor (ETAR and ETBR) antagonist, in the treatment of experimental breast and lung cancer brain metastases. METHODS The effect of macitentan on astrocyte- and brain endothelial cell-mediated chemoprotective properties was measured in cytotoxic assays. We compared survival of mice bearing established MDA-MB-231 breast cancer or PC-14 non-small cell lung cancer (NSCLC) brain metastases that were treated with vehicle, macitentan, paclitaxel, or macitentan plus paclitaxel. Cell division, apoptosis, tumor vasculature, and expression of survival-related proteins were assessed by immunofluorescent microscopy. RESULTS Cancer cells and tumor-associated endothelial cells expressed activated forms of AKT and MAPK in vehicle- and paclitaxel-treated groups in both metastasis models, but these proteins were downregulated in metastases of mice that received macitentan. The survival-related proteins Bcl2L1, Gsta5, and Twist1 that localized to cancer cells and tumor-associated endothelial cells in vehicle- and paclitaxel-treated tumors were suppressed by macitentan. Macitentan or paclitaxel alone had no effect on survival. However, when macitentan was combined with paclitaxel, we noted a significant reduction in cancer cell division and marked apoptosis of both cancer cells and tumor-associated endothelial cells. Moreover, macitentan plus paclitaxel therapy significantly increased overall survival by producing complete responses in 35 of 35 mice harboring brain metastases. CONCLUSIONS Dual antagonism of ETAR and ETBR signaling sensitizes experimental brain metastases to paclitaxel and may represent a new therapeutic option for patients with brain metastases.
Collapse
Affiliation(s)
- Ho Jeong Lee
- Department of Cancer Biology, Metastasis Research Laboratory, The University of Texas MD Anderson Cancer Center, Houston, Texas (H.J.L., M.H., S.-J.K., H.Y., M.S.K., J.H., R.R.L., I.J.F.); Actelion Pharmaceuticals, Ltd., Allschwil, Switzerland (F.L., U.R.)
| | - Masaki Hanibuchi
- Department of Cancer Biology, Metastasis Research Laboratory, The University of Texas MD Anderson Cancer Center, Houston, Texas (H.J.L., M.H., S.-J.K., H.Y., M.S.K., J.H., R.R.L., I.J.F.); Actelion Pharmaceuticals, Ltd., Allschwil, Switzerland (F.L., U.R.)
| | - Sun-Jin Kim
- Department of Cancer Biology, Metastasis Research Laboratory, The University of Texas MD Anderson Cancer Center, Houston, Texas (H.J.L., M.H., S.-J.K., H.Y., M.S.K., J.H., R.R.L., I.J.F.); Actelion Pharmaceuticals, Ltd., Allschwil, Switzerland (F.L., U.R.)
| | - Hyunkyung Yu
- Department of Cancer Biology, Metastasis Research Laboratory, The University of Texas MD Anderson Cancer Center, Houston, Texas (H.J.L., M.H., S.-J.K., H.Y., M.S.K., J.H., R.R.L., I.J.F.); Actelion Pharmaceuticals, Ltd., Allschwil, Switzerland (F.L., U.R.)
| | - Mark Seungwook Kim
- Department of Cancer Biology, Metastasis Research Laboratory, The University of Texas MD Anderson Cancer Center, Houston, Texas (H.J.L., M.H., S.-J.K., H.Y., M.S.K., J.H., R.R.L., I.J.F.); Actelion Pharmaceuticals, Ltd., Allschwil, Switzerland (F.L., U.R.)
| | - Junqin He
- Department of Cancer Biology, Metastasis Research Laboratory, The University of Texas MD Anderson Cancer Center, Houston, Texas (H.J.L., M.H., S.-J.K., H.Y., M.S.K., J.H., R.R.L., I.J.F.); Actelion Pharmaceuticals, Ltd., Allschwil, Switzerland (F.L., U.R.)
| | - Robert R Langley
- Department of Cancer Biology, Metastasis Research Laboratory, The University of Texas MD Anderson Cancer Center, Houston, Texas (H.J.L., M.H., S.-J.K., H.Y., M.S.K., J.H., R.R.L., I.J.F.); Actelion Pharmaceuticals, Ltd., Allschwil, Switzerland (F.L., U.R.)
| | - François Lehembre
- Department of Cancer Biology, Metastasis Research Laboratory, The University of Texas MD Anderson Cancer Center, Houston, Texas (H.J.L., M.H., S.-J.K., H.Y., M.S.K., J.H., R.R.L., I.J.F.); Actelion Pharmaceuticals, Ltd., Allschwil, Switzerland (F.L., U.R.)
| | - Urs Regenass
- Department of Cancer Biology, Metastasis Research Laboratory, The University of Texas MD Anderson Cancer Center, Houston, Texas (H.J.L., M.H., S.-J.K., H.Y., M.S.K., J.H., R.R.L., I.J.F.); Actelion Pharmaceuticals, Ltd., Allschwil, Switzerland (F.L., U.R.)
| | - Isaiah J Fidler
- Department of Cancer Biology, Metastasis Research Laboratory, The University of Texas MD Anderson Cancer Center, Houston, Texas (H.J.L., M.H., S.-J.K., H.Y., M.S.K., J.H., R.R.L., I.J.F.); Actelion Pharmaceuticals, Ltd., Allschwil, Switzerland (F.L., U.R.)
| |
Collapse
|
50
|
Lowery FJ, Yu D. Brain metastasis: Unique challenges and open opportunities. Biochim Biophys Acta Rev Cancer 2016; 1867:49-57. [PMID: 27939792 DOI: 10.1016/j.bbcan.2016.12.001] [Citation(s) in RCA: 94] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2016] [Revised: 12/03/2016] [Accepted: 12/05/2016] [Indexed: 12/29/2022]
Abstract
The metastasis of cancer to the central nervous system (CNS) remains a devastating clinical reality, carrying an estimated survival time of less than one year in spite of recent therapeutic breakthroughs for other disease contexts. Advances in brain metastasis research are hindered by a number of factors, including its complicated nature and the difficulty of modeling metastatic cancer growth in the unique brain microenvironment. In this review, we will discuss the clinical challenge, and compare the merits and limitations of the available models for brain metastasis research. Additionally, we will specifically address current knowledge on how brain metastases take advantage of the unique brain environment to benefit their own growth. Finally, we will explore the distinctive metabolic and chemical characteristics of the brain and how these paradoxically represent barriers to establishment of brain metastasis, but also provide ample supplies for metastatic cells' growth in the brain. We envision that multi-disciplinary innovative approaches will open opportunities for the field to make breakthroughs in tackling unique challenges of brain metastasis.
Collapse
Affiliation(s)
- Frank J Lowery
- Department of Molecular and Cellular Oncology, The University of Texas M. D. Anderson Cancer Center, Houston, TX 77030, USA
| | - Dihua Yu
- Department of Molecular and Cellular Oncology, The University of Texas M. D. Anderson Cancer Center, Houston, TX 77030, USA.
| |
Collapse
|