1
|
Sadowski K, Jażdżewska A, Kozłowski J, Zacny A, Lorenc T, Olejarz W. Revolutionizing Glioblastoma Treatment: A Comprehensive Overview of Modern Therapeutic Approaches. Int J Mol Sci 2024; 25:5774. [PMID: 38891962 PMCID: PMC11172387 DOI: 10.3390/ijms25115774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 05/22/2024] [Accepted: 05/25/2024] [Indexed: 06/21/2024] Open
Abstract
Glioblastoma is the most common malignant primary brain tumor in the adult population, with an average survival of 12.1 to 14.6 months. The standard treatment, combining surgery, radiotherapy, and chemotherapy, is not as efficient as we would like. However, the current possibilities are no longer limited to the standard therapies due to rapid advancements in biotechnology. New methods enable a more precise approach by targeting individual cells and antigens to overcome cancer. For the treatment of glioblastoma, these are gamma knife therapy, proton beam therapy, tumor-treating fields, EGFR and VEGF inhibitors, multiple RTKs inhibitors, and PI3K pathway inhibitors. In addition, the increasing understanding of the role of the immune system in tumorigenesis and the ability to identify tumor-specific antigens helped to develop immunotherapies targeting GBM and immune cells, including CAR-T, CAR-NK cells, dendritic cells, and immune checkpoint inhibitors. Each of the described methods has its advantages and disadvantages and faces problems, such as the inefficient crossing of the blood-brain barrier, various neurological and systemic side effects, and the escape mechanism of the tumor. This work aims to present the current modern treatments of glioblastoma.
Collapse
Affiliation(s)
- Karol Sadowski
- The Department of Histology and Embryology, Medical University of Warsaw, Chalubinskiego 5, 02-004 Warsaw, Poland; (K.S.)
- Department of Biochemistry and Pharmacogenomics, Faculty of Pharmacy, Medical University of Warsaw, 02-091 Warsaw, Poland;
- Centre for Preclinical Research, Medical University of Warsaw, 02-091 Warsaw, Poland
| | - Adrianna Jażdżewska
- The Department of Anatomy and Neurobiology, Medical University of Gdansk, Dębinki 1, 80-211 Gdansk, Poland;
| | - Jan Kozłowski
- The Department of Histology and Embryology, Medical University of Warsaw, Chalubinskiego 5, 02-004 Warsaw, Poland; (K.S.)
| | - Aleksandra Zacny
- The Department of Histology and Embryology, Medical University of Warsaw, Chalubinskiego 5, 02-004 Warsaw, Poland; (K.S.)
| | - Tomasz Lorenc
- Department of Radiology I, The Maria Sklodowska-Curie National Research Institute of Oncology, Roentgena 5, 02-781 Warsaw, Poland
| | - Wioletta Olejarz
- Department of Biochemistry and Pharmacogenomics, Faculty of Pharmacy, Medical University of Warsaw, 02-091 Warsaw, Poland;
- Centre for Preclinical Research, Medical University of Warsaw, 02-091 Warsaw, Poland
| |
Collapse
|
2
|
Thapa R, Afzal M, Goyal A, Gupta G, Bhat AA, Almalki WH, Kazmi I, Alzarea SI, Shahwan M, Kukreti N, Ali H, Dureja H, Kumar P, Singh TG, Kuppusamy G, Singh SK, Dua K. Exploring ncRNA-mediated regulation of EGFR signalling in glioblastoma: From mechanisms to therapeutics. Life Sci 2024; 345:122613. [PMID: 38582393 DOI: 10.1016/j.lfs.2024.122613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 04/03/2024] [Accepted: 04/03/2024] [Indexed: 04/08/2024]
Abstract
Glioblastoma (GBM) is the most prevalent and deadly primary brain tumor type, with a discouragingly low survival rate and few effective treatments. An important function of the EGFR signalling pathway in the development of GBM is to affect tumor proliferation, persistence, and treatment resistance. Advances in molecular biology in the last several years have shown how important ncRNAs are for controlling a wide range of biological activities, including cancer progression and development. NcRNAs have become important post-transcriptional regulators of gene expression, and they may affect the EGFR pathway by either directly targeting EGFR or by modifying important transcription factors and downstream signalling molecules. The EGFR pathway is aberrantly activated in response to the dysregulation of certain ncRNAs, which has been linked to GBM carcinogenesis, treatment resistance, and unfavourable patient outcomes. We review the literature on miRNAs, circRNAs and lncRNAs that are implicated in the regulation of EGFR signalling in GBM, discussing their mechanisms of action, interactions with the signalling pathway, and implications for GBM therapy. Furthermore, we explore the potential of ncRNA-based strategies to overcome resistance to EGFR-targeted therapies, including the use of ncRNA mimics or inhibitors to modulate the activity of key regulators within the pathway.
Collapse
Affiliation(s)
- Riya Thapa
- School of Pharmacy, Suresh Gyan Vihar University, Jagatpura 302017, Mahal Road, Jaipur, India
| | - Muhammad Afzal
- Department of Pharmaceutical Sciences, Pharmacy Program, Batterjee Medical College, P.O. Box 6231, Jeddah 21442, Saudi Arabia
| | - Ahsas Goyal
- Institute of Pharmaceutical Research, GLA University, Mathura, U.P., India
| | - Gaurav Gupta
- School of Pharmacy, Suresh Gyan Vihar University, Jagatpura 302017, Mahal Road, Jaipur, India; Centre of Medical and Bio-allied Health Sciences Research, Ajman University, Ajman, United Arab Emirates.
| | - Asif Ahmad Bhat
- School of Pharmacy, Suresh Gyan Vihar University, Jagatpura 302017, Mahal Road, Jaipur, India
| | - Waleed Hassan Almalki
- Department of Pharmacology, College of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Imran Kazmi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Sami I Alzarea
- Department of Pharmacology, College of Pharmacy, Jouf University, Sakaka, Aljouf 72341, Saudi Arabia
| | - Moyad Shahwan
- Centre of Medical and Bio-allied Health Sciences Research, Ajman University, Ajman, United Arab Emirates; Department of Clinical Sciences, College of Pharmacy and Health Sciences, Ajman University, Ajman, 346, 7, United Arab Emirates
| | - Neelima Kukreti
- School of Pharmacy, Graphic Era Hill University, Dehradun 248007, India
| | - Haider Ali
- Centre for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, India; Department of Pharmacology, Kyrgyz State Medical College, Bishkek, Kyrgyzstan
| | - Harish Dureja
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak 124001, Haryana, India
| | - Puneet Kumar
- Department of Pharmacology, Central University of Punjab, Ghudda, Punjab, India
| | - Thakur Gurjeet Singh
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab 140401, India
| | - Gowthamarajan Kuppusamy
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty, Nilgiris, India
| | - Sachin Kumar Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab 144411, India; Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Kamal Dua
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW 2007, Australia; Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, NSW 2007, Australia
| |
Collapse
|
3
|
Khan F, Lin Y, Ali H, Pang L, Dunterman M, Hsu WH, Frenis K, Grant Rowe R, Wainwright DA, McCortney K, Billingham LK, Miska J, Horbinski C, Lesniak MS, Chen P. Lactate dehydrogenase A regulates tumor-macrophage symbiosis to promote glioblastoma progression. Nat Commun 2024; 15:1987. [PMID: 38443336 PMCID: PMC10914854 DOI: 10.1038/s41467-024-46193-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 02/14/2024] [Indexed: 03/07/2024] Open
Abstract
Abundant macrophage infiltration and altered tumor metabolism are two key hallmarks of glioblastoma. By screening a cluster of metabolic small-molecule compounds, we show that inhibiting glioblastoma cell glycolysis impairs macrophage migration and lactate dehydrogenase inhibitor stiripentol emerges as the top hit. Combined profiling and functional studies demonstrate that lactate dehydrogenase A (LDHA)-directed extracellular signal-regulated kinase (ERK) pathway activates yes-associated protein 1 (YAP1)/ signal transducer and activator of transcription 3 (STAT3) transcriptional co-activators in glioblastoma cells to upregulate C-C motif chemokine ligand 2 (CCL2) and CCL7, which recruit macrophages into the tumor microenvironment. Reciprocally, infiltrating macrophages produce LDHA-containing extracellular vesicles to promote glioblastoma cell glycolysis, proliferation, and survival. Genetic and pharmacological inhibition of LDHA-mediated tumor-macrophage symbiosis markedly suppresses tumor progression and macrophage infiltration in glioblastoma mouse models. Analysis of tumor and plasma samples of glioblastoma patients confirms that LDHA and its downstream signals are potential biomarkers correlating positively with macrophage density. Thus, LDHA-mediated tumor-macrophage symbiosis provides therapeutic targets for glioblastoma.
Collapse
Affiliation(s)
- Fatima Khan
- Department of Neurological Surgery, Lou and Jean Malnati Brain Tumor Institute, Robert H Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Yiyun Lin
- Department of Genetics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- UTHealth Graduate School of Biomedical Sciences, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Heba Ali
- Department of Neurological Surgery, Lou and Jean Malnati Brain Tumor Institute, Robert H Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Lizhi Pang
- Department of Neurological Surgery, Lou and Jean Malnati Brain Tumor Institute, Robert H Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Madeline Dunterman
- Department of Neurological Surgery, Lou and Jean Malnati Brain Tumor Institute, Robert H Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Wen-Hao Hsu
- UTHealth Graduate School of Biomedical Sciences, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77054, USA
| | - Katie Frenis
- Department of Hematology, Boston Children's Hospital, Boston, MA, 02115, USA
- Harvard Medical School, Boston, MA, 02115, USA
| | - R Grant Rowe
- Department of Hematology, Boston Children's Hospital, Boston, MA, 02115, USA
- Harvard Medical School, Boston, MA, 02115, USA
- Dana-Farber Boston Children's Cancer and Blood Disorders Center, Boston, MA, 02115, USA
| | - Derek A Wainwright
- Department of Neurological Surgery, Lou and Jean Malnati Brain Tumor Institute, Robert H Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Kathleen McCortney
- Department of Neurological Surgery, Lou and Jean Malnati Brain Tumor Institute, Robert H Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Leah K Billingham
- Department of Neurological Surgery, Lou and Jean Malnati Brain Tumor Institute, Robert H Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Jason Miska
- Department of Neurological Surgery, Lou and Jean Malnati Brain Tumor Institute, Robert H Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Craig Horbinski
- Department of Neurological Surgery, Lou and Jean Malnati Brain Tumor Institute, Robert H Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Maciej S Lesniak
- Department of Neurological Surgery, Lou and Jean Malnati Brain Tumor Institute, Robert H Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Peiwen Chen
- Department of Neurological Surgery, Lou and Jean Malnati Brain Tumor Institute, Robert H Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA.
| |
Collapse
|
4
|
Obrador E, Moreno-Murciano P, Oriol-Caballo M, López-Blanch R, Pineda B, Gutiérrez-Arroyo JL, Loras A, Gonzalez-Bonet LG, Martinez-Cadenas C, Estrela JM, Marqués-Torrejón MÁ. Glioblastoma Therapy: Past, Present and Future. Int J Mol Sci 2024; 25:2529. [PMID: 38473776 PMCID: PMC10931797 DOI: 10.3390/ijms25052529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 02/10/2024] [Accepted: 02/16/2024] [Indexed: 03/14/2024] Open
Abstract
Glioblastoma (GB) stands out as the most prevalent and lethal form of brain cancer. Although great efforts have been made by clinicians and researchers, no significant improvement in survival has been achieved since the Stupp protocol became the standard of care (SOC) in 2005. Despite multimodality treatments, recurrence is almost universal with survival rates under 2 years after diagnosis. Here, we discuss the recent progress in our understanding of GB pathophysiology, in particular, the importance of glioma stem cells (GSCs), the tumor microenvironment conditions, and epigenetic mechanisms involved in GB growth, aggressiveness and recurrence. The discussion on therapeutic strategies first covers the SOC treatment and targeted therapies that have been shown to interfere with different signaling pathways (pRB/CDK4/RB1/P16ink4, TP53/MDM2/P14arf, PI3k/Akt-PTEN, RAS/RAF/MEK, PARP) involved in GB tumorigenesis, pathophysiology, and treatment resistance acquisition. Below, we analyze several immunotherapeutic approaches (i.e., checkpoint inhibitors, vaccines, CAR-modified NK or T cells, oncolytic virotherapy) that have been used in an attempt to enhance the immune response against GB, and thereby avoid recidivism or increase survival of GB patients. Finally, we present treatment attempts made using nanotherapies (nanometric structures having active anti-GB agents such as antibodies, chemotherapeutic/anti-angiogenic drugs or sensitizers, radionuclides, and molecules that target GB cellular receptors or open the blood-brain barrier) and non-ionizing energies (laser interstitial thermal therapy, high/low intensity focused ultrasounds, photodynamic/sonodynamic therapies and electroporation). The aim of this review is to discuss the advances and limitations of the current therapies and to present novel approaches that are under development or following clinical trials.
Collapse
Affiliation(s)
- Elena Obrador
- Scientia BioTech S.L., 46002 Valencia, Spain; (P.M.-M.); (M.O.-C.); (R.L.-B.); (J.M.E.)
- Department of Physiology, Faculty of Medicine and Odontology, University of Valencia, 46010 Valencia, Spain;
| | - Paz Moreno-Murciano
- Scientia BioTech S.L., 46002 Valencia, Spain; (P.M.-M.); (M.O.-C.); (R.L.-B.); (J.M.E.)
| | - María Oriol-Caballo
- Scientia BioTech S.L., 46002 Valencia, Spain; (P.M.-M.); (M.O.-C.); (R.L.-B.); (J.M.E.)
- Department of Physiology, Faculty of Medicine and Odontology, University of Valencia, 46010 Valencia, Spain;
| | - Rafael López-Blanch
- Scientia BioTech S.L., 46002 Valencia, Spain; (P.M.-M.); (M.O.-C.); (R.L.-B.); (J.M.E.)
- Department of Physiology, Faculty of Medicine and Odontology, University of Valencia, 46010 Valencia, Spain;
| | - Begoña Pineda
- Department of Physiology, Faculty of Medicine and Odontology, University of Valencia, 46010 Valencia, Spain;
| | - Julia Lara Gutiérrez-Arroyo
- Department of Medicine, Jaume I University of Castellon, 12071 Castellon, Spain; (J.L.G.-A.); (A.L.); (C.M.-C.)
| | - Alba Loras
- Department of Medicine, Jaume I University of Castellon, 12071 Castellon, Spain; (J.L.G.-A.); (A.L.); (C.M.-C.)
| | - Luis G. Gonzalez-Bonet
- Department of Neurosurgery, Castellon General University Hospital, 12004 Castellon, Spain;
| | - Conrado Martinez-Cadenas
- Department of Medicine, Jaume I University of Castellon, 12071 Castellon, Spain; (J.L.G.-A.); (A.L.); (C.M.-C.)
| | - José M. Estrela
- Scientia BioTech S.L., 46002 Valencia, Spain; (P.M.-M.); (M.O.-C.); (R.L.-B.); (J.M.E.)
- Department of Physiology, Faculty of Medicine and Odontology, University of Valencia, 46010 Valencia, Spain;
- Department of Physiology, Faculty of Pharmacy, University of Valencia, 46100 Burjassot, Spain
| | | |
Collapse
|
5
|
Fan H, Zhou Y, Zhang Z, Zhou G, Yuan C. ROR1-AS1: A Meaningful Long Noncoding RNA in Oncogenesis. Mini Rev Med Chem 2024; 24:1884-1893. [PMID: 38859780 DOI: 10.2174/0113895575294482240530154620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 04/27/2024] [Accepted: 05/06/2024] [Indexed: 06/12/2024]
Abstract
Long noncoding RNA (lncRNA) is a non-coding RNA with a length of more than 200 nucleotides, involved in multiple regulatory processes in vivo, and is related to the physiology and pathology of human diseases. An increasing number of experimental results suggest that when lncRNA is abnormally expressed, it results in the development of tumors. LncRNAs can be divided into five broad categories: sense, antisense, bidirectional, intronic, and intergenic. Studies have found that some antisense lncRNAs are involved in a variety of human tumorigenesis. The newly identified ROR1-AS1, which functions as an antisense RNA of ROR1, is located in the 1p31.3 region of the human genome. Recent studies have reported that abnormal expression of lncRNA ROR1-AS1 can affect cell growth, proliferation, invasion, and metastasis and increase oncogenesis and tumor spread, indicating lncRNA ROR1-AS1 as a promising target for many tumor biological therapies. In this study, the pathophysiology and molecular mechanism of ROR1-AS1 in various malignancies are discussed by retrieving the related literature. ROR1-AS1 is a cancer-associated lncRNA, and studies have found that it is either over- or underexpressed in multiple malignancies, including liver cancer, colon cancer, osteosarcoma, glioma, cervical cancer, bladder cancer, lung adenocarcinoma, and mantle cell lymphoma. Furthermore, it has been demonstrated that lncRNA ROR1-AS1 participates in proliferation, migration, invasion, and suppression of apoptosis of cancer cells. Furthermore, lncRNA ROR1-AS1 promotes the development of tumors by up-regulating or downregulating ROR1-AS1 conjugates and various pathways and miR-504, miR-4686, miR-670-3p, and miR-375 sponges, etc., suggesting that lncRNA ROR1-AS1 may be used as a marker in tumors or a potential therapeutic target for a variety of tumors.
Collapse
Affiliation(s)
- Hong Fan
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, China
- College of Basic Medical Science, China Three Gorges University, Yichang 443002, China
- Third-grade Pharmacological Laboratory on Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine, China Three Gorges University, China
| | - Yunxi Zhou
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, China
- College of Basic Medical Science, China Three Gorges University, Yichang 443002, China
- Third-grade Pharmacological Laboratory on Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine, China Three Gorges University, China
| | - Ziyan Zhang
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, China
- College of Basic Medical Science, China Three Gorges University, Yichang 443002, China
- Third-grade Pharmacological Laboratory on Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine, China Three Gorges University, China
| | - Gang Zhou
- College of Traditional Chinese Medicine, China Three Gorges University, Yichang, 443002, China
- Yichang Hospital of Traditional Chinese Medicine, Yichang, 443002, China
| | - Chengfu Yuan
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, China
- College of Basic Medical Science, China Three Gorges University, Yichang 443002, China
- Third-grade Pharmacological Laboratory on Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine, China Three Gorges University, China
| |
Collapse
|
6
|
Khan F, Lin Y, Ali H, Pang L, Dunterman M, Hsu WH, Frenis K, Rowe RG, Wainwright D, McCortney K, Billingham L, Miska J, Horbinski C, Lesniak M, Chen P. LDHA-regulated tumor-macrophage symbiosis promotes glioblastoma progression. RESEARCH SQUARE 2023:rs.3.rs-3401154. [PMID: 37886538 PMCID: PMC10602051 DOI: 10.21203/rs.3.rs-3401154/v1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2023]
Abstract
Abundant macrophage infiltration and altered tumor metabolism are two key hallmarks of glioblastoma. By screening a cluster of metabolic small-molecule compounds, we show that inhibiting glioblastoma cell glycolysis impairs macrophage migration and lactate dehydrogenase (LDH) inhibitor stiripentol (an FDA-approved anti-seizure drug for Dravet Syndrome) emerges as the top hit. Combined profiling and functional studies demonstrate that LDHA-directed ERK pathway activates YAP1/STAT3 transcriptional co-activators in glioblastoma cells to upregulate CCL2 and CCL7, which recruit macrophages into the tumor microenvironment. Reciprocally, infiltrating macrophages produce LDHA-containing extracellular vesicles to promote glioblastoma cell glycolysis, proliferation, and survival. Genetic and pharmacological inhibition of LDHA-mediated tumor-macrophage symbiosis markedly suppresses tumor progression and macrophage infiltration in glioblastoma mouse models. Analysis of tumor and plasma samples of glioblastoma patients confirms that LDHA and its downstream signals are potential biomarkers correlating positively with macrophage density. Thus, LDHA-mediated tumor-macrophage symbiosis provides therapeutic targets for glioblastoma.
Collapse
Affiliation(s)
| | - Yiyu Lin
- Department of Genetics, The University of Texas MD Anderson Cancer Center
| | - Heba Ali
- Department of Genetics, The University of Texas MD Anderson Cancer Center
| | - Lizhi Pang
- Feinberg School of Medicine, Northwestern University
| | | | - Wen-Hao Hsu
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center
| | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Rabah N, Ait Mohand FE, Kravchenko-Balasha N. Understanding Glioblastoma Signaling, Heterogeneity, Invasiveness, and Drug Delivery Barriers. Int J Mol Sci 2023; 24:14256. [PMID: 37762559 PMCID: PMC10532387 DOI: 10.3390/ijms241814256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 09/13/2023] [Accepted: 09/14/2023] [Indexed: 09/29/2023] Open
Abstract
The most prevalent and aggressive type of brain cancer, namely, glioblastoma (GBM), is characterized by intra- and inter-tumor heterogeneity and strong spreading capacity, which makes treatment ineffective. A true therapeutic answer is still in its infancy despite various studies that have made significant progress toward understanding the mechanisms behind GBM recurrence and its resistance. The primary causes of GBM recurrence are attributed to the heterogeneity and diffusive nature; therefore, monitoring the tumor's heterogeneity and spreading may offer a set of therapeutic targets that could improve the clinical management of GBM and prevent tumor relapse. Additionally, the blood-brain barrier (BBB)-related poor drug delivery that prevents effective drug concentrations within the tumor is discussed. With a primary emphasis on signaling heterogeneity, tumor infiltration, and computational modeling of GBM, this review covers typical therapeutic difficulties and factors contributing to drug resistance development and discusses potential therapeutic approaches.
Collapse
Affiliation(s)
| | | | - Nataly Kravchenko-Balasha
- The Institute of Biomedical and Oral Research, Hebrew University of Jerusalem, Jerusalem 91120, Israel; (N.R.); (F.-E.A.M.)
| |
Collapse
|
8
|
Choi SW, Jung HA, Cho H, Kim TM, Park C, Nam D, Lee S. A multicenter, phase II trial of GC1118, a novel anti-EGFR antibody, for recurrent glioblastoma patients with EGFR amplification. Cancer Med 2023; 12:15788-15796. [PMID: 37537946 PMCID: PMC10469652 DOI: 10.1002/cam4.6213] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 05/24/2023] [Accepted: 05/26/2023] [Indexed: 08/05/2023] Open
Abstract
BACKGROUND We evaluated the therapeutic efficacy of GC1118, a novel anti-epidermal growth factor receptor (EGFR) monoclonal antibody, in recurrent glioblastoma (GBM) patients with EGFR amplification. METHODS This study was a multicenter, open-label, single-arm phase II trial. Recurrent GBM patients with EGFR amplification were eligible: EGFR amplification was determined using fluorescence in situ hybridization analysis when a sample had both the EGFR/CEP7 ratio of ≥2 and a tight cluster EGFR signal in ≥10% of recorded cells. GC1118 was administered intravenously at a dose of 4 mg/kg once weekly. The primary endpoint was the 6-month progression-free survival rate (PFS6). Next-generation sequencing was performed to investigate the molecular biomarkers related to the response to GC1118. RESULTS Between April 2018 and December 2020, 21 patients were enrolled in the study and received GC1118 treatment. Eighteen patients were eligible for efficacy analysis. The PFS6 was 5.6% (95% confidence interval, 0.3%-25.8%, Wilson method). The median progression-free survival was 1.7 months (range: 28 days-7.2 months) and median overall survival was 5.7 months (range: 2-22.0 months). GC1118 was well tolerated except skin toxicities. Skin rash was the most frequent adverse event and four patients experienced Grade 3 skin-related toxicity. Genomic analysis revealed that the immune-related signatures were upregulated in patients with tumor regression. CONCLUSION This study did not meet the primary endpoint (PFS6); however, we found that immune signatures were significantly upregulated in the tumors with regression upon GC1118 therapy, which signifies the potential of immune-mediated antitumor efficacy of GC1118.
Collapse
Affiliation(s)
- Seung Won Choi
- Department of NeurosurgerySchool of Medicine, Sungkyunkwan University, Samsung Medical CenterSeoulRepublic of Korea
- Present address:
Program for Mathematical Genomics and Department of Systems BiologyColumbia UniversityNew YorkNYUSA
| | - Hyun Ae Jung
- Department of Medicine, Division of Hematology‐OncologySchool of Medicine, Sungkyunkwan University, Samsung Medical CenterSeoulRepublic of Korea
| | - Hee‐Jin Cho
- Department of Biomedical Convergence Science and TechnologyKyungpook National UniversityDaeguRepublic of Korea
| | - Tae Min Kim
- Department of Internal MedicineSeoul National University Hospital, Seoul National University Cancer Research Institute, Seoul National University College of MedicineSeoulRepublic of Korea
| | - Chul‐Kee Park
- Department of NeurosurgerySeoul National University Hospital, College of MedicineSeoulRepublic of Korea
| | - Do‐Hyun Nam
- Department of NeurosurgerySchool of Medicine, Sungkyunkwan University, Samsung Medical CenterSeoulRepublic of Korea
| | - Se‐Hoon Lee
- Department of Medicine, Division of Hematology‐OncologySchool of Medicine, Sungkyunkwan University, Samsung Medical CenterSeoulRepublic of Korea
| |
Collapse
|
9
|
Skouras P, Gargalionis AN, Piperi C. Exosomes as Novel Diagnostic Biomarkers and Therapeutic Tools in Gliomas. Int J Mol Sci 2023; 24:10162. [PMID: 37373314 DOI: 10.3390/ijms241210162] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 06/09/2023] [Accepted: 06/14/2023] [Indexed: 06/29/2023] Open
Abstract
Exosomes constitute small extracellular vesicles that contain lipids, proteins, nucleic acids, and glycoconjugates from the secreted cells and are capable of transmitting signals between cells and coordinating cellular communication. By this means, they are ultimately involved in physiology and disease, including development, homeostasis, and immune system regulation, as well as contributing to tumor progression and neurodegenerative diseases pathology. Recent studies have shown that gliomas secrete a panel of exosomes which have been associated with cell invasion and migration, tumor immune tolerance, potential for malignant transformation, neovascularization, and resistance to treatment. Exosomes have therefore emerged as intercellular communicators, which mediate the tumor-microenvironment interactions and exosome-regulated glioma cell stemness and angiogenesis. They may induce tumor proliferation and malignancy in normal cells by carrying pro-migratory modulators from cancer cells as well as many different molecular cancer modifiers, such as oncogenic transcripts, miRNAs, mutant oncoproteins, etc., which promote the communication of cancer cells with the surrounding stromal cells and provide valuable information on the molecular profile of the existing tumor. Moreover, engineered exosomes can provide an alternative system for drug delivery and enable efficient treatment. In the present review, we discuss the latest findings regarding the role of exosomes in glioma pathogenesis, their utility in non-invasive diagnosis, and potential applications to treatment.
Collapse
Affiliation(s)
- Panagiotis Skouras
- Department of Neurosurgery, 'Evangelismos' Hospital, Medical School, National and Kapodistrian University of Athens, 10676 Athens, Greece
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Antonios N Gargalionis
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
- Department of Biopathology, 'Eginition' Hospital, Medical School, National and Kapodistrian University of Athens, 11528 Athens, Greece
| | - Christina Piperi
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| |
Collapse
|
10
|
Kamali M, Webster TJ, Amani A, Hadjighassem MR, Malekpour MR, Tirgar F, Khosravani M, Adabi M. Effect of folate-targeted Erlotinib loaded human serum albumin nanoparticles on tumor size and survival rate in a rat model of glioblastoma. Life Sci 2023; 313:121248. [PMID: 36526047 DOI: 10.1016/j.lfs.2022.121248] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 11/17/2022] [Accepted: 11/25/2022] [Indexed: 12/15/2022]
Abstract
The aim of this study was to prepare folate-targeted Erlotinib loaded human serum albumin nanoparticles (FA-ERL-HSA NPs) and investigate in vitro cytotoxic and apoptotic effects using cell lines (U87MG and C6 cells) and an in vivo rat bearing C6 glioma model. The mean size of the FA-ERL-HSA NPs prepared using a desolvation method was 135 nm. In vitro MTT assays demonstrated that FA-ERL-HSA NPs had an IC50 value of 52.18 μg/mL and 17.53 μg/mL compared to free ERL which had an IC50 value of 119.8 μg/mL and 103.2 μg/mL for U87MG and C6 cells for 72 h, respectively. Flow cytometry results showed the apoptosis rate with FA-ERL-HSA NPs (100 μg/mL, 72 h) was higher compared to free ERL for both U87MG and C6 cells. Experiments using a rat glioblastoma model via TUNEL assay indicated that the apoptosis index of FA-ERL-HSA NPs was 48 % compared to 21 % for free ERL and the tumor size effectively decreased after a daily injection of 220 μg (2.5 mg/kg) from 87.45 mm3 (19th day) to 1.28 mm3 (60th day). The median survival rate of the rats increased after treatment to >100 days which was greater than controls.
Collapse
Affiliation(s)
- Morteza Kamali
- Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Thomas J Webster
- School of Health Sciences and Biomedical Engineering, Hebei University, Tijian, China; UFPI - Universidade Federal do Piauí, Brazil; Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, Tamil Nadu, India
| | - Amir Amani
- Natural Products and Medicinal Plants Research Center, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Mahmoud Reza Hadjighassem
- Brain and Spinal Cord Injury Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Reza Malekpour
- Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Tirgar
- Department of Neuroscience and Addiction Studies, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Masood Khosravani
- Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| | - Mahdi Adabi
- Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran; Food Microbiology Research Center, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
11
|
Lin B, Ziebro J, Smithberger E, Skinner KR, Zhao E, Cloughesy TF, Binder ZA, O’Rourke DM, Nathanson DA, Furnari FB, Miller CR. EGFR, the Lazarus target for precision oncology in glioblastoma. Neuro Oncol 2022; 24:2035-2062. [PMID: 36125064 PMCID: PMC9713527 DOI: 10.1093/neuonc/noac204] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
The Lazarus effect is a rare condition that happens when someone seemingly dead shows signs of life. The epidermal growth factor receptor (EGFR) represents a target in the fatal neoplasm glioblastoma (GBM) that through a series of negative clinical trials has prompted a vocal subset of the neuro-oncology community to declare this target dead. However, an argument can be made that the core tenets of precision oncology were overlooked in the initial clinical enthusiasm over EGFR as a therapeutic target in GBM. Namely, the wrong drugs were tested on the wrong patients at the wrong time. Furthermore, new insights into the biology of EGFR in GBM vis-à-vis other EGFR-driven neoplasms, such as non-small cell lung cancer, and development of novel GBM-specific EGFR therapeutics resurrects this target for future studies. Here, we will examine the distinct EGFR biology in GBM, how it exacerbates the challenge of treating a CNS neoplasm, how these unique challenges have influenced past and present EGFR-targeted therapeutic design and clinical trials, and what adjustments are needed to therapeutically exploit EGFR in this devastating disease.
Collapse
Affiliation(s)
- Benjamin Lin
- Department of Pathology, Division of Neuropathology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Julia Ziebro
- Department of Pathology, Division of Neuropathology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Erin Smithberger
- Department of Pathology, Division of Neuropathology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
- Pathobiology and Translational Sciences Program, School of Medicine, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Kasey R Skinner
- Department of Pathology, Division of Neuropathology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
- Neurosciences Curriculum, School of Medicine, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Eva Zhao
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California, USA
| | - Timothy F Cloughesy
- Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California, USA
| | - Zev A Binder
- Department of Neurosurgery and Glioblastoma Translational Center of Excellence, Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Donald M O’Rourke
- Department of Neurosurgery and Glioblastoma Translational Center of Excellence, Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - David A Nathanson
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California, USA
| | - Frank B Furnari
- Department of Medicine, Division of Regenerative Medicine, University of California, San Diego, San Diego, California, USA
- Ludwig Cancer Research, San Diego, California, USA
| | - C Ryan Miller
- Department of Pathology, Division of Neuropathology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| |
Collapse
|
12
|
Vaquero J, Pavy A, Gonzalez-Sanchez E, Meredith M, Arbelaiz A, Fouassier L. Genetic alterations shaping tumor response to anti-EGFR therapies. Drug Resist Updat 2022; 64:100863. [DOI: 10.1016/j.drup.2022.100863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
13
|
CBX3 accelerates the malignant progression of glioblastoma multiforme by stabilizing EGFR expression. Oncogene 2022; 41:3051-3063. [PMID: 35459780 DOI: 10.1038/s41388-022-02296-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 03/17/2022] [Accepted: 03/23/2022] [Indexed: 12/13/2022]
Abstract
CBX3, also known as HP1γ, is a major isoform of heterochromatin protein 1, whose deregulation has been reported to promote the development of human cancers. However, the molecular mechanism of CBX3 in glioblastoma multiforme (GBM) are unclear. Our study reported the identification of CBX3 as a potential therapeutic target for GBM. Briefly, we found that, CBX3 is significantly upregulated in GBM and reduces patient survival. In addition, functional assays demonstrated that CBX3 significantly promote the proliferation, invasion and tumorigenesis of GBM cells in vitro and in vivo. Mechanistically, Erlotinib, a small molecule targeting epidermal growth factor receptor (EGFR) tyrosine kinase, was used to demonstrate that CBX3 direct the malignant progression of GBM are EGFR dependent. Previous studies have shown that PARK2(Parkin) and STUB1(Carboxy Terminus of Hsp70-Interacting Protein) are EGFR-specific E3 ligases. Notably, we verified that CBX3 directly suppressed PARK2 and STUB1 at the transcriptional level through its CD domain to reduce the ubiquitination of EGFR. Moreover, the CSD domain of CBX3 interacted with PARK2 and regulated its ubiquitination to further reduce its protein level. Collectively, these results revealed an unknown mechanism underlying the pathogenesis of GBM and confirmed that CBX3 is a promising therapeutic target.
Collapse
|
14
|
Yin W, Zhang K, Deng Q, Yu Q, Mao Y, Zhao R, Ma S. AZD3759 inhibits glioma through the blockade of the epidermal growth factor receptor and Janus kinase pathways. Bioengineered 2021; 12:8679-8689. [PMID: 34635007 PMCID: PMC8806996 DOI: 10.1080/21655979.2021.1991160] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Glioma is an intracranial malignant tumor with high morbidity in China. Limited efficacy has been achieved in the treatment of glioma through the application of epidermal growth factor receptor (EGFR) inhibitors, which is reported to be related to the poor permeability of the brain–blood barrier (BBB) to EGFR inhibitors. AZD3759 and osimertinib are both BBB-penetrating EGFR inhibitors. The present study aimed to investigate the inhibitory effects of AZD3759 and osimertinib on glioma and compare their efficacy and the underlying mechanisms. C6 and U87 cells were incubated with different concentrations of AZD3759 (1, 2, and 4 μM) and 4 μM osimertinib, respectively. C6-LUC xenograft animals were administered different doses of AZD3759 (15, 30, and 60 mg/kg) and 60 mg/kg osimertinib. We found that proliferation was significantly suppressed and that apoptosis and cell cycle arrest were dramatically induced in both C6 and U87 cells by AZD3759 in a dose-dependent manner. Compared to AZD3759, osimertinib had inferior effects on proliferation, apoptosis, and cell cycle. In vivo experiments verified that the anti-tumor efficacy of AZD3759 against C6 xenograft tumors was dose dependent and superior to that of osimertinib. The inhibitory effects of AZD3759 on the Janus kinase (JAK)/STAT pathway were observed in both glioma cells and tumor tissues, which were more significant than those of osimertinib. In conclusion, AZD3759 may inhibit the progression of glioma via a synergistic blockade of the EGFR and JAK/STAT signaling pathways.
Collapse
Affiliation(s)
- Wei Yin
- Department of Radiation Oncology, Hangzhou Cancer Hospital, Hangzhou, Zhejiang, China
| | - Ke Zhang
- Department of Radiation Oncology, Hangzhou Cancer Hospital, Hangzhou, Zhejiang, China
| | - Qinghua Deng
- Department of Radiation Oncology, Hangzhou Cancer Hospital, Hangzhou, Zhejiang, China
| | - Qingqing Yu
- Department of Radiation Oncology, Hangzhou Cancer Hospital, Hangzhou, Zhejiang, China
| | - Yanjiao Mao
- Department of Radiation Oncology, Hangzhou Cancer Hospital, Hangzhou, Zhejiang, China
| | - Ruping Zhao
- Department of Radiation Oncology, Jiahui International Hospital, Shanghai, China
| | - Shenglin Ma
- Department of Radiation Oncology, Hangzhou Cancer Hospital, Hangzhou, Zhejiang, China
| |
Collapse
|
15
|
Abstract
Amongst the several types of brain cancers known to humankind, glioma is one of the most severe and life-threatening types of cancer, comprising 40% of all primary brain tumors. Recent reports have shown the incident rate of gliomas to be 6 per 100,000 individuals per year globally. Despite the various therapeutics used in the treatment of glioma, patient survival rate remains at a median of 15 months after undergoing first-line treatment including surgery, radiation, and chemotherapy with Temozolomide. As such, the discovery of newer and more effective therapeutic agents is imperative for patient survival rate. The advent of computer-aided drug design in the development of drug discovery has emerged as a powerful means to ascertain potential hit compounds with distinctively high therapeutic effectiveness against glioma. This review encompasses the recent advances of bio-computational in-silico modeling that have elicited the discovery of small molecule inhibitors and/or drugs against various therapeutic targets in glioma. The relevant information provided in this report will assist researchers, especially in the drug design domains, to develop more effective therapeutics against this global disease.
Collapse
|
16
|
Exosomes: Their Role in Pathogenesis, Diagnosis and Treatment of Diseases. Cancers (Basel) 2020; 13:cancers13010084. [PMID: 33396739 PMCID: PMC7795854 DOI: 10.3390/cancers13010084] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 12/18/2020] [Accepted: 12/24/2020] [Indexed: 02/07/2023] Open
Abstract
Simple Summary The aim of this review is to provide an overview of the current scientific evidence concerning the role played by exosomes in the pathogenesis, diagnosis and treatment of diseases. The potential use of exosomes as delivery vectors for small-molecule therapeutic agents will be discussed. In addition, a special emphasis will be placed on the involvement of exosomes in oncological diseases, as well as to their potential therapeutic application as liquid biopsy tools mainly in cancer diagnosis. A better understanding of exosome biology could improve the results of clinical interventions using exosomes as therapeutic agents. Abstract Exosomes are lipid bilayer particles released from cells into their surrounding environment. These vesicles are mediators of near and long-distance intercellular communication and affect various aspects of cell biology. In addition to their biological function, they play an increasingly important role both in diagnosis and as therapeutic agents. In this paper, we review recent literature related to the molecular composition of exosomes, paying special attention to their role in pathogenesis, along with their application as biomarkers and as therapeutic tools. In this context, we analyze the potential use of exosomes in biomedicine, as well as the limitations that preclude their wider application.
Collapse
|
17
|
Chai Y, Wu HT, Liang CD, You CY, Xie MX, Xiao SW. Exosomal lncRNA ROR1-AS1 Derived from Tumor Cells Promotes Glioma Progression via Regulating miR-4686. Int J Nanomedicine 2020; 15:8863-8872. [PMID: 33204092 PMCID: PMC7667171 DOI: 10.2147/ijn.s271795] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 10/15/2020] [Indexed: 12/14/2022] Open
Abstract
Objective Glioma is one of the most common central nervous system malignant tumors, accounting for 45%–60% of adult intracranial tumors. However, the clinical treatment of glioma is limited. It is of great significance to seek new therapeutic methods for glioma via gene therapy. Materials and Methods Microarray is used to identify the lncRNAs that are differentially expressed in glioma. The expression of long non-coding RNA (lncRNA) ROR1-AS1 and miR-4686 was detected by qRT-PCR. Exosomes were isolated from the supernatant of normal and cancerous cells, and TEM was used for exosomes identification. MTT assay, wound healing assay, transwell assay, and colony formation assay were used to detect the exo-ROR1-AS1 function on proliferation, migration, and invasion in glioma cells. Luciferase assay and RIP assay were used to identify the relationship between lncRNA ROR1-AS1 and miR-4686. The effect of exo-ROR1-AS1 on tumorigenesis of glioma was confirmed by the xenograft nude mice model. Results ROR1-AS1 was up-regulated in glioma tissues, and the high expression of ROR1-AS1 indicated a poor prognosis in glioma patients. Interestingly, ROR1-AS1 was packaged into exosomes and derived from tumor cells. Functional analysis showed exo-ROR1-AS1 promoted the progression of glioma cell lines SHG44 and U251. Furthermore, ROR1-AS1 acted as a sponge of miR-4686 and inhibited its expression. Functionally, forced expression of miR-4686 removed the promoted effects of lncRNA ROR1-AS1 on glioma development. In vivo tumorigenesis experiments showed that exo-ROR1-AS1 promoted glioma development via miR-4686 axis. Conclusion Our study suggested tumor cells derived exo-ROR1-AS1 promoted glioma progression by inhibiting miR-4686, which might be a potential therapeutic target for glioma clinical treatment.
Collapse
Affiliation(s)
- Yang Chai
- Department of Neurosurgery, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563000, People's Republic of China
| | - Hai-Tao Wu
- Department of Neurosurgery, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563000, People's Republic of China
| | - Chuan-Dong Liang
- Department of Neurosurgery, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563000, People's Republic of China
| | - Chun-Yue You
- Department of Neurosurgery, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563000, People's Republic of China
| | - Ming-Xiang Xie
- Department of Neurosurgery, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563000, People's Republic of China
| | - Shun-Wu Xiao
- Department of Neurosurgery, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563000, People's Republic of China
| |
Collapse
|
18
|
Therapeutic Efficacy of GC1118, a Novel Anti-EGFR Antibody, against Glioblastoma with High EGFR Amplification in Patient-Derived Xenografts. Cancers (Basel) 2020; 12:cancers12113210. [PMID: 33142709 PMCID: PMC7693807 DOI: 10.3390/cancers12113210] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 10/28/2020] [Accepted: 10/29/2020] [Indexed: 12/16/2022] Open
Abstract
Simple Summary GC1118 is a novel anti-EGFR monoclonal antibody with a distinct mode of epitope binding. Its therapeutic efficacy has been validated in preclinical studies of several cancers. We evaluated the anti-tumor efficacy of GC1118 against glioblastoma (GBM) using patient-derived xenografts (PDXs). GC1118 exhibited anti-tumor efficacy comparable to that of cetuximab in a subset of PDXs, and EGFR amplification was a potential biomarker for predicting its therapeutic efficacy. Growth inhibitory and direct apoptotic effects on GBM tumor cells were confirmed in in vitro analyses. In intracranial PDXs, GC1118 significantly improved survival outcome, indicating its potential to cross the blood–brain barrier. These results support the clinical potential of GC1118 in treating GBM, further prompting the requirement of a clinical trial. Abstract We aimed to evaluate the preclinical efficacy of GC1118, a novel anti-epidermal growth factor receptor (EGFR) monoclonal antibody (mAb), against glioblastoma (GBM) tumors using patient-derived xenograft (PDX) models. A total of 15 distinct GBM PDX models were used to evaluate the therapeutic efficacy of GC1118. Genomic data derived from PDX models were analyzed to identify potential biomarkers associated with the anti-tumor efficacy of GC1118. A patient-derived cell-based high-throughput drug screening assay was performed to further validate the efficacy of GC1118. Compared to cetuximab, GC1118 exerted comparable growth inhibitory effects on the GBM tumors in the PDX models. We confirmed that GC1118 accumulated within the tumor by crossing the blood–brain barrier in in vivo specimens and observed the survival benefit in GC1118-treated intracranial models. Genomic analysis revealed high EGFR amplification as a potent biomarker for predicting the therapeutic efficacy of GC1118 in GBM tumors. In summary, GC1118 exerted a potent anti-tumor effect on GBM tumors in PDX models, and its therapeutic efficacy was especially pronounced in the tumors with high EGFR amplification. Our study supports the importance of patient stratification based on EGFR copy number variation in clinical trials for GBM. The superiority of GC1118 over other EGFR mAbs in GBM tumors should be assessed in future studies.
Collapse
|
19
|
Bălașa A, Șerban G, Chinezu R, Hurghiș C, Tămaș F, Manu D. The Involvement of Exosomes in Glioblastoma Development, Diagnosis, Prognosis, and Treatment. Brain Sci 2020; 10:brainsci10080553. [PMID: 32823792 PMCID: PMC7463943 DOI: 10.3390/brainsci10080553] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 08/07/2020] [Accepted: 08/11/2020] [Indexed: 12/12/2022] Open
Abstract
Brain tumours are a serious concern among both physicians and patients. The most feared brain tumour is glioblastoma (GBM) due to its heterogeneous histology, substantial invasive capacity, and rapid postsurgical recurrence. Even in cases of early management consisting of surgery, chemo-, and radiotherapy, the prognosis is still poor, with an extremely short survival period. Consequently, researchers are trying to better understand the underlying pathways involved in GBM development in order to establish a more personalised approach. The latest focus is on molecular characterisation of the tumour, including analysis of extracellular vesicles (EVs), nanostructures derived from both normal and pathological cells that have an important role in intercellular communication due to the various molecules they carry. There are two types of EV based on their biogenesis, but exosomes are of particular interest in GBM. Recent studies have demonstrated that GBM cells release numerous exosomes whose cargo provides them the capacity to facilitate tumour cell invasion and migration, to stimulate malignant transformation of previously normal cells, to increase immune tolerance towards the tumour, to induce resistance to chemotherapy, and to enhance the GBM vascular supply. As exosomes are specific to their parental cells, their isolation would allow a deeper perspective on GBM pathogenesis. A new era of molecular manipulation has emerged, and exosomes are rapidly proving their value not only as diagnostic and prognostic markers, but also as tools in therapies specifically targeting GBM cells. Nonetheless, further research will be required before exosomes could be used in clinical practice. This review aims to describe the structural and functional characteristics of exosomes and their involvement in GBM development, diagnosis, prognosis and treatment.
Collapse
Affiliation(s)
- Adrian Bălașa
- Department of Neurosurgery, Emergency Clinical County Hospital, 540136 Târgu Mureș, Romania; (A.B.); (R.C.); (C.H.); (F.T.)
- ‘George Emil Palade’ University of Medicine, Pharmacy, Science and Technology, 540139 Târgu Mureș, Romania
| | - Georgiana Șerban
- Department of Neurology, Emergency Clinical County Hospital, 540136 Târgu Mureș, Romania
- Correspondence: ; Tel.: +40-724-051-516
| | - Rareş Chinezu
- Department of Neurosurgery, Emergency Clinical County Hospital, 540136 Târgu Mureș, Romania; (A.B.); (R.C.); (C.H.); (F.T.)
- ‘George Emil Palade’ University of Medicine, Pharmacy, Science and Technology, 540139 Târgu Mureș, Romania
| | - Corina Hurghiș
- Department of Neurosurgery, Emergency Clinical County Hospital, 540136 Târgu Mureș, Romania; (A.B.); (R.C.); (C.H.); (F.T.)
| | - Flaviu Tămaș
- Department of Neurosurgery, Emergency Clinical County Hospital, 540136 Târgu Mureș, Romania; (A.B.); (R.C.); (C.H.); (F.T.)
| | - Doina Manu
- Center for Advanced Pharmaceutical and Medical Research, 540139 Târgu Mureș, Romania;
| |
Collapse
|
20
|
Chavda V, Patel V, Yadav D, Shah J, Patel S, Jin JO. Therapeutics and Research Related to Glioblastoma: Advancements and Future Targets. Curr Drug Metab 2020; 21:186-198. [DOI: 10.2174/1389200221666200408083950] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2019] [Revised: 11/28/2019] [Accepted: 03/27/2020] [Indexed: 12/19/2022]
Abstract
Glioblastoma, the most common primary brain tumor, has been recognized as one of the most lethal and
fatal human tumors. It has a dismal prognosis, and survival after diagnosis is less than 15 months. Surgery and radiotherapy
are the only available treatment options at present. However, numerous approaches have been made to upgrade
in vivo and in vitro models with the primary goal of assessing abnormal molecular pathways that would be
suitable targets for novel therapeutic approaches. Novel drugs, delivery systems, and immunotherapy strategies to
establish new multimodal therapies that target the molecular pathways involved in tumor initiation and progression in
glioblastoma are being studied. The goal of this review was to describe the pathophysiology, neurodegeneration
mechanisms, signaling pathways, and future therapeutic targets associated with glioblastomas. The key features have
been detailed to provide an up-to-date summary of the advancement required in current diagnosis and therapeutics
for glioblastoma. The role of nanoparticulate system graphene quantum dots as suitable therapy for glioblastoma has
also been discussed.
Collapse
Affiliation(s)
- Vishal Chavda
- Department of Pharmacology, Nirma University, Ahmadabad, Gujarat, 382481, India
| | - Vimal Patel
- Department of Pharmaceutics, Nirma University, Ahmadabad, Gujarat, 382481, India
| | - Dhananjay Yadav
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan, 712-749, Korea
| | - Jigar Shah
- Department of Pharmaceutics, Nirma University, Ahmadabad, Gujarat, 382481, India
| | - Snehal Patel
- Department of Pharmacology, Nirma University, Ahmadabad, Gujarat, 382481, India
| | - Jun-O Jin
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan, 712-749, Korea
| |
Collapse
|
21
|
Yan G, Wang Y, Chen J, Zheng W, Liu C, Chen S, Wang L, Luo J, Li Z. Advances in drug development for targeted therapies for glioblastoma. Med Res Rev 2020; 40:1950-1972. [DOI: 10.1002/med.21676] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 04/28/2020] [Accepted: 05/08/2020] [Indexed: 11/08/2022]
Affiliation(s)
- Ge Yan
- Department of Neurosurgery, School of Pharmaceutical Sciences, Zhongnan HospitalWuhan UniversityWuhan Hubei China
- Department of Neurosurgery, Taihe HospitalHubei University of MedicineShiyan Hubei China
| | - Yunfu Wang
- Department of Neurosurgery, Taihe HospitalHubei University of MedicineShiyan Hubei China
| | - Jincao Chen
- Department of Neurosurgery, School of Pharmaceutical Sciences, Zhongnan HospitalWuhan UniversityWuhan Hubei China
| | - Wenzhong Zheng
- Department of Neurosurgery, School of Pharmaceutical Sciences, Zhongnan HospitalWuhan UniversityWuhan Hubei China
| | - Changzhen Liu
- Department of Neurosurgery, School of Pharmaceutical Sciences, Zhongnan HospitalWuhan UniversityWuhan Hubei China
| | - Shi Chen
- Department of Neurosurgery, School of Pharmaceutical Sciences, Zhongnan HospitalWuhan UniversityWuhan Hubei China
- Department of Neurosurgery, Taihe HospitalHubei University of MedicineShiyan Hubei China
| | - Lianrong Wang
- Department of Neurosurgery, School of Pharmaceutical Sciences, Zhongnan HospitalWuhan UniversityWuhan Hubei China
- Department of Neurosurgery, Taihe HospitalHubei University of MedicineShiyan Hubei China
| | - Jie Luo
- Department of Neurosurgery, Taihe HospitalHubei University of MedicineShiyan Hubei China
| | - Zhiqiang Li
- Department of Neurosurgery, School of Pharmaceutical Sciences, Zhongnan HospitalWuhan UniversityWuhan Hubei China
| |
Collapse
|
22
|
The Bradykinin-BDKRB1 Axis Regulates Aquaporin 4 Gene Expression and Consequential Migration and Invasion of Malignant Glioblastoma Cells via a Ca 2+-MEK1-ERK1/2-NF-κB Mechanism. Cancers (Basel) 2020; 12:cancers12030667. [PMID: 32182968 PMCID: PMC7139930 DOI: 10.3390/cancers12030667] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 03/06/2020] [Accepted: 03/10/2020] [Indexed: 12/14/2022] Open
Abstract
Glioblastoma multiforme (GBM) is the most common form of brain tumor and is very aggressive. Rapid migration and invasion of glioblastoma cells are two typical features driving malignance of GBM. Bradykinin functionally prompts calcium influx via activation of bradykinin receptor B1/B2 (BDKRB1/2). In this study, we evaluated the roles of bradykinin in migration and invasion of glioblastoma cells and the possible mechanisms. Expressions of aquaporin 4 (AQP4) mRNA and protein were upregulated in human glioblastomas. Furthermore, exposure of human U87 MG glioblastoma cells to bradykinin specifically increased levels of BDKRB1. Successively, bradykinin stimulated influx of calcium, phosphorylation of MEK1 and extracellular signal-regulated kinase (ERK)1/2, translocation and transactivation of nuclear factor-kappaB (NF-κB), and expressions of AQP4 mRNA and protein. Concomitantly, migration and invasion of human glioblastoma cells were elevated by bradykinin. Knocking-down BDKRB1 concurrently decreased AQP4 mRNA expression and cell migration and invasion. The bradykinin-induced effects were further confirmed in murine GL261 glioblastoma cells. Therefore, bradykinin can induce AQP4 expression and subsequent migration and invasion through BDKRB1-mediated calcium influx and subsequent activation of a MEK1-ERK1/2-NF-κB pathway. The bradykinin-BDKRB1 axis and AQP4 could be precise targets for treating GBM patients.
Collapse
|
23
|
Liu H, Zhang B, Sun Z. Spectrum of EGFR aberrations and potential clinical implications: insights from integrative pan-cancer analysis. Cancer Commun (Lond) 2020; 40:43-59. [PMID: 32067422 PMCID: PMC7163653 DOI: 10.1002/cac2.12005] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 12/31/2019] [Indexed: 12/18/2022] Open
Abstract
Background Human epidermal growth factor receptor (EGFR) is an oncogenic gene and one of top targets of precision therapy in lung cancer with EGFR mutations. Although there are many reports for some individual cancers, comprehensive profiling of EGFR mutations, overexpression, amplification, DNA methylation, and their clinical associations across many different cancers simultaneously was not available. This study aimed to fill the gap and provide insights to the alteration spectrum of EGFR and its therapeutic and prognostic implications. Methods The Cancer Genome Atlas (TCGA) datasets for 32 cancer types involving 11,314 patients were analyzed for alterations (mutations and amplification/deletion), abnormal expression and DNA methylation in EGFR gene. Mutation frequency, genomic location distribution, functional impact, and clinical targeted therapy implication were compared among different cancer types, and their associations with patient survival were analyzed. Results EGFR alteration frequency, mutation sites across functional domains, amplification, overexpression, and DNA methylation patterns differed greatly among different cancer types. The overall mutation frequency in all cancers combined was relatively low. Targetable mutations, mainly in lung cancer, were primarily found in the Pkinase_Tyr domain. Glioblastoma multiforme had the highest rate of alterations, but it was dominated by gene amplification and most mutations were in the Furin‐like domain where targeted therapy was less effective. Low‐grade glioma often had gene amplification and increased EGFR expression which was associated with poor outcome. Colon and pancreatic adenocarcinoma had very few EGFR mutations; however, high EGFR expression was significantly associated with short patient survival. Squamous cell carcinoma regardless of their sites (the head and neck, lung, or esophagus) exhibited similar characteristics with an alteration frequency of about 5.0%, was dominated by gene amplification, and had increased EGFR expression generally associated with short patient survival. DNA methylation was highly associated with EGFR expression and patient outcomes in some cancers. Conclusions EGFR aberration type, frequency, distribution in functional domains, and expression vary from cancer to cancer. While mutations in the Pkinase_Tyr domain are more important for treatment selection, increased expression from amplification or deregulation affects more tumor types and leads to worse outcome, which calls for new treatment strategies for these EGFR‐driven tumors.
Collapse
Affiliation(s)
- Haijing Liu
- Department of Pathology, School of Basic Medical Sciences, Third Hospital, Peking University Health Science Center, Beijing, 100191, P. R. China.,Division of Biomedical Statistics and Informatics, Department of Health Sciences Research, Mayo Clinic, Rochester, MN, 55905, USA
| | - Bo Zhang
- Department of Pathology, School of Basic Medical Sciences, Third Hospital, Peking University Health Science Center, Beijing, 100191, P. R. China
| | - Zhifu Sun
- Division of Biomedical Statistics and Informatics, Department of Health Sciences Research, Mayo Clinic, Rochester, MN, 55905, USA
| |
Collapse
|
24
|
The Role of Rho GTPases in Motility and Invasion of Glioblastoma Cells. Anal Cell Pathol (Amst) 2020; 2020:9274016. [PMID: 32089990 PMCID: PMC7013281 DOI: 10.1155/2020/9274016] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2019] [Revised: 01/14/2020] [Accepted: 01/22/2020] [Indexed: 12/27/2022] Open
Abstract
Astrocytomas are primary malignant brain tumors that originate from astrocytes. Grade IV astrocytoma or glioblastoma is a highly invasive tumor that occur within the brain parenchyma. The Rho family of small GTPases, which includes Rac1, Cdc42, and RhoA, is an important family whose members are key regulators of the invasion and migration of glioblastoma cells. In this review, we describe the role played by the Rho family of GTPases in the regulation of the invasion and migration of glioblastoma cells. Specifically, we focus on the role played by RhoA, Rac1, RhoG, and Cdc42 in cell migration through rearrangement of actin cytoskeleton, cell adhesion, and invasion. Finally, we highlight the importance of potentially targeting Rho GTPases in the treatment of glioblastoma.
Collapse
|
25
|
Pan X, Zeng T, Yuan F, Zhang YH, Chen L, Zhu L, Wan S, Huang T, Cai YD. Screening of Methylation Signature and Gene Functions Associated With the Subtypes of Isocitrate Dehydrogenase-Mutation Gliomas. Front Bioeng Biotechnol 2019; 7:339. [PMID: 31803734 PMCID: PMC6871504 DOI: 10.3389/fbioe.2019.00339] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Accepted: 10/30/2019] [Indexed: 02/05/2023] Open
Abstract
Isocitrate dehydrogenase (IDH) is an oncogene, and the expression of a mutated IDH promotes cell proliferation and inhibits cell differentiation. IDH exists in three different isoforms, whose mutation can cause many solid tumors, especially gliomas in adults. No effective method for classifying gliomas on genetic signatures is currently available. DNA methylation may be applied to distinguish cancer cells from normal tissues. In this study, we focused on three subtypes of IDH-mutation gliomas by examining methylation data. Several advanced computational methods were used, such as Monte Carlo feature selection (MCFS), incremental feature selection (IFS), support machine vector (SVM), etc. The MCFS method was adopted to analyze methylation features, resulting in a feature list. Then, the IFS method incorporating SVM was applied to the list to extract important methylation features and construct an optimal SVM classifier. As a result, several methylation features (sites) were found to relate to glioma subclasses, which are annotated onto multiple genes, such as FLJ37543, LCE3D, FAM89A, ADCY5, ESR1, C2orf67, REST, EPHA7, etc. These genes are enriched in biological functions, including cellular developmental process, neuron differentiation, cellular component morphogenesis, and G-protein-coupled receptor signaling pathway. Our results, which are supported by literature reports and independent dataset validation, showed that our identified genes and functions contributed to the detailed glioma subtypes. This study provided a basic research on IDH-mutation gliomas.
Collapse
Affiliation(s)
- XiaoYong Pan
- School of Life Sciences, Shanghai University, Shanghai, China.,Key Laboratory of System Control and Information Processing, Ministry of Education of China, Institute of Image Processing and Pattern Recognition, Shanghai Jiao Tong University, Shanghai, China.,IDLab, Department for Electronics and Information Systems, Ghent University, Ghent, Belgium
| | - Tao Zeng
- Key Laboratory of Systems Biology, Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai, China
| | - Fei Yuan
- Department of Science and Technology, Binzhou Medical University Hospital, Binzhou, China
| | - Yu-Hang Zhang
- Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Lei Chen
- College of Information Engineering, Shanghai Maritime University, Shanghai, China.,Shanghai Key Laboratory of PMMP, East China Normal University, Shanghai, China
| | - LiuCun Zhu
- School of Life Sciences, Shanghai University, Shanghai, China
| | - SiBao Wan
- School of Life Sciences, Shanghai University, Shanghai, China
| | - Tao Huang
- Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Yu-Dong Cai
- School of Life Sciences, Shanghai University, Shanghai, China
| |
Collapse
|
26
|
Dong Z, Zou J, Li J, Pang Y, Liu Y, Deng C, Chen F, Cui H. MYST1/KAT8 contributes to tumor progression by activating EGFR signaling in glioblastoma cells. Cancer Med 2019; 8:7793-7808. [PMID: 31691527 PMCID: PMC6912028 DOI: 10.1002/cam4.2639] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Revised: 09/30/2019] [Accepted: 10/10/2019] [Indexed: 12/18/2022] Open
Abstract
With short survival time, glioblastoma (GBM) is the most malignant tumor in the central nervous system. Recently, epigenetic enzymes play essential roles in the regulation of tumorigenesis and cancer development of GBM. However, little is known about MYST1/KAT8/MOF, a histone acetylation enzyme, in GBM. The present study shows that MYST1 promotes GBM progression through activating epidermal growth factor receptor (EGFR) signaling. MYST1 expression was increased in GBM and was negatively correlated with prognosis in patients with glioma and GBM. Knockdown of MYST1 reduced cell proliferation and BrdU incorporation in LN229, U87, and A172 GBM cells. Besides, MYST1 downregulation also induced cell cycle arrest at G2M phase, as well as the reduced expression of CDK1, Cyclin A, Cyclin B1, and increased expression of p21CIP1/Waf1. Meanwhile, Self‐renewal capability in vitro and tumorigenecity in vivo were also impaired after MYST1 knockdown. Importantly, MYST1 expression was lowly expressed in mesenchymal subtype of GBM and was positively correlated with EGFR expression in a cohort from The Cancer Genome Atlas. Western blot subsequently confirmed that phosphorylation and activation of p‐Try1068 of EGFR, p‐Ser473 of AKT and p‐Thr202/Tyr204 of Erk1/2 were also decreased by MYST1 knockdown. Consistent with the results above, overexpression of MYST1 promoted GBM growth and activated EGFR signaling in vitro and in vivo. In addition, erlotinib, a US Food and Drug Administration approved cancer drug which targets EGFR, was able to rescue MYST1‐promoted cell proliferation and EGFR signaling pathway. Furthermore, the transcription of EGF, an EFGR ligand, was shown to be positively regulated by MYST1 possibly via H4K16 acetylation. Our findings elucidate MYST1 as a tumor promoter in GBM and an EGFR activator, and may be a potential drug target for GBM treatment.
Collapse
Affiliation(s)
- Zhen Dong
- State Key Laboratory of Silkworm Genome Biology, Institute of Sericulture and Systems Biology, Southwest University, Chongqing, China.,Cancer Center, Medical Research Institute, Southwest University, Chongqing, China.,Engineering Research Center for Cancer Biomedical and Translational Medicine, Southwest University, Chongqing, China.,Chongqing Engineering and Technology Research Center for Silk Biomaterials and Regenerative Medicine, Southwest University, Chongqing, China
| | - Jiahua Zou
- State Key Laboratory of Silkworm Genome Biology, Institute of Sericulture and Systems Biology, Southwest University, Chongqing, China
| | - Jifu Li
- College of Biotechnology, Southwest University, Chongqing, China
| | - Yi Pang
- Chongqing Engineering Research Center of Antitumor Natural Drugs, Chongqing Three Gorges Medical College, Chongqing, China
| | - Yudong Liu
- State Key Laboratory of Silkworm Genome Biology, Institute of Sericulture and Systems Biology, Southwest University, Chongqing, China.,Cancer Center, Medical Research Institute, Southwest University, Chongqing, China.,Engineering Research Center for Cancer Biomedical and Translational Medicine, Southwest University, Chongqing, China.,Chongqing Engineering and Technology Research Center for Silk Biomaterials and Regenerative Medicine, Southwest University, Chongqing, China
| | - Chaowei Deng
- State Key Laboratory of Silkworm Genome Biology, Institute of Sericulture and Systems Biology, Southwest University, Chongqing, China.,Cancer Center, Medical Research Institute, Southwest University, Chongqing, China.,Engineering Research Center for Cancer Biomedical and Translational Medicine, Southwest University, Chongqing, China.,Chongqing Engineering and Technology Research Center for Silk Biomaterials and Regenerative Medicine, Southwest University, Chongqing, China
| | - Fei Chen
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI, USA
| | - Hongjuan Cui
- State Key Laboratory of Silkworm Genome Biology, Institute of Sericulture and Systems Biology, Southwest University, Chongqing, China.,Cancer Center, Medical Research Institute, Southwest University, Chongqing, China.,Engineering Research Center for Cancer Biomedical and Translational Medicine, Southwest University, Chongqing, China.,Chongqing Engineering and Technology Research Center for Silk Biomaterials and Regenerative Medicine, Southwest University, Chongqing, China
| |
Collapse
|
27
|
Chen P, Zhao D, Li J, Liang X, Li J, Chang A, Henry VK, Lan Z, Spring DJ, Rao G, Wang YA, DePinho RA. Symbiotic Macrophage-Glioma Cell Interactions Reveal Synthetic Lethality in PTEN-Null Glioma. Cancer Cell 2019; 35:868-884.e6. [PMID: 31185211 PMCID: PMC6561349 DOI: 10.1016/j.ccell.2019.05.003] [Citation(s) in RCA: 223] [Impact Index Per Article: 37.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Revised: 04/09/2019] [Accepted: 05/09/2019] [Indexed: 12/17/2022]
Abstract
Heterotypic interactions across diverse cell types can enable tumor progression and hold the potential to expand therapeutic interventions. Here, combined profiling and functional studies of glioma cells in glioblastoma multiforme (GBM) models establish that PTEN deficiency activates YAP1, which directly upregulates lysyl oxidase (LOX) expression. Mechanistically, secreted LOX functions as a potent macrophage chemoattractant via activation of the β1 integrin-PYK2 pathway in macrophages. These infiltrating macrophages secrete SPP1, which sustains glioma cell survival and stimulates angiogenesis. In PTEN-null GBM models, LOX inhibition markedly suppresses macrophage infiltration and tumor progression. Correspondingly, YAP1-LOX and β1 integrin-SPP1 signaling correlates positively with higher macrophage density and lower overall survival in GBM patients. This symbiotic glioma-macrophage interplay provides therapeutic targets specifically for PTEN-deficient GBM.
Collapse
Affiliation(s)
- Peiwen Chen
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Di Zhao
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Jun Li
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Xin Liang
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Jiexi Li
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Andrew Chang
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Verlene K Henry
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Zhengdao Lan
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Denise J Spring
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Ganesh Rao
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Y Alan Wang
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
| | - Ronald A DePinho
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
| |
Collapse
|
28
|
Nourmohammadi S, Aung TN, Cui J, Pei JV, De Ieso ML, Harata-Lee Y, Qu Z, Adelson DL, Yool AJ. Effect of Compound Kushen Injection, a Natural Compound Mixture, and Its Identified Chemical Components on Migration and Invasion of Colon, Brain, and Breast Cancer Cell Lines. Front Oncol 2019; 9:314. [PMID: 31106149 PMCID: PMC6498862 DOI: 10.3389/fonc.2019.00314] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Accepted: 04/08/2019] [Indexed: 01/03/2023] Open
Abstract
Traditional Chinese Medicines are promising sources of new agents for controlling cancer metastasis. Compound Kushen Injection (CKI), prepared from medicinal plants Sophora flavescens and Heterosmilax chinensis, disrupts cell cycle and induces apoptosis in breast cancer; however, effects on migration and invasion remained unknown. CKI, fractionated mixtures, and isolated components were tested in migration assays with colon (HT-29, SW-480, DLD-1), brain (U87-MG, U251-MG), and breast (MDA-MB-231) cancer cell lines. Human embryonic kidney (HEK-293) and human foreskin fibroblast (HFF) served as non-cancerous controls. Wound closure, transwell invasion, and live cell imaging showed CKI reduced motility in all eight lines. Fractionation and reconstitution of CKI demonstrated combinations of compounds were required for activity. Live cell imaging confirmed CKI strongly reduced migration of HT-29 and MDA-MB-231 cells, moderately slowed brain cancer cells, and had a small effect on HEK-293. CKI uniformly blocked invasiveness through extracellular matrix. Apoptosis was increased by CKI in breast cancer but not in non-cancerous lines. Cell viability was unaffected by CKI in all cell lines. Transcriptomic analyses of MDA-MB-231indicated down-regulation of actin cytoskeletal and focal adhesion genes with CKI treatment, consistent with observed impairment of cell migration. The pharmacological complexity of CKI is important for effective blockade of cancer migration and invasion.
Collapse
Affiliation(s)
- Saeed Nourmohammadi
- Adelaide Medical School, The University of Adelaide, Adelaide, SA, Australia
| | - Thazin Nwe Aung
- Department of Molecular and Biomedical Science, School of Biological Sciences, The University of Adelaide, Adelaide, SA, Australia
| | - Jian Cui
- Department of Molecular and Biomedical Science, School of Biological Sciences, The University of Adelaide, Adelaide, SA, Australia
| | - Jinxin V. Pei
- Adelaide Medical School, The University of Adelaide, Adelaide, SA, Australia
| | | | - Yuka Harata-Lee
- Department of Molecular and Biomedical Science, School of Biological Sciences, The University of Adelaide, Adelaide, SA, Australia
| | - Zhipeng Qu
- Department of Molecular and Biomedical Science, School of Biological Sciences, The University of Adelaide, Adelaide, SA, Australia
| | - David L. Adelson
- Department of Molecular and Biomedical Science, School of Biological Sciences, The University of Adelaide, Adelaide, SA, Australia
| | - Andrea J. Yool
- Adelaide Medical School, The University of Adelaide, Adelaide, SA, Australia
| |
Collapse
|
29
|
Miller ML, Tome-Garcia J, Waluszko A, Sidorenko T, Kumar C, Ye F, Tsankova NM. Practical Bioinformatic DNA-Sequencing Pipeline for Detecting Oncogene Amplification and EGFRvIII Mutational Status in Clinical Glioblastoma Samples. J Mol Diagn 2019; 21:514-524. [PMID: 31000415 DOI: 10.1016/j.jmoldx.2019.02.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Revised: 01/17/2019] [Accepted: 02/06/2019] [Indexed: 12/28/2022] Open
Abstract
Glioblastoma is a malignant brain tumor with dismal prognosis. Oncogenic mutations in glioblastoma frequently affect receptor tyrosine kinase pathway components that are challenging to quantify because of heterogeneous expression. EGFRvIII, a common oncogenic receptor tyrosine kinase mutant protein in glioblastoma, potentiates tumor malignancy and is an emerging tumor-specific immunotarget, underlining the need for its more accessible and quantitative detection. We used normalized next-generation sequencing data from 117 brain and 371 reference clinical tumor samples to detect focal gene amplifications across the commercial Ion AmpliSeq Cancer Hotspot Panel version 2 and infer EGFRvIII status based on relative coverage dropout of the gene's truncated region within EGFR. In glioblastomas (n = 45), amplification of EGFR [18 (40%)], PDGFRA [3 (7%)], KIT [2 (4%)], MET [1 (2%)], and AKT1 [1 (2%)] was detected. With respect to EGFR and PDGFRA amplification, there was near-complete agreement between next-generation sequencing and in situ hybridization. Consistent with previous reports, this method detected EGFRvIII exclusively in EGFR-amplified glioblastomas [8 (44%)], which was confirmed using long-range PCR. Our study offers a practical method for detecting oncogene amplifications and large intragenic mutations in a clinically implemented hotspot panel that can be quantified using z scores. The validated detection of EGFRvIII using DNA sequencing eliminates problems with transcript degradation, and the provided script facilitates efficient incorporation into a laboratory's bioinformatic pipeline.
Collapse
Affiliation(s)
- Michael L Miller
- Fishberg Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Jessica Tome-Garcia
- Fishberg Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York; Department of Pathology and Laboratory Medicine, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Aneta Waluszko
- Department of Pathology and Laboratory Medicine, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Tatyana Sidorenko
- Department of Pathology and Laboratory Medicine, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Chitra Kumar
- Department of Pathology and Laboratory Medicine, Westchester Medical Center, Valhalla, New York
| | - Fei Ye
- Department of Pathology and Laboratory Medicine, Icahn School of Medicine at Mount Sinai, New York, New York; Department of Pathology and Laboratory Medicine, Westchester Medical Center, Valhalla, New York; Department of Pathology, New York Medical College, Valhalla, New York.
| | - Nadejda M Tsankova
- Fishberg Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York; Department of Pathology and Laboratory Medicine, Icahn School of Medicine at Mount Sinai, New York, New York.
| |
Collapse
|
30
|
Lathia JD. Drak, Drak, Goose: A New Signaling Axis in Glioblastoma. Cancer Res 2019; 79:1036-1037. [PMID: 30877099 DOI: 10.1158/0008-5472.can-19-0229] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Accepted: 01/22/2019] [Indexed: 11/16/2022]
Abstract
While many molecular alterations in glioblastoma (GBM), the most common primary malignant brain tumor, have been defined, the intricate signaling networks associated with these alterations that represent actionable therapeutic targets are less well established. Chen and colleagues leverage a Drosophila GBM model to identify a conserved signaling axis downstream of the EGFR and PI3K that involves the death-associated protein kinase (Drak), a cytoplasmic serine/threonine kinase orthologous to the human kinase STK17A. Functional studies revealed that targeting this signaling axis attenuated mitosis and cytokinesis, providing a new pathway for therapeutic development in GBM.See related article by Chen et al., p. 1085.
Collapse
Affiliation(s)
- Justin D Lathia
- Cleveland Clinic Lerner Research Institute, Cleveland, Ohio.
| |
Collapse
|
31
|
Dalley CB, Wroblewska B, Wolfe BB, Wroblewski JT. The Role of Metabotropic Glutamate Receptor 1 Dependent Signaling in Glioma Viability. J Pharmacol Exp Ther 2018; 367:59-70. [PMID: 30054311 DOI: 10.1124/jpet.118.250159] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Accepted: 07/18/2018] [Indexed: 12/31/2022] Open
Abstract
Glioma refers to malignant central nervous system tumors that have histologic characteristics in common with glial cells. The most prevalent type, glioblastoma multiforme, is associated with a poor prognosis and few treatment options. On the basis of reports of aberrant expression of mGluR1 mRNA in glioma, evidence that melanoma growth is directly influenced by glutamate metabotropic receptor 1 (mGluR1), and characterization of β-arrestin-dependent prosurvival signaling by this receptor, this study investigated the hypothesis that glioma cell lines aberrantly express mGluR1 and depend on mGluR1-mediated signaling to maintain viability and proliferation. Three glioma cell lines (Hs683, A172, and U87) were tested to confirm mGluR1 mRNA expression and the dependence of glioma cell viability on glutamate. Pharmacologic and genetic evidence is presented that suggests mGluR1 signaling specifically supports glioma proliferation and viability. For example, selective noncompetitive antagonists of mGluR1, CPCCOEt and JNJ16259685, decreased the viability of these cells in a dose-dependent manner, and glutamate metabotropic receptor 1 gene silencing significantly reduced glioma cell proliferation. Also, results of an anchorage-independent growth assay suggested that noncompetitive antagonism of mGluR1 may decrease the tumorigenic potential of Hs683 glioma cells. Finally, data are provided that support the hypothesis that a β-arrestin-dependent signaling cascade may be involved in glutamate-stimulated viability in glioma cells and that ligand bias may exist at mGluR1 expressed in these cells. Taken together, the results strongly suggest that mGluR1 may act as a proto-oncogene in glioma and be a viable drug target in glioma treatment.
Collapse
Affiliation(s)
- Carrie Bowman Dalley
- The Wroblewski Laboratory, Department of Pharmacology and Physiology (C.B.D., B.W., B.B.W., J.T.W.) and School of Nursing and Health Studies (C.B.D.), Georgetown University Medical Center, Washington, District of Columbia
| | - Barbara Wroblewska
- The Wroblewski Laboratory, Department of Pharmacology and Physiology (C.B.D., B.W., B.B.W., J.T.W.) and School of Nursing and Health Studies (C.B.D.), Georgetown University Medical Center, Washington, District of Columbia
| | - Barry B Wolfe
- The Wroblewski Laboratory, Department of Pharmacology and Physiology (C.B.D., B.W., B.B.W., J.T.W.) and School of Nursing and Health Studies (C.B.D.), Georgetown University Medical Center, Washington, District of Columbia
| | - Jarda T Wroblewski
- The Wroblewski Laboratory, Department of Pharmacology and Physiology (C.B.D., B.W., B.B.W., J.T.W.) and School of Nursing and Health Studies (C.B.D.), Georgetown University Medical Center, Washington, District of Columbia
| |
Collapse
|
32
|
Kuang JY, Guo YF, Chen Y, Wang J, Duan JJ, He XL, Li L, Yu SC, Bian XW. Connexin 43 C-terminus directly inhibits the hyperphosphorylation of Akt/ERK through protein-protein interactions in glioblastoma. Cancer Sci 2018; 109:2611-2622. [PMID: 29931708 PMCID: PMC6113504 DOI: 10.1111/cas.13707] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Revised: 06/05/2018] [Accepted: 06/07/2018] [Indexed: 12/16/2022] Open
Abstract
Although the deregulation of epidermal growth factor receptor (EGFR) is one of the most common molecular mechanisms of glioblastoma (GBM) pathogenesis, the efficacy of anti-EGFR therapy is limited. Additionally, response to anti-EGFR therapy is not solely dependent on EGFR expression and is more promising in patients with reduced activity of EGFR downstream signaling pathways. Thus, there is considerable interest in identifying the compensatory regulatory factors of the EGFR signaling pathway to improve the efficacy of anti-EGFR therapies for GBM. In this study, we confirmed the low efficacy of EGFR inhibitors in GBM patients by meta-analysis. We then identified a negative correlation between connexin 43 (Cx43) expression and Akt/ERK activation, which was caused by the direct interactions between Akt/ERK and Cx43. By comparing the interactions between Akt/ERK and Cx43 using a series of truncated and mutated Cx43 variants, we revealed that the residues T286/A305/Q308/Y313 and S272/S273 at the carboxy terminus of Cx43 are critical for its binding with Akt and ERK, respectively. In addition, Kaplan-Meier survival analysis using data from The Cancer Genome Atlas datasets indicated that the expression of Cx43 significantly improved the prognosis of GBM patients who express EGFR. Together, our results suggested that Cx43 acts as an inhibitory regulator of the activation of growth factor receptor downstream signaling pathways, indicating the potential of Cx43 as a marker for predicting the efficacy of EGFR inhibitor treatments for GBM. Targeting the interaction between the carboxy terminus of Cx43 and Akt/ERK could be an effective therapeutic strategy against GBM.
Collapse
Affiliation(s)
- Jing-Ya Kuang
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China.,Key Laboratory of Tumor Immunology and Pathology of Ministry of Education, Chongqing, China
| | - Yu-Feng Guo
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China.,Key Laboratory of Tumor Immunology and Pathology of Ministry of Education, Chongqing, China
| | - Ying Chen
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China.,Key Laboratory of Tumor Immunology and Pathology of Ministry of Education, Chongqing, China
| | - Jun Wang
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China.,Key Laboratory of Tumor Immunology and Pathology of Ministry of Education, Chongqing, China
| | - Jiang-Jie Duan
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China.,Key Laboratory of Tumor Immunology and Pathology of Ministry of Education, Chongqing, China
| | - Xiao-Li He
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China.,Key Laboratory of Tumor Immunology and Pathology of Ministry of Education, Chongqing, China
| | - Lin Li
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China.,Key Laboratory of Tumor Immunology and Pathology of Ministry of Education, Chongqing, China
| | - Shi-Cang Yu
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China.,Key Laboratory of Tumor Immunology and Pathology of Ministry of Education, Chongqing, China
| | - Xiu-Wu Bian
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China.,Key Laboratory of Tumor Immunology and Pathology of Ministry of Education, Chongqing, China
| |
Collapse
|
33
|
An Z, Aksoy O, Zheng T, Fan QW, Weiss WA. Epidermal growth factor receptor and EGFRvIII in glioblastoma: signaling pathways and targeted therapies. Oncogene 2018; 37:1561-1575. [PMID: 29321659 PMCID: PMC5860944 DOI: 10.1038/s41388-017-0045-7] [Citation(s) in RCA: 384] [Impact Index Per Article: 54.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Revised: 10/04/2017] [Accepted: 10/05/2017] [Indexed: 01/05/2023]
Abstract
Amplification of epidermal growth factor receptor (EGFR) and its active mutant EGFRvIII occurs frequently in glioblastoma (GBM). While EGFR and EGFRvIII play critical roles in pathogenesis, targeted therapy with EGFR-tyrosine kinase inhibitors (TKIs) or antibodies has only shown limited efficacy in patients. Here we discuss signaling pathways mediated by EGFR/EGFRvIII, current therapeutics, and novel strategies to target EGFR/EGFRvIII-amplified GBM.
Collapse
Affiliation(s)
- Zhenyi An
- Department of Neurology, University of California, San Francisco, CA, USA
| | - Ozlem Aksoy
- Department of Neurology, University of California, San Francisco, CA, USA
| | - Tina Zheng
- Department of Neurology, University of California, San Francisco, CA, USA
| | - Qi-Wen Fan
- Department of Neurology, University of California, San Francisco, CA, USA
| | - William A Weiss
- Department of Neurology, University of California, San Francisco, CA, USA.
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA, USA.
- Department of Neurological Surgery, University of California, San Francisco, CA, USA.
| |
Collapse
|
34
|
Li J, Zhou Y, Wang H, Gao Y, Li L, Hwang SH, Ji X, Hammock BD. COX-2/sEH dual inhibitor PTUPB suppresses glioblastoma growth by targeting epidermal growth factor receptor and hyaluronan mediated motility receptor. Oncotarget 2017; 8:87353-87363. [PMID: 29152086 PMCID: PMC5675638 DOI: 10.18632/oncotarget.20928] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2017] [Accepted: 08/26/2017] [Indexed: 11/25/2022] Open
Abstract
Aims Cyclooxygenase-2 (COX-2)/soluble epoxide hydrolase (sEH) dual inhibitor, PTUPB, has been demonstrated to inhibit angiogenesis, primary tumor growth and metastasis. The aim of this study is to investigate the effects of PTUPB on glioblastoma cells and xenograft model. Results We show here that PTUPB inhibits glioblastoma cell proliferation and G1 phase cell cycle arrest in vitro, and suppresses the tumor growth and angiogenesis in vivo. The expression and activation of epidermal growth factor receptor (EGFR) and its downstream kinases, ERK1/2 and AKT, are reduced by PTUPB, indicating that the EGF/EGFR signaling pathway is a potential target. Moreover, PTUPB dramatically suppresses expression of hyaluronan mediated motility receptor (HMMR) in the glioblastoma cell lines and xenograft mouse model, suggesting that the HMMR is the other potential target. Materials and Methods Cellular immunofluorescence assays were used for cell staining of actin fibers and HMMR. CCK-8 kit was used for cell proliferation assay. Cell-cycle analysis was performed by flow cytometry. Quantitative real-time PCR assay was performed to test mRNA level. Western blot analysis was used to test protein expression. Immunohistochemical staining assay was used for xenograft tumor tissue staining of Ki-67, CD31 and HMMR. The SPSS version 17.0 software was applied for statistical analysis. Conclusions Our data demonstrate that PTUPB is a potential therapeutic agent to treat glioblastomas.
Collapse
Affiliation(s)
- Junyang Li
- Department of Neurosurgery, Jinling Hospital, Medical school of Nanjing University, Nanjing, 210002, China
| | - Yali Zhou
- Department of Neurosurgery, Jinling Hospital, Medical school of Nanjing University, Nanjing, 210002, China
| | - Handong Wang
- Department of Neurosurgery, Jinling Hospital, Medical school of Nanjing University, Nanjing, 210002, China
| | - Yongyue Gao
- Department of Neurosurgery, Jinling Hospital, Medical school of Nanjing University, Nanjing, 210002, China
| | - Liwen Li
- Department of Neurosurgery, Jinling Hospital, Medical school of Nanjing University, Nanjing, 210002, China
| | - Sung Hee Hwang
- Department of Entomology and Nematology and UC Davis Comprehensive Cancer Center, University of California, Davis, CA 95616, USA
| | - Xiangjun Ji
- Department of Neurosurgery, Jinling Hospital, Medical school of Nanjing University, Nanjing, 210002, China
| | - Bruce D Hammock
- Department of Entomology and Nematology and UC Davis Comprehensive Cancer Center, University of California, Davis, CA 95616, USA
| |
Collapse
|
35
|
Pedron S, Polishetty H, Pritchard AM, Mahadik BP, Sarkaria JN, Harley BAC. Spatially graded hydrogels for preclinical testing of glioblastoma anticancer therapeutics. MRS COMMUNICATIONS 2017; 7:442-449. [PMID: 29230350 PMCID: PMC5721678 DOI: 10.1557/mrc.2017.85] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
While preclinical models such as orthotopic tumors generated in mice from patient-derived specimens are widely used to predict sensitivity or therapeutic interventions for cancer, such xenografts can be slow, require extensive infrastructure, and can make in situ assessment difficult. Such concerns are heightened in highly aggressive cancers, such as glioblastoma (GBM), that display genetic diversity and short mean survival. Biomimetic biomaterial technologies offer an approach to create ex vivo models that reflect biophysical features of the tumor microenvironment (TME). We describe a microfluidic templating approach to generate spatially graded hydrogels containing patient-derived GBM cells to explore drug efficacy and resistance mechanisms.
Collapse
Affiliation(s)
- S Pedron
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, 1206 West Gregory Drive, Urbana, IL 61801, USA
| | - H Polishetty
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, 1206 West Gregory Drive, Urbana, IL 61801, USA
| | - A M Pritchard
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, 1206 West Gregory Drive, Urbana, IL 61801, USA
| | - B P Mahadik
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, 1206 West Gregory Drive, Urbana, IL 61801, USA
| | - J N Sarkaria
- Department of Radiation Oncology, Mayo Clinic, 200 First Street Southwest, Rochester, MN 55905, USA
| | - B A C Harley
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, 1206 West Gregory Drive, Urbana, IL 61801, USA; Department of Chemical and Biomolecular Engineering, Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, 110 Roger Adams Lab., 600 S. Mathews Avenue, Urbana, IL 61801, USA
| |
Collapse
|
36
|
Felsberg J, Hentschel B, Kaulich K, Gramatzki D, Zacher A, Malzkorn B, Kamp M, Sabel M, Simon M, Westphal M, Schackert G, Tonn JC, Pietsch T, von Deimling A, Loeffler M, Reifenberger G, Weller M. Epidermal Growth Factor Receptor Variant III (EGFRvIII) Positivity in EGFR-Amplified Glioblastomas: Prognostic Role and Comparison between Primary and Recurrent Tumors. Clin Cancer Res 2017; 23:6846-6855. [DOI: 10.1158/1078-0432.ccr-17-0890] [Citation(s) in RCA: 101] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Revised: 07/25/2017] [Accepted: 08/23/2017] [Indexed: 11/16/2022]
|
37
|
Pang LY, Saunders L, Argyle DJ. Epidermal growth factor receptor activity is elevated in glioma cancer stem cells and is required to maintain chemotherapy and radiation resistance. Oncotarget 2017; 8:72494-72512. [PMID: 29069805 PMCID: PMC5641148 DOI: 10.18632/oncotarget.19868] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Accepted: 07/06/2017] [Indexed: 12/26/2022] Open
Abstract
Glioblastoma remains among the most aggressive of all human and canine malignancies, displaying high mortality rates and limited treatment options. We propose that given the similarities between canine and human gliomas, such as incidence of occurrence, histopathology, molecular characteristics, and response to therapy, that canine gliomas are a natural model of the human disease. A range of human and canine tumours have been shown to harbor specific subpopulations of cells with stem cell-like properties that initiate and maintain neoplasticity while resisting conventional therapies. Here, we show that both canine and human glioma cell lines contain a small population of cancer stem cells (CSCs), and by molecular profiling highlight the important role of the epidermal growth factor receptor (EGFR) pathway in canine CSCs. EGFR signaling is crucial in the regulation of cancer cell proliferation, migration and survival. To date EGFR-targeted interventions alone have been largely ineffective. Our findings confirm that specifically inhibiting EGFR signaling alone has no significant effect on the viability of CSCs. However inhibition of EGFR did enhance the chemo- and radio-sensitivity of both canine and human glioma CSCs, enabling this resistant, tumourigenic population of cells to be effectively targeted by conventional therapies.
Collapse
Affiliation(s)
- Lisa Y Pang
- Royal (Dick) School of Veterinary Studies and Roslin Institute, The University of Edinburgh, Easter Bush, Midlothian, EH25 9RG, Scotland
| | - Lauren Saunders
- Royal (Dick) School of Veterinary Studies and Roslin Institute, The University of Edinburgh, Easter Bush, Midlothian, EH25 9RG, Scotland
| | - David J Argyle
- Royal (Dick) School of Veterinary Studies and Roslin Institute, The University of Edinburgh, Easter Bush, Midlothian, EH25 9RG, Scotland
| |
Collapse
|
38
|
Rizzo A, Donzelli S, Girgenti V, Sacconi A, Vasco C, Salmaggi A, Blandino G, Maschio M, Ciusani E. In vitro antineoplastic effects of brivaracetam and lacosamide on human glioma cells. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2017; 36:76. [PMID: 28587680 PMCID: PMC5460451 DOI: 10.1186/s13046-017-0546-9] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Accepted: 05/29/2017] [Indexed: 01/16/2023]
Abstract
Background Epilepsy is a frequent symptom in patients with glioma. Although treatment with antiepileptic drugs is generally effective in controlling seizures, drug-resistant patients are not uncommon. Multidrug resistance proteins (MRPs) and P-gp are over-represented in brain tissue of patients with drug-resistant epilepsy, suggesting their involvement in the clearance of antiepileptic medications. In addition to their anticonvulsant action, some drugs have been documented for cytotoxic effects. Aim of this study was to evaluate possible in vitro cytotoxic effects of two new-generation antiepileptic drugs on a human glioma cell line U87MG. Methods Cytotoxicity of brivaracetam and lacosamide was tested on U87MG, SW1783 and T98G by MTS assay. Expression of chemoresistance molecules was evaluated using flow cytometry in U87MG and human umbilical vein endothelial cells (HUVECs). To investigate the putative anti-proliferative effect, apoptosis assay, microRNA expression profile and study of cell cycle were performed. Results Brivaracetam and lacosamide showed a dose-dependent cytotoxic and anti-migratory effects. Cytotoxicity was not related to apoptosis. The exposure of glioma cells to brivaracetam and lacosamide resulted in the modulation of several microRNAs; particularly, the effect of miR-195-5p modulation seemed to affect cell cycle, while miR-107 seemed to be implicated in the inhibition of cells migration. Moreover, brivaracetam and lacosamide treatment did not modulate the expression of chemoresistance-related molecules MRPs1-3-5, GSTπ, P-gp on U87MG and HUVECs. Conclusion Based on antineoplastic effect of brivaracetam and lacosamide on glioma cells, we assume that patients with glioma could benefit by the treatment with these two molecules, in addition to standard therapeutic options. Electronic supplementary material The online version of this article (doi:10.1186/s13046-017-0546-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ambra Rizzo
- Laboratory of Clinical Pathology and Medical Genetics, Foundation IRCCS Neurological Institute C. Besta, Via Celoria, 11, 20133, Milan, Italy
| | - Sara Donzelli
- Oncogenomic and Epigenetic Unit, Regina Elena National Cancer Institute, Via Elio Chianesi, 5300144, Rome, Italy
| | - Vita Girgenti
- Laboratory of Clinical Pathology and Medical Genetics, Foundation IRCCS Neurological Institute C. Besta, Via Celoria, 11, 20133, Milan, Italy
| | - Andrea Sacconi
- Oncogenomic and Epigenetic Unit, Regina Elena National Cancer Institute, Via Elio Chianesi, 5300144, Rome, Italy
| | - Chiara Vasco
- Laboratory of Clinical Pathology and Medical Genetics, Foundation IRCCS Neurological Institute C. Besta, Via Celoria, 11, 20133, Milan, Italy
| | - Andrea Salmaggi
- Neurologia- Stroke Unit, Manzoni Hospital, Via dell'Eremo 9/11, 23900, Lecco, Italy
| | - Giovanni Blandino
- Oncogenomic and Epigenetic Unit, Regina Elena National Cancer Institute, Via Elio Chianesi, 5300144, Rome, Italy
| | - Marta Maschio
- Center for tumor-related epilepsy, Area of Supporting Care, Regina Elena National Cancer Institute, Via Elio Chianesi 53, 00144, Rome, Italy.
| | - Emilio Ciusani
- Laboratory of Clinical Pathology and Medical Genetics, Foundation IRCCS Neurological Institute C. Besta, Via Celoria, 11, 20133, Milan, Italy
| |
Collapse
|
39
|
Bi-specific molecule against EGFR and death receptors simultaneously targets proliferation and death pathways in tumors. Sci Rep 2017; 7:2602. [PMID: 28572590 PMCID: PMC5454031 DOI: 10.1038/s41598-017-02483-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Accepted: 04/11/2017] [Indexed: 01/14/2023] Open
Abstract
Developing therapeutics that target multiple receptor signaling pathways in tumors is critical as therapies targeting single specific biomarker/pathway have shown limited efficacy in patients with cancer. In this study, we extensively characterized a bi-functional molecule comprising of epidermal growth factor receptor (EGFR) targeted nanobody (ENb) and death receptor (DR) targeted ligand TRAIL (ENb-TRAIL). We show that ENb-TRAIL has therapeutic efficacy in tumor cells from different cancer types which do not respond to either EGFR antagonist or DR agonist monotherapies. Utilizing pharmacological inhibition, genetic loss of function and FRET studies, we show that ENb-TRAIL blocks EGFR signalling via the binding of ENb to EGFR which in turn induces DR5 clustering at the plasma membrane and thereby primes tumor cells to caspase-mediated apoptosis. In vivo, using a clinically relevant orthotopic resection model of primary glioblastoma and engineered stem cells (SC) expressing ENb-TRAIL, we show that the treatment with synthetic extracellular matrix (sECM) encapsulated SC-ENb-TRAIL alleviates tumor burden and significantly increases survival. This study is the first to report novel mechanistic insights into simultaneous targeting of receptor-mediated proliferation and cell death signaling pathways in different tumor types and presents a promising approach for translation into the clinical setting.
Collapse
|
40
|
Yan H, Romero-López M, Benitez LI, Di K, Frieboes HB, Hughes CCW, Bota DA, Lowengrub JS. 3D Mathematical Modeling of Glioblastoma Suggests That Transdifferentiated Vascular Endothelial Cells Mediate Resistance to Current Standard-of-Care Therapy. Cancer Res 2017; 77:4171-4184. [PMID: 28536277 DOI: 10.1158/0008-5472.can-16-3094] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Revised: 02/24/2017] [Accepted: 05/16/2017] [Indexed: 01/17/2023]
Abstract
Glioblastoma (GBM), the most aggressive brain tumor in human patients, is decidedly heterogeneous and highly vascularized. Glioma stem/initiating cells (GSC) are found to play a crucial role by increasing cancer aggressiveness and promoting resistance to therapy. Recently, cross-talk between GSC and vascular endothelial cells has been shown to significantly promote GSC self-renewal and tumor progression. Furthermore, GSC also transdifferentiate into bona fide vascular endothelial cells (GEC), which inherit mutations present in GSC and are resistant to traditional antiangiogenic therapies. Here we use three-dimensional mathematical modeling to investigate GBM progression and response to therapy. The model predicted that GSCs drive invasive fingering and that GEC spontaneously form a network within the hypoxic core, consistent with published experimental findings. Standard-of-care treatments using DNA-targeted therapy (radiation/chemo) together with antiangiogenic therapies reduced GBM tumor size but increased invasiveness. Anti-GEC treatments blocked the GEC support of GSCs and reduced tumor size but led to increased invasiveness. Anti-GSC therapies that promote differentiation or disturb the stem cell niche effectively reduced tumor invasiveness and size, but were ultimately limited in reducing tumor size because GECs maintain GSCs. Our study suggests that a combinatorial regimen targeting the vasculature, GSCs, and GECs, using drugs already approved by the FDA, can reduce both tumor size and invasiveness and could lead to tumor eradication. Cancer Res; 77(15); 4171-84. ©2017 AACR.
Collapse
Affiliation(s)
- Huaming Yan
- Department of Mathematics, University of California, Irvine, California
| | - Mónica Romero-López
- Department of Biomedical Engineering, University of California, Irvine, California
| | - Lesly I Benitez
- Department of Molecular Biology and Biochemistry, University of California, Irvine, California
| | - Kaijun Di
- Chao Comprehensive Cancer Center, University of California, Irvine, California.,Department of Neurological Surgery, University of California, Irvine, California
| | - Hermann B Frieboes
- James Graham Brown Cancer Center, University of Louisville.,Department of Bioengineering, University of Louisville, Louisville, Kentucky
| | - Christopher C W Hughes
- Department of Biomedical Engineering, University of California, Irvine, California.,Department of Molecular Biology and Biochemistry, University of California, Irvine, California.,Chao Comprehensive Cancer Center, University of California, Irvine, California.,Center for Complex Biological Systems, University of California, Irvine, California
| | - Daniela A Bota
- Chao Comprehensive Cancer Center, University of California, Irvine, California.,Department of Neurological Surgery, University of California, Irvine, California.,Department of Neurology, University of California, Irvine, California
| | - John S Lowengrub
- Department of Mathematics, University of California, Irvine, California. .,Department of Biomedical Engineering, University of California, Irvine, California.,Chao Comprehensive Cancer Center, University of California, Irvine, California.,Center for Complex Biological Systems, University of California, Irvine, California
| |
Collapse
|
41
|
Bi B, Li F, Guo J, Li C, Jing R, Lv X, Chen X, Wang F, Azadzoi KM, Wang L, Liu Y, Yang JH. Label-free quantitative proteomics unravels the importance of RNA processing in glioma malignancy. Neuroscience 2017; 351:84-95. [PMID: 28341197 DOI: 10.1016/j.neuroscience.2017.03.023] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Revised: 03/13/2017] [Accepted: 03/14/2017] [Indexed: 11/30/2022]
Abstract
Glioma, one of the most common cancers in human, is classified to different grades according to the degrees of malignancy. Glioblastoma (GBM) is known to be the most malignant (Grade IV) whereas low-grade astrocytoma (LGA, Grade II) is relatively benign. The mechanism underlying the pathogenesis and progression of glioma malignancy remains unclear. Here we report a quantitative proteomic study to elucidate the differences between GBM and LGA using liquid chromatography and tandem mass spectrometry followed by label-free quantification. A total of 136 proteins were differentially expressed in GBM for at least five folds in comparison with LGA. Ontological analysis revealed a close correlation between GBM-associated proteins and RNA processing. Interaction network analysis indicated that the GBM-associated proteins in the RNA processing were linked to crucial signaling transduction modulators including epidermal growth factor receptor (EGFR), signal transducer and activator of transcription 1 (STAT1), and mitogen-activated protein kinase 1 (MAPK1), which were further connected to the proteins important for neuronal structural integrity, development and functions. Upregulation of 40S ribosomal protein S5 (RPS5), Ferritin Heavy chain (FTH1) and STAT1, and downregulation of tenascin R (TNR) were validated as representatives by immune assays. In summary, we revealed a panel of GBM-associated proteins and the important modulators centered at the RNA-processing network in glioma malignancy that may become novel biomarkers and help elucidate the underlying mechanism.
Collapse
Affiliation(s)
- Baibin Bi
- Cancer Research Center, Shandong University School of Medicine, Jinan 250012, China; Departments of Neurosurgery and Radiation Oncology, Qilu Hospital of Shandong University, Jinan 250012, China; Brain Science Research Institute of Shandong University, Jinan 250012, China.
| | - Feng Li
- Departments of Neurosurgery and Radiation Oncology, Qilu Hospital of Shandong University, Jinan 250012, China; Brain Science Research Institute of Shandong University, Jinan 250012, China.
| | - Jisheng Guo
- Cancer Research Center, Shandong University School of Medicine, Jinan 250012, China.
| | - Cuiling Li
- Cancer Research Center, Shandong University School of Medicine, Jinan 250012, China.
| | - Ruirui Jing
- Cancer Research Center, Shandong University School of Medicine, Jinan 250012, China.
| | - Xin Lv
- Cancer Research Center, Shandong University School of Medicine, Jinan 250012, China.
| | - Xinjun Chen
- Cancer Research Center, Shandong University School of Medicine, Jinan 250012, China.
| | - Fengqin Wang
- Cancer Research Center, Shandong University School of Medicine, Jinan 250012, China.
| | - Kazem M Azadzoi
- Departments of Surgery and Urology, VA Boston Healthcare System, Boston University School of Medicine, Boston, MA 02130, USA.
| | - Lin Wang
- Departments of Neurosurgery and Radiation Oncology, Qilu Hospital of Shandong University, Jinan 250012, China.
| | - Yuguang Liu
- Departments of Neurosurgery and Radiation Oncology, Qilu Hospital of Shandong University, Jinan 250012, China; Brain Science Research Institute of Shandong University, Jinan 250012, China.
| | - Jing-Hua Yang
- Cancer Research Center, Shandong University School of Medicine, Jinan 250012, China; Departments of Surgery and Urology, VA Boston Healthcare System, Boston University School of Medicine, Boston, MA 02130, USA.
| |
Collapse
|
42
|
Abstract
The receptor for epidermal growth factor (EGFR) is a prime target for cancer therapy across a broad variety of tumor types. As it is a tyrosine kinase, small molecule tyrosine kinase inhibitors (TKIs) targeting signal transduction, as well as monoclonal antibodies against the EGFR, have been investigated as anti-tumor agents. However, despite the long-known enigmatic EGFR gene amplification and protein overexpression in glioblastoma, the most aggressive intrinsic human brain tumor, the potential of EGFR as a target for this tumor type has been unfulfilled. This review analyses the attempts to use TKIs and monoclonal antibodies against glioblastoma, with special consideration given to immunological approaches, the use of EGFR as a docking molecule for conjugates with toxins, T-cells, oncolytic viruses, exosomes and nanoparticles. Drug delivery issues associated with therapies for intracerebral diseases, with specific emphasis on convection enhanced delivery, are also discussed.
Collapse
Affiliation(s)
- Manfred Westphal
- Department of Neurosurgery, University Hospital Hamburg Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany.
| | - Cecile L. Maire
- 0000 0001 2180 3484grid.13648.38Department of Neurosurgery, University Hospital Hamburg Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany
| | - Katrin Lamszus
- 0000 0001 2180 3484grid.13648.38Department of Neurosurgery, University Hospital Hamburg Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany
| |
Collapse
|
43
|
Koch H, Wilhelm M, Ruprecht B, Beck S, Frejno M, Klaeger S, Kuster B. Phosphoproteome Profiling Reveals Molecular Mechanisms of Growth-Factor-Mediated Kinase Inhibitor Resistance in EGFR-Overexpressing Cancer Cells. J Proteome Res 2016; 15:4490-4504. [PMID: 27794612 DOI: 10.1021/acs.jproteome.6b00621] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Although substantial progress has been made regarding the use of molecularly targeted cancer therapies, resistance almost invariably develops and presents a major clinical challenge. The tumor microenvironment can rescue cancer cells from kinase inhibitors by growth-factor-mediated induction of pro-survival pathways. Here we show that epidermal growth factor receptor (EGFR) inhibition by Gefitinib is counteracted by growth factors, notably FGF2, and we assessed the global molecular consequences of this resistance at the proteome and phosphoproteome level in A431 cells. Tandem mass tag peptide labeling and quantitative mass spectrometry allowed the identification and quantification of 22 000 phosphopeptides and 8800 proteins in biological triplicates without missing values. The data show that FGF2 protects the cells from the antiproliferative effect of Gefitinib and largely prevents reprogramming of the proteome and phosphoproteome. Simultaneous EGFR/FGFR or EGFR/GSG2 (Haspin) inhibition overcomes this resistance, and the phosphoproteomic experiments further prioritized the RAS/MEK/ERK as well as the PI3K/mTOR axis for combination treatment. Consequently, the MEK inhibitor Trametinib prevented FGF2-mediated survival of EGFR inhibitor-resistant cells when used in combination with Gefitinib. Surprisingly, the PI3K/mTOR inhibitor Omipalisib reversed resistance mediated by all four growth factors tested, making it an interesting candidate for mitigating the effects of the tumor microenvironment.
Collapse
Affiliation(s)
- Heiner Koch
- Chair for Proteomics and Bioanalytics, Technical University of Munich , 85354 Freising, Germany.,German Cancer Consortium (DKTK) , 69120 Heidelberg, Germany.,German Cancer Research Center (DKFZ) , 69120 Heidelberg, Germany
| | - Mathias Wilhelm
- Chair for Proteomics and Bioanalytics, Technical University of Munich , 85354 Freising, Germany
| | - Benjamin Ruprecht
- Chair for Proteomics and Bioanalytics, Technical University of Munich , 85354 Freising, Germany.,Center for Integrated Protein Science Munich (CIPSM) , 81377 Munich, Germany
| | - Scarlet Beck
- Proteomics and Signal Transduction, Max-Planck-Institute of Biochemistry , 82152 Martinsried, Germany
| | - Martin Frejno
- Chair for Proteomics and Bioanalytics, Technical University of Munich , 85354 Freising, Germany.,Department of Oncology, University of Oxford , OX3 7DQ Oxford, United Kingdom
| | - Susan Klaeger
- Chair for Proteomics and Bioanalytics, Technical University of Munich , 85354 Freising, Germany.,German Cancer Consortium (DKTK) , 69120 Heidelberg, Germany.,German Cancer Research Center (DKFZ) , 69120 Heidelberg, Germany
| | - Bernhard Kuster
- Chair for Proteomics and Bioanalytics, Technical University of Munich , 85354 Freising, Germany.,German Cancer Consortium (DKTK) , 69120 Heidelberg, Germany.,German Cancer Research Center (DKFZ) , 69120 Heidelberg, Germany.,Center for Integrated Protein Science Munich (CIPSM) , 81377 Munich, Germany.,Bavarian Biomolecular Mass Spectrometry Center, Technische Universität München , 85354 Freising, Germany
| |
Collapse
|
44
|
Areeb Z, Stylli SS, Ware TMB, Harris NC, Shukla L, Shayan R, Paradiso L, Li B, Morokoff AP, Kaye AH, Luwor RB. Inhibition of glioblastoma cell proliferation, migration and invasion by the proteasome antagonist carfilzomib. Med Oncol 2016; 33:53. [DOI: 10.1007/s12032-016-0767-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Accepted: 04/12/2016] [Indexed: 11/29/2022]
|
45
|
Yu J, Guo M, Wang T, Li X, Wang D, Wang X, Zhang Q, Wang L, Zhang Y, Zhao C, Feng B. Inhibition of cell proliferation, migration and invasion by a glioma-targeted fusion protein combining the p53 C terminus and MDM2-binding domain. Cell Prolif 2016; 49:79-89. [PMID: 26840447 DOI: 10.1111/cpr.12238] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Accepted: 10/14/2015] [Indexed: 12/26/2022] Open
Abstract
OBJECTIVES The aim of this study was to develop multifunctional fusion proteins for targeting and delivering therapy elements into glioma cells. MATERIALS AND METHODS Multifunctional fusion proteins were expressed in Escherichia coli and purified using Ni-NTA resin affinity chromatography. Human glioma cells and primary astrocytes were used to analyse their functions. Targeting proteins location to glioma cells was observed by confocal microscopy. Effects of cell viability and proliferation were evaluated using the Cell Counting Kit 8 and colony formation assays. Glioma cell migration and invasion were assessed using transwell assays, and apoptosis was analysed by flow cytometry. In addition, changes in expression of proteins related to the cell cycle and apoptosis were determined by Western blotting. RESULTS The protein with highest bioactivity was GL1-riHA2-p53c+m-TAT (GHPc+mT), which combines glioma-targeting peptide GL1 (G), and C terminus (Pc) and mouse double minute domains (Pm) of p53, with the destabilizing lipid membrane peptide riHA2 (H) and cell-penetrating peptide TAT (T). The purified fusion protein was stable in cell culture medium and specifically targeted, and was internalized by, epidermal growth factor receptor (EGFR)-overexpressing glioma cells (U87ΔEGFR). It inhibited cell proliferation, migration and invasion, while flow cytometric analysis showed increased apoptosis. In addition, GHPc+mT caused significant changes in expression of proteins related to the cell cycle and apoptosis. CONCLUSION GHPc+mT is a multifunctional protein combining targeting, inhibition of glioma cell proliferation and induction of apoptosis, providing some potential to be developed into an effective protein drug delivery system for glioma therapy.
Collapse
Affiliation(s)
- Jiawen Yu
- Department of Biotechnology, Dalian Medical University, Dalian, 116044, China.,Department of Hematology, The First Affiliated Hospital of Dalian Medical University, Dalian, 116011, China
| | - Meihua Guo
- Department of Biotechnology, Dalian Medical University, Dalian, 116044, China
| | - Ting Wang
- Department of Biotechnology, Dalian Medical University, Dalian, 116044, China
| | - Xiang Li
- Department of Biotechnology, Dalian Medical University, Dalian, 116044, China
| | - Dan Wang
- Department of Biotechnology, Dalian Medical University, Dalian, 116044, China
| | - Xinying Wang
- Department of Biotechnology, Dalian Medical University, Dalian, 116044, China
| | - Qian Zhang
- Department of Biotechnology, Dalian Medical University, Dalian, 116044, China
| | - Liang Wang
- Department of Biotechnology, Dalian Medical University, Dalian, 116044, China
| | - Yang Zhang
- Department of Biotechnology, Dalian Medical University, Dalian, 116044, China
| | - Chunhui Zhao
- College of Life Sciences, Liaoning Normal University, Dalian, 116029, China
| | - Bin Feng
- Department of Biotechnology, Dalian Medical University, Dalian, 116044, China
| |
Collapse
|
46
|
Thorne AH, Zanca C, Furnari F. Epidermal growth factor receptor targeting and challenges in glioblastoma. Neuro Oncol 2016; 18:914-8. [PMID: 26755074 DOI: 10.1093/neuonc/nov319] [Citation(s) in RCA: 91] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Accepted: 12/13/2015] [Indexed: 12/23/2022] Open
Abstract
With the evolution of technology, there is now a deeper understanding of glioblastoma as an inter- and intraheterogeneous disease comprising a multitude of genetically and epigenetically different cancer cells. Greater characterization of glioblastoma at the molecular level has improved its initial pathophysiological staging and classification. With this knowledge comes the hope that more efficacious therapies to combat this highly lethal disease are on the horizon. One possibility for intervention is represented by the targeting of epidermal growth factor receptor (EGFR), which is amplified and mutated in a large subset of patients. In this review, we provide a brief overview of EGFR and its mutated form, EGFR variant III, describing the downstream cellular pathways activated by each receptor, available animal models, therapeutic strategies to inhibit the receptor, and possible intervention routes to efficiently target this receptor and prevent the emergence of resistant mechanisms which to date have hampered a successful therapeutic outcome.
Collapse
Affiliation(s)
- Amy Haseley Thorne
- Ludwig Institute for Cancer Research, University of California at San Diego, La Jolla, California (A.H.T., C.Z., F.F.); Moores Cancer Center, University of California at San Diego, La Jolla, California (F.F.); Department of Pathology, University of California at San Diego, La Jolla, California (F.F.)
| | - Ciro Zanca
- Ludwig Institute for Cancer Research, University of California at San Diego, La Jolla, California (A.H.T., C.Z., F.F.); Moores Cancer Center, University of California at San Diego, La Jolla, California (F.F.); Department of Pathology, University of California at San Diego, La Jolla, California (F.F.)
| | - Frank Furnari
- Ludwig Institute for Cancer Research, University of California at San Diego, La Jolla, California (A.H.T., C.Z., F.F.); Moores Cancer Center, University of California at San Diego, La Jolla, California (F.F.); Department of Pathology, University of California at San Diego, La Jolla, California (F.F.)
| |
Collapse
|
47
|
Rolón-Reyes K, Kucheryavykh YV, Cubano LA, Inyushin M, Skatchkov SN, Eaton MJ, Harrison JK, Kucheryavykh LY. Microglia Activate Migration of Glioma Cells through a Pyk2 Intracellular Pathway. PLoS One 2015; 10:e0131059. [PMID: 26098895 PMCID: PMC4476590 DOI: 10.1371/journal.pone.0131059] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Accepted: 05/27/2015] [Indexed: 01/03/2023] Open
Abstract
Glioblastoma is one of the most aggressive and fatal brain cancers due to the highly invasive nature of glioma cells. Microglia infiltrate most glioma tumors and, therefore, make up an important component of the glioma microenvironment. In the tumor environment, microglia release factors that lead to the degradation of the extracellular matrix and stimulate signaling pathways to promote glioma cell invasion. In the present study, we demonstrated that microglia can promote glioma migration through a mechanism independent of extracellular matrix degradation. Using western blot analysis, we found upregulation of proline rich tyrosine kinase 2 (Pyk2) protein phosphorylated at Tyr579/580 in glioma cells treated with microglia conditioned medium. This upregulation occurred in rodent C6 and GL261 as well as in human glioma cell lines with varying levels of invasiveness (U-87MG, A172, and HS683). siRNA knock-down of Pyk2 protein and pharmacological blockade by the Pyk2/focal-adhesion kinase (FAK) inhibitor PF-562,271 reversed the stimulatory effect of microglia on glioma migration in all cell lines. A lower concentration of PF-562,271 that selectively inhibits FAK, but not Pyk2, did not have any effect on glioma cell migration. Moreover, with the use of the CD11b-HSVTK microglia ablation mouse model we demonstrated that elimination of microglia in the implanted tumors (GL261 glioma cells were used for brain implantation) by the local in-tumor administration of Ganciclovir, significantly reduced the phosphorylation of Pyk2 at Tyr579/580 in implanted tumor cells. Taken together, these data indicate that microglial cells activate glioma cell migration/dispersal through the pro-migratory Pyk2 signaling pathway in glioma cells.
Collapse
Affiliation(s)
- Kimberleve Rolón-Reyes
- Department of Biochemistry, Universidad Central del Caribe, School of Medicine, Bayamón, Puerto Rico, United States of America
| | - Yuriy V. Kucheryavykh
- Department of Biochemistry, Universidad Central del Caribe, School of Medicine, Bayamón, Puerto Rico, United States of America
| | - Luis A. Cubano
- Department of Anatomy and Cell Biology, Universidad Central del Caribe, School of Medicine, Bayamón, Puerto Rico, United States of America
| | - Mikhail Inyushin
- Department of Physiology, Universidad Central del Caribe, School of Medicine, Bayamón, Puerto Rico, United States of America
| | - Serguei N. Skatchkov
- Department of Biochemistry, Universidad Central del Caribe, School of Medicine, Bayamón, Puerto Rico, United States of America
- Department of Physiology, Universidad Central del Caribe, School of Medicine, Bayamón, Puerto Rico, United States of America
| | - Misty J. Eaton
- Department of Biochemistry, Universidad Central del Caribe, School of Medicine, Bayamón, Puerto Rico, United States of America
| | - Jeffrey K. Harrison
- Department of Pharmacology and Therapeutics, College of Medicine, University of Florida, Gainesville, Florida
| | - Lilia Y. Kucheryavykh
- Department of Biochemistry, Universidad Central del Caribe, School of Medicine, Bayamón, Puerto Rico, United States of America
- * E-mail:
| |
Collapse
|
48
|
Cimino PJ, Bredemeyer A, Abel HJ, Duncavage EJ. A wide spectrum of EGFR mutations in glioblastoma is detected by a single clinical oncology targeted next-generation sequencing panel. Exp Mol Pathol 2015; 98:568-73. [PMID: 25910966 DOI: 10.1016/j.yexmp.2015.04.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Accepted: 04/18/2015] [Indexed: 01/07/2023]
Abstract
With the advent of large-scale genomic analysis, the genetic landscape of glioblastoma (GBM) has become more clear, including characteristic genetic alterations in EGFR. In routine clinical practice, genetic alterations in GBMs are identified using several disparate techniques that consume already limited amounts of tissue and add to overall testing costs. In this study, we sought to determine if the full spectrum of EGFR mutations in GBMs could be detected using a single next generation sequencing (NGS) based oncology assay in 34 consecutive cases. Using a battery of informatics tools to identify single nucleotide variants, insertions and deletions, and amplification (including variants EGFRvIII and EGFRvV), twenty-one of the 34 (62%) individuals had at least one alteration in EGFR by sequencing, consistent with published datasets. Mutations detected include several single nucleotide variants, amplification (confirmed by fluorescence in situ hybridization), and the variants EGFRvIII and EGFRvV (confirmed by multiplex ligation-dependent probe amplification). Here we show that a single NGS assay can identify the full spectrum of relevant EGFR mutations. Overall, sequencing based diagnostics have the potential to maximize the amount of genetic information obtained from GBMs and simultaneously reduce the total time, required specimen material, and costs associated with current multimodality studies.
Collapse
Affiliation(s)
- Patrick J Cimino
- Department of Pathology and Immunology, Division of Neuropathology, Washington University School of Medicine, Saint Louis, MO, United States
| | - Andy Bredemeyer
- Department of Pathology and Immunology, Division of Anatomic and Molecular Pathology, Washington University School of Medicine, Saint Louis, MO, United States
| | - Haley J Abel
- Division of Statistical Genomics, Washington University School of Medicine, Saint Louis, MO, United States
| | - Eric J Duncavage
- Department of Pathology and Immunology, Division of Anatomic and Molecular Pathology, Washington University School of Medicine, Saint Louis, MO, United States.
| |
Collapse
|
49
|
Azuaje F, Tiemann K, Niclou SP. Therapeutic control and resistance of the EGFR-driven signaling network in glioblastoma. Cell Commun Signal 2015; 13:23. [PMID: 25885672 PMCID: PMC4391485 DOI: 10.1186/s12964-015-0098-6] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2014] [Accepted: 03/10/2015] [Indexed: 12/31/2022] Open
Abstract
The alteration of the epidermal growth factor receptor (EGFR)-driven signaling network is a characteristic feature of glioblastomas (GBM), and its inhibition represents a treatment strategy. However, EGFR-targeted interventions have been largely ineffective. Complex perturbations in this system are likely to be central to tumor cells with high adaptive capacity and resistance to therapies. We review key concepts and mechanisms relevant to EGFR-targeted treatment resistance at a systems level. Our understanding of treatment resistance as a systems-level phenomenon is necessary to develop effective therapeutic options for GBM patients. This is allowing us to go beyond the notion of therapeutic targets as single molecular components, into strategies that can weaken cancer signaling robustness and boost inherent network-level vulnerabilities.
Collapse
Affiliation(s)
- Francisco Azuaje
- Department of Oncology, NorLux Neuro-Oncology Laboratory, Luxembourg Institute of Health (LIH), Luxembourg, Luxembourg.
| | - Katja Tiemann
- Department of Oncology, NorLux Neuro-Oncology Laboratory, Luxembourg Institute of Health (LIH), Luxembourg, Luxembourg.
| | - Simone P Niclou
- Department of Oncology, NorLux Neuro-Oncology Laboratory, Luxembourg Institute of Health (LIH), Luxembourg, Luxembourg.
| |
Collapse
|
50
|
Farrar CE, Jarrett JT. Protein residues that control the reaction trajectory in S-adenosylmethionine radical enzymes: mutagenesis of asparagine 153 and aspartate 155 in Escherichia coli biotin synthase. Biochemistry 2010; 48:2448-58. [PMID: 19199517 DOI: 10.1021/bi8022569] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Biotin synthase catalyzes the oxidative addition of a sulfur atom to dethiobiotin (DTB) to generate the biotin thiophane ring. This reaction is initiated by the reductive cleavage of the sulfonium center of S-adenosyl-L-methionine (AdoMet), generating methionine and a transient 5'-deoxyadenosyl radical that functions as an oxidant by abstracting hydrogen atoms from DTB. Biotin synthase contains a highly conserved sequence motif, YNHNLD, in which Asn153 and Asp155 form hydrogen bonds with the ribose hydroxyl groups of AdoMet. In the present work, we constructed four individual site-directed mutations to change each of these two residues in order to probe their role in the active site. We used molecular weight filtration assays to show that for most of the mutant enzymes binding of the substrates was only slightly affected. In vitro assays demonstrate that several of the mutant enzymes were able to reductively cleave AdoMet, but none were able to produce a significant amount of biotin. Several of the mutants, especially Asn153Ser, were able to produce high levels of the stable intermediate 9-mercaptodethiobiotin. Some of the mutants, such as Asp155Asn and Asn153Ala, produced instead an alternate product tentatively identified by mass spectrometry as 5'-mercapto-5'-deoxyadenosine, generated by direct attack of the 5'-deoxyadenosyl radical on the [4Fe-4S](2+) cluster. Collectively, these results suggest that the protein residues that form hydrogen bonds to AdoMet and DTB are important for retaining intermediates during the catalytic cycle and for targeting the reactivity of the 5'-deoxyadenosyl radical.
Collapse
Affiliation(s)
- Christine E Farrar
- Department of Chemistry, University of Hawaii at Manoa, Honolulu, Hawaii 96822, USA
| | | |
Collapse
|