1
|
Verger A, Tolboom N, Cicone F, Chang SM, Furtner J, Galldiks N, Gempt J, Guedj E, Huang RY, Johnson DR, Law I, Le Rhun E, Short SC, Bent MJVD, Weehaeghe DV, Vogelbaum MA, Wen PY, Albert NL, Preusser M. Joint EANM/EANO/RANO/SNMMI practice guideline/procedure standard for PET imaging of brain metastases: version 1.0. Eur J Nucl Med Mol Imaging 2025; 52:1822-1839. [PMID: 39762634 PMCID: PMC11928372 DOI: 10.1007/s00259-024-07038-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Accepted: 12/15/2024] [Indexed: 03/22/2025]
Abstract
This joint practice guideline/procedure standard was collaboratively developed by the European Association of Nuclear Medicine (EANM), the Society of Nuclear Medicine and Molecular Imaging (SNMMI), the European Association of Neuro-Oncology (EANO), and the PET task force of the Response Assessment in Neurooncology Working Group (PET/RANO). Brain metastases are the most common malignant central nervous system (CNS) tumors. PET imaging with radiolabeled amino acids and to lesser extent [18F]FDG has gained considerable importance in the assessment of brain metastases, especially for the differential diagnosis between recurrent metastases and treatment-related changes which remains a limitation using conventional MRI. The aim of this guideline is to assist nuclear medicine physicians in recommending, performing, interpreting and reporting the results of brain PET imaging in patients with brain metastases. This practice guideline will define procedure standards for the application of PET imaging in patients with brain metastases in routine practice and clinical trials and will help to harmonize data acquisition and interpretation across centers.
Collapse
Affiliation(s)
- Antoine Verger
- Department of Nuclear Medicine & Nancyclotep Imaging Platform, CHRU Nancy and IADI INSERM, UMR 1254, Université de Lorraine, Nancy, France.
| | - Nelleke Tolboom
- Department of Radiology and Nuclear Medicine, University Medical Centre Utrecht, Utrecht, The Netherlands
| | - Francesco Cicone
- Nuclear Medicine Unit, Department of Experimental and Clinical Medicine, "Magna Graecia" University of Catanzaro, Catanzaro, Italy
| | - Susan M Chang
- Division of NeuroOncology, Department of Neurological Surgery, University of California San Francisco (UCSF), San Francisco, CA, USA
| | - Julia Furtner
- Research Center for Medical Image Analysis and Artificial Intelligence (MIAAI), Faculty of Medicine and Dentistry, Danube Private University, Krems, 3500, Austria
| | - Norbert Galldiks
- Department of Neurology, Medical Faculty and University Hospital of Cologne, Institute of Neuroscience and Medicine (INM-3), Research Center Juelich, University of Cologne, Juelich, Germany
| | - Jens Gempt
- Department of Neurosurgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Eric Guedj
- Département de Médecine Nucléaire, Hôpital de la Timone, CERIMED, Institut Fresnel, Aix Marseille University, APHM, CNRS, Centrale Marseille, Marseille, France
| | - Raymond Y Huang
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | | | - Ian Law
- Department of Clinical Physiology and Nuclear Medicine, Rigshospitalet, Copenhagen, Denmark
| | - Emilie Le Rhun
- Departments of Neurosurgery and Neurology, University Hospital Zurich, Zurich, Switzerland
| | - Susan C Short
- Leeds Institute of Medical Research at St James's, University of Leeds, Leeds, UK
| | - M J Van den Bent
- Department of Neurology, Brain Tumor Center at Erasmus MC Cancer Institute, University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Donatienne Van Weehaeghe
- Department of Radiology and Nuclear Medicine, Ghent University Hospital, C. Heymanslaan 10, Ghent, 9000, Belgium
| | - Michael A Vogelbaum
- Department of NeuroOncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Patrick Y Wen
- Center For Neuro-Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, USA
| | - Nathalie L Albert
- Department of Nuclear Medicine, LMU Hospital, LMU Munich, Munich, Germany
| | - Matthias Preusser
- Division of Oncology, Department of Medicine I, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
2
|
Chan SC, Chiu TL, Ng SH, Kao HW, Tsai ST, Liu SH. 18F-FET PET/CT can aid in diagnosing patients with indeterminate MRI findings for brain tumors: a prospective study. Ann Nucl Med 2025; 39:342-352. [PMID: 39589672 DOI: 10.1007/s12149-024-02005-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Accepted: 11/18/2024] [Indexed: 11/27/2024]
Abstract
OBJECTIVE This prospective study aimed to evaluate the diagnostic value of fluorine-18-labeled fluoroethyltyrosine (18F-FET) positron emission tomography (PET)/computed tomography (CT) in diagnosing brain tumors within an Asian patient population. METHODS Patients suspected of having primary or recurrent brain tumors were prospectively recruited. Each patient underwent 18F-FET and fluorine-18 fluorodeoxyglucose (18F-FDG) PET/CT on separate days within 1 week. We calculated the sensitivity, specificity, positive predictive value (PPV), negative predictive value (NPV), and accuracy to compare the diagnostic performance of the two PET scans. The standardized uptake value (SUV) and tumor-to-background ratio (TBR) of the lesions were determined using static images. Additionally, time-activity curves (TACs) and time-to-peak (TTP) were generated from the dynamic PET images. RESULTS From September 2019 to December 2023, 33 subjects were enrolled for reasons including suspected brain tumors (n = 20) or suspicious glioma recurrence (n = 8) on magnetic resonance imaging (MRI) and restaging for glioma (n = 5). Among the patients with suspected brain tumors or glioma recurrence on MRI, 25% had false-positive results. 18F-FET PET/CT accurately identified 86% of these false positives. The sensitivity, specificity, PPV, NPV, and accuracy of visual interpretation of 18F-FET PET/CT were 96.2%, 85.7%, 96.2%, 85.7%, and 93.9%, respectively. The corresponding 18F-FDG PET/CT values were 73.1%, 71.4%, 90.5%, 41.7%, and 72.7%. 18F-FET PET/CT demonstrated significantly higher sensitivity and accuracy than 18F-FDG PET (p = 0.031 and p = 0.030, respectively). Using TBRmean as an adjunct reference index enhanced the diagnostic accuracy of 18F-FET PET/CT, achieving a sensitivity and NPV of 100%. Wash-out TAC or TTP < 20 min was associated with a PPV of 100% for brain tumors. CONCLUSIONS 18F-FET PET/CT appears to be a valuable tool for assessing brain tumors with indeterminate MRI findings in this Asian cohort. 18F-FET PET/CT offers benefits over 18F-FDG PET in differentiating brain tumors from nontumor brain lesions, particularly when using semiquantitative analysis with TBR. This study was registered on CinicalTrial.gov (NCT06563024).
Collapse
Affiliation(s)
- Sheng-Chieh Chan
- Department of Nuclear Medicine, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, 970423, Taiwan.
- Department of Nuclear Medicine, School of Medicine, Tzu Chi University, Hualien, 970423, Taiwan.
| | - Tsung-Lang Chiu
- Department of Neurosurgery, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, 970423, Taiwan
| | - Shu-Hang Ng
- Department of Medical Imaging and Intervention, Chang Gung Memorial Hospital at Linkou, Chang Gung University College of Medicine, Taoyuan, 333423, Taiwan
| | - Hung-Wen Kao
- Department of Medical Imaging, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, 970423, Taiwan
- Department of Radiology, School of Medicine, Tzu Chi University, Hualien, 970423, Taiwan
| | - Sheng-Tzung Tsai
- Department of Neurosurgery, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, 970423, Taiwan
| | - Shu-Hsin Liu
- Department of Nuclear Medicine, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, 970423, Taiwan
| |
Collapse
|
3
|
You S, Wang MJ, Hou ZY, Wang WD, Zhang ZH, Du TT, Li SY, Liu YC, Xue NN, Hu XM, Chen XG, Ji M. ACAT1 Induces the Differentiation of Glioblastoma Cells by Rewiring Choline Metabolism. Int J Biol Sci 2024; 20:5576-5593. [PMID: 39494339 PMCID: PMC11528465 DOI: 10.7150/ijbs.96651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 09/24/2024] [Indexed: 11/05/2024] Open
Abstract
Abnormal differentiation of cells is a hallmark of malignancy. Induction of cancer-cell differentiation is emerging as a novel therapeutic strategy with low toxicity in hematological malignances, but whether such treatment can be used in solid tumors is not known. Here, we uncovered a novel function of acetyl coenzyme A acetyltransferase (ACAT1) in regulating the differentiation of glioblastoma (GBM) cells. Inhibition of ACAT1 promoted the differentiation of GBM cells into astrocytes but also delayed tumor growth. Mechanistically, suppression of ACAT1 restored mitochondrial function and led to metabolic "reprogramming" in GBM cells: reduction of fatty-acid oxidation and acetyl-CoA, but an increase in free fatty acids. Importantly, ACAT1 negatively regulated the choline metabolic pathway, which is crucial for the differentiation of GBM cells. Finally, we demonstrated that a naturally available substance, chlorogenic acid (CHA), could inhibit phosphorylation of ACAT1 and so delay GBM progression, CHA is a promising candidate to treat GBM because it could induce the differentiation of cancer cells.
Collapse
Affiliation(s)
- Shen You
- Department of Pharmacology, State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
- Biomedical Engineering Facility of National Infrastructures for Translational Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Ming-Jin Wang
- Department of Pharmacology, State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Zhen-Yan Hou
- Department of Pharmacology, State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
- Department of Pharmacy, Peking University Third Hospital, Beijing 100080, China
| | - Wei-Da Wang
- Department of Pharmacology, State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Zhi-Hui Zhang
- Department of Pharmacology, State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Ting-Ting Du
- Department of Pharmacology, State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Shu-Ying Li
- Department of Pharmacology, State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Yi-Chen Liu
- Department of Pharmacology, State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Ni-Na Xue
- Department of Pharmacology, State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Xiao-Min Hu
- State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Beijing 100730, China
| | - Xiao-Guang Chen
- Department of Pharmacology, State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
- Beijing Key Laboratory of New Drug Mechanisms and Pharmacological Evaluation Study, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Ming Ji
- Department of Pharmacology, State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
- Key Laboratory of Small Molecule Immuno-Oncology Drug Discovery, Chinese Academy of Medical Sciences, Beijing 100050, China
| |
Collapse
|
4
|
Barrat I, Meyer ME, Coutte A, Boone M, Bouzerar R, Bailly P. A study method using early dynamic acquisition of [ 18F]fluorodopa positron emission tomography for the differential diagnosis between progression and radionecrosis of brain metastases after radiotherapy. EJNMMI Res 2024; 14:93. [PMID: 39382811 PMCID: PMC11465032 DOI: 10.1186/s13550-024-01158-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 09/29/2024] [Indexed: 10/10/2024] Open
Abstract
BACKGROUND It is difficult to distinguish between the brain metastasis progression (BMP) and brain radionecrosis (BRN) on the basis of 18F-3,4-dihydroxyphenylalanine positron emission tomography/computed-tomography (18F-FDOPA PET/CT) data. The advent of silicon photomultiplier (SiPM) PET technology makes it possible to study dynamic volumes and potentially improve diagnostic accuracy. We developed a method for processing 18F-FDOPA PET/CT in the differential diagnosis between BMP and BRN. The method involves a short (3-second) sampling time during a 4-minute acquisition on a SiPM-PET/CT machine. We prospectively included 15 patients and 19 metastases. All acquisitions were performed in list mode acquisition for 25 min on a four-ring SiPM PET/CT system. We calculated the ratios between the maximum activity in the lesion's voxel and the mean activity in the contralateral region (VOImax/CLmean) or the mean activity in the white matter (VOImax/WMmean). RESULTS Seven lesions were classified as BMP and twelve were classified as BRN. Statistically significant intergroup differences in the VOImax/CLmean and VOImax/WMmean activity ratios were observed for both the clinical volume and the early acquisition. The best performing quantitative variable was the VOImax/CLmean ratio on early acquisition, with a diagnostic accuracy of 94.7%, a sensitivity of 100%, and a specificity of 91.7%. CONCLUSION The 18F-FDOPA PET/CT data acquired a few minutes after the bolus injection confirms its value in differentiating between BMP and BRN, compared to the much longer classic clinical protocol.
Collapse
Affiliation(s)
- Ines Barrat
- Nuclear Medicine Department, Amiens University Medical Center, Amiens, France
| | - Marc-Etienne Meyer
- Nuclear Medicine Department, Amiens University Medical Center, Amiens, France
- Jules Verne University of Picardie, Amiens, France
| | - Alexandre Coutte
- Radiotherapy Department, Amiens University Medical Center, Amiens, France
| | - Mathieu Boone
- Medical Oncology Department, Amiens University Medical Center, Amiens, France
| | - Roger Bouzerar
- Nuclear Medicine Department, Amiens University Medical Center, Amiens, France
| | - Pascal Bailly
- Nuclear Medicine Department, Amiens University Medical Center, Amiens, France.
- Service de Médecine Nucléaire, unité TEP Centre Universitaire Hospitalier Amiens - Picardie, 1 Rond-Point du Professeur Christian CABROL, Amiens cedex, 80054, France.
| |
Collapse
|
5
|
Jeltema HR, van Dijken BRJ, Tamási K, Drost G, Heesters MAAM, van der Hoorn A, Glaudemans AWJM, van Dijk JMC. 11C-Methionine uptake in meningiomas after stereotactic radiotherapy. Ann Nucl Med 2024; 38:596-606. [PMID: 38720053 PMCID: PMC11282149 DOI: 10.1007/s12149-024-01932-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 04/16/2024] [Indexed: 07/28/2024]
Abstract
OBJECTIVE 11C-Methionine positron emission tomography (MET-PET) is used for stereotactic radiotherapy planning in meningioma patients. The role of MET-PET during subsequent follow-up (FU) is unclear. We analyzed the uptake of 11C-Methionine before and after stereotactic radiotherapy (SRT) in patients with a complex meningioma and investigated if there was a difference between patients with progressive disease (PD) and stable disease (SD) during FU. METHODS This retrospective study investigates 62 MET-PETs in 29 complex meningioma patients. Standardized uptake value (SUV)max and SUVpeak tumor-to-normal ratios (T/N-ratios) were calculated, comparing the tumor region with both the mirroring intracranial area and the right frontal gray matter. The difference in 11C-Methionine uptake pre- and post-SRT was analyzed, as well as the change in uptake between PD or SD. RESULTS Median (IQR) FU duration was 67 months (50.5-91.0). The uptake of 11C-Methionine in meningiomas remained increased after SRT. Neither a statistically significant difference between MET-PETs before and after SRT was encountered, nor a significant difference in one of the four T/N-ratios between patients with SD versus PD with median (IQR) SUVmax T/NR front 2.65 (2.13-3.68) vs 2.97 (1.55-3.54) [p = 0.66]; SUVmax T/Nmirror 2.92 (2.19-3.71) vs 2.95 (1.74-3.60) [p = 0.61]; SUVpeak T/NR front 2.35 (1.64-3.40) vs 2.25 (1.44-3.74) [p = 0.80]; SUVpeak T/Nmirror 2.38 (1.91-3.36) vs 2.35 (1.56-3.72) [p = 0.95]. CONCLUSIONS Our data do not support use of MET-PET during FU of complex intracranial meningiomas after SRT. MET-PET could not differentiate between progressive or stable disease.
Collapse
Affiliation(s)
- Hanne-Rinck Jeltema
- Department of Neurosurgery, University of Groningen, University Medical Center Groningen, Hanzeplein 1, P.O. Box 30.001, 9700RB, Groningen, The Netherlands.
| | - Bart R J van Dijken
- Department of Radiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Katalin Tamási
- Department of Neurosurgery, University of Groningen, University Medical Center Groningen, Hanzeplein 1, P.O. Box 30.001, 9700RB, Groningen, The Netherlands
- Department of Epidemiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Gea Drost
- Department of Neurosurgery, University of Groningen, University Medical Center Groningen, Hanzeplein 1, P.O. Box 30.001, 9700RB, Groningen, The Netherlands
- Department of Neurology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Mart A A M Heesters
- Department of Radiotherapy, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Anouk van der Hoorn
- Department of Radiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Andor W J M Glaudemans
- Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - J Marc C van Dijk
- Department of Neurosurgery, University of Groningen, University Medical Center Groningen, Hanzeplein 1, P.O. Box 30.001, 9700RB, Groningen, The Netherlands
| |
Collapse
|
6
|
Mayo ZS, Billena C, Suh JH, Lo SS, Chao ST. The dilemma of radiation necrosis from diagnosis to treatment in the management of brain metastases. Neuro Oncol 2024; 26:S56-S65. [PMID: 38437665 PMCID: PMC10911797 DOI: 10.1093/neuonc/noad188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2024] Open
Abstract
Radiation therapy with stereotactic radiosurgery (SRS) or whole brain radiation therapy is a mainstay of treatment for patients with brain metastases. The use of SRS in the management of brain metastases is becoming increasingly common and provides excellent local control. Cerebral radiation necrosis (RN) is a late complication of radiation treatment that can be seen months to years following treatment and is often indistinguishable from tumor progression on conventional imaging. In this review article, we explore risk factors associated with the development of radiation necrosis, advanced imaging modalities used to aid in diagnosis, and potential treatment strategies to manage side effects.
Collapse
Affiliation(s)
- Zachary S Mayo
- Department of Radiation Oncology, Cleveland Clinic, Cleveland, Ohio, USA
| | - Cole Billena
- Department of Radiation Oncology, Cleveland Clinic, Cleveland, Ohio, USA
| | - John H Suh
- Department of Radiation Oncology, Cleveland Clinic, Cleveland, Ohio, USA
| | - Simon S Lo
- Department of Radiation Oncology, University of Washington, Seattle, Washington, USA
| | - Samuel T Chao
- Department of Radiation Oncology, Cleveland Clinic, Cleveland, Ohio, USA
| |
Collapse
|
7
|
Filss CP, Cramer J, Löher S, Lohmann P, Stoffels G, Stegmayr C, Kocher M, Heinzel A, Galldiks N, Wittsack HJ, Sabel M, Neumaier B, Scheins J, Shah NJ, Meyer PT, Mottaghy FM, Langen KJ. Assessment of Brain Tumour Perfusion Using Early-Phase 18F-FET PET: Comparison with Perfusion-Weighted MRI. Mol Imaging Biol 2024; 26:36-44. [PMID: 37848641 PMCID: PMC10827807 DOI: 10.1007/s11307-023-01861-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 09/10/2023] [Accepted: 09/19/2023] [Indexed: 10/19/2023]
Abstract
PURPOSE Morphological imaging using MRI is essential for brain tumour diagnostics. Dynamic susceptibility contrast (DSC) perfusion-weighted MRI (PWI), as well as amino acid PET, may provide additional information in ambiguous cases. Since PWI is often unavailable in patients referred for amino acid PET, we explored whether maps of relative cerebral blood volume (rCBV) in brain tumours can be extracted from the early phase of PET using O-(2-18F-fluoroethyl)-L-tyrosine (18F-FET). PROCEDURE Using a hybrid brain PET/MRI scanner, PWI and dynamic 18F-FET PET were performed in 33 patients with cerebral glioma and four patients with highly vascularized meningioma. The time interval from 0 to 2 min p.i. was selected to best reflect the blood pool phase in 18F-FET PET. For each patient, maps of MR-rCBV, early 18F-FET PET (0-2 min p.i.) and late 18F-FET PET (20-40 min p.i.) were generated and coregistered. Volumes of interest were placed on the tumour (VOI-TU) and normal-appearing brain (VOI-REF). The correlation between tumour-to-brain ratios (TBR) of the different parameters was analysed. In addition, three independent observers evaluated MR-rCBV and early 18F-FET maps (18F-FET-rCBV) for concordance in signal intensity, tumour extent and intratumoural distribution. RESULTS TBRs calculated from MR-rCBV and 18F-FET-rCBV showed a significant correlation (r = 0.89, p < 0.001), while there was no correlation between late 18F-FET PET and MR-rCBV (r = 0.24, p = 0.16) and 18F-FET-rCBV (r = 0.27, p = 0.11). Visual rating yielded widely agreeing findings or only minor differences between MR-rCBV maps and 18F-FET-rCBV maps in 93 % of the tumours (range of three independent raters 91-94%, kappa among raters 0.78-1.0). CONCLUSION Early 18F-FET maps (0-2 min p.i.) in gliomas provide similar information to MR-rCBV maps and may be helpful when PWI is not possible or available. Further studies in gliomas are needed to evaluate whether 18F-FET-rCBV provides the same clinical information as MR-rCBV.
Collapse
Affiliation(s)
- Christian P Filss
- Department of Nuclear Medicine, RWTH University Hospital, Aachen, Germany.
- Institute of Neuroscience and Medicine (INM-3, INM-4, INM-5, INM-11), Forschungszentrum Jülich, Jülich, Germany.
- Center of Integrated Oncology (CIO), University of Aachen, Bonn, Cologne and Düsseldorf, Germany.
| | - Julian Cramer
- Institute of Neuroscience and Medicine (INM-3, INM-4, INM-5, INM-11), Forschungszentrum Jülich, Jülich, Germany
- Faculty of Medical Engineering and Technomathematics, FH Aachen University of Applied Sciences, Campus Juelich, Jülich, Germany
| | - Saskia Löher
- Institute of Neuroscience and Medicine (INM-3, INM-4, INM-5, INM-11), Forschungszentrum Jülich, Jülich, Germany
- Faculty of Medical Engineering and Technomathematics, FH Aachen University of Applied Sciences, Campus Juelich, Jülich, Germany
| | - Philipp Lohmann
- Institute of Neuroscience and Medicine (INM-3, INM-4, INM-5, INM-11), Forschungszentrum Jülich, Jülich, Germany
| | - Gabriele Stoffels
- Institute of Neuroscience and Medicine (INM-3, INM-4, INM-5, INM-11), Forschungszentrum Jülich, Jülich, Germany
| | - Carina Stegmayr
- Institute of Neuroscience and Medicine (INM-3, INM-4, INM-5, INM-11), Forschungszentrum Jülich, Jülich, Germany
| | - Martin Kocher
- Institute of Neuroscience and Medicine (INM-3, INM-4, INM-5, INM-11), Forschungszentrum Jülich, Jülich, Germany
- Center of Integrated Oncology (CIO), University of Aachen, Bonn, Cologne and Düsseldorf, Germany
- Department of Stereotactic and Functional Neurosurgery, Center for Neurosurgery, University Hospital Cologne, Cologne, Germany
| | - Alexander Heinzel
- Department of Nuclear Medicine, RWTH University Hospital, Aachen, Germany
- Institute of Neuroscience and Medicine (INM-3, INM-4, INM-5, INM-11), Forschungszentrum Jülich, Jülich, Germany
- Center of Integrated Oncology (CIO), University of Aachen, Bonn, Cologne and Düsseldorf, Germany
- Department of Nuclear Medicine, University Hospital Halle (Saale), Halle (Saale), Germany
| | - Norbert Galldiks
- Institute of Neuroscience and Medicine (INM-3, INM-4, INM-5, INM-11), Forschungszentrum Jülich, Jülich, Germany
- Center of Integrated Oncology (CIO), University of Aachen, Bonn, Cologne and Düsseldorf, Germany
- Department of Neurology, University Hospital Cologne, Cologne, Germany
| | - Hans J Wittsack
- Department of Diagnostic and Interventional Radiology, Medical Faculty, University of Düsseldorf, Düsseldorf, Germany
| | - Michael Sabel
- Center of Integrated Oncology (CIO), University of Aachen, Bonn, Cologne and Düsseldorf, Germany
- Department of Neurosurgery, University Hospital Düsseldorf, Düsseldorf, Germany
| | - Bernd Neumaier
- Institute of Neuroscience and Medicine (INM-3, INM-4, INM-5, INM-11), Forschungszentrum Jülich, Jülich, Germany
- Institute of Radiochemistry and Experimental Molecular Imaging, University Hospital Cologne, Cologne, Germany
| | - Jürgen Scheins
- Institute of Neuroscience and Medicine (INM-3, INM-4, INM-5, INM-11), Forschungszentrum Jülich, Jülich, Germany
| | - N Jon Shah
- Institute of Neuroscience and Medicine (INM-3, INM-4, INM-5, INM-11), Forschungszentrum Jülich, Jülich, Germany
- JARA - BRAIN - Translational Medicine, RWTH Aachen University, Aachen, Germany
- Department of Neurology, RWTH Aachen University Hospital, Aachen, Germany
| | - Philipp T Meyer
- Department of Nuclear Medicine, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Felix M Mottaghy
- Department of Nuclear Medicine, RWTH University Hospital, Aachen, Germany
- Center of Integrated Oncology (CIO), University of Aachen, Bonn, Cologne and Düsseldorf, Germany
- Department of Radiology and Nuclear Medicine, Maastricht University Medical Center (MUMC+), Maastricht, Netherlands
| | - Karl-Josef Langen
- Department of Nuclear Medicine, RWTH University Hospital, Aachen, Germany
- Institute of Neuroscience and Medicine (INM-3, INM-4, INM-5, INM-11), Forschungszentrum Jülich, Jülich, Germany
- Center of Integrated Oncology (CIO), University of Aachen, Bonn, Cologne and Düsseldorf, Germany
- JARA - BRAIN - Translational Medicine, RWTH Aachen University, Aachen, Germany
| |
Collapse
|
8
|
Husby T, Johannessen K, Berntsen EM, Johansen H, Giskeødegård GF, Karlberg A, Fagerli UM, Eikenes L. 18F-FACBC and 18F-FDG PET/MRI in the evaluation of 3 patients with primary central nervous system lymphoma: a pilot study. EJNMMI REPORTS 2024; 8:2. [PMID: 38748286 PMCID: PMC10962628 DOI: 10.1186/s41824-024-00189-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Accepted: 12/06/2023] [Indexed: 05/19/2024]
Abstract
BACKGROUND This PET/MRI study compared contrast-enhanced MRI, 18F-FACBC-, and 18F-FDG-PET in the detection of primary central nervous system lymphomas (PCNSL) in patients before and after high-dose methotrexate chemotherapy. Three immunocompetent PCNSL patients with diffuse large B-cell lymphoma received dynamic 18F-FACBC- and 18F-FDG-PET/MRI at baseline and response assessment. Lesion detection was defined by clinical evaluation of contrast enhanced T1 MRI (ce-MRI) and visual PET tracer uptake. SUVs and tumor-to-background ratios (TBRs) (for 18F-FACBC and 18F-FDG) and time-activity curves (for 18F-FACBC) were assessed. RESULTS At baseline, seven ce-MRI detected lesions were also detected with 18F-FACBC with high SUVs and TBRs (SUVmax:mean, 4.73, TBRmax: mean, 9.32, SUVpeak: mean, 3.21, TBRpeak:mean: 6.30). High TBR values of 18F-FACBC detected lesions were attributed to low SUVbackground. Baseline 18F-FDG detected six lesions with high SUVs (SUVmax: mean, 13.88). In response scans, two lesions were detected with ce-MRI, while only one was detected with 18F-FACBC. The lesion not detected with 18F-FACBC was a small atypical MRI detected lesion, which may indicate no residual disease, as this patient was still in complete remission 12 months after initial diagnosis. No lesions were detected with 18F-FDG in the response scans. CONCLUSIONS 18F-FACBC provided high tumor contrast, outperforming 18F-FDG in lesion detection at both baseline and in response assessment. 18F-FACBC may be a useful supplement to ce-MRI in PCNSL detection and response assessment, but further studies are required to validate these findings. Trial registration ClinicalTrials.gov. Registered 15th of June 2017 (Identifier: NCT03188354, https://clinicaltrials.gov/study/NCT03188354 ).
Collapse
Affiliation(s)
- Trine Husby
- Department of Circulation and Medical Imaging, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Postboks 8905, Trondheim, Norway
- Department of Oncology, St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway
| | - Knut Johannessen
- Department of Circulation and Medical Imaging, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Postboks 8905, Trondheim, Norway
| | - Erik Magnus Berntsen
- Department of Circulation and Medical Imaging, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Postboks 8905, Trondheim, Norway
- Department of Radiology and Nuclear Medicine, St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway
| | - Håkon Johansen
- Department of Radiology and Nuclear Medicine, St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway
| | - Guro Fanneløb Giskeødegård
- Department of Public Health and Nursing, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway
| | - Anna Karlberg
- Department of Circulation and Medical Imaging, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Postboks 8905, Trondheim, Norway
- Department of Radiology and Nuclear Medicine, St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway
| | - Unn-Merete Fagerli
- Department of Oncology, St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway
- Department of Clinical and Molecular Medicine, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway
| | - Live Eikenes
- Department of Circulation and Medical Imaging, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Postboks 8905, Trondheim, Norway.
| |
Collapse
|
9
|
Smith NJ, Deaton TK, Territo W, Graner B, Gauger A, Snyder SE, Schulte ML, Green MA, Hutchins GD, Veronesi MC. Hybrid 18F-Fluoroethyltyrosine PET and MRI with Perfusion to Distinguish Disease Progression from Treatment-Related Change in Malignant Brain Tumors: The Quest to Beat the Toughest Cases. J Nucl Med 2023; 64:1087-1092. [PMID: 37116915 PMCID: PMC10315704 DOI: 10.2967/jnumed.122.265149] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 02/16/2023] [Indexed: 04/30/2023] Open
Abstract
Conventional MRI has important limitations when assessing for progression of disease (POD) versus treatment-related changes (TRC) in patients with malignant brain tumors. We describe the observed impact and pitfalls of implementing 18F-fluoroethyltyrosine (18F-FET) perfusion PET/MRI into routine clinical practice. Methods: Through expanded-access investigational new drug use of 18F-FET, hybrid 18F-FET perfusion PET/MRI was performed during clinical management of 80 patients with World Health Organization central nervous system grade 3 or 4 gliomas or brain metastases of 6 tissue origins for which the prior brain MRI results were ambiguous. The diagnostic performance with 18F-FET PET/MRI was dually evaluated within routine clinical service and for retrospective parametric evaluation. Various 18F-FET perfusion PET/MRI parameters were assessed, and patients were monitored for at least 6 mo to confirm the diagnosis using pathology, imaging, and clinical progress. Results: Hybrid 18F-FET perfusion PET/MRI had high overall accuracy (86%), sensitivity (86%), and specificity (87%) for difficult diagnostic cases for which conventional MRI accuracy was poor (66%). 18F-FET tumor-to-brain ratio static metrics were highly reliable for distinguishing POD from TRC (area under the curve, 0.90). Dynamic tumor-to-brain intercept was more accurate (85%) than SUV slope (73%) or time to peak (73%). Concordant PET/MRI findings were 89% accurate. When PET and MRI conflicted, 18F-FET PET was correct in 12 of 15 cases (80%), whereas MRI was correct in 3 of 15 cases (20%). Clinical management changed after 88% (36/41) of POD diagnoses, whereas management was maintained after 87% (34/39) of TRC diagnoses. Conclusion: Hybrid 18F-FET PET/MRI positively impacted the routine clinical care of challenging malignant brain tumor cases at a U.S. institution. The results add to a growing body of literature that 18F-FET PET complements MRI, even rescuing MRI when it fails.
Collapse
Affiliation(s)
- Nathaniel J Smith
- School of Medicine, Indiana University, Indianapolis, Indiana
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana; and
| | | | - Wendy Territo
- School of Medicine, Indiana University, Indianapolis, Indiana
| | - Brian Graner
- School of Medicine, Indiana University, Indianapolis, Indiana
| | - Andrew Gauger
- School of Medicine, Indiana University, Indianapolis, Indiana
| | - Scott E Snyder
- School of Medicine, Indiana University, Indianapolis, Indiana
| | | | - Mark A Green
- School of Medicine, Indiana University, Indianapolis, Indiana
| | - Gary D Hutchins
- School of Medicine, Indiana University, Indianapolis, Indiana
| | | |
Collapse
|
10
|
Tom MC, DiFilippo FP, Jones SE, Suh JH, Obuchowski NA, Smile TD, Murphy ES, Yu JS, Barnett GH, Angelov L, Mohammadi AM, Huang SS, Wu G, Johnson S, Peereboom DM, Stevens GHJ, Ahluwalia MS, Chao ST. 18F-fluciclovine PET/CT to distinguish radiation necrosis from tumor progression for brain metastases treated with radiosurgery: results of a prospective pilot study. J Neurooncol 2023; 163:647-655. [PMID: 37341842 DOI: 10.1007/s11060-023-04377-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Accepted: 06/16/2023] [Indexed: 06/22/2023]
Abstract
PURPOSE Distinguishing radiation necrosis from tumor progression among patients with brain metastases previously treated with stereotactic radiosurgery represents a common diagnostic challenge. We performed a prospective pilot study to determine whether PET/CT with 18F-fluciclovine, a widely available amino acid PET radiotracer, repurposed intracranially, can accurately diagnose equivocal lesions. METHODS Adults with brain metastases previously treated with radiosurgery presenting with a follow-up tumor-protocol MRI brain equivocal for radiation necrosis versus tumor progression underwent an 18F-fluciclovine PET/CT of the brain within 30 days. The reference standard for final diagnosis consisted of clinical follow-up until multidisciplinary consensus or tissue confirmation. RESULTS Of 16 patients imaged from 7/2019 to 11/2020, 15 subjects were evaluable with 20 lesions (radiation necrosis, n = 16; tumor progression, n = 4). Higher SUVmax statistically significantly predicted tumor progression (AUC = 0.875; p = 0.011). Lesion SUVmean (AUC = 0.875; p = 0.018), SUVpeak (AUC = 0.813; p = 0.007), and SUVpeak-to-normal-brain (AUC = 0.859; p = 0.002) also predicted tumor progression, whereas SUVmax-to-normal-brain (p = 0.1) and SUVmean-to-normal-brain (p = 0.5) did not. Qualitative visual scores were significant predictors for readers 1 (AUC = 0.750; p < 0.001) and 3 (AUC = 0.781; p = 0.045), but not for reader 2 (p = 0.3). Visual interpretations were significant predictors for reader 1 (AUC = 0.898; p = 0.012) but not for reader 2 (p = 0.3) or 3 (p = 0.2). CONCLUSIONS In this prospective pilot study of patients with brain metastases previously treated with radiosurgery presenting with a contemporary MRI brain with a lesion equivocal for radiation necrosis versus tumor progression, 18F-fluciclovine PET/CT repurposed intracranially demonstrated encouraging diagnostic accuracy, supporting the pursuit of larger clinical trials which will be necessary to establish diagnostic criteria and performance.
Collapse
Affiliation(s)
- Martin C Tom
- Department of Radiation Oncology, Rose Ella Burkhardt Brain Tumor and Neuro-Oncology Center and Neurological Institute, Cleveland Clinic, Cleveland, OH, USA.
| | - Frank P DiFilippo
- Department of Nuclear Medicine, Cleveland Clinic, Cleveland, OH, USA
| | - Stephen E Jones
- Department of Radiology, Cleveland Clinic, Cleveland, OH, USA
| | - John H Suh
- Department of Radiation Oncology, Rose Ella Burkhardt Brain Tumor and Neuro-Oncology Center and Neurological Institute, Cleveland Clinic, Cleveland, OH, USA
- Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, OH, USA
| | - Nancy A Obuchowski
- Quantitative Health Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Timothy D Smile
- Department of Radiation Oncology, Rose Ella Burkhardt Brain Tumor and Neuro-Oncology Center and Neurological Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Erin S Murphy
- Department of Radiation Oncology, Rose Ella Burkhardt Brain Tumor and Neuro-Oncology Center and Neurological Institute, Cleveland Clinic, Cleveland, OH, USA
- Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, OH, USA
| | - Jennifer S Yu
- Department of Radiation Oncology, Rose Ella Burkhardt Brain Tumor and Neuro-Oncology Center and Neurological Institute, Cleveland Clinic, Cleveland, OH, USA
- Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, OH, USA
| | - Gene H Barnett
- Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, OH, USA
- Department of Neurological Surgery, Rose Ella Burkhardt Brain Tumor and Neuro-Oncology Center and Neurological Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Lilyana Angelov
- Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, OH, USA
- Department of Neurological Surgery, Rose Ella Burkhardt Brain Tumor and Neuro-Oncology Center and Neurological Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Alireza M Mohammadi
- Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, OH, USA
- Department of Neurological Surgery, Rose Ella Burkhardt Brain Tumor and Neuro-Oncology Center and Neurological Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Steve S Huang
- Department of Nuclear Medicine, Cleveland Clinic, Cleveland, OH, USA
| | - Guiyun Wu
- Department of Nuclear Medicine, Cleveland Clinic, Cleveland, OH, USA
| | - Scott Johnson
- Department of Radiology, Cleveland Clinic, Cleveland, OH, USA
| | - David M Peereboom
- Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, OH, USA
- Taussig Cancer Institute, Rose Ella Burkhardt Brain Tumor and Neuro-Oncology Center and Neurological Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Glen H J Stevens
- Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, OH, USA
- Department of Neurology, Rose Ella Burkhardt Brain Tumor and Neuro-Oncology Center and Neurological Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Manmeet S Ahluwalia
- Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, OH, USA
- Taussig Cancer Institute, Rose Ella Burkhardt Brain Tumor and Neuro-Oncology Center and Neurological Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Samuel T Chao
- Department of Radiation Oncology, Rose Ella Burkhardt Brain Tumor and Neuro-Oncology Center and Neurological Institute, Cleveland Clinic, Cleveland, OH, USA
- Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, OH, USA
| |
Collapse
|
11
|
Galldiks N, Lohmann P, Fink GR, Langen KJ. Amino Acid PET in Neurooncology. J Nucl Med 2023; 64:693-700. [PMID: 37055222 DOI: 10.2967/jnumed.122.264859] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 03/10/2023] [Indexed: 04/15/2023] Open
Abstract
For decades, several amino acid PET tracers have been used to optimize diagnostics in patients with brain tumors. In clinical routine, the most important clinical indications for amino acid PET in brain tumor patients are differentiation of neoplasm from nonneoplastic etiologies, delineation of tumor extent for further diagnostic and treatment planning (i.e., diagnostic biopsy, resection, or radiotherapy), differentiation of treatment-related changes such as pseudoprogression or radiation necrosis after radiation or chemoradiation from tumor progression at follow-up, and assessment of response to anticancer therapy, including prediction of patient outcome. This continuing education article addresses the diagnostic value of amino acid PET for patients with either glioblastoma or metastatic brain cancer.
Collapse
Affiliation(s)
- Norbert Galldiks
- Department of Neurology, Faculty of Medicine, University Hospital Cologne, University of Cologne, Cologne, Germany;
- Institute of Neuroscience and Medicine, Research Center Juelich, Juelich, Germany
- Center for Integrated Oncology, Universities of Aachen, Bonn, Cologne, and Duesseldorf, Germany; and
| | - Philipp Lohmann
- Institute of Neuroscience and Medicine, Research Center Juelich, Juelich, Germany
| | - Gereon R Fink
- Department of Neurology, Faculty of Medicine, University Hospital Cologne, University of Cologne, Cologne, Germany
- Institute of Neuroscience and Medicine, Research Center Juelich, Juelich, Germany
| | - Karl-Josef Langen
- Institute of Neuroscience and Medicine, Research Center Juelich, Juelich, Germany
- Center for Integrated Oncology, Universities of Aachen, Bonn, Cologne, and Duesseldorf, Germany; and
- Department of Nuclear Medicine, RWTH University Hospital Aachen, Aachen, Germany
| |
Collapse
|
12
|
Dosimetric and clinical analysis of pseudo-progression versus recurrence after hypo-fractionated radiotherapy for brain metastases. Radiat Oncol 2023; 18:30. [PMID: 36788610 PMCID: PMC9930329 DOI: 10.1186/s13014-023-02214-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Accepted: 01/28/2023] [Indexed: 02/16/2023] Open
Abstract
BACKGROUND The main challenge in follow-up duration of patients with brain metastases after stereotactic radiotherapy is to distinguish between pseudo-progression and tumor recurrence. The objective of this study is to retrospectively analyze the predictive factors. METHODS The study included 123 patients with enlarged brain metastases after hypo-fractionated radiotherapy in our center from March 2009 to October 2019, and the baseline clinical features, radiotherapy planning parameters, and enhanced magnetic resonance imaging before and after radiation therapy were analyzed. Logistic regression was performed to compare the differences between groups. Independent risk factors with P < 0.05 and associated with recurrence were used to establish a nomogram prediction model and validated by Bootstrap repeated sampling, which was validated in an internal cohort (n = 23) from October 2019 to December 2021. RESULTS The median follow-up time was 68.4 months (range, 8.9-146.2 months). A total of 76 (61.8%) patients were evaluated as pseudo-progression, 47 patients (38.2%) were evaluated as tumor recurrence. The median time to pseudo-progression and tumor recurrence were 18.3 months (quartile range, 9.4-27.8 months) and 12.9 months (quartile range, 8.7-19.6 months) respectively. Variables associated with tumor recurrence included: gross tumor volume ≥ 6 cc, biological effective dose < 60 Gy, target coverage < 96% and no targeted therapy. The area under curve values were 0.730 and 0.967 in the training and validation cohorts, respectively. Thirty-one patients received salvage therapy in the tumor recurrence group. The survival time in pseudo-progression and tumor recurrence groups were 66.3 months (95% CI 56.8-75.9 months) and 39.6 months (95% CI 29.2-50.0 months, respectively; P = 0.001). CONCLUSIONS Clinical and dosimetry features of hypo-fractionated radiation therapy based on enhanced brain magnetic resonance can help distinguish pseudo-progression from tumor recurrence after hypo-fractionated radiotherapy for brain metastases. Gross tumor volume, biological effective dose, target coverage, and having received targeted therapy or not were factors associated with the occurrence of tumor recurrence, and the individual risk could be estimated by the nomogram effectively.
Collapse
|
13
|
Ladefoged CN, Andersen FL, Andersen TL, Anderberg L, Engkebølle C, Madsen K, Højgaard L, Henriksen OM, Law I. DeepDixon synthetic CT for [ 18F]FET PET/MRI attenuation correction of post-surgery glioma patients with metal implants. Front Neurosci 2023; 17:1142383. [PMID: 37090806 PMCID: PMC10115992 DOI: 10.3389/fnins.2023.1142383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 03/08/2023] [Indexed: 04/25/2023] Open
Abstract
Purpose Conventional magnetic resonance imaging (MRI) can for glioma assessment be supplemented by positron emission tomography (PET) imaging with radiolabeled amino acids such as O-(2-[18F]fluoroethyl)-L-tyrosine ([18F]FET), which provides additional information on metabolic properties. In neuro-oncology, patients often undergo brain and skull altering treatment, which is known to challenge MRI-based attenuation correction (MR-AC) methods and thereby impact the simplified semi-quantitative measures such as tumor-to-brain ratio (TBR) used in clinical routine. The aim of the present study was to examine the applicability of our deep learning method, DeepDixon, for MR-AC in [18F]FET PET/MRI scans of a post-surgery glioma cohort with metal implants. Methods The MR-AC maps were assessed for all 194 included post-surgery glioma patients (318 studies). The subgroup of 147 patients (222 studies, 200 MBq [18F]FET PET/MRI) with tracer uptake above 1 ml were subsequently reconstructed with DeepDixon, vendor-default atlas-based method, and a low-dose computed tomography (CT) used as reference. The biological tumor volume (BTV) was delineated on each patient by isocontouring tracer uptake above a TBR threshold of 1.6. We evaluated the MR-AC methods using the recommended clinical metrics BTV and mean and maximum TBR on a patient-by-patient basis against the reference with CT-AC. Results Ninety-seven percent of the studies (310/318) did not have any major artifacts using DeepDixon, which resulted in a Dice coefficient of 0.89/0.83 for tissue/bone, respectively, compared to 0.84/0.57 when using atlas. The average difference between DeepDixon and CT-AC was within 0.2% across all clinical metrics, and no statistically significant difference was found. When using DeepDixon, only 3 out of 222 studies (1%) exceeded our acceptance criteria compared to 72 of the 222 studies (32%) with the atlas method. Conclusion We evaluated the performance of a state-of-the-art MR-AC method on the largest post-surgical glioma patient cohort to date. We found that DeepDixon could overcome most of the issues arising from irregular anatomy and metal artifacts present in the cohort resulting in clinical metrics within acceptable limits of the reference CT-AC in almost all cases. This is a significant improvement over the vendor-provided atlas method and of particular importance in response assessment.
Collapse
|
14
|
Singnurkar A, Poon R, Detsky J. 18F-FET-PET imaging in high-grade gliomas and brain metastases: a systematic review and meta-analysis. J Neurooncol 2023; 161:1-12. [PMID: 36502457 DOI: 10.1007/s11060-022-04201-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 11/16/2022] [Indexed: 12/14/2022]
Abstract
PURPOSE To provide a summary of the diagnostic performance of 18F-FET-PET in the management of patients with high-grade brain gliomas or metastases from extracranial primary malignancies. METHODS MEDLINE, EMBASE, and Cochrane Database of Systematic Reviews databases were searched for studies that reported on diagnostic test parameters in radiotherapy planning, response assessment, and tumour recurrence/treatment-related changes differentiation. Radiomic studies were excluded. Quality assessment was performed using the Quality Assessment of Diagnostic Accuracy Studies (QUADAS-2) tool and the GRADE approach. A bivariate, random-effects model was used to produce summary estimates of sensitivity and specificity. RESULTS Twenty-six studies with a total of 1206 patients/lesions were included in the analysis. For radiotherapy planning of glioma, the pooled proportion of patients from 3 studies with 18F-FET uptake extending beyond the 20 mm margin from the gadolinium enhancement on standard MRI was 39% (95% CI, 10-73%). In 3 studies, 18F-FET-PET was also shown to be predictive of early responders to treatment, whereas MRI failed to show any prognostic value. For the differentiation of glioma recurrence from treatment-related changes, the pooled sensitivity and specificity of TBRmax 1.9-2.3 from 6 studies were 91% (95% CI, 74-97%) and 84% (95% CI, 69-93%), respectively. The respective values for brain metastases from 4 studies were 82% (95% CI, 74-88%) and 82% (95% CI, 74-88%) using TBRmax 2.15-3.11. CONCLUSION While 18F-FET shows promise as a complementary modality to standard-of-care MRI for the management of primary and metastatic brain malignancies, further validation with standardized image interpretation methods in well-designed prospective studies are warranted.
Collapse
Affiliation(s)
- Amit Singnurkar
- Department of Medical Imaging, University of Toronto Sunnybrook Health Sciences Centre, Toronto, Canada
| | - Raymond Poon
- Program in Evidence-Based Care, Ontario Health (Cancer Care Ontario), Department of Oncology, McMaster University McMaster University, Hamilton, ON, Canada. .,Program in Evidence-Based Care, Ontario Health (Cancer Care Ontario), Juravinski Hospital and Cancer Centre, G Wing, 2nd Floor, 711 Concession Street, Hamilton, ON, L8V 1C3, Canada.
| | - Jay Detsky
- Department of Radiation Oncology, University of Toronto, Sunnybrook Health Sciences Centre, Toronto, Canada
| |
Collapse
|
15
|
Galldiks N, Wollring M, Werner JM, Friedrich M, Fink GR, Langen KJ, Lohmann P. An updated review on the diagnosis and assessment of post-treatment relapse in brain metastases using PET. Expert Rev Neurother 2022; 22:915-921. [PMID: 36563186 DOI: 10.1080/14737175.2022.2162880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
INTRODUCTION Brain metastases in patients with extracranial cancer are typically associated with increased morbidity and mortality. Stereotactic radiotherapy and immunotherapy using checkpoint inhibitors currently are essential in brain metastases treatment. Since conventional contrast-enhanced MRI alone cannot reliably differentiate between treatment-induced changes and brain metastasis relapse, several studies investigated the role of PET imaging and, more recently, radiomics, based on routinely acquired PET images, to overcome this clinically relevant challenge. AREAS COVERED The current literature on PET imaging, including radiomics, in patients with brain metastases, focusing on the diagnosis and assessment of post-treatment relapse, is summarized. EXPERT OPINION Available data suggest that imaging parameters, including radiomics features, mainly derived from amino acid PET, are helpful for diagnosis and assessment of post-treatment relapse in patients with brain metastases.
Collapse
Affiliation(s)
- Norbert Galldiks
- Department of Neurology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Germany.,Inst. of Neuroscience and Medicine (INM-3, -4), Research Center Juelich, Germany.,Center for Integrated Oncology (CIO), Universities of Aachen, Bonn, Germany
| | - Michael Wollring
- Department of Neurology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Germany.,Inst. of Neuroscience and Medicine (INM-3, -4), Research Center Juelich, Germany
| | - Jan-Michael Werner
- Department of Neurology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Germany
| | - Michel Friedrich
- Inst. of Neuroscience and Medicine (INM-3, -4), Research Center Juelich, Germany
| | - Gereon R Fink
- Department of Neurology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Germany.,Inst. of Neuroscience and Medicine (INM-3, -4), Research Center Juelich, Germany
| | - Karl-Josef Langen
- Inst. of Neuroscience and Medicine (INM-3, -4), Research Center Juelich, Germany.,Center for Integrated Oncology (CIO), Universities of Aachen, Bonn, Germany.,Department of Nuclear Medicine, University Hospital RWTH Aachen, Germany
| | - Philipp Lohmann
- Inst. of Neuroscience and Medicine (INM-3, -4), Research Center Juelich, Germany.,Department of Stereotaxy and Functional Neurosurgery, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| |
Collapse
|
16
|
Hasanov E, Yeboa DN, Tucker MD, Swanson TA, Beckham TH, Rini B, Ene CI, Hasanov M, Derks S, Smits M, Dudani S, Heng DYC, Brastianos PK, Bex A, Hanalioglu S, Weinberg JS, Hirsch L, Carlo MI, Aizer A, Brown PD, Bilen MA, Chang EL, Jaboin J, Brugarolas J, Choueiri TK, Atkins MB, McGregor BA, Halasz LM, Patel TR, Soltys SG, McDermott DF, Elder JB, Baskaya MK, Yu JB, Timmerman R, Kim MM, Mut M, Markert J, Beal K, Tannir NM, Samandouras G, Lang FF, Giles R, Jonasch E. An interdisciplinary consensus on the management of brain metastases in patients with renal cell carcinoma. CA Cancer J Clin 2022; 72:454-489. [PMID: 35708940 DOI: 10.3322/caac.21729] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 03/28/2022] [Accepted: 04/11/2022] [Indexed: 12/23/2022] Open
Abstract
Brain metastases are a challenging manifestation of renal cell carcinoma. We have a limited understanding of brain metastasis tumor and immune biology, drivers of resistance to systemic treatment, and their overall poor prognosis. Current data support a multimodal treatment strategy with radiation treatment and/or surgery. Nonetheless, the optimal approach for the management of brain metastases from renal cell carcinoma remains unclear. To improve patient care, the authors sought to standardize practical management strategies. They performed an unstructured literature review and elaborated on the current management strategies through an international group of experts from different disciplines assembled via the network of the International Kidney Cancer Coalition. Experts from different disciplines were administered a survey to answer questions related to current challenges and unmet patient needs. On the basis of the integrated approach of literature review and survey study results, the authors built algorithms for the management of single and multiple brain metastases in patients with renal cell carcinoma. The literature review, consensus statements, and algorithms presented in this report can serve as a framework guiding treatment decisions for patients. CA Cancer J Clin. 2022;72:454-489.
Collapse
Affiliation(s)
- Elshad Hasanov
- Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Debra Nana Yeboa
- Department of Radiation Oncology, Division of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Mathew D Tucker
- Department of Medicine, Division of Hematology and Oncology, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Todd A Swanson
- Department of Radiation Oncology, Division of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Thomas Hendrix Beckham
- Department of Radiation Oncology, Division of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Brian Rini
- Department of Medicine, Division of Hematology and Oncology, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Chibawanye I Ene
- Department of Neurosurgery, Division of Surgery, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Merve Hasanov
- Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Sophie Derks
- Department of Radiology and Nuclear Medicine, Erasmus Medical Center, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Marion Smits
- Department of Radiology and Nuclear Medicine, Erasmus Medical Center, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Shaan Dudani
- Division of Oncology/Hematology, William Osler Health System, Brampton, Ontario, Canada
| | - Daniel Y C Heng
- Tom Baker Cancer Center, University of Calgary, Calgary, Alberta, Canada
| | - Priscilla K Brastianos
- Division of Neuro-Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Axel Bex
- The Royal Free London National Health Service Foundation Trust, London, United Kingdom
- University College London Division of Surgery and Interventional Science, London, United Kingdom
- Department of Urology, The Netherlands Cancer Institute, Antoni van Leeuwenhoek Hospital, Amsterdam, the Netherlands
| | - Sahin Hanalioglu
- Department of Neurosurgery, Hacettepe University Faculty of Medicine, Ankara, Turkey
| | - Jeffrey S Weinberg
- Department of Neurosurgery, Division of Surgery, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Laure Hirsch
- Department of Medical Oncology, Cochin University Hospital, Public Assistance Hospital of Paris, Paris, France
- Lank Center for Genitourinary Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Maria I Carlo
- Genitourinary Oncology Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Ayal Aizer
- Department of Radiation Oncology, Brigham and Women's Hospital, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Paul David Brown
- Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota
| | - Mehmet Asim Bilen
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, Georgia
- Winship Cancer Institute of Emory University, Atlanta, Georgia
| | - Eric Lin Chang
- Department of Radiation Oncology, University of Southern California, Keck School of Medicine, California, Los Angeles
| | - Jerry Jaboin
- Department of Radiation Medicine, Oregon Health & Science University, Portland, Oregon
| | - James Brugarolas
- Kidney Cancer Program, Simmons Comprehensive Cancer Center, The University of Texas Southwestern Medical Center, Dallas, Texas
- Division of Hematology/Oncology, Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, Texas
| | - Toni K Choueiri
- Lank Center for Genitourinary Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Michael B Atkins
- Lombardi Comprehensive Cancer Center, MedStar Georgetown University Hospital, Washington, DC
| | - Bradley A McGregor
- Lank Center for Genitourinary Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Lia M Halasz
- Department of Radiation Oncology, University of Washington, Seattle, Washington
| | - Toral R Patel
- Kidney Cancer Program, Simmons Comprehensive Cancer Center, The University of Texas Southwestern Medical Center, Dallas, Texas
- Department of Neurosurgery, The University of Texas Southwestern Medical Center, Dallas, Texas
| | - Scott G Soltys
- Department of Radiation Oncology, Stanford Cancer Institute, Stanford, California
| | - David F McDermott
- Division of Medical Oncology, Beth Israel Deaconess Medical Center, Boston, Massachusetts
| | - James Bradley Elder
- Department of Neurological Surgery, Ohio State University Wexner Medical Center, Columbus, Ohio
| | - Mustafa K Baskaya
- Department of Neurological Surgery, University of Wisconsin-Madison, School of Medicine and Public Health, Madison, Wisconsin
| | - James B Yu
- Department of Therapeutic Radiology, Yale University School of Medicine, New Haven, Connecticut
| | - Robert Timmerman
- Kidney Cancer Program, Simmons Comprehensive Cancer Center, The University of Texas Southwestern Medical Center, Dallas, Texas
- Department of Radiation Oncology, The University of Texas Southwestern Medical Center, Dallas, Texas
| | - Michelle Miran Kim
- Department of Radiation Oncology, University of Michigan, Ann Arbor, Michigan
| | - Melike Mut
- Department of Neurosurgery, Hacettepe University Faculty of Medicine, Ankara, Turkey
| | - James Markert
- Department of Neurosurgery, The University of Alabama at Birmingham, Birmingham, Alabama
| | - Kathryn Beal
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Nizar M Tannir
- Department of Genitourinary Medical Oncology, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - George Samandouras
- Victor Horsley Department of Neurosurgery, The National Hospital for Neurology and Neurosurgery, Queen Square, London, United Kingdom
- University College London Queen Square Institute of Neurology, University College London, Queen Square, London, United Kingdom
| | - Frederick F Lang
- Department of Neurosurgery, Division of Surgery, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Rachel Giles
- International Kidney Cancer Coalition, Duivendrecht, the Netherlands
| | - Eric Jonasch
- Department of Genitourinary Medical Oncology, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| |
Collapse
|
17
|
Xu J, Meng Y, Qiu K, Topatana W, Li S, Wei C, Chen T, Chen M, Ding Z, Niu G. Applications of Artificial Intelligence Based on Medical Imaging in Glioma: Current State and Future Challenges. Front Oncol 2022; 12:892056. [PMID: 35965542 PMCID: PMC9363668 DOI: 10.3389/fonc.2022.892056] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 06/22/2022] [Indexed: 12/24/2022] Open
Abstract
Glioma is one of the most fatal primary brain tumors, and it is well-known for its difficulty in diagnosis and management. Medical imaging techniques such as magnetic resonance imaging (MRI), positron emission tomography (PET), and spectral imaging can efficiently aid physicians in diagnosing, treating, and evaluating patients with gliomas. With the increasing clinical records and digital images, the application of artificial intelligence (AI) based on medical imaging has reduced the burden on physicians treating gliomas even further. This review will classify AI technologies and procedures used in medical imaging analysis. Additionally, we will discuss the applications of AI in glioma, including tumor segmentation and classification, prediction of genetic markers, and prediction of treatment response and prognosis, using MRI, PET, and spectral imaging. Despite the benefits of AI in clinical applications, several issues such as data management, incomprehension, safety, clinical efficacy evaluation, and ethical or legal considerations, remain to be solved. In the future, doctors and researchers should collaborate to solve these issues, with a particular emphasis on interdisciplinary teamwork.
Collapse
Affiliation(s)
- Jiaona Xu
- Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yuting Meng
- Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Kefan Qiu
- Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Win Topatana
- Department of General Surgery, Sir Run-Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Shijie Li
- Department of General Surgery, Sir Run-Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Chao Wei
- Department of Neurology, Affiliated Ningbo First Hospital, Ningbo, China
| | - Tianwen Chen
- Department of Neurology, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Mingyu Chen
- Department of General Surgery, Sir Run-Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- *Correspondence: Mingyu Chen, ; Zhongxiang Ding, ; Guozhong Niu,
| | - Zhongxiang Ding
- Department of Radiology, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
- *Correspondence: Mingyu Chen, ; Zhongxiang Ding, ; Guozhong Niu,
| | - Guozhong Niu
- Department of Neurology, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
- *Correspondence: Mingyu Chen, ; Zhongxiang Ding, ; Guozhong Niu,
| |
Collapse
|
18
|
PET Imaging in Neuro-Oncology: An Update and Overview of a Rapidly Growing Area. Cancers (Basel) 2022; 14:cancers14051103. [PMID: 35267411 PMCID: PMC8909369 DOI: 10.3390/cancers14051103] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 02/08/2022] [Accepted: 02/19/2022] [Indexed: 12/21/2022] Open
Abstract
Simple Summary Positron emission tomography (PET) is a functional imaging technique which plays an increasingly important role in the management of brain tumors. Owing different radiotracers, PET allows to image different metabolic aspects of the brain tumors. This review outlines currently available PET radiotracers and their respective indications in neuro-oncology. It specifically focuses on the investigation of gliomas, meningiomas, primary central nervous system lymphomas as well as brain metastases. Recent advances in the production of PET radiotracers, image analyses and translational applications to peptide radionuclide receptor therapy, which allow to treat brain tumors with radiotracers, are also discussed. The objective of this review is to provide a comprehensive overview of PET imaging’s potential in neuro-oncology as an adjunct to brain magnetic resonance imaging (MRI). Abstract PET plays an increasingly important role in the management of brain tumors. This review outlines currently available PET radiotracers and their respective indications. It specifically focuses on 18F-FDG, amino acid and somatostatin receptor radiotracers, for imaging gliomas, meningiomas, primary central nervous system lymphomas as well as brain metastases. Recent advances in radiopharmaceuticals, image analyses and translational applications to therapy are also discussed. The objective of this review is to provide a comprehensive overview of PET imaging’s potential in neuro-oncology as an adjunct to brain MRI for all medical professionals implicated in brain tumor diagnosis and care.
Collapse
|
19
|
Kalasauskas D, Kosterhon M, Keric N, Korczynski O, Kronfeld A, Ringel F, Othman A, Brockmann MA. Beyond Glioma: The Utility of Radiomic Analysis for Non-Glial Intracranial Tumors. Cancers (Basel) 2022; 14:cancers14030836. [PMID: 35159103 PMCID: PMC8834271 DOI: 10.3390/cancers14030836] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/30/2022] [Accepted: 02/04/2022] [Indexed: 02/05/2023] Open
Abstract
Simple Summary Tumor qualities, such as growth rate, firmness, and intrusion into healthy tissue, can be very important for operation planning and further treatment. Radiomics is a promising new method that allows the determination of some of these qualities on images performed before surgery. In this article, we provide a review of the use of radiomics in various tumors of the central nervous system, such as metastases, lymphoma, meningioma, medulloblastoma, and pituitary tumors. Abstract The field of radiomics is rapidly expanding and gaining a valuable role in neuro-oncology. The possibilities related to the use of radiomic analysis, such as distinguishing types of malignancies, predicting tumor grade, determining the presence of particular molecular markers, consistency, therapy response, and prognosis, can considerably influence decision-making in medicine in the near future. Even though the main focus of radiomic analyses has been on glial CNS tumors, studies on other intracranial tumors have shown encouraging results. Therefore, as the main focus of this review, we performed an analysis of publications on PubMed and Web of Science databases, focusing on radiomics in CNS metastases, lymphoma, meningioma, medulloblastoma, and pituitary tumors.
Collapse
Affiliation(s)
- Darius Kalasauskas
- Department of Neurosurgery, University Medical Centre, Johannes Gutenberg University Mainz, 55131 Mainz, Germany; (D.K.); (M.K.); (N.K.); (F.R.)
| | - Michael Kosterhon
- Department of Neurosurgery, University Medical Centre, Johannes Gutenberg University Mainz, 55131 Mainz, Germany; (D.K.); (M.K.); (N.K.); (F.R.)
| | - Naureen Keric
- Department of Neurosurgery, University Medical Centre, Johannes Gutenberg University Mainz, 55131 Mainz, Germany; (D.K.); (M.K.); (N.K.); (F.R.)
| | - Oliver Korczynski
- Department of Neuroradiology, University Medical Centre, Johannes Gutenberg University Mainz, 55131 Mainz, Germany; (O.K.); (A.K.); (A.O.)
| | - Andrea Kronfeld
- Department of Neuroradiology, University Medical Centre, Johannes Gutenberg University Mainz, 55131 Mainz, Germany; (O.K.); (A.K.); (A.O.)
| | - Florian Ringel
- Department of Neurosurgery, University Medical Centre, Johannes Gutenberg University Mainz, 55131 Mainz, Germany; (D.K.); (M.K.); (N.K.); (F.R.)
| | - Ahmed Othman
- Department of Neuroradiology, University Medical Centre, Johannes Gutenberg University Mainz, 55131 Mainz, Germany; (O.K.); (A.K.); (A.O.)
| | - Marc A. Brockmann
- Department of Neuroradiology, University Medical Centre, Johannes Gutenberg University Mainz, 55131 Mainz, Germany; (O.K.); (A.K.); (A.O.)
- Correspondence:
| |
Collapse
|
20
|
Nowakowski A, Lahijanian Z, Panet-Raymond V, Siegel PM, Petrecca K, Maleki F, Dankner M. Radiomics as an emerging tool in the management of brain metastases. Neurooncol Adv 2022; 4:vdac141. [PMID: 36284932 PMCID: PMC9583687 DOI: 10.1093/noajnl/vdac141] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Brain metastases (BM) are associated with significant morbidity and mortality in patients with advanced cancer. Despite significant advances in surgical, radiation, and systemic therapy in recent years, the median overall survival of patients with BM is less than 1 year. The acquisition of medical images, such as computed tomography (CT) and magnetic resonance imaging (MRI), is critical for the diagnosis and stratification of patients to appropriate treatments. Radiomic analyses have the potential to improve the standard of care for patients with BM by applying artificial intelligence (AI) with already acquired medical images to predict clinical outcomes and direct the personalized care of BM patients. Herein, we outline the existing literature applying radiomics for the clinical management of BM. This includes predicting patient response to radiotherapy and identifying radiation necrosis, performing virtual biopsies to predict tumor mutation status, and determining the cancer of origin in brain tumors identified via imaging. With further development, radiomics has the potential to aid in BM patient stratification while circumventing the need for invasive tissue sampling, particularly for patients not eligible for surgical resection.
Collapse
Affiliation(s)
- Alexander Nowakowski
- Rosalind and Morris Goodman Cancer Institute, McGill University, Montreal, Québec, Canada
| | - Zubin Lahijanian
- McGill University Health Centre, Department of Diagnostic Radiology, McGill University, Montreal, Québec, Canada
| | - Valerie Panet-Raymond
- McGill University Health Centre, Department of Diagnostic Radiology, McGill University, Montreal, Québec, Canada
| | - Peter M Siegel
- Rosalind and Morris Goodman Cancer Institute, McGill University, Montreal, Québec, Canada
| | - Kevin Petrecca
- Montreal Neurological Institute-Hospital, McGill University, Montreal, Québec, Canada
| | - Farhad Maleki
- Department of Computer Science, University of Calgary, Calgary, Alberta, Canada
| | - Matthew Dankner
- Rosalind and Morris Goodman Cancer Institute, McGill University, Montreal, Québec, Canada
| |
Collapse
|
21
|
Alshehri S, Prior J, Moshebah M, Schiappacasse L, Dunet V. Negative 18F-FET PET/CT in brain metastasis recurrence: a teaching case report. Eur J Hybrid Imaging 2021; 5:21. [PMID: 34806124 PMCID: PMC8606481 DOI: 10.1186/s41824-021-00115-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 10/08/2021] [Indexed: 12/01/2022] Open
Abstract
Positron emission tomography (PET) using O-(2-[18F]fluoroethyl)-L-tyrosine (18F-FET) PET has been shown to be a useful tool for differentiating radiation therapy outcomes, such as brain metastasis recurrence or radiation necrosis. We present the case of a female patient with brain metastases from pulmonary mucinous adenocarcinoma with suspicion of tumor recurrence on follow-up magnetic resonance imaging (MRI) after radiosurgery. 18F-FET PET/computed tomography (CT) was indicative of radiation necrosis. Due to the patient's medical history and the discrepancy between the brain MRI and PET/CT results, surgical biopsies were decided, which were positive for brain metastasis recurrence. The diagnosis of metastasis recurrence may also be challenging on 18F-FET PET/CT. In case of discrepancies between MRI and PET/CT results, false-negative 18F-FET PET/CT remains a possibility and requires careful follow-up or biopsy.
Collapse
Affiliation(s)
- Samirah Alshehri
- Service of Radiation Oncology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland.
| | - John Prior
- Service of Nuclear Medicine and Molecular Imaging, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Mohammed Moshebah
- Service of Diagnostic and Interventional Radiology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Luis Schiappacasse
- Service of Radiation Oncology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Vincent Dunet
- Service of Diagnostic and Interventional Radiology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
22
|
Cicone F, Cascini GL, Minniti G. Reply to: "Assessment of imaging biomarkers in the follow-up of brain metastases after SRS". Neuro Oncol 2021; 23:1985-1986. [PMID: 34427669 PMCID: PMC8563314 DOI: 10.1093/neuonc/noab191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Francesco Cicone
- Department of Experimental and Clinical Medicine, and Neuroscience Research Centre, PET/RM Unit, “Magna Graecia” University of Catanzaro, Catanzaro, Italy
- Nuclear Medicine Unit, University Hospital “Mater Domini”, Catanzaro, Italy
| | | | - Giuseppe Minniti
- Radiation Oncology Unit, Department of Medicine, Surgery and Neurosciences, University of Siena, Policlinico Le Scotte, Siena, Italy
- IRCCS Neuromed, Pozzilli (IS), Italy
| |
Collapse
|
23
|
Cicone F, Carideo L, Scaringi C, Romano A, Mamede M, Papa A, Tofani A, Cascini GL, Bozzao A, Scopinaro F, Minniti G. Long-term metabolic evolution of brain metastases with suspected radiation necrosis following stereotactic radiosurgery: longitudinal assessment by F-DOPA PET. Neuro Oncol 2021; 23:1024-1034. [PMID: 33095884 DOI: 10.1093/neuonc/noaa239] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND The evolution of radiation necrosis (RN) varies depending on the combination of radionecrotic tissue and active tumor cells. In this study, we characterized the long-term metabolic evolution of RN by sequential PET/CT imaging with 3,4-dihydroxy-6-[18F]-fluoro-l-phenylalanine (F-DOPA) in patients with brain metastases following stereotactic radiosurgery (SRS). METHODS Thirty consecutive patients with 34 suspected radionecrotic brain metastases following SRS repeated F-DOPA PET/CT every 6 months or yearly in addition to standard MRI monitoring. Diagnoses of local progression (LP) or RN were confirmed histologically or by clinical follow-up. Semi-quantitative parameters of F-DOPA uptake were extracted at different time points, and their diagnostic performances were compared with those of corresponding contrast-enhanced MRI. RESULTS Ninety-nine F-DOPA PET scans were acquired over a median period of 18 (range: 12-66) months. Median follow-up from the baseline F-DOPA PET/CT was 48 (range 21-95) months. Overall, 24 (70.6%) and 10 (29.4%) lesions were classified as RN and LP, respectively. LP occurred after a median of 18 (range: 12-30) months from baseline PET. F-DOPA tumor-to-brain ratio (TBR) and relative standardized uptake value (rSUV) increased significantly over time in LP lesions, while remaining stable in RN lesions. The parameter showing the best diagnostic performance was rSUV (accuracy = 94.1% for the optimal threshold of 1.92). In contrast, variations of the longest tumor dimension measured on contrast-enhancing MRI did not distinguish between RN and LP. CONCLUSION F-DOPA PET has a high diagnostic accuracy for assessing the long-term evolution of brain metastases following SRS.
Collapse
Affiliation(s)
- Francesco Cicone
- Department of Experimental and Clinical Medicine, "Magna Graecia" University of Catanzaro, Catanzaro, Italy
| | - Luciano Carideo
- Nuclear Medicine Unit, Sant'Andrea Hospital, Sapienza University of Rome, Rome, Italy
| | - Claudia Scaringi
- Radiation Oncology Unit, UPMC Hillman Cancer Center, San Pietro Hospital FBF, Rome, Italy
| | - Andrea Romano
- Neuroradiology Unit, Sant'Andrea Hospital, Department of Neuroscience, Mental Health and Sense Organs (NESMOS) Sapienza University of Rome, Rome, Italy
| | - Marcelo Mamede
- Department of Anatomy and Imaging, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Annalisa Papa
- Nuclear Medicine Unit, University Hospital "Mater Domini," Catanzaro, Italy
| | - Anna Tofani
- Nuclear Medicine Unit, Sant'Andrea Hospital, Sapienza University of Rome, Rome, Italy
| | - Giuseppe Lucio Cascini
- Department of Experimental and Clinical Medicine, "Magna Graecia" University of Catanzaro, Catanzaro, Italy.,Nuclear Medicine Unit, University Hospital "Mater Domini," Catanzaro, Italy
| | - Alessandro Bozzao
- Neuroradiology Unit, Sant'Andrea Hospital, Department of Neuroscience, Mental Health and Sense Organs (NESMOS) Sapienza University of Rome, Rome, Italy
| | - Francesco Scopinaro
- Nuclear Medicine Unit, Sant'Andrea Hospital, Sapienza University of Rome, Rome, Italy
| | - Giuseppe Minniti
- Radiation Oncology Unit, Department of Medicine, Surgery and Neurosciences, University of Siena, Policlinico Le Scotte, Siena, Italy.,IRCCS Neuromed, Pozzilli (IS), Italy
| |
Collapse
|
24
|
Kaufmann TJ, Smits M, Boxerman J, Huang R, Barboriak DP, Weller M, Chung C, Tsien C, Brown PD, Shankar L, Galanis E, Gerstner E, van den Bent MJ, Burns TC, Parney IF, Dunn G, Brastianos PK, Lin NU, Wen PY, Ellingson BM. Consensus recommendations for a standardized brain tumor imaging protocol for clinical trials in brain metastases. Neuro Oncol 2021; 22:757-772. [PMID: 32048719 PMCID: PMC7283031 DOI: 10.1093/neuonc/noaa030] [Citation(s) in RCA: 142] [Impact Index Per Article: 35.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
A recent meeting was held on March 22, 2019, among the FDA, clinical scientists, pharmaceutical and biotech companies, clinical trials cooperative groups, and patient advocacy groups to discuss challenges and potential solutions for increasing development of therapeutics for central nervous system metastases. A key issue identified at this meeting was the need for consistent tumor measurement for reliable tumor response assessment, including the first step of standardized image acquisition with an MRI protocol that could be implemented in multicenter studies aimed at testing new therapeutics. This document builds upon previous consensus recommendations for a standardized brain tumor imaging protocol (BTIP) in high-grade gliomas and defines a protocol for brain metastases (BTIP-BM) that addresses unique challenges associated with assessment of CNS metastases. The "minimum standard" recommended pulse sequences include: (i) parameter matched pre- and post-contrast inversion recovery (IR)-prepared, isotropic 3D T1-weighted gradient echo (IR-GRE); (ii) axial 2D T2-weighted turbo spin echo acquired after injection of gadolinium-based contrast agent and before post-contrast 3D T1-weighted images; (iii) axial 2D or 3D T2-weighted fluid attenuated inversion recovery; (iv) axial 2D, 3-directional diffusion-weighted images; and (v) post-contrast 2D T1-weighted spin echo images for increased lesion conspicuity. Recommended sequence parameters are provided for both 1.5T and 3T MR systems. An "ideal" protocol is also provided, which replaces IR-GRE with 3D TSE T1-weighted imaging pre- and post-gadolinium, and is best performed at 3T, for which dynamic susceptibility contrast perfusion is included. Recommended perfusion parameters are given.
Collapse
Affiliation(s)
| | - Marion Smits
- Department of Radiology and Nuclear Medicine, Erasmus Medical Center, University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Jerrold Boxerman
- Department of Diagnostic Imaging, Rhode Island Hospital and Warren Alpert Medical School of Brown University, Providence, Rhode Island, USA
| | - Raymond Huang
- Department of Radiology, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Daniel P Barboriak
- Department of Radiology, Duke University School of Medicine, Durham, North Carolina, USA
| | - Michael Weller
- Department of Neurology & Brain Tumor Center, University Hospital and University of Zurich, Zurich, Switzerland
| | - Caroline Chung
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Christina Tsien
- Department of Radiation Oncology, Johns Hopkins University, Baltimore, Maryland, USA
| | - Paul D Brown
- Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota, USA
| | - Lalitha Shankar
- Division of Cancer Treatment and Diagnosis, National Cancer Institute (NCI), Bethesda, Maryland, USA
| | - Evanthia Galanis
- Division of Medical Oncology, Department of Oncology, Mayo Clinic, Rochester, Minnesota, USA
| | - Elizabeth Gerstner
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | | | - Terry C Burns
- Department of Neurosurgery, Mayo Clinic, Rochester, Minnesota, USA
| | - Ian F Parney
- Department of Neurosurgery, Mayo Clinic, Rochester, Minnesota, USA
| | - Gavin Dunn
- Department of Neurological Surgery, Washington University, St Louis, Missouri, USA
| | - Priscilla K Brastianos
- Departments of Medicine and Neurology, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Nancy U Lin
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, USA
| | - Patrick Y Wen
- Center for Neuro-Oncology, Dana-Farber/Brigham and Women's Cancer Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Benjamin M Ellingson
- UCLA Brain Tumor Imaging Laboratory, Center for Computer Vision and Imaging Biomarkers, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, USA.,Departments of Radiological Sciences and Psychiatry, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, USA
| |
Collapse
|
25
|
Holzgreve A, Albert NL, Galldiks N, Suchorska B. Use of PET Imaging in Neuro-Oncological Surgery. Cancers (Basel) 2021; 13:cancers13092093. [PMID: 33926002 PMCID: PMC8123649 DOI: 10.3390/cancers13092093] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Revised: 04/21/2021] [Accepted: 04/23/2021] [Indexed: 12/12/2022] Open
Abstract
Simple Summary The use of positron emission tomography (PET) imaging in neuro-oncological surgery is an exciting field with thriving perspectives. Increasing evidence exists for amino acid-based PET to facilitate interpretation of imaging findings following therapeutic interventions in patients with glioma and brain metastases. In meningioma patients, radiolabeled somatostatin receptor ligands provide an improved tumor tissue visualization in lesions located in the vicinity of the skull base and differentiate between scar tissue and tumor recurrence. Moreover, they can be applied as an individual treatment option in recurrent atypical and anaplastic meningioma not eligible for further surgery and radiotherapy. With a focus on its clinical application, this review provides an overview of the emerging field of PET imaging in neuro-oncological surgery. Abstract This review provides an overview of current applications and perspectives of PET imaging in neuro-oncological surgery. The past and future of PET imaging in the management of patients with glioma and brain metastases are elucidated with an emphasis on amino acid tracers, such as O-(2-[18F]fluoroethyl)-L-tyrosine (18F-FET). The thematic scope includes surgical resection planning, prognostication, non-invasive prediction of molecular tumor characteristics, depiction of intratumoral heterogeneity, response assessment, differentiation between tumor progression and treatment-related changes, and emerging new tracers. Furthermore, the role of PET using specific somatostatin receptor ligands for the management of patients with meningioma is discussed. Further advances in neuro-oncological imaging can be expected from promising new techniques, such as hybrid PET/MR scanners and the implementation of artificial intelligence methods, such as radiomics.
Collapse
Affiliation(s)
- Adrien Holzgreve
- Department of Nuclear Medicine, University Hospital, LMU Munich, 81377 Munich, Germany; (A.H.); (N.L.A.)
| | - Nathalie L. Albert
- Department of Nuclear Medicine, University Hospital, LMU Munich, 81377 Munich, Germany; (A.H.); (N.L.A.)
| | - Norbert Galldiks
- Department of Neurology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937 Cologne, Germany;
- Institute of Neuroscience and Medicine (INM-3), Research Center Juelich, 52425 Juelich, Germany
- Center of Integrated Oncology (CIO), Universities of Aachen, Bonn, Cologne, and Duesseldorf, 50937 Cologne, Germany
| | - Bogdana Suchorska
- Department of Neurosurgery, Sana Kliniken Duisburg, 47055 Duisburg, Germany
- Correspondence: ; Tel.: +49-203-733-2401
| |
Collapse
|
26
|
Johannessen K, Berntsen EM, Johansen H, Solheim TS, Karlberg A, Eikenes L. 18F-FACBC PET/MRI in the evaluation of human brain metastases: a case report. Eur J Hybrid Imaging 2021; 5:7. [PMID: 34181107 PMCID: PMC8218039 DOI: 10.1186/s41824-021-00101-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 03/28/2021] [Indexed: 12/31/2022] Open
Abstract
Background Patients with metastatic cancer to the brain have a poor prognosis. In clinical practice, MRI is used to delineate, diagnose and plan treatment of brain metastases. However, MRI alone is limited in detecting micro-metastases, delineating lesions and discriminating progression from pseudo-progression. Combined PET/MRI utilises superior soft tissue images from MRI and metabolic data from PET to evaluate tumour structure and function. The amino acid PET tracer 18F-FACBC has shown promising results in discriminating high- and low-grade gliomas, but there are currently no reports on its use on brain metastases. This is the first study to evaluate the use of 18F-FACBC on brain metastases. Case presentation A middle-aged female patient with brain metastases was evaluated using hybrid PET/MRI with 18F-FACBC before and after stereotactic radiotherapy, and at suspicion of recurrence. Static/dynamic PET and contrast-enhanced T1 MRI data were acquired and analysed. This case report includes the analysis of four 18F-FACBC PET/MRI examinations, investigating their utility in evaluating functional and structural metastasis properties. Conclusion Analysis showed high tumour-to-background ratios in brain metastases compared to other amino acid PET tracers, including high uptake in a very small cerebellar metastasis, suggesting that 18F-FACBC PET can provide early detection of otherwise overlooked metastases. Further studies to determine a threshold for 18F-FACBC brain tumour boundaries and explore its utility in clinical practice should be performed.
Collapse
Affiliation(s)
- Knut Johannessen
- Department of Circulation and Medical Imaging, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, NTNU, Postboks 8905, 7491, Trondheim, Norway
| | - Erik Magnus Berntsen
- Department of Circulation and Medical Imaging, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, NTNU, Postboks 8905, 7491, Trondheim, Norway.,Department of Radiology and Nuclear Medicine, St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway
| | - Håkon Johansen
- Department of Radiology and Nuclear Medicine, St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway
| | - Tora S Solheim
- Cancer Clinic, St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway.,Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| | - Anna Karlberg
- Department of Circulation and Medical Imaging, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, NTNU, Postboks 8905, 7491, Trondheim, Norway.,Department of Radiology and Nuclear Medicine, St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway
| | - Live Eikenes
- Department of Circulation and Medical Imaging, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, NTNU, Postboks 8905, 7491, Trondheim, Norway.
| |
Collapse
|
27
|
Rauch M, Tausch D, Stera S, Blanck O, Wolff R, Meissner M, Urban H, Hattingen E. MRI characteristics in treatment for cerebral melanoma metastasis using stereotactic radiosurgery and concomitant checkpoint inhibitors or targeted therapeutics. J Neurooncol 2021; 153:79-87. [PMID: 33761055 PMCID: PMC8131338 DOI: 10.1007/s11060-021-03744-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 03/18/2021] [Indexed: 11/04/2022]
Abstract
Introduction Combination therapy for melanoma brain metastases (MM) using stereotactic radiosurgery (SRS) and immune checkpoint-inhibition (ICI) or targeted therapy (TT) is currently of high interest. In this collective, time evolution and incidence of imaging findings indicative of pseudoprogression is sparsely researched. We therefore investigated time-course of MRI characteristics in these patients. Methods Data were obtained retrospectively from 27 patients (12 female, 15 male; mean 61 years, total of 169 MMs). Single lesion volumes, total MM burden and edema volumes were analyzed at baseline and follow-up MRIs in 2 months intervals after SRS up to 24 months. The occurrence of intralesional hemorrhages was recorded. Results 17 patients (80 MM) received ICI, 8 (62 MM) TT and 2 (27 MM) ICI + TT concomitantly to SRS. MM-localization was frontal (n = 89), temporal (n = 23), parietal (n = 20), occipital (n = 10), basal ganglia/thalamus/insula (n = 10) and cerebellar (n = 10). A volumetric progression of MM 2–4 months after SRS was observed in combined treatment with ICI (p = 0.028) and ICI + TT (p = 0.043), whereas MMs treated with TT showed an early volumetric regression (p = 0.004). Edema volumes moderately correlated with total MM volumes (r = 0.57; p < 0.0001). Volumetric behavior did not differ significantly over time regarding lesions’ initial sizes or localizations. No significant differences between groups were observed regarding rates of post-SRS intralesional hemorrhages. Conclusion Reversible volumetric increases in terms of pseudoprogression are observed 2–4 months after SRS in patients with MM concomitantly treated with ICI and ICI + TT, rarely after TT. Edema volumes mirror total MM volumes. Medical treatment type does not significantly affect rates of intralesional hemorrhage.
Collapse
Affiliation(s)
- Maximilian Rauch
- Institute for Neuroradiology, Johann Wolfgang Goethe-University, Theodor Stern Kai 7, 60590, Frankfurt am Main, Germany.
| | - Daniel Tausch
- Institute for Neuroradiology, Johann Wolfgang Goethe-University, Theodor Stern Kai 7, 60590, Frankfurt am Main, Germany
| | - Susanne Stera
- Department of Radiation Oncology, Johann Wolfgang Goethe-University, Frankfurt am Main, Germany
| | - Oliver Blanck
- Saphir Radiosurgery Center, Frankfurt am Main, Germany
| | - Robert Wolff
- Saphir Radiosurgery Center, Frankfurt am Main, Germany
| | - Markus Meissner
- Department of Dermatology, Johann Wolfgang Goethe-University, Frankfurt am Main, Germany
| | - Hans Urban
- Institute for Neurooncology, Johann Wolfgang Goethe-University, Frankfurt am Main, Germany
| | - Elke Hattingen
- Institute for Neuroradiology, Johann Wolfgang Goethe-University, Theodor Stern Kai 7, 60590, Frankfurt am Main, Germany
| |
Collapse
|
28
|
Mohan V, Bruin NM, van de Kamer JB, Sonke JJ, Vogel WV. The increasing potential of nuclear medicine imaging for the evaluation and reduction of normal tissue toxicity from radiation treatments. Eur J Nucl Med Mol Imaging 2021; 48:3762-3775. [PMID: 33687522 PMCID: PMC8484246 DOI: 10.1007/s00259-021-05284-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Accepted: 02/24/2021] [Indexed: 11/26/2022]
Abstract
Radiation therapy is an effective treatment modality for a variety of cancers. Despite several advances in delivery techniques, its main drawback remains the deposition of dose in normal tissues which can result in toxicity. Common practices of evaluating toxicity, using questionnaires and grading systems, provide little underlying information beyond subjective scores, and this can limit further optimization of treatment strategies. Nuclear medicine imaging techniques can be utilised to directly measure regional baseline function and function loss from internal/external radiation therapy within normal tissues in an in vivo setting with high spatial resolution. This can be correlated with dose delivered by radiotherapy techniques to establish objective dose-effect relationships, and can also be used in the treatment planning step to spare normal tissues more efficiently. Toxicity in radionuclide therapy typically occurs due to undesired off-target uptake in normal tissues. Molecular imaging using diagnostic analogues of therapeutic radionuclides can be used to test various interventional protective strategies that can potentially reduce this normal tissue uptake without compromising tumour uptake. We provide an overview of the existing literature on these applications of nuclear medicine imaging in diverse normal tissue types utilising various tracers, and discuss its future potential.
Collapse
Affiliation(s)
- V Mohan
- Department of Nuclear Medicine, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, The Netherlands
- Department of Radiation Oncology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - N M Bruin
- Department of Nuclear Medicine, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, The Netherlands
- Department of Radiation Oncology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - J B van de Kamer
- Department of Nuclear Medicine, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, The Netherlands
| | - J-J Sonke
- Department of Nuclear Medicine, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, The Netherlands
| | - Wouter V Vogel
- Department of Nuclear Medicine, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, The Netherlands.
- Department of Radiation Oncology, The Netherlands Cancer Institute, Amsterdam, The Netherlands.
| |
Collapse
|
29
|
Overcast WB, Davis KM, Ho CY, Hutchins GD, Green MA, Graner BD, Veronesi MC. Advanced imaging techniques for neuro-oncologic tumor diagnosis, with an emphasis on PET-MRI imaging of malignant brain tumors. Curr Oncol Rep 2021; 23:34. [PMID: 33599882 PMCID: PMC7892735 DOI: 10.1007/s11912-021-01020-2] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/11/2021] [Indexed: 12/15/2022]
Abstract
PURPOSE OF REVIEW This review will explore the latest in advanced imaging techniques, with a focus on the complementary nature of multiparametric, multimodality imaging using magnetic resonance imaging (MRI) and positron emission tomography (PET). RECENT FINDINGS Advanced MRI techniques including perfusion-weighted imaging (PWI), MR spectroscopy (MRS), diffusion-weighted imaging (DWI), and MR chemical exchange saturation transfer (CEST) offer significant advantages over conventional MR imaging when evaluating tumor extent, predicting grade, and assessing treatment response. PET performed in addition to advanced MRI provides complementary information regarding tumor metabolic properties, particularly when performed simultaneously. 18F-fluoroethyltyrosine (FET) PET improves the specificity of tumor diagnosis and evaluation of post-treatment changes. Incorporation of radiogenomics and machine learning methods further improve advanced imaging. The complementary nature of combining advanced imaging techniques across modalities for brain tumor imaging and incorporating technologies such as radiogenomics has the potential to reshape the landscape in neuro-oncology.
Collapse
Affiliation(s)
- Wynton B. Overcast
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, 550 N University Blvd. Room 0663, Indianapolis, IN 46202 USA
| | - Korbin M. Davis
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, 550 N University Blvd. Room 0663, Indianapolis, IN 46202 USA
| | - Chang Y. Ho
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Goodman Hall, 355 West 16th Street, Suite 4100, Indianapolis, IN 46202 USA
| | - Gary D. Hutchins
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Research 2 Building (R2), Room E124, 920 W. Walnut Street, Indianapolis, IN 46202-5181 USA
| | - Mark A. Green
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Research 2 Building (R2), Room E124, 920 W. Walnut Street, Indianapolis, IN 46202-5181 USA
| | - Brian D. Graner
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Goodman Hall, 355 West 16th Street, Suite 4100, Indianapolis, IN 46202 USA
| | - Michael C. Veronesi
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Research 2 Building (R2), Room E174, 920 W. Walnut Street, Indianapolis, IN 46202-5181 USA
| |
Collapse
|
30
|
Galldiks N, Kocher M, Ceccon G, Werner JM, Brunn A, Deckert M, Pope WB, Soffietti R, Le Rhun E, Weller M, Tonn JC, Fink GR, Langen KJ. Imaging challenges of immunotherapy and targeted therapy in patients with brain metastases: response, progression, and pseudoprogression. Neuro Oncol 2021; 22:17-30. [PMID: 31437274 DOI: 10.1093/neuonc/noz147] [Citation(s) in RCA: 91] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The advent of immunotherapy using immune checkpoint inhibitors (ICIs) and targeted therapy (TT) has dramatically improved the prognosis of various cancer types. However, following ICI therapy or TT-either alone (especially ICI) or in combination with radiotherapy-imaging findings on anatomical contrast-enhanced MRI can be unpredictable and highly variable, and are often difficult to interpret regarding treatment response and outcome. This review aims at summarizing the imaging challenges related to TT and ICI monotherapy as well as combined with radiotherapy in patients with brain metastases, and to give an overview on advanced imaging techniques which potentially overcome some of these imaging challenges. Currently, major evidence suggests that imaging parameters especially derived from amino acid PET, perfusion-/diffusion-weighted MRI, or MR spectroscopy may provide valuable additional information for the differentiation of treatment-induced changes from brain metastases recurrence and the evaluation of treatment response.
Collapse
Affiliation(s)
- Norbert Galldiks
- Department of Neurology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany.,Institute of Neuroscience and Medicine, Research Center Juelich, Juelich, Germany.,Center of Integrated Oncology, Universities of Aachen, Bonn, Cologne, and Düsseldorf, Germany
| | - Martin Kocher
- Institute of Neuroscience and Medicine, Research Center Juelich, Juelich, Germany.,Department of Stereotaxy and Functional Neurosurgery, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Garry Ceccon
- Department of Neurology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Jan-Michael Werner
- Department of Neurology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Anna Brunn
- Institute of Neuropathology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Martina Deckert
- Institute of Neuropathology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Whitney B Pope
- Department of Radiological Sciences, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, USA
| | - Riccardo Soffietti
- Department of Neuro-Oncology, University and City of Health and Science Hospital, Turin, Italy
| | - Emilie Le Rhun
- Neuro-Oncology, General and Stereotaxic Neurosurgery Service, University Hospital Lille, Lille, France.,Breast Cancer Department, Oscar Lambret Center, Lille, France.,Department of Neurology & Brain Tumor Center, University Hospital and University of Zurich, Zurich, Switzerland
| | - Michael Weller
- Department of Neurology & Brain Tumor Center, University Hospital and University of Zurich, Zurich, Switzerland
| | - Jörg C Tonn
- Department of Neurosurgery, Ludwig Maximilians University of Munich, Munich, Germany.,German Cancer Consortium, partner site Munich, Germany
| | - Gereon R Fink
- Department of Neurology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany.,Institute of Neuroscience and Medicine, Research Center Juelich, Juelich, Germany
| | - Karl-Josef Langen
- Institute of Neuroscience and Medicine, Research Center Juelich, Juelich, Germany.,Department of Nuclear Medicine, University Hospital Aachen, Aachen, Germany
| |
Collapse
|
31
|
Imaging of Response to Radiosurgery and Immunotherapy in Brain Metastases: Quo Vadis? Curr Treat Options Neurol 2021. [DOI: 10.1007/s11940-021-00664-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Abstract
Purpose of Review
This review presents an overview of how advanced imaging techniques may help to overcome shortcomings of anatomical MRI for response assessment in patients with brain metastases who are undergoing stereotactic radiosurgery, immunotherapy, or combinations thereof.
Recent Findings
Study results suggest that parameters derived from amino acid PET, diffusion- and perfusion-weighted MRI, MR spectroscopy, and newer MRI methods are particularly helpful for the evaluation of the response to radiosurgery or checkpoint inhibitor immunotherapy and provide valuable information for the differentiation of radiotherapy-induced changes such as radiation necrosis from brain metastases. The evaluation of these imaging modalities is also of great interest in the light of emerging high-throughput analysis methods such as radiomics, which allow the acquisition of additional data at a low cost.
Summary
Preliminary results are promising and should be further evaluated. Shortcomings are different levels of PET and MRI standardization, the number of patients enrolled in studies, and the monocentric and retrospective character of most studies.
Collapse
|
32
|
Grau S, Herling M, Mauch C, Galldiks N, Golla H, Schlamann M, Scheel AH, Celik E, Ruge M, Goldbrunner R. [Brain metastases-Interdisciplinary approach towards a personalized treatment]. Chirurg 2021; 92:200-209. [PMID: 33502584 DOI: 10.1007/s00104-020-01344-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/17/2020] [Indexed: 12/01/2022]
Abstract
The incidence, treatment and prognosis of patients with brain metastases have substantially changed during the last decades. While the survival time after diagnosis of cerebral metastases was on average a maximum of 3-6 months only 10 years ago, the survival time could be significantly improved due to novel surgical, radiotherapeutic and systemic treatment modalities. Only a few years ago, the occurrence of brain metastases led to a withdrawal from systemic oncological treatment and the exclusion of drug therapy studies and to a purely palliatively oriented treatment in the sense of whole brain radiation therapy (WBRT) with or without surgery. The increasing availability of targeted and immunomodulatory drugs as well as adapted radio-oncological procedures enable increasingly more personalized treatment approaches. The aim of this review article is to demonstrate the progress and complexity of the treatment of brain metastases in the context of modern comprehensive interdisciplinary concepts.
Collapse
Affiliation(s)
- S Grau
- Klinik für Allgemeine Neurochirurgie, Universität zu Köln, Medizinische Fakultät, Klinikum der Universität, Kerpener Str. 62, 50937, Köln, Deutschland. .,Centrum für Integrierte Onkologie (CIO) Aachen Bonn Köln Düsseldorf, Universität zu Köln, Medizinische Fakultät, Klinikum der Universität, Köln, Deutschland.
| | - M Herling
- Klinik I für Innere Medizin, Universität zu Köln, Medizinische Fakultät, Klinikum der Universität, Köln, Deutschland.,Centrum für Integrierte Onkologie (CIO) Aachen Bonn Köln Düsseldorf, Universität zu Köln, Medizinische Fakultät, Klinikum der Universität, Köln, Deutschland
| | - C Mauch
- Klinik für Dermatologie, Universität zu Köln, Medizinische Fakultät, Klinikum der Universität, Köln, Deutschland.,Centrum für Integrierte Onkologie (CIO) Aachen Bonn Köln Düsseldorf, Universität zu Köln, Medizinische Fakultät, Klinikum der Universität, Köln, Deutschland
| | - N Galldiks
- Klinik für Neurologie, Universität zu Köln, Medizinische Fakultät, Klinikum der Universität, Köln, Deutschland.,Centrum für Integrierte Onkologie (CIO) Aachen Bonn Köln Düsseldorf, Universität zu Köln, Medizinische Fakultät, Klinikum der Universität, Köln, Deutschland.,Institut für Neurowissenschaften und Medizin (INM-3), Forschungszentrum Jülich, Universität zu Köln, Medizinische Fakultät, Klinikum der Universität, Köln, Deutschland
| | - H Golla
- Zentrumfür Palliativmedizin, Universität zu Köln, Medizinische Fakultät, Klinikum der Universität, Köln, Deutschland.,Centrum für Integrierte Onkologie (CIO) Aachen Bonn Köln Düsseldorf, Universität zu Köln, Medizinische Fakultät, Klinikum der Universität, Köln, Deutschland
| | - M Schlamann
- Institut für Radiologie, Universität zu Köln, Medizinische Fakultät, Klinikum der Universität, Köln, Deutschland
| | - A H Scheel
- Institut für Pathologie, Universität zu Köln, Medizinische Fakultät, Klinikum der Universität, Köln, Deutschland.,Centrum für Integrierte Onkologie (CIO) Aachen Bonn Köln Düsseldorf, Universität zu Köln, Medizinische Fakultät, Klinikum der Universität, Köln, Deutschland
| | - E Celik
- Klinik für Radioonkologie, Cyberknife und Strahlentherapie, Universität zu Köln, Medizinische Fakultät, Klinikum der Universität, Köln, Deutschland.,Centrum für Integrierte Onkologie (CIO) Aachen Bonn Köln Düsseldorf, Universität zu Köln, Medizinische Fakultät, Klinikum der Universität, Köln, Deutschland
| | - M Ruge
- Klinik für Stereotaxie und funktionelle Neurochirurgie, Universität zu Köln, Medizinische Fakultät, Klinikum der Universität, Köln, Deutschland.,Centrum für Integrierte Onkologie (CIO) Aachen Bonn Köln Düsseldorf, Universität zu Köln, Medizinische Fakultät, Klinikum der Universität, Köln, Deutschland
| | - R Goldbrunner
- Klinik für Allgemeine Neurochirurgie, Universität zu Köln, Medizinische Fakultät, Klinikum der Universität, Kerpener Str. 62, 50937, Köln, Deutschland.,Centrum für Integrierte Onkologie (CIO) Aachen Bonn Köln Düsseldorf, Universität zu Köln, Medizinische Fakultät, Klinikum der Universität, Köln, Deutschland
| |
Collapse
|
33
|
[ 18F]FET PET Uptake Indicates High Tumor and Low Necrosis Content in Brain Metastasis. Cancers (Basel) 2021; 13:cancers13020355. [PMID: 33478030 PMCID: PMC7835779 DOI: 10.3390/cancers13020355] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 01/12/2021] [Accepted: 01/15/2021] [Indexed: 12/20/2022] Open
Abstract
Simple Summary Various types of cancers can lead to brain metastasis. Treatment strategies have improved substantially in the past decade, leading to longer survival in many cases, but also to new diagnostic challenges. Being able to locate those parts of a lesion suspicious for brain metastasis that contain the highest concentrations of viable tumor cells can be crucial, e.g., to obtain a precise diagnosis via targeted biopsies or to differentiate recurring tumor from dead tissue after treatment. Positron emission tomography (PET) imaging has the potential to provide this kind of information. However, studies relating PET findings to actual tissue properties are sparse. The aim of this study was to investigate the association of PET imaging with microscopic tissue properties in samples obtained neurosurgically from brain metastases. Our findings can improve the planning and yield of biopsies from brain metastases, and they may inform future studies aimed at improving the discrimination of recurring from dead tumor in treated brain metastases using PET. Abstract Amino acid positron emission tomography (PET) has been employed in the management of brain metastases. Yet, histopathological correlates of PET findings remain poorly understood. We investigated the relationship of O-(2-[18F]Fluoroethyl)-L-tyrosine ([18F]FET) PET, magnetic resonance imaging (MRI), and histology in brain metastases. Fifteen patients undergoing brain metastasis resection were included prospectively. Using intraoperative navigation, 39 targeted biopsies were obtained from parts of the metastases that were either PET-positive or negative and MRI-positive or negative. Tumor and necrosis content, proliferation index, lymphocyte infiltration, and vascularization were determined histopathologically. [18F]FET PET had higher specificity than MRI (66% vs. 56%) and increased sensitivity for tumor from 73% to 93% when combined with MRI. Tumor content per sample increased with PET uptake (rs = 0.3, p = 0.045), whereas necrosis content decreased (rs = −0.4, p = 0.014). PET-positive samples had more tumor (median: 75%; interquartile range: 10–97%; p = 0.016) than PET-negative samples. The other investigated histological properties were not correlated with [18F]FET PET intensity. Tumors were heterogeneous at the levels of imaging and histology. [18F]FET PET can be a valuable tool in the management of brain metastases. In biopsies, one should aim for PET hotspots to increase the chance for retrieval of samples with high tumor cell concentrations. Multiple biopsies should be performed to account for intra-tumor heterogeneity. PET could be useful for differentiating treatment-related changes (e.g., radiation necrosis) from tumor recurrence.
Collapse
|
34
|
Parent EE, Patel D, Nye JA, Li Z, Olson JJ, Schuster DM, Goodman MM. [ 18F]-Fluciclovine PET discrimination of recurrent intracranial metastatic disease from radiation necrosis. EJNMMI Res 2020; 10:148. [PMID: 33284388 PMCID: PMC7721921 DOI: 10.1186/s13550-020-00739-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 11/24/2020] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Stereotactic radiosurgery (SRS) is often the primary treatment modality for patients with intracranial metastatic disease. Despite advances in magnetic resonance imaging, including use of perfusion and diffusion sequences and molecular imaging, distinguishing radiation necrosis from progressive tumor remains a diagnostic and clinical challenge. We investigated the sensitivity and specificity of 18F-fluciclovine PET to accurately distinguish radiation necrosis from recurrent intracranial metastatic disease in patients who had previously undergone SRS. METHODS Fluciclovine PET imaging was performed in 8 patients with a total of 15 lesions that had previously undergone SRS and had subsequent MRI and clinical features suspicious for recurrent disease. The SUVmax of each lesion and the contralateral normal brain parenchyma were summated and evaluated at four different time points (5 min, 10 min, 30 min, and 55 min). Lesions were characterized as either recurrent disease (11 of 15 lesions) or radiation necrosis (4 of 15 lesions) and confirmed with histopathological correlation (7 lesions) or through serial MRI studies (8 lesions). RESULTS Time activity curve analysis found statistically greater radiotracer accumulation for all lesions, including radiation necrosis, when compared to contralateral normal brain. While the mean and median SUVmax for recurrent disease were statistically greater than those of radiation necrosis at all time points, the difference was more significant at the earlier time points (p = 0.004 at 5 min-0.025 at 55 min). Using a SUVmax threshold of ≥ 1.3, fluciclovine PET demonstrated a 100% accuracy in distinguishing recurrent disease from radiation necrosis up to 30 min after injection and an accuracy of 87% (sensitivity = 0.91, specificity = 0.75) at the last time point of 55 min. However, tumor-to-background ratios (TBRmax) were not significantly different between recurrent disease and radiation necrosis at any time point due to variable levels of fluciclovine uptake in the background brain parenchyma. CONCLUSIONS Fluciclovine PET may play an important role in distinguishing active intracranial metastatic lesions from radiation necrosis in patients previously treated with SRS but needs to be validated in larger studies.
Collapse
Affiliation(s)
| | - Dhruv Patel
- Department of Radiology and Imaging Sciences, Emory University School of Medicine, 1841 Clifton Rd. NE, 2nd Floor, Atlanta, GA, 30329, USA
| | - Jonathon A Nye
- Department of Radiology and Imaging Sciences, Emory University School of Medicine, 1841 Clifton Rd. NE, 2nd Floor, Atlanta, GA, 30329, USA
| | - Zhuo Li
- Department of Statistics, Mayo Clinic, Jacksonville, USA
| | - Jeffrey J Olson
- Department of Neurosurgery, Emory University School of Medicine, Atlanta, GA, USA
| | - David M Schuster
- Department of Radiology and Imaging Sciences, Emory University School of Medicine, 1841 Clifton Rd. NE, 2nd Floor, Atlanta, GA, 30329, USA
| | - Mark M Goodman
- Department of Radiology and Imaging Sciences, Emory University School of Medicine, 1841 Clifton Rd. NE, 2nd Floor, Atlanta, GA, 30329, USA.
| |
Collapse
|
35
|
Galldiks N, Abdulla DSY, Scheffler M, Wolpert F, Werner JM, Hüllner M, Stoffels G, Schweinsberg V, Schlaak M, Kreuzberg N, Landsberg J, Lohmann P, Ceccon G, Baues C, Trommer M, Celik E, Ruge MI, Kocher M, Marnitz S, Fink GR, Tonn JC, Weller M, Langen KJ, Wolf J, Mauch C. Treatment Monitoring of Immunotherapy and Targeted Therapy Using 18F-FET PET in Patients with Melanoma and Lung Cancer Brain Metastases: Initial Experiences. J Nucl Med 2020; 62:464-470. [PMID: 32887757 DOI: 10.2967/jnumed.120.248278] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 07/30/2020] [Indexed: 12/15/2022] Open
Abstract
We investigated the value of O-(2-18F-fluoroethyl)-l-tyrosine (18F-FET) PET for treatment monitoring of immune checkpoint inhibition (ICI) or targeted therapy (TT) alone or in combination with radiotherapy in patients with brain metastasis (BM) since contrast-enhanced MRI often remains inconclusive. Methods: We retrospectively identified 40 patients with 107 BMs secondary to melanoma (n = 29 with 75 BMs) or non-small cell lung cancer (n = 11 with 32 BMs) treated with ICI or TT who had 18F-FET PET (n = 60 scans) for treatment monitoring from 2015 to 2019. Most patients (n = 37; 92.5%) had radiotherapy during the course of the disease. In 27 patients, 18F-FET PET was used to differentiate treatment-related changes from BM relapse after ICI or TT. In 13 patients, 18F-FET PET was performed for response assessment to ICI or TT using baseline and follow-up scans (median time between scans, 4.2 mo). In all lesions, static and dynamic 18F-FET PET parameters were obtained (i.e., mean tumor-to-brain ratios [TBR], time-to-peak values). Diagnostic accuracies of PET parameters were evaluated by receiver-operating-characteristic analyses using the clinical follow-up or neuropathologic findings as a reference. Results: A TBR threshold of 1.95 differentiated BM relapse from treatment-related changes with an accuracy of 85% (P = 0.003). Metabolic responders to ICI or TT on 18F-FET PET had a significantly longer stable follow-up (threshold of TBR reduction relative to baseline, ≥10%; accuracy, 82%; P = 0.004). Furthermore, at follow-up, time to peak in metabolic responders increased significantly (P = 0.019). Conclusion: 18F-FET PET may add valuable information for treatment monitoring in BM patients treated with ICI or TT.
Collapse
Affiliation(s)
- Norbert Galldiks
- Department of Neurology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany .,Center of Integrated Oncology, Universities of Aachen, Bonn, Cologne, and Duesseldorf, Germany.,Institute of Neuroscience and Medicine (INM-3, -4), Research Center Juelich, Juelich, Germany
| | - Diana S Y Abdulla
- Center of Integrated Oncology, Universities of Aachen, Bonn, Cologne, and Duesseldorf, Germany.,Lung Cancer Group, Department I of Internal Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Matthias Scheffler
- Center of Integrated Oncology, Universities of Aachen, Bonn, Cologne, and Duesseldorf, Germany.,Lung Cancer Group, Department I of Internal Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Fabian Wolpert
- Department of Neurology and Brain Tumor Center, University Hospital and University of Zurich, Zurich, Switzerland
| | - Jan-Michael Werner
- Department of Neurology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Martin Hüllner
- Department of Nuclear Medicine, University Hospital and University of Zurich, Zurich, Switzerland
| | - Gabriele Stoffels
- Institute of Neuroscience and Medicine (INM-3, -4), Research Center Juelich, Juelich, Germany
| | - Viola Schweinsberg
- Center of Integrated Oncology, Universities of Aachen, Bonn, Cologne, and Duesseldorf, Germany.,Department of Dermatology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Max Schlaak
- Center of Integrated Oncology, Universities of Aachen, Bonn, Cologne, and Duesseldorf, Germany.,Department of Dermatology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Nicole Kreuzberg
- Center of Integrated Oncology, Universities of Aachen, Bonn, Cologne, and Duesseldorf, Germany.,Department of Dermatology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Jennifer Landsberg
- Center of Integrated Oncology, Universities of Aachen, Bonn, Cologne, and Duesseldorf, Germany.,Department of Dermatology, University Hospital Bonn, Bonn, Germany
| | - Philipp Lohmann
- Institute of Neuroscience and Medicine (INM-3, -4), Research Center Juelich, Juelich, Germany.,Department of Stereotaxy and Functional Neurosurgery, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Garry Ceccon
- Department of Neurology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Christian Baues
- Center of Integrated Oncology, Universities of Aachen, Bonn, Cologne, and Duesseldorf, Germany.,Department of Radiation Oncology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Maike Trommer
- Center of Integrated Oncology, Universities of Aachen, Bonn, Cologne, and Duesseldorf, Germany.,Department of Radiation Oncology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Eren Celik
- Center of Integrated Oncology, Universities of Aachen, Bonn, Cologne, and Duesseldorf, Germany.,Department of Stereotaxy and Functional Neurosurgery, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Maximilian I Ruge
- Center of Integrated Oncology, Universities of Aachen, Bonn, Cologne, and Duesseldorf, Germany.,Department of Stereotaxy and Functional Neurosurgery, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Martin Kocher
- Institute of Neuroscience and Medicine (INM-3, -4), Research Center Juelich, Juelich, Germany.,Department of Stereotaxy and Functional Neurosurgery, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Simone Marnitz
- Center of Integrated Oncology, Universities of Aachen, Bonn, Cologne, and Duesseldorf, Germany.,Department of Radiation Oncology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Gereon R Fink
- Department of Neurology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany.,Institute of Neuroscience and Medicine (INM-3, -4), Research Center Juelich, Juelich, Germany
| | - Jörg-Christian Tonn
- Department of Neurosurgery, University Hospital LMU Munich, Munich, Germany; and
| | - Michael Weller
- Department of Neurology and Brain Tumor Center, University Hospital and University of Zurich, Zurich, Switzerland
| | - Karl-Josef Langen
- Institute of Neuroscience and Medicine (INM-3, -4), Research Center Juelich, Juelich, Germany.,Department of Nuclear Medicine, RWTH University Hospital Aachen, Aachen, Germany
| | - Jürgen Wolf
- Center of Integrated Oncology, Universities of Aachen, Bonn, Cologne, and Duesseldorf, Germany.,Lung Cancer Group, Department I of Internal Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Cornelia Mauch
- Center of Integrated Oncology, Universities of Aachen, Bonn, Cologne, and Duesseldorf, Germany.,Department of Dermatology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| |
Collapse
|
36
|
Galldiks N, Langen KJ, Albert NL, Chamberlain M, Soffietti R, Kim MM, Law I, Le Rhun E, Chang S, Schwarting J, Combs SE, Preusser M, Forsyth P, Pope W, Weller M, Tonn JC. PET imaging in patients with brain metastasis-report of the RANO/PET group. Neuro Oncol 2020; 21:585-595. [PMID: 30615138 DOI: 10.1093/neuonc/noz003] [Citation(s) in RCA: 124] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2018] [Revised: 10/11/2018] [Accepted: 01/03/2019] [Indexed: 12/23/2022] Open
Abstract
Brain metastases (BM) from extracranial cancer are associated with significant morbidity and mortality. Effective local treatment options are stereotactic radiotherapy, including radiosurgery or fractionated external beam radiotherapy, and surgical resection. The use of systemic treatment for intracranial disease control also is improving. BM diagnosis, treatment planning, and follow-up is most often based on contrast-enhanced magnetic resonance imaging (MRI). However, anatomic imaging modalities including standard MRI have limitations in accurately characterizing posttherapeutic reactive changes and treatment response. Molecular imaging techniques such as positron emission tomography (PET) characterize specific metabolic and cellular features of metastases, potentially providing clinically relevant information supplementing anatomic MRI. Here, the Response Assessment in Neuro-Oncology working group provides recommendations for the use of PET imaging in the clinical management of patients with BM based on evidence from studies validated by histology and/or clinical outcome.
Collapse
Affiliation(s)
- Norbert Galldiks
- Department of Neurology, University Hospital Cologne, Cologne, Germany.,Institute of Neuroscience and Medicine 3, 4, Research Center Juelich, Juelich, Germany.,Center of Integrated Oncology, Universities of Cologne and Bonn, Cologne, Germany
| | - Karl-Josef Langen
- Institute of Neuroscience and Medicine 3, 4, Research Center Juelich, Juelich, Germany.,Department of Nuclear Medicine, University Hospital Aachen, Aachen, Germany
| | - Nathalie L Albert
- Department of Nuclear Medicine, Ludwig Maximilians-University of Munich, Munich, Germany
| | - Marc Chamberlain
- Departments of Neurology and Neurological Surgery, Fred Hutchinson Cancer Research Center, University of Washington, Seattle, Washington, USA
| | - Riccardo Soffietti
- Department of Neuro-Oncology, University and City of Health and Science Hospital, Turin, Italy
| | - Michelle M Kim
- Department of Radiation Oncology, University of Michigan, Ann Arbor, Michigan, USA
| | - Ian Law
- Department of Clinical Physiology, Nuclear Medicine and PET, Rigshospitalet, University of Copenhagen, Denmark
| | - Emilie Le Rhun
- Department of Neurosurgery, University Hospital Lille, Lille, France
| | - Susan Chang
- Department of Neurosurgery, University of California, San Francisco, California, USA
| | - Julian Schwarting
- Department of Neurosurgery, Ludwig Maximilians-University of Munich, Munich, Germany.,German Cancer Consortium, Partner Site Munich, Germany
| | - Stephanie E Combs
- Department of Radiation Oncology, Technical University Munich, Munich, Germany
| | - Matthias Preusser
- Department of Medicine I and Comprehensive Cancer Centre CNS Tumours Unit, Medical University of Vienna, Vienna, Austria
| | - Peter Forsyth
- Moffitt Cancer Center, University of South Florida, Tampa, Florida, USA
| | - Whitney Pope
- Department of Radiological Sciences, David Geffen School of Medicine, University of California, Los Angeles, California , USA
| | - Michael Weller
- Department of Neurology, University Hospital and University of Zurich, Zurich, Switzerland
| | - Jörg C Tonn
- Department of Neurosurgery, Ludwig Maximilians-University of Munich, Munich, Germany.,German Cancer Consortium, Partner Site Munich, Germany
| |
Collapse
|
37
|
Zaragori T, Ginet M, Marie PY, Roch V, Grignon R, Gauchotte G, Rech F, Blonski M, Lamiral Z, Taillandier L, Imbert L, Verger A. Use of static and dynamic [ 18F]-F-DOPA PET parameters for detecting patients with glioma recurrence or progression. EJNMMI Res 2020; 10:56. [PMID: 32472232 PMCID: PMC7260331 DOI: 10.1186/s13550-020-00645-x] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Accepted: 05/13/2020] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Static [18F]-F-DOPA PET images are currently used for identifying patients with glioma recurrence/progression after treatment, although the additional diagnostic value of dynamic parameters remains unknown in this setting. The aim of this study was to evaluate the performances of static and dynamic [18F]-F-DOPA PET parameters for detecting patients with glioma recurrence/progression as well as assess further relationships with patient outcome. METHODS Fifty-one consecutive patients who underwent an [18F]-F-DOPA PET for a suspected glioma recurrence/progression at post-resection MRI, were retrospectively included. Static parameters, including mean and maximum tumor-to-normal-brain (TBR) ratios, tumor-to-striatum (TSR) ratios, and metabolic tumor volume (MTV), as well as dynamic parameters with time-to-peak (TTP) values and curve slope, were tested for predicting the following: (1) glioma recurrence/progression at 6 months after the PET exam and (2) survival on longer follow-up. RESULTS All static parameters were significant predictors of glioma recurrence/progression (accuracy ≥ 94%) with all parameters also associated with mean progression-free survival (PFS) in the overall population (all p < 0.001, 29.7 vs. 0.4 months for TBRmax, TSRmax, and MTV). The curve slope was the sole dynamic PET predictor of glioma recurrence/progression (accuracy = 76.5%) and was also associated with mean PFS (p < 0.001, 18.0 vs. 0.4 months). However, no additional information was provided relative to static parameters in multivariate analysis. CONCLUSION Although patients with glioma recurrence/progression can be detected by both static and dynamic [18F]-F-DOPA PET parameters, most of this diagnostic information can be achieved by conventional static parameters.
Collapse
Affiliation(s)
- Timothée Zaragori
- Department of Nuclear Medicine & Nancyclotep Imaging platform, Université de Lorraine, CHRU-Nancy, F-54000, Nancy, France.,IADI, INSERM, UMR 1254, Université de Lorraine, F-54000, Nancy, France
| | - Merwan Ginet
- Department of Nuclear Medicine & Nancyclotep Imaging platform, Université de Lorraine, CHRU-Nancy, F-54000, Nancy, France
| | - Pierre-Yves Marie
- Department of Nuclear Medicine & Nancyclotep Imaging platform, Université de Lorraine, CHRU-Nancy, F-54000, Nancy, France.,INSERM, U1116, Université de Lorraine, F-54000, Nancy, France
| | - Véronique Roch
- Department of Nuclear Medicine & Nancyclotep Imaging platform, Université de Lorraine, CHRU-Nancy, F-54000, Nancy, France
| | - Rachel Grignon
- Department of Nuclear Medicine & Nancyclotep Imaging platform, Université de Lorraine, CHRU-Nancy, F-54000, Nancy, France
| | - Guillaume Gauchotte
- Department of Pathology, Université de Lorraine, CHRU-Nancy, F-54000, Nancy, France.,INSERM U1256, Université de Lorraine, F-54000, Nancy, France
| | - Fabien Rech
- Department of Neurosurgery, Université de Lorraine, CHRU-Nancy, F-54000, Nancy, France.,Centre de Recherche en Automatique de Nancy CRAN, CNRS UMR 7039, Université de Lorraine, F-54000, Nancy, France
| | - Marie Blonski
- Centre de Recherche en Automatique de Nancy CRAN, CNRS UMR 7039, Université de Lorraine, F-54000, Nancy, France.,Department of Neuro-oncology, Université de Lorraine, CHRU-Nancy, F-54000, Nancy, France
| | - Zohra Lamiral
- INSERM, U1116, Université de Lorraine, F-54000, Nancy, France
| | - Luc Taillandier
- Centre de Recherche en Automatique de Nancy CRAN, CNRS UMR 7039, Université de Lorraine, F-54000, Nancy, France.,Department of Neuro-oncology, Université de Lorraine, CHRU-Nancy, F-54000, Nancy, France
| | - Laëtitia Imbert
- Department of Nuclear Medicine & Nancyclotep Imaging platform, Université de Lorraine, CHRU-Nancy, F-54000, Nancy, France.,IADI, INSERM, UMR 1254, Université de Lorraine, F-54000, Nancy, France
| | - Antoine Verger
- Department of Nuclear Medicine & Nancyclotep Imaging platform, Université de Lorraine, CHRU-Nancy, F-54000, Nancy, France. .,IADI, INSERM, UMR 1254, Université de Lorraine, F-54000, Nancy, France.
| |
Collapse
|
38
|
Applications of radiomics and machine learning for radiotherapy of malignant brain tumors. Strahlenther Onkol 2020; 196:856-867. [PMID: 32394100 PMCID: PMC7498494 DOI: 10.1007/s00066-020-01626-8] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Accepted: 04/22/2020] [Indexed: 12/12/2022]
Abstract
Background Magnetic resonance imaging (MRI) and amino acid positron-emission tomography (PET) of the brain contain a vast amount of structural and functional information that can be analyzed by machine learning algorithms and radiomics for the use of radiotherapy in patients with malignant brain tumors. Methods This study is based on comprehensive literature research on machine learning and radiomics analyses in neuroimaging and their potential application for radiotherapy in patients with malignant glioma or brain metastases. Results Feature-based radiomics and deep learning-based machine learning methods can be used to improve brain tumor diagnostics and automate various steps of radiotherapy planning. In glioma patients, important applications are the determination of WHO grade and molecular markers for integrated diagnosis in patients not eligible for biopsy or resection, automatic image segmentation for target volume planning, prediction of the location of tumor recurrence, and differentiation of pseudoprogression from actual tumor progression. In patients with brain metastases, radiomics is applied for additional detection of smaller brain metastases, accurate segmentation of multiple larger metastases, prediction of local response after radiosurgery, and differentiation of radiation injury from local brain metastasis relapse. Importantly, high diagnostic accuracies of 80–90% can be achieved by most approaches, despite a large variety in terms of applied imaging techniques and computational methods. Conclusion Clinical application of automated image analyses based on radiomics and artificial intelligence has a great potential for improving radiotherapy in patients with malignant brain tumors. However, a common problem associated with these techniques is the large variability and the lack of standardization of the methods applied.
Collapse
|
39
|
Werner JM, Lohmann P, Fink GR, Langen KJ, Galldiks N. Current Landscape and Emerging Fields of PET Imaging in Patients with Brain Tumors. Molecules 2020; 25:E1471. [PMID: 32213992 PMCID: PMC7146177 DOI: 10.3390/molecules25061471] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 03/17/2020] [Accepted: 03/20/2020] [Indexed: 02/07/2023] Open
Abstract
The number of positron-emission tomography (PET) tracers used to evaluate patients with brain tumors has increased substantially over the last years. For the management of patients with brain tumors, the most important indications are the delineation of tumor extent (e.g., for planning of resection or radiotherapy), the assessment of treatment response to systemic treatment options such as alkylating chemotherapy, and the differentiation of treatment-related changes (e.g., pseudoprogression or radiation necrosis) from tumor progression. Furthermore, newer PET imaging approaches aim to address the need for noninvasive assessment of tumoral immune cell infiltration and response to immunotherapies (e.g., T-cell imaging). This review summarizes the clinical value of the landscape of tracers that have been used in recent years for the above-mentioned indications and also provides an overview of promising newer tracers for this group of patients.
Collapse
Affiliation(s)
- Jan-Michael Werner
- Department of Neurology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Kerpener St. 62, 50937 Cologne, Germany; (J.-M.W.); (G.R.F.)
| | - Philipp Lohmann
- Institute of Neuroscience and Medicine (INM-3, -4), Research Center Juelich, Leo-Brandt-St., 52425 Juelich, Germany; (P.L.); (K.-J.L.)
| | - Gereon R. Fink
- Department of Neurology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Kerpener St. 62, 50937 Cologne, Germany; (J.-M.W.); (G.R.F.)
- Institute of Neuroscience and Medicine (INM-3, -4), Research Center Juelich, Leo-Brandt-St., 52425 Juelich, Germany; (P.L.); (K.-J.L.)
| | - Karl-Josef Langen
- Institute of Neuroscience and Medicine (INM-3, -4), Research Center Juelich, Leo-Brandt-St., 52425 Juelich, Germany; (P.L.); (K.-J.L.)
- Department of Nuclear Medicine, University Hospital Aachen, 52074 Aachen, Germany
| | - Norbert Galldiks
- Department of Neurology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Kerpener St. 62, 50937 Cologne, Germany; (J.-M.W.); (G.R.F.)
- Institute of Neuroscience and Medicine (INM-3, -4), Research Center Juelich, Leo-Brandt-St., 52425 Juelich, Germany; (P.L.); (K.-J.L.)
| |
Collapse
|
40
|
Lohmann P, Kocher M, Ruge MI, Visser-Vandewalle V, Shah NJ, Fink GR, Langen KJ, Galldiks N. PET/MRI Radiomics in Patients With Brain Metastases. Front Neurol 2020; 11:1. [PMID: 32116995 PMCID: PMC7020230 DOI: 10.3389/fneur.2020.00001] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Accepted: 01/02/2020] [Indexed: 12/18/2022] Open
Abstract
Although a variety of imaging modalities are used or currently being investigated for patients with brain tumors including brain metastases, clinical image interpretation to date uses only a fraction of the underlying complex, high-dimensional digital information from routinely acquired imaging data. The growing availability of high-performance computing allows the extraction of quantitative imaging features from medical images that are usually beyond human perception. Using machine learning techniques and advanced statistical methods, subsets of such imaging features are used to generate mathematical models that represent characteristic signatures related to the underlying tumor biology and might be helpful for the assessment of prognosis or treatment response, or the identification of molecular markers. The identification of appropriate, characteristic image features as well as the generation of predictive or prognostic mathematical models is summarized under the term radiomics. This review summarizes the current status of radiomics in patients with brain metastases.
Collapse
Affiliation(s)
- Philipp Lohmann
- Institute of Neuroscience and Medicine (INM-3/-4/-11), Research Center Juelich, Jülich, Germany.,Department of Stereotaxy and Functional Neurosurgery, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Martin Kocher
- Institute of Neuroscience and Medicine (INM-3/-4/-11), Research Center Juelich, Jülich, Germany.,Department of Stereotaxy and Functional Neurosurgery, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Maximillian I Ruge
- Department of Stereotaxy and Functional Neurosurgery, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany.,Center of Integrated Oncology, Universities of Aachen, Bonn, Cologne, and Duesseldorf, Cologne, Germany
| | - Veerle Visser-Vandewalle
- Department of Stereotaxy and Functional Neurosurgery, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - N Jon Shah
- Institute of Neuroscience and Medicine (INM-3/-4/-11), Research Center Juelich, Jülich, Germany.,JARA-BRAIN-Translational Medicine, Aachen, Germany.,Department of Neurology, Rheinisch-Westfälische Technische Hochschule (RWTH) Aachen University, Aachen, Germany
| | - Gereon R Fink
- Institute of Neuroscience and Medicine (INM-3/-4/-11), Research Center Juelich, Jülich, Germany.,Department of Neurology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Karl-Josef Langen
- Institute of Neuroscience and Medicine (INM-3/-4/-11), Research Center Juelich, Jülich, Germany.,Center of Integrated Oncology, Universities of Aachen, Bonn, Cologne, and Duesseldorf, Cologne, Germany.,Department of Nuclear Medicine, Rheinisch-Westfälische Technische Hochschule (RWTH) Aachen University, Aachen, Germany
| | - Norbert Galldiks
- Institute of Neuroscience and Medicine (INM-3/-4/-11), Research Center Juelich, Jülich, Germany.,Center of Integrated Oncology, Universities of Aachen, Bonn, Cologne, and Duesseldorf, Cologne, Germany.,Department of Neurology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| |
Collapse
|
41
|
Bauer EK, Stoffels G, Blau T, Reifenberger G, Felsberg J, Werner JM, Lohmann P, Rosen J, Ceccon G, Tscherpel C, Rapp M, Sabel M, Filss CP, Shah NJ, Neumaier B, Fink GR, Langen KJ, Galldiks N. Prediction of survival in patients with IDH-wildtype astrocytic gliomas using dynamic O-(2-[ 18F]-fluoroethyl)-L-tyrosine PET. Eur J Nucl Med Mol Imaging 2020; 47:1486-1495. [PMID: 32034446 PMCID: PMC7188701 DOI: 10.1007/s00259-020-04695-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Accepted: 01/12/2020] [Indexed: 11/27/2022]
Abstract
PURPOSE Integrated histomolecular diagnostics of gliomas according to the World Health Organization (WHO) classification of 2016 has refined diagnostic accuracy and prediction of prognosis. This study aimed at exploring the prognostic value of dynamic O-(2-[18F]-fluoroethyl)-L-tyrosine (FET) PET in newly diagnosed, histomolecularly classified astrocytic gliomas of WHO grades III or IV. METHODS Before initiation of treatment, dynamic FET PET imaging was performed in patients with newly diagnosed glioblastoma (GBM) and anaplastic astrocytoma (AA). Static FET PET parameters such as maximum and mean tumour/brain ratios (TBRmax/mean), the metabolic tumour volume (MTV) as well as the dynamic FET PET parameters time-to-peak (TTP) and slope, were obtained. The predictive ability of FET PET parameters was evaluated concerning the progression-free and overall survival (PFS, OS). Using ROC analyses, threshold values for FET PET parameters were obtained. Subsequently, univariate Kaplan-Meier and multivariate Cox regression survival analyses were performed to assess the predictive power of these parameters for survival. RESULTS Sixty patients (45 GBM and 15 AA patients) of two university centres were retrospectively identified. Patients with isocitrate dehydrogenase (IDH)-mutant or O6-methylguanine-DNA-methyltransferase (MGMT) promoter-methylated tumours had a significantly longer PFS and OS (both P < 0.001). Furthermore, ROC analysis of IDH-wildtype glioma patients (n = 45) revealed that a TTP > 25 min (AUC, 0.90; sensitivity, 90%; specificity, 87%; P < 0.001) was highly prognostic for longer PFS (13 vs. 7 months; P = 0.005) and OS (29 vs. 12 months; P < 0.001). In contrast, at a lower level of significance, TBRmax, TBRmean, and MTV were only prognostic for longer OS (P = 0.004, P = 0.038, and P = 0.048, respectively). Besides complete resection and a methylated MGMT promoter, TTP remained significant in multivariate survival analysis (all P ≤ 0.02), indicating an independent predictor for OS. CONCLUSIONS Our data suggest that dynamic FET PET allows the identification of patients with longer OS among patients with newly diagnosed IDH-wildtype GBM and AA.
Collapse
Affiliation(s)
- Elena K Bauer
- Department of Neurology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Kerpener St. 62, 50937, Cologne, Germany
| | - Gabriele Stoffels
- Institute of Neuroscience and Medicine (INM-3, -4, -5), Research Centre Juelich, Leo-Brandt-St. 5, 52425, Juelich, Germany
| | - Tobias Blau
- Department of Neuropathology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany.,Institute of Neuropathology, University Hospital Essen, Essen, Germany
| | - Guido Reifenberger
- Institute of Neuropathology, Heinrich Heine University, Duesseldorf, Germany.,Center of Integrated Oncology (CIO), University of Duesseldorf, Duesseldorf, Germany
| | - Jörg Felsberg
- Institute of Neuropathology, Heinrich Heine University, Duesseldorf, Germany.,Center of Integrated Oncology (CIO), University of Duesseldorf, Duesseldorf, Germany
| | - Jan M Werner
- Department of Neurology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Kerpener St. 62, 50937, Cologne, Germany
| | - Philipp Lohmann
- Institute of Neuroscience and Medicine (INM-3, -4, -5), Research Centre Juelich, Leo-Brandt-St. 5, 52425, Juelich, Germany
| | - Jurij Rosen
- Department of Neurology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Kerpener St. 62, 50937, Cologne, Germany
| | - Garry Ceccon
- Department of Neurology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Kerpener St. 62, 50937, Cologne, Germany
| | - Caroline Tscherpel
- Department of Neurology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Kerpener St. 62, 50937, Cologne, Germany
| | - Marion Rapp
- Center of Integrated Oncology (CIO), University of Duesseldorf, Duesseldorf, Germany.,Department of Neurosurgery, Heinrich Heine University, Duesseldorf, Germany
| | - Michael Sabel
- Center of Integrated Oncology (CIO), University of Duesseldorf, Duesseldorf, Germany.,Department of Neurosurgery, Heinrich Heine University, Duesseldorf, Germany
| | - Christian P Filss
- Institute of Neuroscience and Medicine (INM-3, -4, -5), Research Centre Juelich, Leo-Brandt-St. 5, 52425, Juelich, Germany.,Department of Nuclear Medicine, University Hospital RWTH Aachen, Aachen, Germany
| | - Nadim J Shah
- Institute of Neuroscience and Medicine (INM-3, -4, -5), Research Centre Juelich, Leo-Brandt-St. 5, 52425, Juelich, Germany.,Department of Neurology, University Hospital RWTH Aachen, Aachen, Germany
| | - Bernd Neumaier
- Institute of Neuroscience and Medicine (INM-3, -4, -5), Research Centre Juelich, Leo-Brandt-St. 5, 52425, Juelich, Germany
| | - Gereon R Fink
- Department of Neurology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Kerpener St. 62, 50937, Cologne, Germany.,Institute of Neuroscience and Medicine (INM-3, -4, -5), Research Centre Juelich, Leo-Brandt-St. 5, 52425, Juelich, Germany
| | - Karl-Josef Langen
- Institute of Neuroscience and Medicine (INM-3, -4, -5), Research Centre Juelich, Leo-Brandt-St. 5, 52425, Juelich, Germany.,Department of Nuclear Medicine, University Hospital RWTH Aachen, Aachen, Germany.,Center of Integrated Oncology (CIO), University of Aachen, Aachen, Germany
| | - Norbert Galldiks
- Department of Neurology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Kerpener St. 62, 50937, Cologne, Germany. .,Institute of Neuroscience and Medicine (INM-3, -4, -5), Research Centre Juelich, Leo-Brandt-St. 5, 52425, Juelich, Germany. .,Center of Integrated Oncology (CIO), University of Cologne, Cologne, Germany.
| |
Collapse
|
42
|
Dissaux G, Basse V, Schick U, EL Kabbaj O, Auberger B, Magro E, Kassoul A, Abgral R, Salaun PY, Bourhis D, Querellou S. Prognostic value of 18F-FET PET/CT in newly diagnosed WHO 2016 high-grade glioma. Medicine (Baltimore) 2020; 99:e19017. [PMID: 32000446 PMCID: PMC7004648 DOI: 10.1097/md.0000000000019017] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
O-(2-[F]fluoroethyl)-L-tyrosine positron-emission tomography/computed tomography (F-FET PET/CT) is well known in brain tumor management. Our study aimed to identify the prognostic value of F-FET PET/CT in high-grade gliomas (HGG) according the current 2016 World Health Organization (WHO) classification.Patients with histologically proven WHO 2016 HGG were prospectively included. A dynamic F-FET PET/CT was performed allowing to obtain 2 static PET frames (static frame 1: 20-40 minutes and static frame 2: 2-22 minutes). We analyzed static parameters (standard uptake value [SUV]max, SUVmean, SUVpeak, TBRmax, TBRmean, tumoral lesion glycolysis, and metabolic tumoral volume) for various isocontours (from 10% to 90%). PET parameters, clinical features, and molecular biomarkers were compared with progression-free survival (PFS) and overall survival (OS) in univariate and multivariate analysis.Twenty-nine patients were included (grade III n = 3, grade IV n = 26). Mean PFS and OS were, respectively, 8.8 and 13.9 months. According to univariate analysis, SUVmean, SUVpeak, TBRmax, and TBRmean were significantly correlated with OS. In static 1 analysis, TBRmax seemed to be the best OS prognostic parameter (P = .004). In static 2 analysis, TBRmean was the best parameter (P = .01). In static 1 analysis, only SUVpeak was significant (P = .05) for PFS. Good performance status (PS < 2; P < .0001) and extent of resection (P = .019) identified the subgroup of patients with the best OS. Only TBRmax (P = .026) and extent of resection (P = .025) remained significant parameters in multivariate analysis.Our data suggested that high TBRmax seemed to be the most significant OS independent prognostic factor in patients with newly diagnosed HGG.
Collapse
Affiliation(s)
| | - Victor Basse
- Oncology Department, University Hospital Morvan, Brest Cedex
| | | | | | | | - Elsa Magro
- Neurosurgery Department University Hospital Cavale Blanche
| | - Aboubakr Kassoul
- Nuclear Medicine Department, University Hospitam Morvan, Brest cedex
| | - Ronan Abgral
- Nuclear Medicine Department, University Hospitam Morvan, Brest cedex
- EA 3878 GETBO IFR 148
- University of Bretagne Occidentale, Brest, France
| | - Pierre-Yves Salaun
- Nuclear Medicine Department, University Hospitam Morvan, Brest cedex
- EA 3878 GETBO IFR 148
- University of Bretagne Occidentale, Brest, France
| | - David Bourhis
- Nuclear Medicine Department, University Hospitam Morvan, Brest cedex
- EA 3878 GETBO IFR 148
- University of Bretagne Occidentale, Brest, France
| | - Solène Querellou
- Nuclear Medicine Department, University Hospitam Morvan, Brest cedex
- EA 3878 GETBO IFR 148
- University of Bretagne Occidentale, Brest, France
| |
Collapse
|
43
|
Parent EE, Sethi I, Nye J, Holder C, Olson JJ, Switchenko J, Tade F, Akin-Akintayo OO, Abiodun-Ojo OA, Akintayo A, Schuster DM. 82Rubidium chloride PET discrimination of recurrent intracranial malignancy from radiation necrosis. THE QUARTERLY JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING : OFFICIAL PUBLICATION OF THE ITALIAN ASSOCIATION OF NUCLEAR MEDICINE (AIMN) [AND] THE INTERNATIONAL ASSOCIATION OF RADIOPHARMACOLOGY (IAR), [AND] SECTION OF THE SOCIETY OF... 2019; 66:74-81. [PMID: 31820882 DOI: 10.23736/s1824-4785.19.03173-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
BACKGROUND Accurate identification and discrimination of post treatment changes from recurrent disease remains a challenge for patients with intracranial malignancies despite advances in molecular and magnetic resonance imaging. We have explored the ability of readily available Rubidium-82 chloride (82RbCl) PET to identify and distinguish progressive intracranial disease from radiation necrosis in patients previously treated with radiation therapy. METHODS Six patients with a total of 9 lesions of either primary (n=3) or metastatic (n=6) intracranial malignancies previously treated with stereotactic radiation surgery (SRS) and persistent contrast enhancement on MRI underwent brain 82RbCl PET imaging. Two patients with arteriovenous malformations previously treated with SRS, also had brain 82RbCl PET imaging for a total of 11 lesions studied. Histological confirmation via stereotactic biopsy/excisional resection was obtained for 9 lesions with the remaining 2 classified as either recurrent tumor or radiation necrosis based on subsequent MRI examinations. 82RbCl PET time activity curve analysis was performed which comprised lesion SUVmax, contralateral normal brain SUVmax, and tumor to background ratios (TBmax). RESULTS 82RbCl demonstrates uptake greater than normal brain parenchyma in all lesions studied. Time activity curves demonstrated progressive uptake of 82RbCl in all lesions without evidence of washout. While recurrent disease demonstrated a greater mean SUVmax compared to radiation necrosis, no statistically significant difference between lesion SUVmax nor TBmax was found (p>0.05). CONCLUSIONS 82RbCl PET produces high-contrast uptake of both recurrent disease and radiation necrosis compared to normal brain. However, no statistically significant difference was found between recurrent tumor and radiation necrosis.
Collapse
Affiliation(s)
| | - Ila Sethi
- Department of Radiology and Imaging Sciences, Emory University School of Medicine, Atlanta, GA, USA -
| | - Jonathon Nye
- Department of Radiology and Imaging Sciences, Emory University School of Medicine, Atlanta, GA, USA
| | - Chad Holder
- Department of Radiology and Imaging Sciences, Emory University School of Medicine, Atlanta, GA, USA
| | - Jeffrey J Olson
- Department of Neurosurgery, Emory University School of Medicine, Atlanta, GA, USA
| | - Jeffrey Switchenko
- Bioinformatics and Biostatistics Shared Resource, Winship Cancer Institute of Emory, University, Atlanta, GA, USA
| | - Funmilayo Tade
- Department of Radiology, Loyola University, Chicago, IL, USA
| | - Oladunni O Akin-Akintayo
- Department of Radiology and Imaging Sciences, Emory University School of Medicine, Atlanta, GA, USA
| | - Olayinka A Abiodun-Ojo
- Department of Radiology and Imaging Sciences, Emory University School of Medicine, Atlanta, GA, USA
| | - Akinyemi Akintayo
- Department of Radiology and Imaging Sciences, Emory University School of Medicine, Atlanta, GA, USA
| | - David M Schuster
- Department of Radiology and Imaging Sciences, Emory University School of Medicine, Atlanta, GA, USA
| |
Collapse
|
44
|
Ginet M, Zaragori T, Marie PY, Roch V, Gauchotte G, Rech F, Blonski M, Lamiral Z, Taillandier L, Imbert L, Verger A. Integration of dynamic parameters in the analysis of 18F-FDopa PET imaging improves the prediction of molecular features of gliomas. Eur J Nucl Med Mol Imaging 2019; 47:1381-1390. [PMID: 31529264 DOI: 10.1007/s00259-019-04509-y] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Accepted: 08/23/2019] [Indexed: 12/21/2022]
Abstract
PURPOSE 18F-FDopa PET imaging of gliomas is routinely interpreted with standardized uptake value (SUV)-derived indices. This study aimed to determine the added value of dynamic 18F-FDopa PET parameters for predicting the molecular features of newly diagnosed gliomas. METHODS We retrospectively included 58 patients having undergone an 18F-FDopa PET for establishing the initial diagnosis of gliomas, whose molecular features were additionally characterized according to the WHO 2016 classification. Dynamic parameters, involving time-to-peak (TTP) values and curve slopes, were tested for the prediction of glioma types in addition to current static parameters, i.e., tumor-to-normal brain or tumor-to-striatum SUV ratios and metabolic tumor volume (MTV). RESULTS There were 21 IDH mutant without 1p/19q co-deletion (IDH+/1p19q-) gliomas, 16 IDH mutants with 1p/19q co-deletion (IDH+/1p19q+) gliomas, and 21 IDH wildtype (IDH-) gliomas. Dynamic parameters enabled differentiating the gliomas according to these molecular features, whereas static parameters did not. In particular, a longer TTP was the single best independent predictor for identifying (1) IDH mutation status (area under the curve (AUC) of 0.789, global accuracy of 74% for the criterion of a TTP ≥ 5.4 min) and (2) 1p/19q co-deletion status (AUC of 0.679, global accuracy of 69% for the criterion of a TTP ≥ 6.9 min). Moreover, the TTP from IDH- gliomas was significantly shorter than those from both IDH+/1p19q- and IDH+/1p19q+ (p ≤ 0.007). CONCLUSION Prediction of the molecular features of newly diagnosed gliomas with 18F-FDopa PET and especially of the presence or not of an IDH mutation, may be obtained with dynamic but not with current static uptake parameters.
Collapse
Affiliation(s)
- Merwan Ginet
- CHRU-Nancy, Department of Nuclear Medicine & Nancyclotep Imaging platform, Université de Lorraine, F-54000, Nancy, France
| | - Timothée Zaragori
- CHRU-Nancy, Department of Nuclear Medicine & Nancyclotep Imaging platform, Université de Lorraine, F-54000, Nancy, France
- IADI, INSERM, UMR 1254, Université de Lorraine, F-54000, Nancy, France
| | - Pierre-Yves Marie
- CHRU-Nancy, Department of Nuclear Medicine & Nancyclotep Imaging platform, Université de Lorraine, F-54000, Nancy, France
- Université de Lorraine, INSERM U1116, F-54000, Nancy, France
| | - Véronique Roch
- CHRU-Nancy, Department of Nuclear Medicine & Nancyclotep Imaging platform, Université de Lorraine, F-54000, Nancy, France
| | - Guillaume Gauchotte
- CHRU-Nancy, Department of Pathology, Université de Lorraine, F-54000, Nancy, France
- INSERM U1256, Université de Lorraine, F-54000, Nancy, France
| | - Fabien Rech
- Department of Neurosurgery, CHU-Nancy, F-54000, Nancy, France
- Centre de Recherche en Automatique de Nancy CRAN, CNRS UMR 7039, Université de Lorraine, F-54000, Nancy, France
| | - Marie Blonski
- Department of Neurosurgery, CHU-Nancy, F-54000, Nancy, France
- Centre de Recherche en Automatique de Nancy CRAN, CNRS UMR 7039, Université de Lorraine, F-54000, Nancy, France
| | - Zohra Lamiral
- Université de Lorraine, INSERM U1116, F-54000, Nancy, France
| | - Luc Taillandier
- Centre de Recherche en Automatique de Nancy CRAN, CNRS UMR 7039, Université de Lorraine, F-54000, Nancy, France
- CHRU-Nancy, Department of Neuro-oncology, Université de Lorraine, F-54000, Nancy, France
| | - Laëtitia Imbert
- CHRU-Nancy, Department of Nuclear Medicine & Nancyclotep Imaging platform, Université de Lorraine, F-54000, Nancy, France
- IADI, INSERM, UMR 1254, Université de Lorraine, F-54000, Nancy, France
| | - Antoine Verger
- CHRU-Nancy, Department of Nuclear Medicine & Nancyclotep Imaging platform, Université de Lorraine, F-54000, Nancy, France.
- IADI, INSERM, UMR 1254, Université de Lorraine, F-54000, Nancy, France.
| |
Collapse
|
45
|
Galldiks N, Lohmann P, Albert NL, Tonn JC, Langen KJ. Current status of PET imaging in neuro-oncology. Neurooncol Adv 2019; 1:vdz010. [PMID: 32642650 PMCID: PMC7324052 DOI: 10.1093/noajnl/vdz010] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Over the past decades, a variety of PET tracers have been used for the evaluation of patients with brain tumors. For clinical routine, the most important clinical indications for PET imaging in patients with brain tumors are the identification of neoplastic tissue including the delineation of tumor extent for the further diagnostic and therapeutic management (ie, biopsy, resection, or radiotherapy planning), the assessment of response to a certain anticancer therapy including its (predictive) effect on the patients’ outcome and the differentiation of treatment-related changes (eg, pseudoprogression and radiation necrosis) from tumor progression at follow-up. To serve medical professionals of all disciplines involved in the diagnosis and care of patients with brain tumors, this review summarizes the value of PET imaging for the latter-mentioned 3 clinically relevant indications in patients with glioma, meningioma, and brain metastases.
Collapse
Affiliation(s)
- Norbert Galldiks
- Department of Neurology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Germany.,Institute of Neuroscience and Medicine (INM-3, -4), Research Center Juelich, Juelich, Germany.,Center of Integrated Oncology (CIO), Universities of Aachen, Bonn, Cologne, and Duesseldorf, Germany
| | - Philipp Lohmann
- Institute of Neuroscience and Medicine (INM-3, -4), Research Center Juelich, Juelich, Germany
| | - Nathalie L Albert
- Department of Nuclear Medicine, Ludwig Maximilians-University of Munich, Munich, Germany
| | - Jörg C Tonn
- Department of Neurosurgery, Ludwig Maximilians-University of Munich, Munich, Germany.,German Cancer Consortium (DKTK), Partner Site Munich, Germany
| | - Karl-Josef Langen
- Department of Nuclear Medicine, University Hospital Aachen, Aachen, Germany
| |
Collapse
|
46
|
Mihovilovic MI, Kertels O, Hänscheid H, Löhr M, Monoranu CM, Kleinlein I, Samnick S, Kessler AF, Linsenmann T, Ernestus RI, Buck AK, Lapa C. O-(2-( 18F)fluoroethyl)-L-tyrosine PET for the differentiation of tumour recurrence from late pseudoprogression in glioblastoma. J Neurol Neurosurg Psychiatry 2019; 90:238-239. [PMID: 29705720 DOI: 10.1136/jnnp-2017-317155] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Revised: 02/27/2018] [Accepted: 04/03/2018] [Indexed: 11/03/2022]
Affiliation(s)
| | - Olivia Kertels
- Institute of Diagnostic Radiology, University Hospital Würzburg, Würzburg, Germany
| | - Heribert Hänscheid
- Department of Nuclear Medicine, University Hospital Würzburg, Würzburg, Germany
| | - Mario Löhr
- Department of Neurosurgery, University Hospital Würzburg, Würzburg, Germany
| | | | - Irene Kleinlein
- Department of Neuropathology, University Hospital Würzburg, Würzburg, Germany
| | - Samuel Samnick
- Department of Nuclear Medicine, University Hospital Würzburg, Würzburg, Germany
| | - Almuth F Kessler
- Department of Neurosurgery, University Hospital Würzburg, Würzburg, Germany
| | - Thomas Linsenmann
- Department of Neurosurgery, University Hospital Würzburg, Würzburg, Germany
| | - Ralf-Ingo Ernestus
- Department of Neurosurgery, University Hospital Würzburg, Würzburg, Germany
| | - Andreas K Buck
- Department of Nuclear Medicine, University Hospital Würzburg, Würzburg, Germany
| | - Constantin Lapa
- Department of Nuclear Medicine, University Hospital Würzburg, Würzburg, Germany
| |
Collapse
|
47
|
Lohmann P, Werner JM, Shah NJ, Fink GR, Langen KJ, Galldiks N. Combined Amino Acid Positron Emission Tomography and Advanced Magnetic Resonance Imaging in Glioma Patients. Cancers (Basel) 2019; 11:cancers11020153. [PMID: 30699942 PMCID: PMC6406895 DOI: 10.3390/cancers11020153] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Revised: 01/24/2019] [Accepted: 01/25/2019] [Indexed: 02/07/2023] Open
Abstract
Imaging techniques such as positron emission tomography (PET) and magnetic resonance imaging (MRI) provide valuable information about brain tumor patients. Particularly amino acid PET, advanced MRI techniques, and combinations thereof are of great interest for the non-invasive assessment of biological characteristics in patients with primary or secondary brain cancer. A methodological innovation that potentially advances research in patients with brain tumors is the increasing availability of hybrid PET/MRI systems, which enables the simultaneous acquisition of both imaging modalities. Furthermore, the advent of ultra-high field MRI scanners operating at magnetic field strengths of 7 T or more will allow further development of metabolic MR imaging at higher resolution. This review focuses on the combination of amino acid PET with MR spectroscopic imaging, perfusion- and diffusion-weighted imaging, as well as chemical exchange saturation transfer in patients with high-grade gliomas, especially glioblastomas.
Collapse
Affiliation(s)
- Philipp Lohmann
- Institute of Neuroscience and Medicine (INM-3, -4, -5, -11), Forschungszentrum Juelich, 52425 Juelich, Germany.
| | - Jan-Michael Werner
- Department of Neurology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937 Cologne, Germany.
| | - N Jon Shah
- Institute of Neuroscience and Medicine (INM-3, -4, -5, -11), Forschungszentrum Juelich, 52425 Juelich, Germany.
- JARA-BRAIN-Translational Medicine, 52074 Aachen, Germany.
- Department of Neurology, RWTH Aachen University, 52074 Aachen, Germany.
| | - Gereon R Fink
- Institute of Neuroscience and Medicine (INM-3, -4, -5, -11), Forschungszentrum Juelich, 52425 Juelich, Germany.
- Department of Neurology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937 Cologne, Germany.
| | - Karl-Josef Langen
- Institute of Neuroscience and Medicine (INM-3, -4, -5, -11), Forschungszentrum Juelich, 52425 Juelich, Germany.
- Department of Nuclear Medicine, RWTH Aachen University, 52074 Aachen, Germany.
| | - Norbert Galldiks
- Institute of Neuroscience and Medicine (INM-3, -4, -5, -11), Forschungszentrum Juelich, 52425 Juelich, Germany.
- Department of Neurology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937 Cologne, Germany.
- Center of Integrated Oncology (CIO), Universities of Cologne and Bonn, 50937 Cologne, Germany.
| |
Collapse
|
48
|
Lohmann P, Lerche C, Bauer EK, Steger J, Stoffels G, Blau T, Dunkl V, Kocher M, Viswanathan S, Filss CP, Stegmayr C, Ruge MI, Neumaier B, Shah NJ, Fink GR, Langen KJ, Galldiks N. Predicting IDH genotype in gliomas using FET PET radiomics. Sci Rep 2018; 8:13328. [PMID: 30190592 PMCID: PMC6127131 DOI: 10.1038/s41598-018-31806-7] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Accepted: 08/28/2018] [Indexed: 01/22/2023] Open
Abstract
Mutations in the isocitrate dehydrogenase (IDH mut) gene have gained paramount importance for the prognosis of glioma patients. To date, reliable techniques for a preoperative evaluation of IDH genotype remain scarce. Therefore, we investigated the potential of O-(2-[18F]fluoroethyl)-L-tyrosine (FET) PET radiomics using textural features combined with static and dynamic parameters of FET uptake for noninvasive prediction of IDH genotype. Prior to surgery, 84 patients with newly diagnosed and untreated gliomas underwent FET PET using a standard scanner (15 of 56 patients with IDH mut) or a dedicated high-resolution hybrid PET/MR scanner (11 of 28 patients with IDH mut). Static, dynamic and textural parameters of FET uptake in the tumor area were evaluated. Diagnostic accuracy of the parameters was evaluated using the neuropathological result as reference. Additionally, FET PET and textural parameters were combined to further increase the diagnostic accuracy. The resulting models were validated using cross-validation. Independent of scanner type, the combination of standard PET parameters with textural features increased significantly diagnostic accuracy. The highest diagnostic accuracy of 93% for prediction of IDH genotype was achieved with the hybrid PET/MR scanner. Our findings suggest that the combination of conventional FET PET parameters with textural features provides important diagnostic information for the non-invasive prediction of the IDH genotype.
Collapse
Affiliation(s)
- Philipp Lohmann
- Inst. of Neuroscience and Medicine (INM-3, -4, -5), Forschungszentrum Juelich, Juelich, Germany.
- Dept. of Stereotaxy and Functional Neurosurgery, University of Cologne, Cologne, Germany.
| | - Christoph Lerche
- Inst. of Neuroscience and Medicine (INM-3, -4, -5), Forschungszentrum Juelich, Juelich, Germany
| | - Elena K Bauer
- Dept. of Neurology, University of Cologne, Cologne, Germany
| | - Jan Steger
- Dept. of Neurology, University of Cologne, Cologne, Germany
| | - Gabriele Stoffels
- Inst. of Neuroscience and Medicine (INM-3, -4, -5), Forschungszentrum Juelich, Juelich, Germany
| | - Tobias Blau
- Dept. of Neuropathology, University of Cologne, Cologne, Germany
| | - Veronika Dunkl
- Dept. of Neurology, University of Cologne, Cologne, Germany
| | - Martin Kocher
- Inst. of Neuroscience and Medicine (INM-3, -4, -5), Forschungszentrum Juelich, Juelich, Germany
- Dept. of Stereotaxy and Functional Neurosurgery, University of Cologne, Cologne, Germany
| | - Shivakumar Viswanathan
- Inst. of Neuroscience and Medicine (INM-3, -4, -5), Forschungszentrum Juelich, Juelich, Germany
| | - Christian P Filss
- Inst. of Neuroscience and Medicine (INM-3, -4, -5), Forschungszentrum Juelich, Juelich, Germany
| | - Carina Stegmayr
- Inst. of Neuroscience and Medicine (INM-3, -4, -5), Forschungszentrum Juelich, Juelich, Germany
| | - Maximillian I Ruge
- Dept. of Stereotaxy and Functional Neurosurgery, University of Cologne, Cologne, Germany
| | - Bernd Neumaier
- Inst. of Neuroscience and Medicine (INM-3, -4, -5), Forschungszentrum Juelich, Juelich, Germany
| | - Nadim J Shah
- Inst. of Neuroscience and Medicine (INM-3, -4, -5), Forschungszentrum Juelich, Juelich, Germany
- Dept. of Neurology, University Hospital RWTH Aachen, Aachen, Germany
| | - Gereon R Fink
- Inst. of Neuroscience and Medicine (INM-3, -4, -5), Forschungszentrum Juelich, Juelich, Germany
- Dept. of Neurology, University of Cologne, Cologne, Germany
| | - Karl-Josef Langen
- Inst. of Neuroscience and Medicine (INM-3, -4, -5), Forschungszentrum Juelich, Juelich, Germany
- Dept. of Nuclear Medicine, University Hospital RWTH Aachen, Aachen, Germany
| | - Norbert Galldiks
- Inst. of Neuroscience and Medicine (INM-3, -4, -5), Forschungszentrum Juelich, Juelich, Germany
- Dept. of Neurology, University of Cologne, Cologne, Germany
- Center of Integrated Oncology (CIO), Universities of Cologne and Bonn, Cologne, Germany
| |
Collapse
|
49
|
Loganadane G, Dhermain F, Louvel G, Kauv P, Deutsch E, Le Péchoux C, Levy A. Brain Radiation Necrosis: Current Management With a Focus on Non-small Cell Lung Cancer Patients. Front Oncol 2018; 8:336. [PMID: 30234011 PMCID: PMC6134016 DOI: 10.3389/fonc.2018.00336] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Accepted: 08/02/2018] [Indexed: 12/25/2022] Open
Abstract
As the prognosis of metastatic non-small cell lung cancer (NSCLC) patients is constantly improving with advances in systemic therapies (immune checkpoint blockers and new generation of targeted molecular compounds), more attention should be paid to the diagnosis and management of treatments-related long-term secondary effects. Brain metastases (BM) occur frequently in the natural history of NSCLC and stereotactic radiation therapy (SRT) is one of the main efficient local non-invasive therapeutic methods. However, SRT may have some disabling side effects. Brain radiation necrosis (RN) represents one of the main limiting toxicities, generally occurring from 6 months to several years after treatment. The diagnosis of RN itself may be quite challenging, as conventional imaging is frequently not able to differentiate RN from BM recurrence. Retrospective studies have suggested increased incidence rates of RN in NSCLC patients with oncogenic driver mutations [epidermal growth factor receptor (EGFR) mutated or anaplastic lymphoma kinase (ALK) positive] or receiving tyrosine kinase inhibitors. The risk of immune checkpoint inhibitors in contributing to RN remains controversial. Treatment modalities for RN have not been prospectively compared. Those include surveillance, corticosteroids, bevacizumab and local interventions (minimally invasive laser interstitial thermal ablation or surgery). The aim of this review is to describe and discuss possible RN management options in the light of the newly available literature, with a particular focus on NSCLC patients.
Collapse
Affiliation(s)
| | - Frédéric Dhermain
- Department of Radiation Oncology, Gustave Roussy, Université Paris-Saclay, Villejuif, France
| | - Guillaume Louvel
- Department of Radiation Oncology, Gustave Roussy, Université Paris-Saclay, Villejuif, France
| | - Paul Kauv
- Department of Neuroradiology, AP-HP, CHU Henri Mondor, University of Paris-Est, Créteil, France
| | - Eric Deutsch
- Department of Radiation Oncology, Gustave Roussy, Université Paris-Saclay, Villejuif, France.,INSERM U1030, Molecular Radiotherapy, Gustave Roussy, Université Paris-Saclay, Villejuif, France.,Université Paris-Sud, Université Paris-Saclay, Le Kremlin-Bicêtre, France
| | - Cécile Le Péchoux
- Department of Radiation Oncology, Gustave Roussy, Université Paris-Saclay, Villejuif, France
| | - Antonin Levy
- Department of Radiation Oncology, Gustave Roussy, Université Paris-Saclay, Villejuif, France.,INSERM U1030, Molecular Radiotherapy, Gustave Roussy, Université Paris-Saclay, Villejuif, France.,Université Paris-Sud, Université Paris-Saclay, Le Kremlin-Bicêtre, France
| |
Collapse
|
50
|
Lohmann P, Kocher M, Ceccon G, Bauer EK, Stoffels G, Viswanathan S, Ruge MI, Neumaier B, Shah NJ, Fink GR, Langen KJ, Galldiks N. Combined FET PET/MRI radiomics differentiates radiation injury from recurrent brain metastasis. NEUROIMAGE-CLINICAL 2018; 20:537-542. [PMID: 30175040 PMCID: PMC6118093 DOI: 10.1016/j.nicl.2018.08.024] [Citation(s) in RCA: 100] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 08/01/2018] [Accepted: 08/17/2018] [Indexed: 12/12/2022]
Abstract
Background The aim of this study was to investigate the potential of combined textural feature analysis of contrast-enhanced MRI (CE-MRI) and static O-(2-[18F]fluoroethyl)-L-tyrosine (FET) PET for the differentiation between local recurrent brain metastasis and radiation injury since CE-MRI often remains inconclusive. Methods Fifty-two patients with new or progressive contrast-enhancing brain lesions on MRI after radiotherapy (predominantly stereotactic radiosurgery) of brain metastases were additionally investigated using FET PET. Based on histology (n = 19) or clinicoradiological follow-up (n = 33), local recurrent brain metastases were diagnosed in 21 patients (40%) and radiation injury in 31 patients (60%). Forty-two textural features were calculated on both unfiltered and filtered CE-MRI and summed FET PET images (20–40 min p.i.), using the software LIFEx. After feature selection, logistic regression models using a maximum of five features to avoid overfitting were calculated for each imaging modality separately and for the combined FET PET/MRI features. The resulting models were validated using cross-validation. Diagnostic accuracies were calculated for each imaging modality separately as well as for the combined model. Results For the differentiation between radiation injury and recurrence of brain metastasis, textural features extracted from CE-MRI had a diagnostic accuracy of 81% (sensitivity, 67%; specificity, 90%). FET PET textural features revealed a slightly higher diagnostic accuracy of 83% (sensitivity, 88%; specificity, 75%). However, the highest diagnostic accuracy was obtained when combining CE-MRI and FET PET features (accuracy, 89%; sensitivity, 85%; specificity, 96%). Conclusions Our findings suggest that combined FET PET/CE-MRI radiomics using textural feature analysis offers a great potential to contribute significantly to the management of patients with brain metastases. Differentiation between brain metastasis recurrence and radiation injury is of high clinical importance. Differentiation based on contrast-enhanced conventional MRI is often inconclusive. Radiomics and hybrid amino acid PET/MR imaging are increasingly gaining attention in Neuro-Oncology. We investigated the potential of combined PET/MRI radiomics analysis using MRI and FET PET in patients with brain metastases. Combined PET/MRI radiomics allows the differentiation of brain metastasis recurrence from radiation injury with high accuracy.
Collapse
Affiliation(s)
- Philipp Lohmann
- Inst. of Neuroscience and Medicine (INM-3, -4, -5), Forschungszentrum Juelich, Juelich, Germany; Dept. of Stereotaxy and Functional Neurosurgery, University of Cologne, Cologne, Germany.
| | - Martin Kocher
- Inst. of Neuroscience and Medicine (INM-3, -4, -5), Forschungszentrum Juelich, Juelich, Germany; Dept. of Stereotaxy and Functional Neurosurgery, University of Cologne, Cologne, Germany
| | - Garry Ceccon
- Dept. of Neurology, University of Cologne, Cologne, Germany
| | - Elena K Bauer
- Dept. of Neurology, University of Cologne, Cologne, Germany
| | - Gabriele Stoffels
- Inst. of Neuroscience and Medicine (INM-3, -4, -5), Forschungszentrum Juelich, Juelich, Germany
| | - Shivakumar Viswanathan
- Inst. of Neuroscience and Medicine (INM-3, -4, -5), Forschungszentrum Juelich, Juelich, Germany
| | - Maximilian I Ruge
- Dept. of Stereotaxy and Functional Neurosurgery, University of Cologne, Cologne, Germany
| | - Bernd Neumaier
- Inst. of Neuroscience and Medicine (INM-3, -4, -5), Forschungszentrum Juelich, Juelich, Germany
| | - Nadim J Shah
- Inst. of Neuroscience and Medicine (INM-3, -4, -5), Forschungszentrum Juelich, Juelich, Germany; Dept. of Neurology, University Hospital RWTH Aachen, Aachen, Germany
| | - Gereon R Fink
- Inst. of Neuroscience and Medicine (INM-3, -4, -5), Forschungszentrum Juelich, Juelich, Germany; Dept. of Neurology, University of Cologne, Cologne, Germany
| | - Karl-Josef Langen
- Inst. of Neuroscience and Medicine (INM-3, -4, -5), Forschungszentrum Juelich, Juelich, Germany; Dept. of Nuclear Medicine, University Hospital RWTH Aachen, Aachen, Germany
| | - Norbert Galldiks
- Inst. of Neuroscience and Medicine (INM-3, -4, -5), Forschungszentrum Juelich, Juelich, Germany; Dept. of Neurology, University of Cologne, Cologne, Germany; Center of Integrated Oncology (CIO), Universities of Cologne and Bonn, Cologne, Germany
| |
Collapse
|