1
|
Chatterjee D, Bhattacharya S, Kumari L, Datta A. Aptamers: ushering in new hopes in targeted glioblastoma therapy. J Drug Target 2024; 32:1005-1028. [PMID: 38923419 DOI: 10.1080/1061186x.2024.2373306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 06/09/2024] [Accepted: 06/17/2024] [Indexed: 06/28/2024]
Abstract
Glioblastoma, a formidable brain cancer, has remained a therapeutic challenge due to its aggressive nature and resistance to conventional treatments. Recent data indicate that aptamers, short synthetic DNA or RNA molecules can be used in anti-cancer therapy due to their better tumour penetration, specific binding affinity, longer retention in tumour sites and their ability to cross the blood-brain barrier. With the ability to modify these oligonucleotides through the selection process, and using rational design to modify them, post-SELEX aptamers offer several advantages in glioblastoma treatment, including precise targeting of cancer cells while sparing healthy tissue. This review discusses the pivotal role of aptamers in glioblastoma therapy and diagnosis, emphasising their potential to enhance treatment efficacy and also highlights recent advancements in aptamer-based therapies which can transform the landscape of glioblastoma treatment, offering renewed hope to patients and clinicians alike.
Collapse
Affiliation(s)
- Debarpan Chatterjee
- Department of Pharmaceutical Technology, NSHM Knowledge Campus, Kolkata-Group of Institutions, Kolkata, India
| | - Srijan Bhattacharya
- Department of Pharmaceutical Technology, NSHM Knowledge Campus, Kolkata-Group of Institutions, Kolkata, India
| | - Leena Kumari
- Department of Pharmaceutical Technology, NSHM Knowledge Campus, Kolkata-Group of Institutions, Kolkata, India
| | - Aparna Datta
- Department of Pharmaceutical Technology, NSHM Knowledge Campus, Kolkata-Group of Institutions, Kolkata, India
| |
Collapse
|
2
|
Noh D, Lee H, Lee S, Sun IC, Yoon HY. Copper-Based Nanomedicines for Cuproptosis-Mediated Effective Cancer Treatment. Biomater Res 2024; 28:0094. [PMID: 39430913 PMCID: PMC11486892 DOI: 10.34133/bmr.0094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 09/09/2024] [Accepted: 09/24/2024] [Indexed: 10/22/2024] Open
Abstract
The recent discovery of cuproptosis, a novel copper-ion-induced cell death pathway, has suggested the novel therapeutic potential for treating heterogeneous and drug-resistant cancers. Currently, copper ionophore-based therapeutics have been designed to treat cancers, utilizing copper ions as a strategic tool to impede tumor proliferation and promote cellular demise. However, limitations of copper ionophore-based therapies include nontargeted delivery of copper ions, low tumor accumulation, and short half-life. Strategies to enhance specificity involve targeting intracellular cuproptosis mechanisms using nanotechnology-based drugs. Additionally, the importance of exploring combination therapies cannot be overstated, as they are a key strategy in improving the efficacy of cancer treatments. Recent studies have reported the anticancer effects of nanomedicines that can induce cuproptosis of cancer both in vitro and in vivo. These cuproptosis-targeted nanomedicines could improve delivery efficiency with the pharmacokinetic properties of copper ion, resulting in increasing cuproptosis-based anticancer effects. This review will summarize the intricate nexus between copper ion and carcinogenesis, examining the pivotal roles of copper homeostasis and its dysregulation in cancer progression and fatality. Furthermore, we will introduce the latest advances in cuproptosis-targeted nanomedicines for cancer treatment. Finally, the challenges in cuproptosis-based nanomedicines will be discussed for future development directions.
Collapse
Affiliation(s)
- Dahye Noh
- Medicinal Materials Research Center, Biomedical Research Institute,
Korea Institute of Science and Technology (KIST), Hwarang-ro 14-gil 5, Seongbuk-gu, Seoul 02792, Republic of Korea
- Division of Bio-Medical Science & Technology, KIST School,
University of Science and Technology (UST), Hwarang-ro14-gil 5, Seongbuk-gu, Seoul 02792, Republic of Korea
| | - Hokyung Lee
- Medicinal Materials Research Center, Biomedical Research Institute,
Korea Institute of Science and Technology (KIST), Hwarang-ro 14-gil 5, Seongbuk-gu, Seoul 02792, Republic of Korea
- Department of Fundamental Pharmaceutical Sciences, College of Pharmacy,
Kyung Hee University, 1 Hoegi-dong, Dongdaemun-gu, Seoul 02447, Republic of Korea
| | - Sangmin Lee
- Department of Fundamental Pharmaceutical Sciences, College of Pharmacy,
Kyung Hee University, 1 Hoegi-dong, Dongdaemun-gu, Seoul 02447, Republic of Korea
| | - In-Cheol Sun
- Medicinal Materials Research Center, Biomedical Research Institute,
Korea Institute of Science and Technology (KIST), Hwarang-ro 14-gil 5, Seongbuk-gu, Seoul 02792, Republic of Korea
| | - Hong Yeol Yoon
- Medicinal Materials Research Center, Biomedical Research Institute,
Korea Institute of Science and Technology (KIST), Hwarang-ro 14-gil 5, Seongbuk-gu, Seoul 02792, Republic of Korea
- Division of Bio-Medical Science & Technology, KIST School,
University of Science and Technology (UST), Hwarang-ro14-gil 5, Seongbuk-gu, Seoul 02792, Republic of Korea
| |
Collapse
|
3
|
Li Y, Gao X, Li Y, Yan S, Zhang Y, Zheng X, Gu Q. Endocytosis: the match point of nanoparticle-based cancer therapy. J Mater Chem B 2024; 12:9435-9458. [PMID: 39192831 DOI: 10.1039/d4tb01227e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/29/2024]
Abstract
Nanomedicine has inspired a ground-breaking strategy for cancer therapy. By intelligently assembling diverse moieties to form nanoparticles, numerous functionalities such as controlled release, synergistic efficiency, and in situ killing can be achieved. The emerging nanoparticles have been designed with elevated targeting efficiency as targeting cancer cells is the primary requirement for nanoparticles. However, effective targeting does not guarantee therapeutic effects as endocytosis is a prerequisite for nanoparticles to exert effects. The recent decade has witnessed the rapid development of endocytosis-oriented nanoparticles, and this review subtly analyzes, categorizes, and exemplifies these nanoparticles according to their biological internalization patterns, and the correlation between the endocytosis mechanism and the property of nanoparticles is bridged. Based on the interdisciplinary vision, the present challenges and future perspectives of nanoparticle design for successful endocytosis are discussed, highlighting the potential strategies for the future development of endocytosis-oriented nanoparticles, thus facilitating the endocytosis-oriented strategy from bench to bedside. The undeniable fact is that endocytosis-oriented nanoparticles will definitely bring new blood to the next generation of advanced cancer therapies.
Collapse
Affiliation(s)
- Yonglu Li
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, Zhejiang, People's Republic of China.
| | - Xin Gao
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, Zhejiang, People's Republic of China.
| | - Yapeng Li
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, Zhejiang, People's Republic of China.
| | - Shihai Yan
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, Zhejiang, People's Republic of China.
| | - Yiru Zhang
- Department of Food Science and Nutrition, Zhejiang Key Laboratory for Agro-food Processing, Fuli Institute of Food Science, National Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang University, Hangzhou 310058, People's Republic of China
| | - Xiaodong Zheng
- Department of Food Science and Nutrition, Zhejiang Key Laboratory for Agro-food Processing, Fuli Institute of Food Science, National Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang University, Hangzhou 310058, People's Republic of China
| | - Qing Gu
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, Zhejiang, People's Republic of China.
| |
Collapse
|
4
|
Xu Y, Xue G, Zhou L, Wu G, Hu L, Ma S, Zhang J, Li X. KIF4A promotes epithelial-mesenchymal transition by activating the TGF-β/SMAD signaling pathway in glioma cells. Mol Cell Biochem 2024:10.1007/s11010-024-04943-z. [PMID: 38411896 DOI: 10.1007/s11010-024-04943-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Accepted: 01/14/2024] [Indexed: 02/28/2024]
Abstract
Gliomas are the most prevalent type of primary brain tumor, with poor prognosis reported in patients with high-grade glioma. Kinesin family member 4 A (KIF4A) stimulates the proliferation, migration, and invasion of tumor cells. However, its function in gliomas has not been clearly established. Therefore, this study aimed to investigate the effects of KIF4A on the epithelial-mesenchymal transition and invasion of glioma cells. We searched The Cancer Genome Atlas and Chinese Glioma Genome Atlas databases to identify KIF4A-related signaling pathways and downstream genes. We further validated them using western blotting, transwell migration and invasion, wound-healing scratch, and dual-luciferase reporter assays in U251 and U87 human glioblastoma cells. Our analysis of the Cancer Genome Atlas and Chinese Glioma Genome Atlas data showed elevated KIF4A expression in patients with gliomas and was associated with clinical grade. Here, KIF4A overexpression promoted the migration, invasion, and proliferation of glioma cells, whereas KIF4A knockdown showed contrasting results. Gene Ontology (GO) and Gene Set Enrichment Analysis (GSEA) analyses demonstrated that KIF4A positively controls TGF-β/SMAD signaling in glioma cells. Additionally, genetic correlation analysis revealed that KIF4A transcriptionally controls benzimidazoles-1 expression in glioma cells. KIF4A promotes the epithelial-mesenchymal transition by regulating the TGF-β/SMAD signaling pathway via benzimidazoles-1 in glioma cells.
Collapse
Affiliation(s)
- Yao Xu
- Department of Neurosurgery, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Guangren Xue
- Department of Neurosurgery, Dushu Lake Hospital Affiliated to Soochow University, Suzhou, China
| | - Lei Zhou
- Department of Neurosurgery, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Gaotian Wu
- Laboratory of Cancer Molecular Genetics, Soochow University, Medical College of Soochow University, Suzhou, China
| | - Lingji Hu
- Laboratory of Cancer Molecular Genetics, Soochow University, Medical College of Soochow University, Suzhou, China
| | - Shuchen Ma
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Jian Zhang
- Department of Neurosurgery, The First Affiliated Hospital of Soochow University, Suzhou, China.
| | - Xiangdong Li
- Department of Neurosurgery, The First Affiliated Hospital of Soochow University, Suzhou, China.
| |
Collapse
|
5
|
Carney CP, Pandey N, Kapur A, Saadi H, Ong HL, Chen C, Winkles JA, Woodworth GF, Kim AJ. Impact of Targeting Moiety Type and Protein Corona Formation on the Uptake of Fn14-Targeted Nanoparticles by Cancer Cells. ACS NANO 2023; 17:19667-19684. [PMID: 37812740 DOI: 10.1021/acsnano.3c02575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/11/2023]
Abstract
The TWEAK receptor, Fn14, is a promising candidate for active targeting of cancer nanotherapeutics to many solid tumor types, including metastatic breast and primary brain cancers. Targeting of therapeutic nanoparticles (NPs) has been accomplished using a range of targeting moieties including monoclonal antibodies and related fragments, peptides, and small molecules. Here, we investigated a full-length Fn14-specific monoclonal antibody, ITEM4, or an ITEM4-Fab fragment as a targeting moiety to guide the development of a clinical formulation. We formulated NPs with varying densities of the targeting moieties while maintaining the decreased nonspecific adhesivity with receptor targeting (DART) characteristics. To model the conditions that NPs experience following intravenous infusion, we investigated the impact of serum exposure in relation to the targeting moiety type and surface density. To further evaluate performance at the cancer cell level, we performed experiments to assess differences in cellular uptake and trafficking in several cancer cell lines using confocal microscopy, imaging flow cytometry, and total internal reflection fluorescence microscopy. We observed that Fn14-targeted NPs exhibit enhanced cellular uptake in Fn14-high compared to Fn14-low cancer cells and that in both cell lines uptake levels were greater than observed with control, nontargeted NPs. We found that serum exposure increased Fn14-targeted NP specificity while simultaneously reducing the total NP uptake. Importantly, serum exposure caused a larger reduction in cancer cell uptake over time when the targeting moiety was an antibody fragment (Fab region of the monoclonal antibody) compared with the full-length monoclonal antibody targeting moiety. Lastly, we uncovered that full monoclonal antibody-targeted NPs enter cancer cells via clathrin-mediated endocytosis and traffic through the endolysosomal pathway. Taken together, these results support a pathway for developing a clinical formulation using a full-length Fn14 monoclonal antibody as the targeting moiety for a DART cancer nanotherapeutic agent.
Collapse
Affiliation(s)
- Christine P Carney
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, Maryland 21201, United States
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, Maryland 21201, United States
| | - Nikhil Pandey
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, Maryland 21201, United States
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, Maryland 21201, United States
| | - Anshika Kapur
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, Maryland 21201, United States
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, Maryland 21201, United States
| | - Hassan Saadi
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, Maryland 21201, United States
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, Maryland 21201, United States
| | - Hwei Ling Ong
- Secretory Physiology Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Chixiang Chen
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, Maryland 21201, United States
- Department of Epidemiology & Public Health, University of Maryland School of Medicine, Baltimore, Maryland 21201, United States
| | - Jeffrey A Winkles
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, Maryland 21201, United States
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, Maryland 21201, United States
- Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, Maryland 21201, United States
| | - Graeme F Woodworth
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, Maryland 21201, United States
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, Maryland 21201, United States
- Fischell Department of Bioengineering, A. James Clarke School of Engineering, University of Maryland, College Park, Maryland 20742, United States
| | - Anthony J Kim
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, Maryland 21201, United States
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, Maryland 21201, United States
- Fischell Department of Bioengineering, A. James Clarke School of Engineering, University of Maryland, College Park, Maryland 20742, United States
- Department of Pharmacology, University of Maryland School of Medicine, Baltimore, Maryland 21201, United States
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, Maryland 21201, United States
| |
Collapse
|
6
|
Wang Z, Tang XL, Zhao MJ, Zhang YD, Xiao Y, Liu YY, Qian CF, Xie YD, Liu Y, Zou YJ, Yang K, Liu HY. Biomimetic hypoxia-triggered RNAi nanomedicine for synergistically mediating chemo/radiotherapy of glioblastoma. J Nanobiotechnology 2023; 21:210. [PMID: 37408007 DOI: 10.1186/s12951-023-01960-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 06/17/2023] [Indexed: 07/07/2023] Open
Abstract
Although RNA interference (RNAi) therapy has emerged as a potential tool in cancer therapeutics, the application of RNAi to glioblastoma (GBM) remains a hurdle. Herein, to improve the therapeutic effect of RNAi on GBM, a cancer cell membrane (CCM)-disguised hypoxia-triggered RNAi nanomedicine was developed for short interfering RNA (siRNA) delivery to sensitize cells to chemotherapy and radiotherapy. Our synthesized CCM-disguised RNAi nanomedicine showed prolonged blood circulation, high BBB transcytosis and specific accumulation in GBM sites via homotypic recognition. Disruption and effective anti-GBM agents were triggered in the hypoxic region, leading to efficient tumor suppression by using phosphoglycerate kinase 1 (PGK1) silencing to enhance paclitaxel-induced chemotherapy and sensitize hypoxic GBM cells to ionizing radiation. In summary, a biomimetic intelligent RNAi nanomedicine has been developed for siRNA delivery to synergistically mediate a combined chemo/radiotherapy that presents immune-free and hypoxia-triggered properties with high survival rates for orthotopic GBM treatment.
Collapse
Affiliation(s)
- Zhen Wang
- Department of Neurosurgery, The Affiliated Brain Hospital With Nanjing Medical University, Fourth Clinical College of Nanjing Medical University, Nanjing, 210029, China
| | - Xiang-Long Tang
- Department of Neuro-Psychiatric Institute, The Affiliated Brain Hospital With Nanjing Medical University, Nanjing, 210029, China.
- Institute of Neuro-Science, Nanjing Medical University, Nanjing, 210029, China.
| | - Meng-Jie Zhao
- Department of Neuro-Psychiatric Institute, The Affiliated Brain Hospital With Nanjing Medical University, Nanjing, 210029, China
- Institute of Neuro-Science, Nanjing Medical University, Nanjing, 210029, China
| | - Yi-Ding Zhang
- Department of Neurosurgery, The Affiliated Brain Hospital With Nanjing Medical University, Fourth Clinical College of Nanjing Medical University, Nanjing, 210029, China
| | - Yong Xiao
- Department of Neurosurgery, The Affiliated Brain Hospital With Nanjing Medical University, Fourth Clinical College of Nanjing Medical University, Nanjing, 210029, China
| | - Yu-Yang Liu
- Department of Neurosurgery, The Affiliated Brain Hospital With Nanjing Medical University, Fourth Clinical College of Nanjing Medical University, Nanjing, 210029, China
| | - Chun-Fa Qian
- Department of Neurosurgery, The Affiliated Brain Hospital With Nanjing Medical University, Fourth Clinical College of Nanjing Medical University, Nanjing, 210029, China
| | - Yan-Dong Xie
- Department of Neurosurgery, The Affiliated Brain Hospital With Nanjing Medical University, Fourth Clinical College of Nanjing Medical University, Nanjing, 210029, China
| | - Yong Liu
- Department of Neurosurgery, The Affiliated Brain Hospital With Nanjing Medical University, Fourth Clinical College of Nanjing Medical University, Nanjing, 210029, China
| | - Yuan-Jie Zou
- Department of Neurosurgery, The Affiliated Brain Hospital With Nanjing Medical University, Fourth Clinical College of Nanjing Medical University, Nanjing, 210029, China
| | - Kun Yang
- Department of Neurosurgery, The Affiliated Brain Hospital With Nanjing Medical University, Fourth Clinical College of Nanjing Medical University, Nanjing, 210029, China.
| | - Hong-Yi Liu
- Department of Neurosurgery, The Affiliated Brain Hospital With Nanjing Medical University, Fourth Clinical College of Nanjing Medical University, Nanjing, 210029, China.
- Department of Neuro-Psychiatric Institute, The Affiliated Brain Hospital With Nanjing Medical University, Nanjing, 210029, China.
- Institute of Neuro-Science, Nanjing Medical University, Nanjing, 210029, China.
| |
Collapse
|
7
|
Jia W, Tian H, Jiang J, Zhou L, Li L, Luo M, Ding N, Nice EC, Huang C, Zhang H. Brain-Targeted HFn-Cu-REGO Nanoplatform for Site-Specific Delivery and Manipulation of Autophagy and Cuproptosis in Glioblastoma. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2205354. [PMID: 36399643 DOI: 10.1002/smll.202205354] [Citation(s) in RCA: 37] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 10/16/2022] [Indexed: 06/16/2023]
Abstract
Durable glioblastoma multiforme (GBM) management requires long-term chemotherapy after surgery to eliminate remaining cancerous tissues. Among chemotherapeutics, temozolomide is considered as the first-line drug for GBM therapy, but the treatment outcome is not satisfactory. Notably, regorafenib, an oral multi-kinase inhibitor, has been reported to exert a markedly superior effect on GBM suppression compared with temozolomide. However, poor site-specific delivery and bioavailability significantly restrict the efficient permeability of regorafenib to brain lesions and compromise its treatment efficacy. Therefore, human H-ferritin (HFn), regorafenib, and Cu2+ are rationally designed as a brain-targeted nanoplatform (HFn-Cu-REGO NPs), fulfilling the task of site-specific delivery and manipulating autophagy and cuproptosis against GBM. Herein, HFn affords a preferential accumulation capacity to GBM due to transferrin receptor 1 (TfR1)-mediated active targeting and pH-responsive delivery behavior. Moreover, regorafenib can inhibit autophagosome-lysosome fusion, resulting in lethal autophagy arrest in GBM cells. Furthermore, Cu2+ not only facilitates the encapsulation of regorafenib to HFn through coordination interaction but also disturbs copper homeostasis for triggering cuproptosis, resulting in a synergistical effect with regorafenib-mediated lethal autophagy arrest against GBM. Therefore, this work may broaden the clinical application scope of Cu2+ and regorafenib in GBM treatment via modulating autophagy and cuproptosis.
Collapse
Affiliation(s)
- Wenhui Jia
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, P. R. China
| | - Hailong Tian
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, P. R. China
| | - Jingwen Jiang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, P. R. China
| | - Li Zhou
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, P. R. China
| | - Lei Li
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, P. R. China
| | - Maochao Luo
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, P. R. China
| | - Ning Ding
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, P. R. China
| | - Edouard C Nice
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC, 3800, Australia
| | - Canhua Huang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, P. R. China
| | - Haiyuan Zhang
- School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, Hubei, 434023, China
| |
Collapse
|
8
|
Zaitseva O, Hoffmann A, Otto C, Wajant H. Targeting fibroblast growth factor (FGF)-inducible 14 (Fn14) for tumor therapy. Front Pharmacol 2022; 13:935086. [PMID: 36339601 PMCID: PMC9634131 DOI: 10.3389/fphar.2022.935086] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 10/10/2022] [Indexed: 11/25/2022] Open
Abstract
Fibroblast growth factor-inducible 14 (Fn14) is a member of the tumor necrosis factor (TNF) receptor superfamily (TNFRSF) and is activated by its ligand TNF-like weak inducer of apoptosis (TWEAK). The latter occurs as a homotrimeric molecule in a soluble and a membrane-bound form. Soluble TWEAK (sTWEAK) activates the weakly inflammatory alternative NF-κB pathway and sensitizes for TNF-induced cell death while membrane TWEAK (memTWEAK) triggers additionally robust activation of the classical NF-κB pathway and various MAP kinase cascades. Fn14 expression is limited in adult organisms but becomes strongly induced in non-hematopoietic cells by a variety of growth factors, cytokines and physical stressors (e.g., hypoxia, irradiation). Since all these Fn14-inducing factors are frequently also present in the tumor microenvironment, Fn14 is regularly found to be expressed by non-hematopoietic cells of the tumor microenvironment and most solid tumor cells. In general, there are three possibilities how the tumor-Fn14 linkage could be taken into consideration for tumor therapy. First, by exploitation of the cancer associated expression of Fn14 to direct cytotoxic activities (antibody-dependent cell-mediated cytotoxicity (ADCC), cytotoxic payloads, CAR T-cells) to the tumor, second by blockade of potential protumoral activities of the TWEAK/Fn14 system, and third, by stimulation of Fn14 which not only triggers proinflammtory activities but also sensitizes cells for apoptotic and necroptotic cell death. Based on a brief description of the biology of the TWEAK/Fn14 system and Fn14 signaling, we discuss the features of the most relevant Fn14-targeting biologicals and review the preclinical data obtained with these reagents. In particular, we address problems and limitations which became evident in the preclinical studies with Fn14-targeting biologicals and debate possibilities how they could be overcome.
Collapse
Affiliation(s)
- Olena Zaitseva
- Division of Molecular Internal Medicine, Department of Internal Medicine II, University Hospital Würzburg, Würzburg, Germany
| | - Annett Hoffmann
- Department of General, Visceral, Transplantation,Vascular and Pediatric Surgery, University Hospital Würzburg, Würzburg, Germany
| | - Christoph Otto
- Department of General, Visceral, Transplantation,Vascular and Pediatric Surgery, University Hospital Würzburg, Würzburg, Germany
| | - Harald Wajant
- Division of Molecular Internal Medicine, Department of Internal Medicine II, University Hospital Würzburg, Würzburg, Germany
- *Correspondence: Harald Wajant,
| |
Collapse
|
9
|
Zhao S, Chi H, Ji W, He Q, Lai G, Peng G, Zhao X, Cheng C. A Bioinformatics-Based Analysis of an Anoikis-Related Gene Signature Predicts the Prognosis of Patients with Low-Grade Gliomas. Brain Sci 2022; 12:1349. [PMID: 36291283 PMCID: PMC9599312 DOI: 10.3390/brainsci12101349] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 09/27/2022] [Accepted: 10/03/2022] [Indexed: 11/16/2022] Open
Abstract
Low-grade glioma (LGG) is a highly aggressive disease in the skull. On the other hand, anoikis, a specific form of cell death induced by the loss of cell contact with the extracellular matrix, plays a key role in cancer metastasis. In this study, anoikis-related genes (ANRGs) were used to identify LGG subtypes and to construct a prognostic model for LGG patients. In addition, we explored the immune microenvironment and enrichment pathways between different subtypes. We constructed an anoikis-related gene signature using the TCGA (The Cancer Genome Atlas) cohort and investigated the differences between different risk groups in clinical features, mutational landscape, immune cell infiltration (ICI), etc. Kaplan-Meier analysis showed that the characteristics of ANRGs in the high-risk group were associated with poor prognosis in LGG patients. The risk score was identified as an independent prognostic factor. The high-risk group had higher ICI, tumor mutation load (TMB), immune checkpoint gene expression, and therapeutic response to immune checkpoint blockers (ICB). Functional analysis showed that these high-risk and low-risk groups had different immune statuses and drug sensitivity. Risk scores were used together with LGG clinicopathological features to construct a nomogram, and Decision Curve Analysis (DCA) showed that the model could enable patients to benefit from clinical treatment strategies.
Collapse
Affiliation(s)
- Songyun Zhao
- Department of Neurosurgery, Wuxi People’s Hospital Affiliated to Nanjing Medical University, Wuxi 214000, China
| | - Hao Chi
- Clinical Medicine College, Southwest Medical University, Luzhou 646000, China
| | - Wei Ji
- Department of Neurosurgery, Wuxi People’s Hospital Affiliated to Nanjing Medical University, Wuxi 214000, China
| | - Qisheng He
- Department of Neurosurgery, Wuxi People’s Hospital Affiliated to Nanjing Medical University, Wuxi 214000, China
| | - Guichuan Lai
- Department of Epidemiology and Health Statistics, School of Public Health, Chongqing Medical University, Yixue Road, Chongqing 400016, China
| | - Gaoge Peng
- Clinical Medicine College, Southwest Medical University, Luzhou 646000, China
| | - Xiaoyu Zhao
- Department of Neurosurgery, The First Affiliated Hospital of Xinjiang Medical University, Urumqi 830054, China
| | - Chao Cheng
- Department of Neurosurgery, Wuxi People’s Hospital Affiliated to Nanjing Medical University, Wuxi 214000, China
| |
Collapse
|
10
|
Güner G, Aßfalg M, Zhao K, Dreyer T, Lahiri S, Lo Y, Slivinschi BI, Imhof A, Jocher G, Strohm L, Behrends C, Langosch D, Bronger H, Nimsky C, Bartsch JW, Riddell SR, Steiner H, Lichtenthaler SF. Proteolytically generated soluble Tweak Receptor Fn14 is a blood biomarker for γ-secretase activity. EMBO Mol Med 2022; 14:e16084. [PMID: 36069059 PMCID: PMC9549706 DOI: 10.15252/emmm.202216084] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 07/29/2022] [Accepted: 08/15/2022] [Indexed: 11/12/2022] Open
Abstract
Fn14 is a cell surface receptor with key functions in tissue homeostasis and injury but is also linked to chronic diseases. Despite its physiological and medical importance, the regulation of Fn14 signaling and turnover is only partly understood. Here, we demonstrate that Fn14 is cleaved within its transmembrane domain by the protease γ‐secretase, resulting in secretion of the soluble Fn14 ectodomain (sFn14). Inhibition of γ‐secretase in tumor cells reduced sFn14 secretion, increased full‐length Fn14 at the cell surface, and enhanced TWEAK ligand‐stimulated Fn14 signaling through the NFκB pathway, which led to enhanced release of the cytokine tumor necrosis factor. γ‐Secretase‐dependent sFn14 release was also detected ex vivo in primary tumor cells from glioblastoma patients, in mouse and human plasma and was strongly reduced in blood from human cancer patients dosed with a γ‐secretase inhibitor prior to chimeric antigen receptor (CAR)‐T‐cell treatment. Taken together, our study demonstrates a novel function for γ‐secretase in attenuating TWEAK/Fn14 signaling and suggests the use of sFn14 as an easily measurable pharmacodynamic biomarker to monitor γ‐secretase activity in vivo.
Collapse
Affiliation(s)
- Gökhan Güner
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany.,Neuroproteomics, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Marlene Aßfalg
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany.,Neuroproteomics, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Kai Zhao
- Department of Neurosurgery, Philipps University Marburg, Marburg, Germany
| | - Tobias Dreyer
- Department of Gynecology and Obstetrics, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Shibojyoti Lahiri
- Protein Analysis Unit, Faculty of Medicine, Biomedical Center, LMU, Martinsried, Germany
| | - Yun Lo
- Immunotherapy Integrated Research Center, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Bianca Ionela Slivinschi
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany.,Neuroproteomics, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Axel Imhof
- Protein Analysis Unit, Faculty of Medicine, Biomedical Center, LMU, Martinsried, Germany
| | - Georg Jocher
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany.,Neuroproteomics, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Laura Strohm
- Munich Cluster for Systems Neurology (SyNergy), Medical Faculty, LMU, Munich, Germany
| | - Christian Behrends
- Munich Cluster for Systems Neurology (SyNergy), Medical Faculty, LMU, Munich, Germany
| | | | - Holger Bronger
- Department of Gynecology and Obstetrics, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany.,German Cancer Consortium (DKTK), partner site Munich and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Christopher Nimsky
- Department of Neurosurgery, Philipps University Marburg, Marburg, Germany
| | - Jörg W Bartsch
- Department of Neurosurgery, Philipps University Marburg, Marburg, Germany
| | - Stanley R Riddell
- Immunotherapy Integrated Research Center, Fred Hutchinson Cancer Research Center, Seattle, WA, USA.,Department of Medicine, University of Washington, Seattle, WA, USA
| | - Harald Steiner
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany.,Division of Metabolic Biochemistry, Faculty of Medicine, Biomedical Center (BMC), LMU, Munich, Germany
| | - Stefan F Lichtenthaler
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany.,Neuroproteomics, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany.,Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| |
Collapse
|
11
|
Pandey N, Anastasiadis P, Carney CP, Kanvinde PP, Woodworth GF, Winkles JA, Kim AJ. Nanotherapeutic treatment of the invasive glioblastoma tumor microenvironment. Adv Drug Deliv Rev 2022; 188:114415. [PMID: 35787387 PMCID: PMC10947564 DOI: 10.1016/j.addr.2022.114415] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 06/20/2022] [Accepted: 06/26/2022] [Indexed: 12/11/2022]
Abstract
Glioblastoma (GBM) is the most common malignant adult brain cancer with no curative treatment strategy. A significant hurdle in GBM treatment is effective therapeutic delivery to the brain-invading tumor cells that remain following surgery within functioning brain regions. Developing therapies that can either directly target these brain-invading tumor cells or act on other cell types and molecular processes supporting tumor cell invasion and recurrence are essential steps in advancing new treatments in the clinic. This review highlights some of the drug delivery strategies and nanotherapeutic technologies that are designed to target brain-invading GBM cells or non-neoplastic, invasion-supporting cells residing within the GBM tumor microenvironment.
Collapse
Affiliation(s)
- Nikhil Pandey
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD 21201, United States; Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201, United States
| | - Pavlos Anastasiadis
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD 21201, United States; Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201, United States
| | - Christine P Carney
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD 21201, United States; Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201, United States
| | - Pranjali P Kanvinde
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD 21201, United States; Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201, United States
| | - Graeme F Woodworth
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD 21201, United States; Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201, United States; Fischell Department of Bioengineering, A. James Clarke School of Engineering, University of Maryland, College Park, MD, 20742, United States
| | - Jeffrey A Winkles
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD 21201, United States; Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201, United States; Department of Surgery, University of Maryland School of Medicine, Baltimore, MD 21201, United States; Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, MD 21201, United States.
| | - Anthony J Kim
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD 21201, United States; Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201, United States; Department of Pharmacology, University of Maryland School of Medicine, Baltimore, MD 21201, United States; Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, MD 21201, United States; Fischell Department of Bioengineering, A. James Clarke School of Engineering, University of Maryland, College Park, MD, 20742, United States.
| |
Collapse
|
12
|
Peritumor Edema Serves as an Independent Predictive Factor of Recurrence Patterns and Recurrence-Free Survival for High-Grade Glioma. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2022; 2022:9547166. [PMID: 35936378 PMCID: PMC9348930 DOI: 10.1155/2022/9547166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 07/01/2022] [Accepted: 07/05/2022] [Indexed: 11/17/2022]
Abstract
Objective. This study is aimed at analyzing the factors affecting the recurrence patterns and recurrence-free survival (RFS) of high-grade gliomas (HGG). Methods. Eligible patients admitted to the Affiliated Hospital of Xuzhou Medical University were selected. Subsequently, the effects of some clinical data including age, gender, WHO pathological grades, tumor site, tumor size, clinical treatments, and peritumoral edema (PTE) area and molecular markers (Ki-67, MGMT, IDH-1, and p53) on HGG patients’ recurrence patterns and RFS were analyzed. Results. A total number of 77 patients were enrolled into this study. After analyzing all the cases, it was determined that tumor size and tumor site had a significant influence on the recurrent patterns of HGG, and PTE was an independent predict factor of recurrence patterns. Specifically, when the PTE was mild (<1 cm), the recurrence pattern tended to be local; in contrast, HGG was more likely to progress to marginal recurrence and distant recurrence. Furthermore, age and PTE were significantly associated with RFS; the median RFS of the population with
(23.60 months) was obviously longer than the population with
(5.00 months). Conclusions. PTE is an independent predictor of recurrence patterns and RFS for HGG. Therefore, preoperative identification of PTE in HGG patients is crucially important, which is helpful to accurately estimate the recurrence pattern and RFS.
Collapse
|
13
|
Lower Expression of TWEAK is Associated with Poor Survival and Dysregulate TIICs in Lung Adenocarcinoma. DISEASE MARKERS 2022; 2022:8661423. [PMID: 35707713 PMCID: PMC9192298 DOI: 10.1155/2022/8661423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 02/22/2022] [Accepted: 05/03/2022] [Indexed: 12/24/2022]
Abstract
Background. Lung cancer remains the leading cause of cancer death worldwide, and the most subtype is lung adenocarcinoma (LUAD). Tumor-infiltrating immune cells (TIICs) greatly impact the prognosis of LUAD. Tumor necrosis factor–like weak inducer of apoptosis (TWEAK), signal via its receptor fibroblast growth factor-inducible 14 (Fn14), dysregulates immune cell recruitment within tumor environment, thus promoting the progression of autoimmune diseases and cancer. We aimed to explore its role in LUAD. Methods. The expression level of TWEAK was explored in Tumor Immune Estimation Resource 2.0 (TIMER2.0) and Oncomine databases. The Tumor Immune Dysfunction and Exclusion (TIDE) and Lung Cancer Explorer (LCE) databases were applied to evaluate the survival in correlation to TWEAK expression. TIICs were assessed with TIMER2.0 and TIDE datasets. The expression of TWEAK protein was detected in LUAD cell lines and also in tissue samples from LUAD patients via western blotting or combination with immunochemistry. Results. Our results showed that TWEAK was downregulated in LUAD tumors compared to normal tissues in TIMER2.0, Oncomine, cell lines, and clinical specimens. Poor survival was uncovered in lower TWEAK expression of LUAD patients in LCE (
[95% CI, 0.76-0.92]) and TCGA (
,
) and GSE13213@PRECOG (
,
) in TIDE. Multiple tumor-infiltrating immune cells (TIICs) were found closely correlated with TWEAK expression in LUAD, especially hematopoietic stem cell (
,
), common lymphoid progenitor (
,
), and myeloid-derived suppressor cells (MDSCs) (
,
). Conclusion. Lower level of TWEAK was linked with poor survival and aberrant recruitment and phenotype of TIICs in LUAD, which might motivate immune escape and weaken the effects of immunotherapy.
Collapse
|
14
|
Tao R, Liu Q, Huang R, Wang K, Sun Z, Yang P, Wang J. A Novel TNFSF-Based Signature Predicts the Prognosis and Immunosuppressive Status of Lower-Grade Glioma. BIOMED RESEARCH INTERNATIONAL 2022; 2022:3194996. [PMID: 35592520 PMCID: PMC9112166 DOI: 10.1155/2022/3194996] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 02/22/2022] [Accepted: 03/03/2022] [Indexed: 02/08/2023]
Abstract
Purpose Tumour necrosis factor (TNF) superfamilies play important roles in cell proliferation, migration, differentiation, and apoptosis. We believe that TNF has a huge potential and might cast new insight into antitumour therapies. Therefore, we established this signature based on TNF superfamilies. Results A six-gene signature derived from the TNF superfamilies was established. The Riskscore correlated significantly with the expression of immune checkpoint genes and infiltrating M2 macrophages in the tumour specimen. This signature was also associated with mutations in genes that regulate tumour cell proliferation. Univariate and multivariate regression analyses further confirmed the Riskscore, TNFRSF11b, and TNFRSF12a as independent risk factors in The Cancer Genome Atlas and Chinese Glioma Genome Atlas datasets. Conclusion Our signature could accurately predict the prognosis of lower-grade gliomas (LGG). In addition, this six-gene signature could predict the immunosuppressive status of LGG and provide evidence that TNF superfamilies had correlations with some critical mutations that could be effectively targeted now.
Collapse
Affiliation(s)
- Rui Tao
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Qi Liu
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Ruoyu Huang
- Department of Neurosurgery, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Kuanyu Wang
- Gamma Knife Center, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Zhiyan Sun
- Department of Neurosurgery, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Pei Yang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Jiangfei Wang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
15
|
Sommer A, Berndt S, Lerchen HG, Forveille S, Sauvat A, Mumberg D, Kroemer G, Kepp O. Antibody–drug conjugates harboring a kinesin spindle protein inhibitor with immunostimulatory properties. Oncoimmunology 2022; 11:2037216. [PMID: 35154909 PMCID: PMC8837233 DOI: 10.1080/2162402x.2022.2037216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Antibody–drug conjugates (ADCs) are used to target cancer cells by means of antibodies directed to tumor-associated antigens, causing the incorporation of a cytotoxic payload into target cells. Here, we characterized the mode of action of ADC costing of a TWEAKR-specific monoclonal antibody conjugated to a small molecule kinesin spindle protein (KSP) inhibitor (KSPi). These TWEAKR-KSPi-ADCs showed strong efficacy in a TWEAKR expressing CT26 colon cancer model in mice. TWEAKR-KSPi-ADCs controlled the growth of CT26 colon cancers in immunodeficient as well as in immunocompetent mice. However, when treated with suboptimal doses, TWEAKR-KSPi-ADCs were still active in immunocompetent but not in immunodeficient mice, indicating that TWEAKR-KSPi-ADCs act – in addition to the cytotoxic mode of action – through an immunological mechanism. Indeed, in vitro experiments performed with a cell-permeable small molecule KSPi closely related to the active payload released from the TWEAKR-KSPi-ADCs revealed that KSPi was capable of stimulating several hallmarks of immunogenic cell death (ICD) on three different human cancer cell lines: cellular release of adenosine triphosphate (ATP) and high mobility group B1 protein (HMGB1), exposure of calreticulin on the cell surface as well as a transcriptional type-I interferon response. Further, in vivo experiments confirmed that treatment with TWEAKR-KSPi-ADCs activated immune responses via enhancing the infiltration of CD4+ and CD8+ T lymphocytes in tumors and the local production of interferon-γ, interleukin-2, and tumor necrosis factor-α. In conclusion, the antineoplastic effects of TWEAKR-KSPi-ADCs can partly be attributed to its ICD-stimulatory properties.
Collapse
Affiliation(s)
| | | | | | - Sabrina Forveille
- Equipe Labellisée Par la Ligue Contre le Cancer, Université de Paris, Sorbonne Université, INSERM UMR1138, Centre de Recherche Des Cordeliers, Paris, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy, Villejuif, France
| | - Allan Sauvat
- Equipe Labellisée Par la Ligue Contre le Cancer, Université de Paris, Sorbonne Université, INSERM UMR1138, Centre de Recherche Des Cordeliers, Paris, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy, Villejuif, France
| | | | - Guido Kroemer
- Equipe Labellisée Par la Ligue Contre le Cancer, Université de Paris, Sorbonne Université, INSERM UMR1138, Centre de Recherche Des Cordeliers, Paris, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy, Villejuif, France
- Suzhou Institute for Systems Medicine, Chinese Academy of Medical Sciences, Suzhou, China
- Pôle de Biologie, Hôpital Européen Georges Pompidou, AP-HP, Paris, France
- Karolinska Institutet, Department of Women’s and Children’s Health, Karolinska University Hospital, Stockholm, Sweden
| | - Oliver Kepp
- Equipe Labellisée Par la Ligue Contre le Cancer, Université de Paris, Sorbonne Université, INSERM UMR1138, Centre de Recherche Des Cordeliers, Paris, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy, Villejuif, France
| |
Collapse
|
16
|
Gazaille C, Sicot M, Saulnier P, Eyer J, Bastiat G. Local Delivery and Glioblastoma: Why Not Combining Sustained Release and Targeting? FRONTIERS IN MEDICAL TECHNOLOGY 2022; 3:791596. [PMID: 35047971 PMCID: PMC8757870 DOI: 10.3389/fmedt.2021.791596] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 10/28/2021] [Indexed: 12/18/2022] Open
Abstract
Glioblastoma is one of the most aggressive brain tumors and is associated with a very low overall median survival despite the current treatment. The standard of care used in clinic is the Stupp's protocol which consists of a maximal resection of the tumor when possible, followed by radio and chemotherapy using temozolomide. However, in most cases, glioblastoma cells infiltrate healthy tissues and lead to fatal recurrences. There are a lot of hurdles to overcome in the development of new therapeutic strategies such as tumor heterogeneity, cell infiltration, alkylating agent resistance, physiological barriers, etc., and few treatments are on the market today. One of them is particularly appealing because it is a local therapy, which does not bring additional invasiveness since tumor resection is included in the gold standard treatment. They are implants: the Gliadel® wafers, which are deposited post-surgery. Nevertheless, in addition to presenting important undesirable effects, it does not bring any major benefit in the therapy despite the strategy being particularly attractive. The purpose of this review is to provide an overview of recent advances in the development of innovative therapeutic strategies for glioblastoma using an implant-type approach. The combination of this local strategy with effective targeting of the tumor microenvironment as a whole, also developed in this review, may be of interest to alleviate some of the obstacles encountered in the treatment of glioblastoma.
Collapse
Affiliation(s)
| | - Marion Sicot
- Univ Angers, Inserm, CNRS, MINT, SFR ICAT, Angers, France
| | | | - Joël Eyer
- Univ Angers, Inserm, CNRS, MINT, SFR ICAT, Angers, France
| | | |
Collapse
|
17
|
Li G, Zhang Z, Cai L, Tang X, Huang J, Yu L, Wang G, Zhong K, Cao Y, Liu C, Wang Y, Tong A, Zhou L. Fn14-targeted BiTE and CAR-T cells demonstrate potent preclinical activity against glioblastoma. Oncoimmunology 2021; 10:1983306. [PMID: 34595061 PMCID: PMC8477963 DOI: 10.1080/2162402x.2021.1983306] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
T cell-engaging therapies involving bispecific T cell engager (BiTE) and chimeric antigen receptor T (CAR-T) cells have achieved great success in the treatment of hematological tumors. However, the paucity of ideal cell surface molecules that can be targeted on glioblastoma (GBM) partially reduces the immunotherapeutic efficacy. Recently, high expression of Fn14 has been reported in several solid tumors, so the strategy of exploiting this specific antigen for GBM immunotherapy is worth studying. Consequently, we constructed Fn14× CD3 BiTE and Fn14-specific CAR-T cells and investigated their cytotoxic activity against GBM in vitro and in vivo. First, expression of Fn14 was confirmed in glioma tissues and GBM cells. Then, we designed Fn14-specific BiTE and CAR-T cells and tested their cytotoxicity in GBM cell cultures and mouse models of GBM. Fn14 was highly expressed in GBM tissues and cell lines, while it was undetectable in normal brain samples. Fn14× CD3 BiTE, Fn14 CAR-T cells and Fn14 CAR-T/IL-15 cells were antigen-specific and highly cytotoxic, showing good antitumor activity in vitro and causing significant regression of established solid tumors in xenograft models. However, the xenografts treated with Fn14 CAR-T cells regrew, whereas xenografts treated with Fn14 CAR-T/IL-15 cells did not. IL-15 engineering augmented the antitumor activity of Fn14 CAR-T cells and resulted in significant antitumor effects similar to those of Fn14× CD3 BiTE. Our results suggest that Fn14 is an appropriate target for GBM. Anti-Fn14 BiTE and Fn14-specific CAR-T/IL-15 cells may be exciting immunotherapeutic options for malignant brain cancer.
Collapse
Affiliation(s)
- Gaowei Li
- Department of Neurosurgery, West China Hospital, West China School of Medicine, Sichuan University, Chengdu, Sichuan Province, People's Republic of China
| | - Zongliang Zhang
- State Key Laboratory of Biotherapy, West China Hospital, West China School of Medicine, Sichuan University, Chengdu, Sichuan Province, People's Republic of China
| | - Linjun Cai
- Department of Neurology, West China Hospital, West China School of Medicine, Sichuan University, Chengdu, Sichuan Province, People's Republic of China
| | - Xin Tang
- Department of Neurosurgery, West China Hospital, West China School of Medicine, Sichuan University, Chengdu, Sichuan Province, People's Republic of China
| | - Jianhan Huang
- Department of Neurosurgery, West China Hospital, West China School of Medicine, Sichuan University, Chengdu, Sichuan Province, People's Republic of China
| | - Lingyu Yu
- Department of Otolaryngology, Head and Neck Surgery, West China Hospital, West China School of Medicine, Sichuan University, Chengdu, Sichuan Province, People's Republic of China
| | - Guoqing Wang
- Department of Neurosurgery, West China Hospital, West China School of Medicine, Sichuan University, Chengdu, Sichuan Province, People's Republic of China
| | - Kunhong Zhong
- State Key Laboratory of Biotherapy, West China Hospital, West China School of Medicine, Sichuan University, Chengdu, Sichuan Province, People's Republic of China
| | - Yi Cao
- Department of Neurosurgery, West China Hospital, West China School of Medicine, Sichuan University, Chengdu, Sichuan Province, People's Republic of China
| | - Chang Liu
- Department of Neurosurgery, West China Hospital, West China School of Medicine, Sichuan University, Chengdu, Sichuan Province, People's Republic of China
| | - Yuelong Wang
- Department of Neurosurgery, West China Hospital, West China School of Medicine, Sichuan University, Chengdu, Sichuan Province, People's Republic of China
| | - Aiping Tong
- State Key Laboratory of Biotherapy, West China Hospital, West China School of Medicine, Sichuan University, Chengdu, Sichuan Province, People's Republic of China
| | - Liangxue Zhou
- Department of Neurosurgery, West China Hospital, West China School of Medicine, Sichuan University, Chengdu, Sichuan Province, People's Republic of China
| |
Collapse
|
18
|
Connolly NP, Galisteo R, Xu S, Bar EE, Peng S, Tran NL, Ames HM, Kim AJ, Woodworth GF, Winkles JA. Elevated fibroblast growth factor-inducible 14 expression transforms proneural-like gliomas into more aggressive and lethal brain cancer. Glia 2021; 69:2199-2214. [PMID: 33991013 PMCID: PMC8596752 DOI: 10.1002/glia.24018] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 03/28/2021] [Accepted: 04/28/2021] [Indexed: 12/20/2022]
Abstract
High-grade gliomas (HGGs) are aggressive, treatment-resistant, and often fatal human brain cancers. The TNF-like weak inducer of apoptosis (TWEAK)/fibroblast growth factor-inducible 14 (Fn14) signaling axis is involved in tissue repair after injury and constitutive signaling has been implicated in the pathogenesis of numerous solid cancers. The Fn14 gene is expressed at low levels in the normal, uninjured brain but is highly expressed in primary isocitrate dehydrogenase wild-type and recurrent HGGs. Fn14 signaling is implicated in numerous aspects of glioma biology including brain invasion and chemotherapy resistance, but whether Fn14 overexpression can directly promote tumor malignancy has not been reported. Here, we used the replication-competent avian sarcoma-leukosis virus/tumor virus A system to examine the impact of Fn14 expression on glioma development and pathobiology. We found that the sole addition of Fn14 to an established oncogenic cocktail previously shown to generate proneural-like gliomas led to the development of highly invasive and lethal brain cancer with striking biological features including extensive pseudopalisading necrosis, constitutive canonical and noncanonical NF-κB pathway signaling, and high plasminogen activator inhibitor-1 (PAI-1) expression. Analyses of HGG patient datasets revealed that high human PAI-1 gene (SERPINE1) expression correlates with shorter patient survival, and that the SERPINE1 and Fn14 (TNFRSF12A) genes are frequently co-expressed in bulk tumor tissues, in tumor subregions, and in malignant cells residing in the tumor microenvironment. These findings provide new insights into the potential importance of Fn14 in human HGG pathobiology and designate both the NF-κB signaling node and PAI-1 as potential targets for therapeutic intervention. MAIN POINTS: This work demonstrates that elevated levels of the TWEAK receptor Fn14 in tumor-initiating, neural progenitor cells leads to the transformation of proneural-like gliomas into more aggressive and lethal tumors that exhibit constitutive NF-κB pathway activation and plasminogen activator inhibitor-1 overexpression.
Collapse
Affiliation(s)
- Nina P. Connolly
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, Maryland
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, Maryland
| | - Rebeca Galisteo
- Department of Surgery, University of Maryland School of Medicine, Baltimore, Maryland
- Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, Maryland
| | - Su Xu
- Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, Baltimore, Maryland
- Center for Advanced Imaging Research, University of Maryland School of Medicine, Baltimore, Maryland
| | - Eli E. Bar
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, Maryland
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, Maryland
- Department of Pathology, University of Maryland School of Medicine, Baltimore, Maryland
| | - Sen Peng
- Cancer and Cell Biology Division, Translational Genomics Research Institute, Phoenix, Arizona
| | - Nhan L. Tran
- Departments of Cancer Biology and Neurosurgery, Mayo Clinic Arizona, Scottsdale, Arizona
| | - Heather M. Ames
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, Maryland
- Department of Pathology, University of Maryland School of Medicine, Baltimore, Maryland
| | - Anthony J. Kim
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, Maryland
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, Maryland
| | - Graeme F. Woodworth
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, Maryland
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, Maryland
| | - Jeffrey A. Winkles
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, Maryland
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, Maryland
- Department of Surgery, University of Maryland School of Medicine, Baltimore, Maryland
- Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, Maryland
| |
Collapse
|
19
|
Nan Y, Guo L, Lu Y, Guo G, Hong R, Zhao L, Wang L, Ren B, Yu K, Zhong Y, Huang Q. miR-451 suppresses EMT and metastasis in glioma cells. Cell Cycle 2021; 20:1270-1278. [PMID: 34048322 PMCID: PMC8331032 DOI: 10.1080/15384101.2021.1933303] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 05/13/2021] [Accepted: 05/19/2021] [Indexed: 12/11/2022] Open
Abstract
The metastasis of tumor cells is a challenge for the clinical treatment of glioma. Epithelial-mesenchymal transition (EMT) contributes to glioma cell invasiveness. Our previous study confirmed that the expression of miRNA-451, which inhibits the PI3K/Akt signaling pathway by directly targeting CAB39 and plays a repressive role in glioma, is downregulated in glioma. However, the specific mechanism of miRNA-451 regulation in glioma is unclear. In this study, we investigated whether miRNA-451 blocks the processes of EMT and metastasis in glioma cells in vivo and in vitro. By targeting CAB39, miRNA-451 likely triggers the PI3K/Akt/Snail signaling pathway to reduce glioma proliferation, invasion, migration and EMT. We used Western blotting experiments to demonstrate that overexpression of miRNA-451 significantly reduced p-AKT(Ser473), N-cadherin, Vimentin, Twist, Snail and Cyclin D1 expression and increased E-cadherin expression. We demonstrated that overexpression of miR-451 suppressed glioma cell proliferation, invasion, migration and EMT by MTT and colony formation assays, Transwell assays, wound healing assays and animal experiments. Taken together, these results suggest that miRNA-451 can reduce EMT and metastasis in glioma cells through the suppression of the PI3K/Akt/Snail signaling pathway by targeting CAB39 in vitro and in vivo. miR-451 may be a new target for glioma treatment.
Collapse
Affiliation(s)
- Yang Nan
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
- Department of Neurosurgery, Tianjin Medical University General Hospital Airport Site, Tianjin, China
- Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin, China
| | - Liyun Guo
- Department of Hemodialysis Center, Tianjin Medical University General Hospital Airport Site, Tianjin, China
| | - Yalin Lu
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
| | - Gaochao Guo
- Department of Neurosurgery, Henan Provincial People’s Hospital, People’s Hospital of Zhengzhou University, Zhengzhou, China
| | - Rujun Hong
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
| | - Liwen Zhao
- Department of Neurosurgery, Tianjin Medical University General Hospital Airport Site, Tianjin, China
| | - Le Wang
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
- Department of Neurosurgery, Tianjin Medical University General Hospital Airport Site, Tianjin, China
| | - Bingcheng Ren
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
- Department of Neurosurgery, Tianjin Medical University General Hospital Airport Site, Tianjin, China
| | - Kai Yu
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
| | - Yue Zhong
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
- Department of Neurosurgery, Tianjin Medical University General Hospital Airport Site, Tianjin, China
- Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin, China
| | - Qiang Huang
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
- Department of Neurosurgery, Tianjin Medical University General Hospital Airport Site, Tianjin, China
- Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin, China
| |
Collapse
|
20
|
Zhang Y, Yang X, Zhu XL, Wang ZZ, Bai H, Zhang JJ, Hao CY, Duan HB. A Novel Immune-Related Prognostic Biomarker and Target Associated With Malignant Progression of Glioma. Front Oncol 2021; 11:643159. [PMID: 33937046 PMCID: PMC8085360 DOI: 10.3389/fonc.2021.643159] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 03/23/2021] [Indexed: 12/31/2022] Open
Abstract
Background Glioma is one of the most common malignancies in the central nervous system and has limited effective therapeutic options. Therefore, we sought to identify a suitable target for immunotherapy. Materials and Methods We screened prognostic genes for glioma in the CGGA database and GSE43378 dataset using survival analysis, receiver operating characteristic (ROC) curves, independent prognostic analysis, and clinical correlation analysis. The results were intersected with immune genes from the ImmPort database through Venn diagrams to obtain likely target genes. The target genes were validated as prognostically relevant immune genes for glioma using survival, ROC curve, independent prognostic, and clinical correlation analyses in samples from the CGGA database and GSE43378 dataset, respectively. We also constructed a nomogram using statistically significant glioma prognostic factors in the CGGA samples and verified their sensitivity and specificity with ROC curves. The functions, pathways, and co-expression-related genes for the glioma target genes were assessed using PPI networks, enrichment analysis, and correlation analysis. The correlation between target gene expression and immune cell infiltration in glioma and the relationship with the survival of glioma patients were investigated using the TIMER database. Finally, target gene expression in normal brain, low-grade glioma, and high-grade glioma tissues was detected using immunohistochemical staining. Results We identified TNFRSF12A as the target gene. Satisfactory results from survival, ROC curve, independent prognosis, and clinical correlation analyses in the CGGA and GSE43378 samples verified that TNFRSF12A was significantly associated with the prognosis of glioma patients. A nomogram was constructed using glioma prognostic correlates, including TNFRSF12A expression, primary-recurrent-secondary (PRS) type, grade, age, chemotherapy, IDH mutation, and 1p19q co-deletion in CGGA samples with an AUC value of 0.860, which illustrated the accuracy of the prognosis prediction. The results of the TIMER analysis validated the significant correlation of TNFRSF12A with immune cell infiltration and glioma survival. The immunohistochemical staining results verified the progressive up-regulation of TNFRSF12A expression in normal brain, low-grade glioma, and high-grade glioma tissues. Conclusion We concluded that TNFRSF12A was a viable prognostic biomarker and a potential immunotherapeutic target for glioma.
Collapse
Affiliation(s)
- Yu Zhang
- Department of Neurosurgery, First Hospital of Shanxi Medical University, Taiyuan, China
| | - Xin Yang
- Department of Neurosurgery, First Hospital of Shanxi Medical University, Taiyuan, China
| | - Xiao-Lin Zhu
- Department of Neurosurgery, First Hospital of Shanxi Medical University, Taiyuan, China
| | - Zhuang-Zhuang Wang
- Department of Neurosurgery, First Hospital of Shanxi Medical University, Taiyuan, China
| | - Hao Bai
- Department of Neurosurgery, First Hospital of Shanxi Medical University, Taiyuan, China
| | - Jun-Jie Zhang
- Department of Neurosurgery, First Hospital of Shanxi Medical University, Taiyuan, China
| | - Chun-Yan Hao
- Department of Geriatrics, First Hospital of Shanxi Medical University, Taiyuan, China
| | - Hu-Bin Duan
- Department of Neurosurgery, First Hospital of Shanxi Medical University, Taiyuan, China.,Department of Neurosurgery, Lvliang People's Hospital, Lvliang, China
| |
Collapse
|
21
|
Arya KR, Bharath Chand RP, Abhinand CS, Nair AS, Oommen OV, Sudhakaran PR. Identification of Hub Genes and Key Pathways Associated with Anti- VEGF Resistant Glioblastoma Using Gene Expression Data Analysis. Biomolecules 2021; 11:biom11030403. [PMID: 33803224 PMCID: PMC8000064 DOI: 10.3390/biom11030403] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 03/02/2021] [Indexed: 12/30/2022] Open
Abstract
Anti-VEGF therapy is considered to be a useful therapeutic approach in many tumors, but the low efficacy and drug resistance limit its therapeutic potential and promote tumor growth through alternative mechanisms. We reanalyzed the gene expression data of xenografts of tumors of bevacizumab-resistant glioblastoma multiforme (GBM) patients, using bioinformatics tools, to understand the molecular mechanisms of this resistance. An analysis of the gene set data from three generations of xenografts, identified as 646, 873 and 1220, differentially expressed genes (DEGs) in the first, fourth and ninth generations, respectively, of the anti-VEGF-resistant GBM cells. Gene Ontology (GO) and pathway enrichment analyses demonstrated that the DEGs were significantly enriched in biological processes such as angiogenesis, cell proliferation, cell migration, and apoptosis. The protein–protein interaction network and module analysis revealed 21 hub genes, which were enriched in cancer pathways, the cell cycle, the HIF1 signaling pathway, and microRNAs in cancer. The VEGF pathway analysis revealed nine upregulated (IL6, EGFR, VEGFA, SRC, CXCL8, PTGS2, IDH1, APP, and SQSTM1) and five downregulated hub genes (POLR2H, RPS3, UBA52, CCNB1, and UBE2C) linked with several of the VEGF signaling pathway components. The survival analysis showed that three upregulated hub genes (CXCL8, VEGFA, and IDH1) were associated with poor survival. The results predict that these hub genes associated with the GBM resistance to bevacizumab may be potential therapeutic targets or can be biomarkers of the anti-VEGF resistance of GBM.
Collapse
|
22
|
Alvarez de Cienfuegos A, Cheung LH, Mohamedali KA, Whitsett TG, Winkles JA, Hittelman WN, Rosenblum MG. Therapeutic efficacy and safety of a human fusion construct targeting the TWEAK receptor Fn14 and containing a modified granzyme B. J Immunother Cancer 2020; 8:jitc-2020-001138. [PMID: 32958685 PMCID: PMC7507898 DOI: 10.1136/jitc-2020-001138] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/08/2020] [Indexed: 12/02/2022] Open
Abstract
Background Antibody-drug conjugates are an exceptional and useful therapeutic tool for multiple diseases, particularly for cancer treatment. We previously showed that the fusion of the serine protease granzyme B (GrB), the effector molecule or T and B cells, to a binding domain allows the controlled and effective delivery of the cytotoxic payload into the target cell. The production of these constructs induced the formation of high molecular aggregates with a potential impact on the efficacy and safety of the protein. Methods Our laboratory designed a new Fn14 targeted fusion construct designated GrB(C210A)-Fc-IT4 which contains a modified GrB payload for improved protein production and preserved biological activity. We assessed the construct’s enzymatic activity, as well as in vitro cytotoxicity and internalization into target cells. We also assessed pharmacokinetics, efficacy and toxicology parameters in vivo. Results GrB(C210A)-Fc-IT4 protein exhibited high affinity and selective cytotoxicity within the nanomolar range when tested against a panel of Fn14-positive human cancer cell lines. The construct rapidly internalized into target cells, activating the caspase cascade and causing mitochondrial membrane depolarization. Pharmacokinetic studies in mice revealed that GrB(C210A)-Fc-IT4 displayed a bi-exponential clearance from plasma with a fast initial clearance (t1/2α=0.36 hour) followed by a prolonged terminal-phase plasma half-life (t1/2β=35 hours). Mice bearing MDA-MB-231 orthotopic tumor xenografts treated with vehicle or GrB(C210A)-Fc-IT4 construct (QODx5) demonstrated tumor regression and long-term (>80 days) suppression of tumor growth. Treatment of mice bearing established, subcutaneous A549 lung tumors showed impressive, long-term tumor suppression compared with a control group treated with vehicle alone. Administration of GrB(C210A)-Fc-IT4 (100 mg/kg total dose) was well-tolerated by mice and resulted in significant reduction of tumor burden in a lung cancer patient-derived xenograft model. Toxicity studies revealed no statistically significant changes in aspartate transferase, alanine transferase or lactate dehydrogenase in treated mice. Histopathological analysis of tissues from treated mice did not demonstrate any specific drug-related changes. Conclusion GrB(C210A)-Fc-IT4 demonstrated excellent, specific cytotoxicity in vitro and impressive in vivo efficacy with no significant toxicity in normal murine models. These studies show GrB(C210A)-Fc-IT4 is an excellent candidate for further preclinical development.
Collapse
Affiliation(s)
- Ana Alvarez de Cienfuegos
- Experimental Therapeutics, University of Texas MD Anderson Cancer Center Division of Cancer Medicine, Houston, Texas, USA
| | - Lawrence H Cheung
- Experimental Therapeutics, University of Texas MD Anderson Cancer Center Division of Cancer Medicine, Houston, Texas, USA
| | - Khalid A Mohamedali
- Experimental Therapeutics, University of Texas MD Anderson Cancer Center Division of Cancer Medicine, Houston, Texas, USA
| | | | - Jeffrey A Winkles
- Department of Surgery, Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Walter N Hittelman
- Experimental Therapeutics, University of Texas MD Anderson Cancer Center Division of Cancer Medicine, Houston, Texas, USA
| | - Michael G Rosenblum
- Experimental Therapeutics, University of Texas MD Anderson Cancer Center Division of Cancer Medicine, Houston, Texas, USA
| |
Collapse
|
23
|
Zhang J, Fang S, Song W, Zhang B, Fan W, Jin G, Liu F. Biological Characterization and Therapeutics for Subscalp Recurrent in Intracranial Glioblastoma. Onco Targets Ther 2020; 13:9085-9099. [PMID: 32982297 PMCID: PMC7498653 DOI: 10.2147/ott.s265322] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 08/28/2020] [Indexed: 01/01/2023] Open
Abstract
Purpose Gliomas are common intracranial tumors, of which 70% are malignant gliomas. Glioblastoma multiforme (GBM) is the most aggressive tumor, and patients with GBM have a median survival time of only 9–12 months; extracranial recurrence of GBM is very rare. A therapeutic strategy for this kind of recurrent tumor is lacking. Materials and Methods We present a case of a patient with extracranial recurrence of subscalp GBM. The subscalp tumor was resected and xenotransplanted into BALB/C nude mice. Then, glioma cells were isolated from the xenograft models and passaged in vitro. HE staining, immunohistochemistry, CCK-8 assays, karyotypic analysis, short tandem repeat STR analysis and flow cytometry were used to analyze the biological characteristics and malignant phenotype of these established cells. The cells and xenografts were then used as preclinical models to evaluate the antitumor efficacy of oncolytic herpes simplex virus 1 (oHSV-1). Results The isolated cells, which were named BT-01, were positive for Nestin and GFAP. The main characteristics of BT-01 cells were that they harbored glioblastoma stem-like cells (GSCs) and that they possessed highly aggressive migration capacities compared with the existing cell lines U87-MG and U251-MG. Moreover, BT-01 cells tolerated the chemotherapeutic drug temozolomide. Our study showed that oHSV-1 could replicate in and repress the growth of BT-01 cells and significantly inhibit tumor growth in xenograft models. Conclusion Taken together, our results showed that a new recurrent glioblastoma cell line was established, which can be useful for research on recurrent glioblastoma. We provided a reliable preclinical model to evaluate the antitumor efficacy of oHSV-1 in vivo and a promising therapy for recurrent GBM.
Collapse
Affiliation(s)
- Junwen Zhang
- Brain Tumor Research Center, Beijing Neurosurgical Institute, Beijing Laboratory of Biomedical Materials, Beijing Tiantan Hospital Affiliated to Capital Medical University, Beijing 100070, People's Republic of China
| | - Sheng Fang
- Brain Tumor Research Center, Beijing Neurosurgical Institute, Beijing Laboratory of Biomedical Materials, Beijing Tiantan Hospital Affiliated to Capital Medical University, Beijing 100070, People's Republic of China
| | - Wenjie Song
- Brain Tumor Research Center, Beijing Neurosurgical Institute, Beijing Laboratory of Biomedical Materials, Beijing Tiantan Hospital Affiliated to Capital Medical University, Beijing 100070, People's Republic of China
| | - Bo Zhang
- Brain Tumor Research Center, Beijing Neurosurgical Institute, Beijing Laboratory of Biomedical Materials, Beijing Tiantan Hospital Affiliated to Capital Medical University, Beijing 100070, People's Republic of China
| | - Wenhua Fan
- Brain Tumor Research Center, Beijing Neurosurgical Institute, Beijing Laboratory of Biomedical Materials, Beijing Tiantan Hospital Affiliated to Capital Medical University, Beijing 100070, People's Republic of China
| | - Guishan Jin
- Brain Tumor Research Center, Beijing Neurosurgical Institute, Beijing Laboratory of Biomedical Materials, Beijing Tiantan Hospital Affiliated to Capital Medical University, Beijing 100070, People's Republic of China
| | - Fusheng Liu
- Brain Tumor Research Center, Beijing Neurosurgical Institute, Beijing Laboratory of Biomedical Materials, Beijing Tiantan Hospital Affiliated to Capital Medical University, Beijing 100070, People's Republic of China
| |
Collapse
|
24
|
Guo G, Sun Y, Hong R, Xiong J, Lu Y, Liu Y, Lu J, Zhang Z, Guo C, Nan Y, Huang Q. IKBKE enhances TMZ-chemoresistance through upregulation of MGMT expression in glioblastoma. Clin Transl Oncol 2019; 22:1252-1262. [PMID: 31865606 DOI: 10.1007/s12094-019-02251-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Accepted: 11/24/2019] [Indexed: 01/05/2023]
Abstract
PURPOSE Glioblastoma multiforme (GBM) is the most common and aggressive malignant type of brain tumor. Despite advances in diagnosis and therapy, the prognosis of patients with GBM has remained dismal. Multidrug resistance and high recurrence are two of the major challenges in successfully treating brain tumors. IKBKE (inhibitor of nuclear factor kappa-B kinase subunit epsilon) is a major oncogenic protein in tumors and can inhibit glioblastoma cell proliferation, migration, and tumorigenesis. Our study aimed to investigate the mechanism of IKBKE enhancing the resistance of glioma cells to temozolomide. METHODS For the in vitro experiments, LN18 and U118 glioblastoma cells were treated with a combination of sh/oe-IKBKE lentivirus and TMZ. Cell proliferation was determined by the EdU assay and colony formation assays. Apoptosis was analyzed by the TUNEL assay. In vivo, LN18 NC and LN18 sh-IKBKE cells were implanted into the cerebrums of nude mice to detect the effect of combination therapy. The protein and mRNA levels were assayed by western blot, immunohistochemistry, and qRT-PCR. RESULTS In this study, we demonstrated that IKBKE enhances the resistance of glioblastoma cells to temozolomide (TMZ) by activating the AKT/NF-κB signaling pathway to upregulate the expression of the DNA repair enzyme o6-methylguanine-dna methyltransferase (MGMT). In glioblastoma cells, IKBKE knockdown enhances apoptosis and suppresses cell proliferation, clone formation, and tumor development in vivo induced by TMZ. However, overexpression of IKBKE reduces the effects of TMZ. CONCLUSION Our studies suggest that inhibition of IKBKE can enhance the therapeutic effect of TMZ on GBM in vitro and in vivo, providing new research directions and therapeutic targets for the treatment of GBM.
Collapse
Affiliation(s)
- G Guo
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, 300052, China.,Key Laboratory of Post-Trauma Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Tianjin, China.,Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin, China
| | - Y Sun
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, 300052, China.,Key Laboratory of Post-Trauma Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Tianjin, China.,Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin, China
| | - R Hong
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, 300052, China.,Key Laboratory of Post-Trauma Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Tianjin, China.,Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin, China
| | - J Xiong
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, 300052, China.,Key Laboratory of Post-Trauma Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Tianjin, China.,Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin, China
| | - Y Lu
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, 300052, China.,Key Laboratory of Post-Trauma Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Tianjin, China.,Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin, China
| | - Y Liu
- Department of Neurosurgery, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, 450003, Henan, China
| | - J Lu
- Department of Neurosurgery, Shandong Province Qianfoshan Hospital of Shandong University, Jinan, 250014, Shandong, China
| | - Z Zhang
- Department of Neurosurgery, Ningbo Hospital of Zhejiang University, Ningbo, 315000, Zhejiang, China
| | - C Guo
- Department of Clinical Pharmacology, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, 450003, Henan, China
| | - Y Nan
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, 300052, China.,Key Laboratory of Post-Trauma Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Tianjin, China.,Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin, China
| | - Q Huang
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, 300052, China. .,Key Laboratory of Post-Trauma Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Tianjin, China. .,Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin, China.
| |
Collapse
|
25
|
Fu W, You C, Ma L, Li H, Ju Y, Guo X, Shi S, Zhang T, Zhou R, Lin Y. Enhanced Efficacy of Temozolomide Loaded by a Tetrahedral Framework DNA Nanoparticle in the Therapy for Glioblastoma. ACS APPLIED MATERIALS & INTERFACES 2019; 11:39525-39533. [PMID: 31601097 DOI: 10.1021/acsami.9b13829] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Glioblastoma (GBM) is one of the deadliest primary brain malignant tumors with a bleak prognosis. Craniotomy surgical resection followed by radiotherapy and chemotherapy was still the standard therapeutic strategy for GBM. As a target alkylating agent, temozolomide (TMZ) was utilized in the therapy of GBM for decades. However, effective treatment for GBM is stymied by rapid acquired resistance and bone marrow suppression. Here, we synthesize a tetrahedral framework nucleic acid (tFNA) nanoparticle that can carry TMZ to enhance the lethality on four GBM cell lines via activating the cell apoptosis and autophagy pathway. Our nanoparticle, namely, tFNA-TMZ, shows a more obvious efficacy in killing TMZ-sensitive cells (A172 and U87) than single-agent TMZ. Besides, tFNA-TMZ was able to attenuate drug resistance in TMZ-resistant cells (T98G and LN-18) via downregulating the expression of O6-methylguanine-DNA-methyltransferase. Furthermore, we modified the tFNA with GS24, a DNA aptamer that can specially bind to transferrin receptor in the cerebral vascular endothelial cell of mouse and enable the tFNA nanoparticle to cross the blood-brain barrier. In summary, our results demonstrated that tFNA-TMZ has a promising role as a nanoscale vehicle to deliver TMZ to enhance the efficacy of GBM.
Collapse
Affiliation(s)
- Wei Fu
- Department of Neurosurgery , West China Hospital of Sichuan University , Chengdu 610000 , P. R. China
| | - Chao You
- Department of Neurosurgery , West China Hospital of Sichuan University , Chengdu 610000 , P. R. China
| | - Lu Ma
- Department of Neurosurgery , West China Hospital of Sichuan University , Chengdu 610000 , P. R. China
| | - Hao Li
- Department of Neurosurgery , West China Hospital of Sichuan University , Chengdu 610000 , P. R. China
| | - Yan Ju
- Department of Neurosurgery , West China Hospital of Sichuan University , Chengdu 610000 , P. R. China
| | - Xi Guo
- Department of Neurosurgery , West China Hospital of Sichuan University , Chengdu 610000 , P. R. China
| | - Sirong Shi
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology , Sichuan University , Chengdu 610041 , P. R. China
| | - Tao Zhang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology , Sichuan University , Chengdu 610041 , P. R. China
| | - Ronghui Zhou
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology , Sichuan University , Chengdu 610041 , P. R. China
| | - Yunfeng Lin
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology , Sichuan University , Chengdu 610041 , P. R. China
| |
Collapse
|
26
|
Yu X, Wang M, Zuo J, Wahafu A, Mao P, Li R, Wu W, Xie W, Wang J. Nuclear factor I A promotes temozolomide resistance in glioblastoma via activation of nuclear factor κB pathway. Life Sci 2019; 236:116917. [PMID: 31614149 DOI: 10.1016/j.lfs.2019.116917] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 09/23/2019] [Accepted: 09/25/2019] [Indexed: 12/23/2022]
Abstract
AIMS To investigate the underlying mechanism by which glioblastoma (GBM) cells gain temozolomide (TMZ) resistance and to clarify novel therapeutic targets and new prognostic biomarkers for GBM. MAIN METHODS A genome-wide hierarchical bi-clustering based on previously published microarray databases identified Nuclear Factor I A (NFIA) as one of the most significantly upregulated genes correlated to TMZ resistance in GBM. Then, the potential biological functions of NFIA in oncogenesis and chemoresistance were clarified by qRT-PCR, Western blotting and in vivo xenograft models with artificially induced TMZ-resistant U87 cells. Additionally, immunohistochemistry (IHC) assays were performed to explore the clinical significance of NFIA in glioma patients. Last, luciferase reporter assay was performed to study the transcriptional regulation of NFIA on the nuclear factor κb (NF-kB) pathway. KEY FINDINGS NFIA was correlated with TMZ resistance in GBM. Clinically, elevated NFIA expression was significantly correlated with adverse outcomes of glioma patients, especially in GBM patients. Moreover, NFIA contributed to the acquired TMZ resistance of GBM cells, while suppression of NFIA via lentivirus reduced cell proliferation, tumorigenesis and resistance to TMZ of GBM. Additionally, NFIA promoted transcription activity that regulated the expression of NF-kB. Last, NFIA induced phosphorylation of NF-kB p65 at serine 536, thus inducing TMZ resistance in GBM cells. Altogether, our study suggests that NFIA-dependent transcriptional regulation of NF-kB contributes to acquired TMZ resistance in GBM. SIGNIFICANCE Abnormally activated NFIA-NF-kB signaling was strongly correlated with acquired TMZ resistance and poor prognosis in GBM, and it could be a new therapeutic target for TMZ-resistant GBM.
Collapse
Affiliation(s)
- Xiao Yu
- Department of Neurosurgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, PR China
| | - Maode Wang
- Department of Neurosurgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, PR China; Center of Brain Science, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, PR China
| | - Jie Zuo
- The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710004, PR China
| | - Alafate Wahafu
- Department of Neurosurgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, PR China
| | - Ping Mao
- Department of Neurosurgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, PR China
| | - Ruichun Li
- Department of Neurosurgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, PR China
| | - Wei Wu
- Department of Neurosurgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, PR China
| | - Wanfu Xie
- Department of Neurosurgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, PR China
| | - Jia Wang
- Department of Neurosurgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, PR China; Center of Brain Science, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, PR China.
| |
Collapse
|
27
|
Bouchart C, Trépant AL, Hein M, Van Gestel D, Demetter P. Prognostic impact of glioblastoma stem cell markers OLIG2 and CCND2. Cancer Med 2019; 9:1069-1078. [PMID: 31568682 PMCID: PMC6997071 DOI: 10.1002/cam4.2592] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 09/06/2019] [Accepted: 09/16/2019] [Indexed: 12/28/2022] Open
Abstract
Aims Glioblastoma (GBM) is the most common and lethal malignant brain tumor in adults. Glioma stem cells (GSCs) are implicated in this poor prognosis and in radio(chemo‐)resistance. We have previously demonstrated that among potentially highly specific GSC markers oligodendrocyte lineage transcription factor 2 (OLIG2) appears to be the most specific and cyclin D2 (CCND2) the only one related to cell cycle regulation. The purpose of this work was to investigate the clinical significance and the evolution of OLIG2 and CCND2 protein expression in GBM. Methods and results Immunohistochemical expression analysis of Olig2 and Ccnd2 was carried out on a cohort of human paired GBM samples comparing initial resections with local recurrent tumors after radiation therapy (RT) alone or radio‐chemotherapy with temozolomide (RT‐TMZ). Uni‐ and multivariate logistic regression analysis revealed that significant risk factors predicting early mortality (<12 months) are: subtotal surgery for recurrence, time to recurrence <6 months, Ccnd2 nuclear expression at initial surgery ≥30%, and Olig2 nuclear expression <30% at second surgery after RT alone and RT‐TMZ. Conclusions We demonstrated that patients for whom nuclear expression of Olig2 becomes low (<30%) after adjuvant treatments have a significantly shorter time to recurrence and survival reflecting most probably a proneural to mesenchymal transition of the GSCs population. We also highlighted the fact that at initial surgery, high nuclear expression (≥30%) of CCND2, a G1/S regulator specific of GSCs, has a prognostic value and is associated with early mortality (<12 months).
Collapse
Affiliation(s)
- Christelle Bouchart
- Department of Radiation-Oncology, Institut Jules Bordet, Université Libre de Bruxelles, Brussels, Belgium
| | - Anne-Laure Trépant
- Department of Pathology, Erasme University Hospital, Université Libre de Bruxelles, Brussels, Belgium
| | - Matthieu Hein
- Department of Psychiatry and Sleep Laboratory, Erasme University Hospital, Université Libre de Bruxelles, Brussels, Belgium
| | - Dirk Van Gestel
- Department of Radiation-Oncology, Institut Jules Bordet, Université Libre de Bruxelles, Brussels, Belgium
| | - Pieter Demetter
- Department of Pathology, Institut Jules Bordet, Université Libre de Bruxelles, Brussels, Belgium
| |
Collapse
|
28
|
PLK4 is a determinant of temozolomide sensitivity through phosphorylation of IKBKE in glioblastoma. Cancer Lett 2019; 443:91-107. [DOI: 10.1016/j.canlet.2018.11.034] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Revised: 11/22/2018] [Accepted: 11/26/2018] [Indexed: 01/11/2023]
|