1
|
Song H, Ni B, Peng X, Xu W, Yang S, Yang R, Wang Z, Li K, Lin R, Zhang Y, Guo J, Wu K, Shi G, Sun J, He C, Liu Y. MPZL1 as an HGF/MET signaling amplifier promotes cell migration and invasion in glioblastoma. Genes Dis 2024; 11:101085. [PMID: 38882007 PMCID: PMC11176650 DOI: 10.1016/j.gendis.2023.101085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 06/26/2023] [Accepted: 07/24/2023] [Indexed: 06/18/2024] Open
Affiliation(s)
- Haimin Song
- Department of Neurosurgery, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi 341000, China
| | - Bowen Ni
- Department of Neurosurgery & Medical Research Center, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde Foshan), Foshan, Guangdong 528300, China
| | - Xuetao Peng
- Medical Research Center, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde Foshan), Foshan, Guangdong 528300, China
| | - Weijuan Xu
- Bidding and Procurement Office, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde Foshan), Foshan, Guangdong 528300, China
| | - Shaochun Yang
- Department of Neurosurgery, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi 341000, China
| | - Runwei Yang
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Ziyu Wang
- Department of Neurosurgery & Medical Research Center, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde Foshan), Foshan, Guangdong 528300, China
| | - Kaishu Li
- Department of Neurosurgery, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan, Guangdong 511518, China
| | - Rui Lin
- Department of Neurosurgery, The First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong 515041, China
| | - Yunxiao Zhang
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Jinglin Guo
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Kezhi Wu
- Department of Neurosurgery & Medical Research Center, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde Foshan), Foshan, Guangdong 528300, China
| | - Guangwei Shi
- Department of Neurosurgery & Medical Research Center, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde Foshan), Foshan, Guangdong 528300, China
| | - Jichao Sun
- Department of Geriatrics, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, Guangdong 518020, China
| | - Chunming He
- Department of Neurosurgery, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi 341000, China
| | - Yawei Liu
- Department of Neurosurgery & Medical Research Center, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde Foshan), Foshan, Guangdong 528300, China
| |
Collapse
|
2
|
Del Puerto HL, Miranda APGS, Qutob D, Ferreira E, Silva FHS, Lima BM, Carvalho BA, Roque-Souza B, Gutseit E, Castro DC, Pozzolini ET, Duarte NO, Lopes TBG, Taborda DYO, Quirino SM, Elgerbi A, Choy JS, Underwood A. Clinical Correlation of Transcription Factor SOX3 in Cancer: Unveiling Its Role in Tumorigenesis. Genes (Basel) 2024; 15:777. [PMID: 38927713 PMCID: PMC11202618 DOI: 10.3390/genes15060777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 06/04/2024] [Accepted: 06/07/2024] [Indexed: 06/28/2024] Open
Abstract
Members of the SOX (SRY-related HMG box) family of transcription factors are crucial for embryonic development and cell fate determination. This review investigates the role of SOX3 in cancer, as aberrations in SOX3 expression have been implicated in several cancers, including osteosarcoma, breast, esophageal, endometrial, ovarian, gastric, hepatocellular carcinomas, glioblastoma, and leukemia. These dysregulations modulate key cancer outcomes such as apoptosis, epithelial-mesenchymal transition (EMT), invasion, migration, cell cycle, and proliferation, contributing to cancer development. SOX3 exhibits varied expression patterns correlated with clinicopathological parameters in diverse tumor types. This review aims to elucidate the nuanced role of SOX3 in tumorigenesis, correlating its expression with clinical and pathological characteristics in cancer patients and cellular modelsBy providing a comprehensive exploration of SOX3 involvement in cancer, this review underscores the multifaceted role of SOX3 across distinct tumor types. The complexity uncovered in SOX3 function emphasizes the need for further research to unravel its full potential in cancer therapeutics.
Collapse
Affiliation(s)
- Helen Lima Del Puerto
- Department of General Pathology, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, MG, Brazil (E.F.)
| | - Ana Paula G. S. Miranda
- Department of General Pathology, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, MG, Brazil (E.F.)
| | - Dinah Qutob
- Department of Biological Sciences, Kent State University at Stark, North Canton, OH 44720, USA;
| | - Enio Ferreira
- Department of General Pathology, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, MG, Brazil (E.F.)
| | - Felipe H. S. Silva
- Department of General Pathology, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, MG, Brazil (E.F.)
| | - Bruna M. Lima
- Department of General Pathology, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, MG, Brazil (E.F.)
| | - Barbara A. Carvalho
- Department of General Pathology, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, MG, Brazil (E.F.)
| | - Bruna Roque-Souza
- Department of General Pathology, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, MG, Brazil (E.F.)
| | - Eduardo Gutseit
- Department of General Pathology, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, MG, Brazil (E.F.)
| | - Diego C. Castro
- Department of General Pathology, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, MG, Brazil (E.F.)
| | - Emanuele T. Pozzolini
- Department of General Pathology, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, MG, Brazil (E.F.)
| | - Nayara O. Duarte
- Department of General Pathology, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, MG, Brazil (E.F.)
| | - Thacyana B. G. Lopes
- Department of General Pathology, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, MG, Brazil (E.F.)
| | - Daiana Y. O. Taborda
- Department of General Pathology, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, MG, Brazil (E.F.)
| | - Stella M. Quirino
- Department of General Pathology, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, MG, Brazil (E.F.)
| | - Ahmed Elgerbi
- Department of Biology, The Catholic University of America, Washington, DC 20064, USA
| | - John S. Choy
- Department of Biology, The Catholic University of America, Washington, DC 20064, USA
| | - Adam Underwood
- Division of Mathematics and Sciences, Walsh University, North Canton, OH 44720, USA;
| |
Collapse
|
3
|
Penkova A, Kuziakova O, Gulaia V, Tiasto V, Goncharov NV, Lanskikh D, Zhmenia V, Baklanov I, Farniev V, Kumeiko V. Comprehensive clinical assays for molecular diagnostics of gliomas: the current state and future prospects. Front Mol Biosci 2023; 10:1216102. [PMID: 37908227 PMCID: PMC10613994 DOI: 10.3389/fmolb.2023.1216102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 09/04/2023] [Indexed: 11/02/2023] Open
Abstract
Glioma is one of the most intractable types of cancer, due to delayed diagnosis at advanced stages. The clinical symptoms of glioma are unclear and due to a variety of glioma subtypes, available low-invasive testing is not effective enough to be introduced into routine medical laboratory practice. Therefore, recent advances in the clinical diagnosis of glioma have focused on liquid biopsy approaches that utilize a wide range of techniques such as next-generation sequencing (NGS), droplet-digital polymerase chain reaction (ddPCR), and quantitative PCR (qPCR). Among all techniques, NGS is the most advantageous diagnostic method. Despite the rapid cheapening of NGS experiments, the cost of such diagnostics remains high. Moreover, high-throughput diagnostics are not appropriate for molecular profiling of gliomas since patients with gliomas exhibit only a few diagnostic markers. In this review, we highlighted all available assays for glioma diagnosing for main pathogenic glioma DNA sequence alterations. In the present study, we reviewed the possibility of integrating routine molecular methods into the diagnosis of gliomas. We state that the development of an affordable assay covering all glioma genetic aberrations could enable early detection and improve patient outcomes. Moreover, the development of such molecular diagnostic kits could potentially be a good alternative to expensive NGS-based approaches.
Collapse
Affiliation(s)
- Alina Penkova
- Institute of Life Sciences and Biomedicine, Far Eastern Federal University, Vladivostok, Russia
| | - Olga Kuziakova
- Institute of Life Sciences and Biomedicine, Far Eastern Federal University, Vladivostok, Russia
| | - Valeriia Gulaia
- Institute of Life Sciences and Biomedicine, Far Eastern Federal University, Vladivostok, Russia
| | - Vladlena Tiasto
- Institute of Life Sciences and Biomedicine, Far Eastern Federal University, Vladivostok, Russia
| | - Nikolay V. Goncharov
- Institute of Life Sciences and Biomedicine, Far Eastern Federal University, Vladivostok, Russia
- A. V. Zhirmunsky National Scientific Center of Marine Biology, FEB RAS, Vladivostok, Russia
| | - Daria Lanskikh
- Institute of Life Sciences and Biomedicine, Far Eastern Federal University, Vladivostok, Russia
| | - Valeriia Zhmenia
- Institute of Life Sciences and Biomedicine, Far Eastern Federal University, Vladivostok, Russia
| | - Ivan Baklanov
- Institute of Life Sciences and Biomedicine, Far Eastern Federal University, Vladivostok, Russia
- A. V. Zhirmunsky National Scientific Center of Marine Biology, FEB RAS, Vladivostok, Russia
| | - Vladislav Farniev
- Institute of Life Sciences and Biomedicine, Far Eastern Federal University, Vladivostok, Russia
| | - Vadim Kumeiko
- Institute of Life Sciences and Biomedicine, Far Eastern Federal University, Vladivostok, Russia
- A. V. Zhirmunsky National Scientific Center of Marine Biology, FEB RAS, Vladivostok, Russia
| |
Collapse
|
4
|
Shi G, Ni Q, Miao Y, Huang H, Yin Z, Shi W, Shi M. Identification of WD-Repeat Protein 72 as a Novel Prognostic Biomarker in Non-Small-Cell Lung Cancer. Mediators Inflamm 2023; 2023:2763168. [PMID: 37197572 PMCID: PMC10185422 DOI: 10.1155/2023/2763168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 02/18/2023] [Accepted: 04/05/2023] [Indexed: 05/19/2023] Open
Abstract
WD-repeat protein 72(WDR72; OMIM∗613214), a scaffolding protein lacking intrinsic enzymatic activity, produces numerous β-propeller blade formations, serves as a binding platform to assemble protein complexes and is critical for cell growth, differentiation, adhesion, and migration. Despite evidence supporting a basic role of WDR72 in the tumorigenesis of particular cancers, the value of WDR72 in non-small-cell lung cancer (NSCLC), the tumor with the highest mortality rate globally, is undocumented. We investigated the prognostic value of WDR72 in NSCLC and studied its potential immune function and its correlation with ferroptosis. According to The Cancer Genome Atlas, Cancer Cell Line Encyclopedia, Genotype-Tissue Expression, and Gene Set Cancer Analysis, we used multiple bioinformatic strategies to investigate the possible oncogenic role of WDR72, analyze WDR72 and prognosis, and immune cell infiltration in different tumors correlation. WDR72 exhibited a high expression in NSCLC and a positive association with prognosis. WDR72 expression was related to immune cell infiltration and tumor immune microenvironment in NSCLC. Finally, we validated WDR72 in human NSCLC; it has a predictive value in NSCLC related to its function in tumor progression and immunity. The significance of our study is that WDR72 can be used as a potential indicator of lung cancer prognosis. Helping physicians more accurately predict patient survival and risk of disease progression.
Collapse
Affiliation(s)
- Guanglin Shi
- Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215004, China
- Department of Respiratory Diseases, The Sixth People's Hospital of Nantong (Affiliated Nantong Hospital of Shanghai University), Nantong, Jiangsu 226011, China
| | - Qinggan Ni
- Department of Burns and Plastic Surgery, Yancheng Clinical College of Xuzhou Medical University, The First People's Hospital of Yancheng, Yancheng 224000, China
| | - Yuqing Miao
- Department of Respiratory Diseases, The Sixth People's Hospital of Nantong (Affiliated Nantong Hospital of Shanghai University), Nantong, Jiangsu 226011, China
| | - Hua Huang
- Department of Pathology, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226011, China
| | - Zhongbo Yin
- Department of Pathology, The Sixth People's Hospital of Nantong (Affiliated Nantong Hospital of Shanghai University), Nantong, Jiangsu 226011, China
| | - Weirong Shi
- Department of Thoracic Surgery, The Sixth People's Hospital of Nantong (Affiliated Nantong Hospital of Shanghai University), Nantong (Affiliated Nantong Hospital of Shanghai University), Jiangsu 226011, China
| | - Minhua Shi
- Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215004, China
| |
Collapse
|
5
|
Macrophages Are a Double-Edged Sword: Molecular Crosstalk between Tumor-Associated Macrophages and Cancer Stem Cells. Biomolecules 2022; 12:biom12060850. [PMID: 35740975 PMCID: PMC9221070 DOI: 10.3390/biom12060850] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 06/15/2022] [Accepted: 06/16/2022] [Indexed: 02/07/2023] Open
Abstract
Cancer stem cells (CSCs) are a subset of highly tumorigenic cells in tumors. They have enhanced self-renewal properties, are usually chemo-radioresistant, and can promote tumor recurrence and metastasis. They can recruit macrophages into the tumor microenvironment and differentiate them into tumor-associated macrophages (TAMs). TAMs maintain CSC stemness and construct niches that are favorable for CSC survival. However, how CSCs and TAMs interact is not completely understood. An understanding on these mechanisms can provide additional targeting strategies for eliminating CSCs. In this review, we comprehensively summarize the reported mechanisms of crosstalk between CSCs and TAMs and update the related signaling pathways involved in tumor progression. In addition, we discuss potential therapies targeting CSC–TAM interaction, including targeting macrophage recruitment and polarization by CSCs and inhibiting the TAM-induced promotion of CSC stemness. This review also provides the perspective on the major challenge for developing potential therapeutic strategies to overcome CSC-TAM crosstalk.
Collapse
|
6
|
Wang L, Zhang X, Liu J, Liu Q. Kinesin family member 15 can promote the proliferation of glioblastoma. MATHEMATICAL BIOSCIENCES AND ENGINEERING : MBE 2022; 19:8259-8272. [PMID: 35801464 DOI: 10.3934/mbe.2022384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Glioblastoma is one of the most dangerous tumors for patients in clinical practice at present, and since glioblastoma originates from the brain, it will have a serious impact on patients. Therefore, more effective clinical therapeutic targets are still needed at this stage. Kinesin family member 15 (KIF15) promotes proliferation in several cancers, but its effect on glioblastoma is unclear. In this study, differentially expressed gene analysis and network analysis were performed to identify critical genes affecting glioma progression. The samples were divided into a KIF15 high-expression group and KIF15 low-expression group, and the association between FIK15 expression level and clinical characteristics was summarized and analyzed by performing medical data analysis; the effect of KIF15 on glioblastoma cell proliferation was detected by employing colony formation and MTT assays. The effect of KIF15 on tumor growth in mice was determined. It was found that KIF15 was a potential gene affecting the progression of glioblastoma. In addition, KIF15 was highly expressed in glioblastoma tumor tissues, and KIF15 was correlated with tumor size, clinical stage and other clinical characteristics. After the KIF15 gene was knocked out, the proliferation ability of glioblastoma was significantly inhibited. KIF15 also contributed to the growth of glioblastoma tumors in mice. Therefore, we found KIF15 to be a promising clinical therapeutic target.
Collapse
Affiliation(s)
- Leibo Wang
- Department of Neurosurgery, Tianjin Huanhu Hospital, Tianjin 300350, China
| | - Xuebin Zhang
- Department of Pathology, Tianjin Huanhu Hospital, Tianjin 300350, China
| | - Jun Liu
- Department of Neurosurgery, Tianjin Huanhu Hospital, Tianjin 300350, China
| | - Qingjun Liu
- Department of Neurosurgery, Tianjin Huanhu Hospital, Tianjin 300350, China
| |
Collapse
|
7
|
Pan C, Liang L, Wang Z, Zhang B, Li Q, Tian Y, Yu Y, Chen Z, Wang X, Liu H. Expression and significance of SOX B1 genes in glioblastoma multiforme patients. J Cell Mol Med 2021; 26:789-799. [PMID: 34953010 PMCID: PMC8817144 DOI: 10.1111/jcmm.17120] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 11/18/2021] [Accepted: 12/01/2021] [Indexed: 12/21/2022] Open
Abstract
The overall survival of glioblastoma multiforme (GBM) patients remains poor. To improve patient outcomes, effective diagnostic and prognostic biomarkers for GBM are needed. In this study, we first applied bioinformatic analyses to identify biomarkers for GBM, focusing on SOX (sex‐determining region on the Y chromosome (SRY)‐related high mobility group (HMG) box) B1 family members. The ONCOMINE, GEPIA, LinkedOmics and CCLE databases were used to assess mRNA expression levels of the SOX B1 family members in different cancers and normal tissue. Further bioinformatic analysis was performed using the ONCOMINE database in combination with the LinkedOmics data set to identify the prognostic value of SOX B1 family members for GBM. We found mRNA expression levels of all tested SOX B1 genes were significantly increased in GBM. In the LinkedOmics database, increased expression of SOX3 indicated a better overall survival. In GEPIA databases, increased expression of all SOX B1 family members suggested an improved overall survival, but none of them were statistically different. Then, Transwell assays and wound healing were employed to evaluate the motility and invasive captivity of U251 cells when silencing SOX2 and SOX3. We found exogenous inhibition of SOX2 appeared to reduce the migration and invasion of U251 cells in vitro. Collectively, our research suggested that SOX2 might serve as a cancer‐promoting gene to identify high‐risk GBM patients, and SOX3 had the potential to be a prognostic biomarker for GBM patients.
Collapse
Affiliation(s)
- Cunyao Pan
- School of Public Health Lanzhou University, Lanzhou, China
| | - Lanlan Liang
- School of Public Health Lanzhou University, Lanzhou, China
| | - Zirou Wang
- Tianjin Institute of Environmental and Operational Medicine, Tianjin, China
| | - Baoyi Zhang
- Tianjin Institute of Environmental and Operational Medicine, Tianjin, China
| | - Qionglin Li
- School of Public Health Lanzhou University, Lanzhou, China
| | - Yingrui Tian
- School of Public Health Lanzhou University, Lanzhou, China
| | - Yijing Yu
- Tianjin Institute of Environmental and Operational Medicine, Tianjin, China
| | - Zhaoli Chen
- Tianjin Institute of Environmental and Operational Medicine, Tianjin, China
| | - Xinxing Wang
- Tianjin Institute of Environmental and Operational Medicine, Tianjin, China
| | - Hui Liu
- School of Public Health Lanzhou University, Lanzhou, China
| |
Collapse
|
8
|
Zhou Q, Yan X, Zhu H, Xin Z, Zhao J, Shen W, Yin W, Guo Y, Xu H, Zhao M, Liu W, Jiang X, Ren C. Identification of three tumor antigens and immune subtypes for mRNA vaccine development in diffuse glioma. Theranostics 2021; 11:9775-9790. [PMID: 34815785 PMCID: PMC8581422 DOI: 10.7150/thno.61677] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 09/19/2021] [Indexed: 12/31/2022] Open
Abstract
Rationale: Diffuse glioma patients have high mortality and recurrence despite multimodal therapies. This study aims to identify the potential tumor antigens for mRNA vaccines and subtypes suitable for the immunotherapy of patients with diffuse glioma. Methods: Gene expression profiles and corresponding clinical information were obtained from the Chinese Glioma Genome Atlas (CGGA) and the Cancer Genome Atlas (TCGA) databases. Genetic alterations were extracted from cBioPortal. Differential gene analysis, survival analysis, correlation analysis, consensus clustering analysis, and immune cell infiltration analysis were conducted based on the various databases. Finally, the hub genes, the modules related to tumor antigens, and the immune subtypes were identified using WGCNA method. Results: Three over-expressed, amplified, and mutated tumor antigens, including KDR, COL1A2, and SAMD9, were associated with clinical outcomes. The expression of the three genes had a positive correlation with the abundance of antigen-presenting cells (APCs) and APC marker expression. Subsequently, three immune subtypes (Ims1, Ims2, and Ims3) were distinguished in the TCGA cohort, which exhibited distinct molecular, cellular, and clinical characteristics consistent with the CGGA cohort. Diffuse gliomas with subtype Ims1 were more malignant with immunosuppressive phenotypes and more associated with poor prognosis than the other two subtypes. The three antigens and the immune checkpoints were differentially expressed among the three immune subtypes. Finally, functional enrichment analysis of the genes related to tumor antigens and immune subtypes suggested that they are enriched in many immune-associated processes. Conclusions: KDR, COL1A2, and SAMD9 are potential antigens for developing mRNA vaccines against diffuse glioma. The results suggest that immunotherapy targeting these three antigens is more suitable for patients with subtype Ims1. This study provides insights into immunotherapy for diffuse glioma.
Collapse
Affiliation(s)
- Quanwei Zhou
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan Province, 410008, China
| | - Xuejun Yan
- Cancer Research Institute, School of Basic Medical Science, Central South University, Changsha, China
| | - Hecheng Zhu
- Changsha Kexin Cancer Hospital, Changsha, Hunan 410205, China
| | - Zhaoqi Xin
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan Province, 410008, China
| | - Jin Zhao
- Cancer Research Institute, School of Basic Medical Science, Central South University, Changsha, China
| | - Wenyue Shen
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan Province, 410008, China
| | - Wen Yin
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan Province, 410008, China
| | - Youwei Guo
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan Province, 410008, China
| | - Hongjuan Xu
- Cancer Research Institute, School of Basic Medical Science, Central South University, Changsha, China
- The NHC Key Laboratory of Carcinogenesis and the Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Xiangya Hospital, Central South University, Changsha, China
| | - Ming Zhao
- Changsha Kexin Cancer Hospital, Changsha, Hunan 410205, China
| | - Weidong Liu
- Cancer Research Institute, School of Basic Medical Science, Central South University, Changsha, China
- The NHC Key Laboratory of Carcinogenesis and the Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Xiangya Hospital, Central South University, Changsha, China
| | - Xingjun Jiang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan Province, 410008, China
| | - Caiping Ren
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan Province, 410008, China
- Cancer Research Institute, School of Basic Medical Science, Central South University, Changsha, China
- The NHC Key Laboratory of Carcinogenesis and the Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
9
|
Bolcaen J, Nair S, Driver CHS, Boshomane TMG, Ebenhan T, Vandevoorde C. Novel Receptor Tyrosine Kinase Pathway Inhibitors for Targeted Radionuclide Therapy of Glioblastoma. Pharmaceuticals (Basel) 2021; 14:626. [PMID: 34209513 PMCID: PMC8308832 DOI: 10.3390/ph14070626] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 06/18/2021] [Accepted: 06/21/2021] [Indexed: 12/15/2022] Open
Abstract
Glioblastoma (GB) remains the most fatal brain tumor characterized by a high infiltration rate and treatment resistance. Overexpression and/or mutation of receptor tyrosine kinases is common in GB, which subsequently leads to the activation of many downstream pathways that have a critical impact on tumor progression and therapy resistance. Therefore, receptor tyrosine kinase inhibitors (RTKIs) have been investigated to improve the dismal prognosis of GB in an effort to evolve into a personalized targeted therapy strategy with a better treatment outcome. Numerous RTKIs have been approved in the clinic and several radiopharmaceuticals are part of (pre)clinical trials as a non-invasive method to identify patients who could benefit from RTKI. The latter opens up the scope for theranostic applications. In this review, the present status of RTKIs for the treatment, nuclear imaging and targeted radionuclide therapy of GB is presented. The focus will be on seven tyrosine kinase receptors, based on their central role in GB: EGFR, VEGFR, MET, PDGFR, FGFR, Eph receptor and IGF1R. Finally, by way of analyzing structural and physiological characteristics of the TKIs with promising clinical trial results, four small molecule RTKIs were selected based on their potential to become new therapeutic GB radiopharmaceuticals.
Collapse
Affiliation(s)
- Julie Bolcaen
- Radiobiology, Radiation Biophysics Division, Nuclear Medicine Department, iThemba LABS, Cape Town 7131, South Africa;
| | - Shankari Nair
- Radiobiology, Radiation Biophysics Division, Nuclear Medicine Department, iThemba LABS, Cape Town 7131, South Africa;
| | - Cathryn H. S. Driver
- Radiochemistry, South African Nuclear Energy Corporation, Pelindaba, Brits 0240, South Africa;
- Pre-Clinical Imaging Facility, Nuclear Medicine Research Infrastructure, Pelindaba, Brits 0242, South Africa;
| | - Tebatso M. G. Boshomane
- Department of Nuclear Medicine, University of Pretoria Steve Biko Academic Hospital, Pretoria 0001, South Africa;
| | - Thomas Ebenhan
- Pre-Clinical Imaging Facility, Nuclear Medicine Research Infrastructure, Pelindaba, Brits 0242, South Africa;
- Department of Nuclear Medicine, University of Pretoria Steve Biko Academic Hospital, Pretoria 0001, South Africa;
- Preclinical Drug Development Platform, Department of Science and Technology, North West University, Potchefstroom 2520, South Africa
| | - Charlot Vandevoorde
- Radiobiology, Radiation Biophysics Division, Nuclear Medicine Department, iThemba LABS, Cape Town 7131, South Africa;
| |
Collapse
|
10
|
Campanella R, Guarnaccia L, Caroli M, Zarino B, Carrabba G, La Verde N, Gaudino C, Rampini A, Luzzi S, Riboni L, Locatelli M, Navone SE, Marfia G. Personalized and translational approach for malignant brain tumors in the era of precision medicine: the strategic contribution of an experienced neurosurgery laboratory in a modern neurosurgery and neuro-oncology department. J Neurol Sci 2020; 417:117083. [PMID: 32784071 DOI: 10.1016/j.jns.2020.117083] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 07/16/2020] [Accepted: 08/04/2020] [Indexed: 12/20/2022]
Abstract
Personalized medicine (PM) aims to optimize patient management, taking into account the individual traits of each patient. The main purpose of PM is to obtain the best response, improving health care and lowering costs. Extending traditional approaches, PM introduces novel patient-specific paradigms from diagnosis to treatment, with greater precision. In neuro-oncology, the concept of PM is well established. Indeed, every neurosurgical intervention for brain tumors has always been highly personalized. In recent years, PM has been introduced in neuro-oncology also to design and prescribe specific therapies for the patient and the patient's tumor. The huge advances in basic and translational research in the fields of genetics, molecular and cellular biology, transcriptomics, proteomics, and metabolomics have led to the introduction of PM into clinical practice. The identification of a patient's individual variation map may allow to design selected therapeutic protocols that ensure successful outcomes and minimize harmful side effects. Thus, clinicians can switch from the "one-size-fits-all" approach to PM, ensuring better patient care and high safety margin. Here, we review emerging trends and the current literature about the development of PM in neuro-oncology, considering the positive impact of innovative advanced researches conducted by a neurosurgical laboratory.
Collapse
Affiliation(s)
- Rolando Campanella
- Laboratory of Experimental Neurosurgery and Cell Therapy, Neurosurgery Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Laura Guarnaccia
- Laboratory of Experimental Neurosurgery and Cell Therapy, Neurosurgery Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy; Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - Manuela Caroli
- Laboratory of Experimental Neurosurgery and Cell Therapy, Neurosurgery Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Barbara Zarino
- Laboratory of Experimental Neurosurgery and Cell Therapy, Neurosurgery Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Giorgio Carrabba
- Laboratory of Experimental Neurosurgery and Cell Therapy, Neurosurgery Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | | | - Chiara Gaudino
- Department of Neuroradiology, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Angela Rampini
- Neurosurgery Unit, Department of Clinical-Surgical, Diagnostic and Pediatric Sciences, University of Pavia, Pavia, Italy
| | - Sabino Luzzi
- Neurosurgery Unit, Department of Clinical-Surgical, Diagnostic and Pediatric Sciences, University of Pavia, Pavia, Italy; Neurosurgery Unit, Department of Surgical Sciences, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Laura Riboni
- Department of Medical Biotechnology and Translational Medicine, LITA-Segrate, University of Milan, Milan, Italy
| | - Marco Locatelli
- Laboratory of Experimental Neurosurgery and Cell Therapy, Neurosurgery Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy; Aldo Ravelli" Research Center, Milan, Italy; Department of Medical-Surgical Physiopathology and Transplantation, University of Milan, Milan, Italy
| | - Stefania Elena Navone
- Laboratory of Experimental Neurosurgery and Cell Therapy, Neurosurgery Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy; Aldo Ravelli" Research Center, Milan, Italy.
| | - Giovanni Marfia
- Laboratory of Experimental Neurosurgery and Cell Therapy, Neurosurgery Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy; Aldo Ravelli" Research Center, Milan, Italy; Clinical Pathology Unit, Istituto di Medicina Aerospaziale "A. Moosso", Aeronautica Militare, Milan, Italy
| |
Collapse
|
11
|
Kim ST, Hong JY, Park SH, Park JO, Park YW, Park N, Lee H, Hong SH, Lee SJ, Song SW, Kim K, Park YS, Lim HY, Kang WK, Nam DH, Lee JW, Park K, Kim KM, Lee J. First-in-human phase I trial of anti-hepatocyte growth factor antibody (YYB101) in refractory solid tumor patients. Ther Adv Med Oncol 2020; 12:1758835920926796. [PMID: 32536979 PMCID: PMC7268171 DOI: 10.1177/1758835920926796] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Accepted: 04/24/2020] [Indexed: 12/12/2022] Open
Abstract
Background YYB101, a humanized monoclonal antibody against hepatocyte growth factor (HGF), has shown safety and efficacy in vitro and in vivo. This is a first-in-human trial of this antibody. Materials and Methods YYB101 was administered intravenously to refractory cancer patients once every 4 weeks for 1 month, and then once every 2 weeks until disease progression or intolerable toxicity, at doses of 0.3, 1, 3, 5, 10, 20, 30 mg/kg, according to a 3+3 dose escalation design. Maximum tolerated dose, safety, pharmacokinetics, and pharmacodynamics were studied. HGF, MET, PD-L1, and ERK expression was evaluated for 9 of 17 patients of the expansion cohort (20 mg/kg). Results In 39 patients enrolled, no dose-limiting toxicity was observed at 0.3 mg/kg, and the most commonly detected toxicity was generalized edema (n = 7, 18.9%) followed by pruritis and nausea (n = 5, 13.5%, each), fatigue, anemia, and decreased appetite (n = 4, 10.8%, each). No patient discontinued treatment because of adverse events. YYB101 showed dose-proportional pharmacokinetics up to 30 mg/kg. Partial response in 1 (2.5%) and stable disease in 17 (43.5%) were observed. HGF, MET, PD-L1, and ERK proteins were not significant predictors for treatment response. However, serum HGF level was significantly lowered in responders upon drug administration. RNA sequencing revealed a mesenchymal signature in two long-term responders. Conclusion YYB101 showed favorable safety and efficacy in patients with refractory solid tumors. Based on this phase I trial, a phase II study on the YYB101 + irinotecan combination in refractory metastatic colorectal cancer patients is planned. Conclusion ClinicalTrials.gov Identifier: NCT02499224.
Collapse
Affiliation(s)
- Seung Tae Kim
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea, Republic of (South)
| | - Jung Yong Hong
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea, Republic of (South)
| | - Se Hoon Park
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea, Republic of (South)
| | - Joon Oh Park
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea, Republic of (South)
| | - Young Whan Park
- National OncoVenture, National Cancer Center, Goyang, Korea, Republic of (South)
| | - Neunggyu Park
- National OncoVenture, National Cancer Center, Goyang, Korea, Republic of (South)
| | - Hukeun Lee
- National OncoVenture, National Cancer Center, Goyang, Korea, Republic of (South)
| | - Sung Hee Hong
- National OncoVenture, National Cancer Center, Goyang, Korea, Republic of (South)
| | - Song-Jae Lee
- CellabMED Inc, Guro-gu, Seoul, Korea, Republic of (South)
| | - Seong-Won Song
- CellabMED Inc, Guro-gu, Seoul, Korea, Republic of (South)
| | - Kyung Kim
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea, Republic of (South)
| | - Young Suk Park
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea, Republic of (South)
| | - Ho Yeong Lim
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea, Republic of (South)
| | - Won Ki Kang
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea, Republic of (South)
| | - Do-Hyun Nam
- Department of Neurosurgery, Samsung Medical Center, Sungkyunkwan University School of Medicine Seoul, Korea, Republic of (South)
| | - Jeong-Won Lee
- Department of Obstetrics and Gynecology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea, Republic of (South)
| | - Keunchil Park
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea, Republic of (South)
| | - Kyoung-Mee Kim
- Department of Pathology and Translational Genomics, Samsung Medical Center, Sungkyunkwan University School of Medicine Seoul, Korea, Republic of (South)
| | - Jeeyun Lee
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-ro, Gangnam-gu, Seoul 06351, Korea
| |
Collapse
|
12
|
Cheng F, Guo D. MET in glioma: signaling pathways and targeted therapies. J Exp Clin Cancer Res 2019; 38:270. [PMID: 31221203 PMCID: PMC6585013 DOI: 10.1186/s13046-019-1269-x] [Citation(s) in RCA: 89] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Accepted: 06/04/2019] [Indexed: 12/14/2022] Open
Abstract
Gliomas represent the most common type of malignant brain tumor, among which, glioblastoma remains a clinical challenge with limited treatment options and dismal prognosis. It has been shown that the dysregulated receptor tyrosine kinase (RTK, including EGFR, MET, PDGFRα, ect.) signaling pathways have pivotal roles in the progression of gliomas, especially glioblastoma. Increasing evidence suggests that expression levels of the RTK MET and its specific stimulatory factors are significantly increased in glioblastomas compared to those in normal brain tissues, whereas some negative regulators are found to be downregulated. Mutations in MET, as well as the dysregulation of other regulators of cross-talk with MET signaling pathways, have also been identified. MET and its ligand hepatocyte growth factor (HGF) play a critical role in the proliferation, survival, migration, invasion, angiogenesis, stem cell characteristics, and therapeutic resistance and recurrence of glioblastomas. Therefore, combined targeted therapy for this pathway and associated molecules could be a novel and attractive strategy for the treatment of human glioblastoma. In this review, we highlight progress made in the understanding of MET signaling in glioma and advances in therapies targeting HGF/MET molecules for glioma patients in recent years, in addition to studies on the expression and mutation status of MET.
Collapse
Affiliation(s)
- Fangling Cheng
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.1095, Jiefang Avenue, Wuhan, 430030 China
| | - Dongsheng Guo
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.1095, Jiefang Avenue, Wuhan, 430030 China
| |
Collapse
|
13
|
Damalanka VC, Han Z, Karmakar P, O’Donoghue AJ, La Greca F, Kim T, Pant SM, Helander J, Klefström J, Craik CS, Janetka JW. Discovery of Selective Matriptase and Hepsin Serine Protease Inhibitors: Useful Chemical Tools for Cancer Cell Biology. J Med Chem 2018; 62:480-490. [DOI: 10.1021/acs.jmedchem.8b01536] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Vishnu C. Damalanka
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, Missouri, 63110, United States
| | - Zhenfu Han
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, Missouri, 63110, United States
| | - Partha Karmakar
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, Missouri, 63110, United States
| | - Anthony J. O’Donoghue
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, California, 92093, United States
- Department of Pharmaceutical Chemistry, University of California, San Francisco, California, 94158, United States
| | - Florencia La Greca
- Department of Pharmaceutical Chemistry, University of California, San Francisco, California, 94158, United States
| | - Tommy Kim
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, Missouri, 63110, United States
| | - Shishir M. Pant
- Cancer Cell Circuitry Laboratory, Research Programs Unit/Translational Cancer Biology & Medicum, University of Helsinki, P.O. Box 63, Haartmaninkatu 8, 00014 Helsinki, Finland
| | - Jonathan Helander
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, Missouri, 63110, United States
| | - Juha Klefström
- Cancer Cell Circuitry Laboratory, Research Programs Unit/Translational Cancer Biology & Medicum, University of Helsinki, P.O. Box 63, Haartmaninkatu 8, 00014 Helsinki, Finland
| | - Charles S. Craik
- Department of Pharmaceutical Chemistry, University of California, San Francisco, California, 94158, United States
| | - James W. Janetka
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, Missouri, 63110, United States
| |
Collapse
|