1
|
Zhou W, Zhao Z, Lin A, Yang JZ, Xu J, Wilder-Romans K, Yang A, Li J, Solanki S, Speth JM, Walker N, Scott AJ, Wang L, Wen B, Andren A, Zhang L, Kothari AU, Yao Y, Peterson ER, Korimerla N, Werner CK, Ullrich A, Liang J, Jacobson J, Palavalasa S, O’Brien AM, Elaimy AL, Ferris SP, Zhao SG, Sarkaria JN, Győrffy B, Zhang S, Al-Holou WN, Umemura Y, Morgan MA, Lawrence TS, Lyssiotis CA, Peters-Golden M, Shah YM, Wahl DR. GTP Signaling Links Metabolism, DNA Repair, and Responses to Genotoxic Stress. Cancer Discov 2024; 14:158-175. [PMID: 37902550 PMCID: PMC10872631 DOI: 10.1158/2159-8290.cd-23-0437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 09/07/2023] [Accepted: 10/19/2023] [Indexed: 10/31/2023]
Abstract
How cell metabolism regulates DNA repair is incompletely understood. Here, we define a GTP-mediated signaling cascade that links metabolism to DNA repair and has significant therapeutic implications. GTP, but not other nucleotides, regulates the activity of Rac1, a guanine nucleotide-binding protein, which promotes the dephosphorylation of serine 323 on Abl-interactor 1 (Abi-1) by protein phosphatase 5 (PP5). Dephosphorylated Abi-1, a protein previously not known to activate DNA repair, promotes nonhomologous end joining. In patients and mouse models of glioblastoma, Rac1 and dephosphorylated Abi-1 mediate DNA repair and resistance to standard-of-care genotoxic treatments. The GTP-Rac1-PP5-Abi-1 signaling axis is not limited to brain cancer, as GTP supplementation promotes DNA repair and Abi-1-S323 dephosphorylation in nonmalignant cells and protects mouse tissues from genotoxic insult. This unexpected ability of GTP to regulate DNA repair independently of deoxynucleotide pools has important implications for normal physiology and cancer treatment. SIGNIFICANCE A newly described GTP-dependent signaling axis is an unexpected link between nucleotide metabolism and DNA repair. Disrupting this pathway can overcome cancer resistance to genotoxic therapy while augmenting it can mitigate genotoxic injury of normal tissues. This article is featured in Selected Articles from This Issue, p. 5.
Collapse
Affiliation(s)
- Weihua Zhou
- Department of Radiation Oncology, University of Michigan, Ann Arbor, MI, USA
| | - Zitong Zhao
- Department of Radiation Oncology, University of Michigan, Ann Arbor, MI, USA
- Department of Oncology, the Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shan Xi, PR China
| | - Angelica Lin
- Department of Radiation Oncology, University of Michigan, Ann Arbor, MI, USA
| | - John Z Yang
- Department of Radiation Oncology, University of Michigan, Ann Arbor, MI, USA
| | - Jie Xu
- Department of Radiation Oncology, University of Michigan, Ann Arbor, MI, USA
| | - Kari Wilder-Romans
- Department of Radiation Oncology, University of Michigan, Ann Arbor, MI, USA
| | - Annabel Yang
- Department of Radiation Oncology, University of Michigan, Ann Arbor, MI, USA
| | - Jing Li
- Cell Signaling Technology, Inc., Danvers, MA, USA
| | - Sumeet Solanki
- Department of Molecular & Integrative Physiology, University of Michigan, Ann Arbor, MI, USA
| | - Jennifer M Speth
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Natalie Walker
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Andrew J Scott
- Department of Radiation Oncology, University of Michigan, Ann Arbor, MI, USA
- Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Lu Wang
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, Ann Arbor, MI, USA
| | - Bo Wen
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, Ann Arbor, MI, USA
| | - Anthony Andren
- Department of Molecular & Integrative Physiology, University of Michigan, Ann Arbor, MI, USA
| | - Li Zhang
- Department of Molecular & Integrative Physiology, University of Michigan, Ann Arbor, MI, USA
| | - Ayesha U Kothari
- Department of Radiation Oncology, University of Michigan, Ann Arbor, MI, USA
| | - Yangyang Yao
- Department of Radiation Oncology, University of Michigan, Ann Arbor, MI, USA
- Department of Oncology, the First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, PR China
| | - Erik R Peterson
- Department of Radiation Oncology, University of Michigan, Ann Arbor, MI, USA
| | - Navyateja Korimerla
- Department of Radiation Oncology, University of Michigan, Ann Arbor, MI, USA
| | - Christian K Werner
- Department of Radiation Oncology, University of Michigan, Ann Arbor, MI, USA
| | - Alexander Ullrich
- Department of Radiation Oncology, University of Michigan, Ann Arbor, MI, USA
| | - Jessica Liang
- Department of Radiation Oncology, University of Michigan, Ann Arbor, MI, USA
| | - Janna Jacobson
- Department of Radiation Oncology, University of Michigan, Ann Arbor, MI, USA
| | - Sravya Palavalasa
- Department of Radiation Oncology, University of Michigan, Ann Arbor, MI, USA
| | - Alexandra M O’Brien
- Department of Radiation Oncology, University of Michigan, Ann Arbor, MI, USA
| | - Ameer L Elaimy
- Department of Radiation Oncology, University of Michigan, Ann Arbor, MI, USA
| | - Sean P Ferris
- Department of Pathology, Division of Neuropathology, University of Michigan, Ann Arbor, MI, USA
| | - Shuang G Zhao
- Department of Human Oncology, University of Wisconsin Madison, WI, USA
| | | | - Balázs Győrffy
- Department of Bioinformatics, Semmelweis University, Budapest, Hungary; and TTK Cancer Biomarker Research Group, Institute of Enzymology, Budapest, Hungary
| | - Shuqun Zhang
- Department of Oncology, the Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shan Xi, PR China
| | - Wajd N Al-Holou
- Department of Neurosurgery, University of Michigan, Ann Arbor, MI, United States
| | - Yoshie Umemura
- Department of Neurology, University of Michigan, Ann Arbor, MI, United States
| | - Meredith A Morgan
- Department of Radiation Oncology, University of Michigan, Ann Arbor, MI, USA
| | - Theodore S Lawrence
- Department of Radiation Oncology, University of Michigan, Ann Arbor, MI, USA
| | - Costas A Lyssiotis
- Department of Molecular & Integrative Physiology, University of Michigan, Ann Arbor, MI, USA
- Department of Molecular and Integrative Physiology and Department of Internal Medicine, Division of Gastroenterology and Hepatology, University of Michigan, Ann Arbor, MI, USA
- Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Marc Peters-Golden
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Yatrik M Shah
- Department of Molecular & Integrative Physiology, University of Michigan, Ann Arbor, MI, USA
- Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Daniel R Wahl
- Department of Radiation Oncology, University of Michigan, Ann Arbor, MI, USA
- Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, MI, USA
- Lead contact
| |
Collapse
|
2
|
Hazra R, Utama R, Naik P, Dobin A, Spector DL. Identification of glioblastoma stem cell-associated lncRNAs using single-cell RNA sequencing datasets. Stem Cell Reports 2023; 18:2056-2070. [PMID: 37922916 PMCID: PMC10679778 DOI: 10.1016/j.stemcr.2023.10.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 10/04/2023] [Accepted: 10/05/2023] [Indexed: 11/07/2023] Open
Abstract
Glioblastoma multiforme (GBM) is an aggressive, heterogeneous brain tumor in which glioblastoma stem cells (GSCs) are known culprits of therapy resistance. Long non-coding RNAs (lncRNAs) have been shown to play a critical role in both cancer and normal biology. A few studies have suggested that aberrant expression of lncRNAs is associated with GSCs. However, a comprehensive single-cell analysis of the GSC-associated lncRNA transcriptome has not been carried out. Here, we analyzed recently published single-cell RNA sequencing datasets of adult GBM tumors, GBM organoids, GSC-enriched GBM tumors, and developing human brain samples to identify lncRNAs highly expressed in GSCs. We further revealed that the GSC-specific lncRNAs GIHCG and LINC01563 promote proliferation, migration, and stemness in the GSC population. Together, this study identified a panel of uncharacterized GSC-enriched lncRNAs and set the stage for future in-depth studies to examine their role in GBM pathology and their potential as biomarkers and/or therapeutic targets in GBM.
Collapse
Affiliation(s)
- Rasmani Hazra
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA.
| | - Raditya Utama
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Payal Naik
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Alexander Dobin
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - David L Spector
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA.
| |
Collapse
|
3
|
Scott AJ, Mittal A, Meghdadi B, Palavalasa S, Achreja A, O'Brien A, Kothari AU, Zhou W, Xu J, Lin A, Wilder-Romans K, Edwards DM, Wu Z, Feng J, Andren AC, Zhang L, Tarnal V, Redic KA, Qi N, Fischer J, Yang E, Regan MS, Stopka SA, Baquer G, Lawrence TS, Venneti S, Agar NYR, Lyssiotis CA, Al-Holou WN, Nagrath D, Wahl DR. Rewiring of cortical glucose metabolism fuels human brain cancer growth. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.10.24.23297489. [PMID: 37961582 PMCID: PMC10635194 DOI: 10.1101/2023.10.24.23297489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
The brain avidly consumes glucose to fuel neurophysiology. Cancers of the brain, such as glioblastoma (GBM), lose aspects of normal biology and gain the ability to proliferate and invade healthy tissue. How brain cancers rewire glucose utilization to fuel these processes is poorly understood. Here we perform infusions of 13 C-labeled glucose into patients and mice with brain cancer to define the metabolic fates of glucose-derived carbon in tumor and cortex. By combining these measurements with quantitative metabolic flux analysis, we find that human cortex funnels glucose-derived carbons towards physiologic processes including TCA cycle oxidation and neurotransmitter synthesis. In contrast, brain cancers downregulate these physiologic processes, scavenge alternative carbon sources from the environment, and instead use glucose-derived carbons to produce molecules needed for proliferation and invasion. Targeting this metabolic rewiring in mice through dietary modulation selectively alters GBM metabolism and slows tumor growth. Significance This study is the first to directly measure biosynthetic flux in both glioma and cortical tissue in human brain cancer patients. Brain tumors rewire glucose carbon utilization away from oxidation and neurotransmitter production towards biosynthesis to fuel growth. Blocking these metabolic adaptations with dietary interventions slows brain cancer growth with minimal effects on cortical metabolism.
Collapse
|
4
|
Rydzewski NR, Helzer KT, Bootsma M, Shi Y, Bakhtiar H, Sjöström M, Zhao SG. Machine Learning & Molecular Radiation Tumor Biomarkers. Semin Radiat Oncol 2023; 33:243-251. [PMID: 37331779 PMCID: PMC10287033 DOI: 10.1016/j.semradonc.2023.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/20/2023]
Abstract
Developing radiation tumor biomarkers that can guide personalized radiotherapy clinical decision making is a critical goal in the effort towards precision cancer medicine. High-throughput molecular assays paired with modern computational techniques have the potential to identify individual tumor-specific signatures and create tools that can help understand heterogenous patient outcomes in response to radiotherapy, allowing clinicians to fully benefit from the technological advances in molecular profiling and computational biology including machine learning. However, the increasingly complex nature of the data generated from high-throughput and "omics" assays require careful selection of analytical strategies. Furthermore, the power of modern machine learning techniques to detect subtle data patterns comes with special considerations to ensure that the results are generalizable. Herein, we review the computational framework of tumor biomarker development and describe commonly used machine learning approaches and how they are applied for radiation biomarker development using molecular data, as well as challenges and emerging research trends.
Collapse
Affiliation(s)
- Nicholas R Rydzewski
- Radiation Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD; Department of Human Oncology, University of Wisconsin, Madison, WI
| | - Kyle T Helzer
- Department of Human Oncology, University of Wisconsin, Madison, WI
| | - Matthew Bootsma
- Department of Human Oncology, University of Wisconsin, Madison, WI
| | - Yue Shi
- Department of Human Oncology, University of Wisconsin, Madison, WI
| | - Hamza Bakhtiar
- Department of Human Oncology, University of Wisconsin, Madison, WI
| | - Martin Sjöström
- Department of Radiation Oncology, University of California San Francisco, San Francisco, CA
| | - Shuang G Zhao
- Department of Human Oncology, University of Wisconsin, Madison, WI; Carbone Cancer Center, University of Wisconsin, Madison, WI; William S. Middleton Memorial Veterans Hospital, Madison, WI.
| |
Collapse
|
5
|
Zhou W, Zhao Z, Lin A, Yang J, Xu J, Kari WR, Yang A, Li J, Solanki S, Speth J, Walker N, Scott AJ, Kothari AU, Yao Y, Peterson ER, Korimerla N, Werner CK, Liang J, Jacobson J, Palavalasa S, Obrien AM, Elaimy AL, Ferris SP, Zhao SG, Sarkaria JN, Győrffy B, Zhang S, Al-Holou WN, Umemura Y, Morgan MA, Lawrence TS, Lyssiotis CA, Peters-Golden M, Shah YM, Wahl DR. GTP signaling links metabolism, DNA repair, and responses to genotoxic stress. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.12.536297. [PMID: 37090571 PMCID: PMC10120670 DOI: 10.1101/2023.04.12.536297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/25/2023]
Abstract
How cell metabolism regulates DNA repair is incompletely understood. Here, we define a GTP-mediated signaling cascade that links metabolism to DNA repair and has significant therapeutic implications. GTP, but not other nucleotides, regulates the activity of Rac1, a G protein, that promotes the dephosphorylation of serine 323 on Abl-interactor 1 (Abi-1) by protein phosphatase 5 (PP5). Dephosphorylated Abi-1, a protein previously not known to activate DNA repair, promotes non-homologous end joining. In patients and mouse models of glioblastoma, Rac1 and dephosphorylated Abi-1 mediate DNA repair and resistance to standard of care genotoxic treatments. The GTP-Rac1-PP5-Abi-1 signaling axis is not limited to brain cancer, as GTP supplementation promotes DNA repair and Abi-1-S323 dephosphorylation in non-malignant cells and protects mouse tissues from genotoxic insult. This unexpected ability of GTP to regulate DNA repair independently of deoxynucleotide pools has important implications for normal physiology and cancer treatment.
Collapse
|
6
|
Al-Holou WN, Wang H, Ravikumar V, Shankar S, Oneka M, Fehmi Z, Verhaak RG, Kim H, Pratt D, Camelo-Piragua S, Speers C, Wahl DR, Hollon T, Sagher O, Heth JA, Muraszko KM, Lawrence TS, de Carvalho AC, Mikkelsen T, Rao A, Rehemtulla A. Subclonal evolution and expansion of spatially distinct THY1-positive cells is associated with recurrence in glioblastoma. Neoplasia 2023; 36:100872. [PMID: 36621024 PMCID: PMC9841165 DOI: 10.1016/j.neo.2022.100872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 12/22/2022] [Indexed: 01/07/2023]
Abstract
PURPOSE Glioblastoma(GBM) is a lethal disease characterized by inevitable recurrence. Here we investigate the molecular pathways mediating resistance, with the goal of identifying novel therapeutic opportunities. EXPERIMENTAL DESIGN We developed a longitudinal in vivo recurrence model utilizing patient-derived explants to produce paired specimens(pre- and post-recurrence) following temozolomide(TMZ) and radiation(IR). These specimens were evaluated for treatment response and to identify gene expression pathways driving treatment resistance. Findings were clinically validated using spatial transcriptomics of human GBMs. RESULTS These studies reveal in replicate cohorts, a gene expression profile characterized by upregulation of mesenchymal and stem-like genes at recurrence. Analyses of clinical databases revealed significant association of this transcriptional profile with worse overall survival and upregulation at recurrence. Notably, gene expression analyses identified upregulation of TGFβ signaling, and more than one-hundred-fold increase in THY1 levels at recurrence. Furthermore, THY1-positive cells represented <10% of cells in treatment-naïve tumors, compared to 75-96% in recurrent tumors. We then isolated THY1-positive cells from treatment-naïve patient samples and determined that they were inherently resistant to chemoradiation in orthotopic models. Additionally, using image-guided biopsies from treatment-naïve human GBM, we conducted spatial transcriptomic analyses. This revealed rare THY1+ regions characterized by mesenchymal/stem-like gene expression, analogous to our recurrent mouse model, which co-localized with macrophages within the perivascular niche. We then inhibited TGFBRI activity in vivo which decreased mesenchymal/stem-like protein levels, including THY1, and restored sensitivity to TMZ/IR in recurrent tumors. CONCLUSIONS These findings reveal that GBM recurrence may result from tumor repopulation by pre-existing, therapy-resistant, THY1-positive, mesenchymal cells within the perivascular niche.
Collapse
Affiliation(s)
- Wajd N Al-Holou
- Department of Neurosurgery, University of Michigan, Ann Arbor, MI 48109, United States
| | - Hanxiao Wang
- Department of Radiation Oncology, University of Michigan, NCRC 520, Room 1342, Ann Arbor, MI 48105, United States; AstraZeneca, United States
| | - Visweswaran Ravikumar
- Department of Computational Medicine & Bioinformatics, The University of Michigan Medical School, Ann Arbor, MI 48109, United States
| | - Sunita Shankar
- Department of Neurosurgery, University of Michigan, Ann Arbor, MI 48109, United States
| | - Morgan Oneka
- Department of Computational Medicine & Bioinformatics, The University of Michigan Medical School, Ann Arbor, MI 48109, United States
| | - Ziad Fehmi
- Department of Neurosurgery, University of Michigan, Ann Arbor, MI 48109, United States
| | | | - Hoon Kim
- The Jackson Laboratory, Farmington, CT 06032, United States; Department of Biopharmaceutical Convergence, Sungkyunkwan University, South Korea
| | - Drew Pratt
- Department of Pathology, University of Michigan, United States
| | | | - Corey Speers
- Department of Radiation Oncology, University of Michigan, NCRC 520, Room 1342, Ann Arbor, MI 48105, United States
| | - Daniel R Wahl
- Department of Radiation Oncology, University of Michigan, NCRC 520, Room 1342, Ann Arbor, MI 48105, United States
| | - Todd Hollon
- Department of Neurosurgery, University of Michigan, Ann Arbor, MI 48109, United States
| | - Oren Sagher
- Department of Neurosurgery, University of Michigan, Ann Arbor, MI 48109, United States
| | - Jason A Heth
- Department of Neurosurgery, University of Michigan, Ann Arbor, MI 48109, United States
| | - Karin M Muraszko
- Department of Neurosurgery, University of Michigan, Ann Arbor, MI 48109, United States
| | - Theodore S Lawrence
- Department of Radiation Oncology, University of Michigan, NCRC 520, Room 1342, Ann Arbor, MI 48105, United States
| | - Ana C de Carvalho
- Department of Neurosurgery, Henry Ford Hospital, Detroit, MI 48202, United States
| | - Tom Mikkelsen
- Department of Neurosurgery, Henry Ford Hospital, Detroit, MI 48202, United States
| | - Arvind Rao
- Department of Radiation Oncology, University of Michigan, NCRC 520, Room 1342, Ann Arbor, MI 48105, United States; Department of Computational Medicine & Bioinformatics, The University of Michigan Medical School, Ann Arbor, MI 48109, United States
| | - Alnawaz Rehemtulla
- Department of Radiation Oncology, University of Michigan, NCRC 520, Room 1342, Ann Arbor, MI 48105, United States.
| |
Collapse
|
7
|
Hazra R, Utama R, Naik P, Dobin A, Spector DL. Identification of glioblastoma stem cell-associated lncRNAs using single-cell RNA-sequencing datasets. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.20.524887. [PMID: 36711961 PMCID: PMC9882256 DOI: 10.1101/2023.01.20.524887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Glioblastoma multiforme (GBM) is an aggressive, heterogeneous grade IV brain tumor. Glioblastoma stem cells (GSCs) initiate the tumor and are known culprits of therapy resistance. Mounting evidence has demonstrated a regulatory role of long non-coding RNAs (lncRNAs) in various biological processes, including pluripotency, differentiation, and tumorigenesis. A few studies have suggested that aberrant expression of lncRNAs is associated with GSCs. However, a comprehensive single-cell analysis of the GSC-associated lncRNA transcriptome has not been carried out. Here, we analyzed recently published single-cell RNA-sequencing datasets of adult human GBM tumors, GBM organoids, GSC-enriched GBM tumors, and developing human brains to identify lncRNAs highly expressed in GBM. To categorize GSC populations in the GBM tumors, we used the GSC marker genes SOX2, PROM1, FUT4, and L1CAM. We found three major GSC population clusters: radial glia, oligodendrocyte progenitor cells, and neurons. We found 10â€"100 lncRNAs significantly enriched in different GSC populations. We also validated the level of expression and localization of several GSC-enriched lncRNAs using qRT-PCR, single-molecule RNA FISH, and sub-cellular fractionation. We found that the radial glia GSC-enriched lncRNA PANTR1 is highly expressed in GSC lines and is localized to both the cytoplasmic and nuclear fractions. In contrast, the neuronal GSC-enriched lncRNAs LINC01563 and MALAT1 are highly enriched in the nuclear fraction of GSCs. Together, this study identified a panel of uncharacterized GSC-specific lncRNAs. These findings set the stage for future in-depth studies to examine their role in GBM pathology and their potential as biomarkers and/or therapeutic targets in GBM.
Collapse
|
8
|
Zhang Y, Qiu L, Ren Y, Cheng Z, Li L, Yao S, Zhang C, Luo Z, Lu H. A meta-learning approach to improving radiation response prediction in cancers. Comput Biol Med 2022; 150:106163. [PMID: 37070625 DOI: 10.1016/j.compbiomed.2022.106163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 09/18/2022] [Accepted: 10/01/2022] [Indexed: 11/03/2022]
Abstract
PURPOSE Predicting the efficacy of radiotherapy in individual patients has drawn widespread attention, but the limited sample size remains a bottleneck for utilizing high-dimensional multi-omics data to guide personalized radiotherapy. We hypothesize the recently developed meta-learning framework could address this limitation. METHODS AND MATERIALS By combining gene expression, DNA methylation, and clinical data of 806 patients who had received radiotherapy from The Cancer Genome Atlas (TCGA), we applied the Model-Agnostic Meta-Learning (MAML) framework to tasks consisting of pan-cancer data, to obtain the best initial parameters of a neural network for a specific cancer with smaller number of samples. The performance of meta-learning framework was compared with four traditional machine learning methods based on two training schemes, and tested on Cancer Cell Line Encyclopedia (CCLE) and Chinese Glioma Genome Atlas (CGGA) datasets. Moreover, biological significance of the models was investigated by survival analysis and feature interpretation. RESULTS The mean AUC (Area under the ROC Curve) [95% confidence interval] of our models across nine cancer types was 0.702 [0.691-0.713], which improved by 0.166 on average over other the four machine learning methods on two training schemes. Our models performed significantly better (p < 0.05) in seven cancer types and performed comparable to the other predictors in the rest of two cancer types. The more pan-cancer samples were used to transfer meta-knowledge, the greater the performance improved (p < 0.05). The predicted response scores that our models generated were negatively correlated with cell radiosensitivity index in four cancer types (p < 0.05), while not statistically significant in the other three cancer types. Moreover, the predicted response scores were shown to be prognostic factors in seven cancer types and eight potential radiosensitivity-related genes were identified. CONCLUSIONS For the first time, we established the meta-learning approach to improving individual radiation response prediction by transferring common knowledge from pan-cancer data with MAML framework. The results demonstrated the superiority, generalizability, and biological significance of our approach.
Collapse
|
9
|
Rydzewski NR, Peterson E, Lang JM, Yu M, Laura Chang S, Sjöström M, Bakhtiar H, Song G, Helzer KT, Bootsma ML, Chen WS, Shrestha RM, Zhang M, Quigley DA, Aggarwal R, Small EJ, Wahl DR, Feng FY, Zhao SG. Predicting cancer drug TARGETS - TreAtment Response Generalized Elastic-neT Signatures. NPJ Genom Med 2021; 6:76. [PMID: 34548481 PMCID: PMC8455625 DOI: 10.1038/s41525-021-00239-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 08/23/2021] [Indexed: 12/14/2022] Open
Abstract
We are now in an era of molecular medicine, where specific DNA alterations can be used to identify patients who will respond to specific drugs. However, there are only a handful of clinically used predictive biomarkers in oncology. Herein, we describe an approach utilizing in vitro DNA and RNA sequencing and drug response data to create TreAtment Response Generalized Elastic-neT Signatures (TARGETS). We trained TARGETS drug response models using Elastic-Net regression in the publicly available Genomics of Drug Sensitivity in Cancer (GDSC) database. Models were then validated on additional in-vitro data from the Cancer Cell Line Encyclopedia (CCLE), and on clinical samples from The Cancer Genome Atlas (TCGA) and Stand Up to Cancer/Prostate Cancer Foundation West Coast Prostate Cancer Dream Team (WCDT). First, we demonstrated that all TARGETS models successfully predicted treatment response in the separate in-vitro CCLE treatment response dataset. Next, we evaluated all FDA-approved biomarker-based cancer drug indications in TCGA and demonstrated that TARGETS predictions were concordant with established clinical indications. Finally, we performed independent clinical validation in the WCDT and found that the TARGETS AR signaling inhibitors (ARSI) signature successfully predicted clinical treatment response in metastatic castration-resistant prostate cancer with a statistically significant interaction between the TARGETS score and PSA response (p = 0.0252). TARGETS represents a pan-cancer, platform-independent approach to predict response to oncologic therapies and could be used as a tool to better select patients for existing therapies as well as identify new indications for testing in prospective clinical trials.
Collapse
Affiliation(s)
| | - Erik Peterson
- Department of Radiation Oncology, University of Michigan, Ann Arbor, MI, USA
| | - Joshua M Lang
- Carbone Cancer Center, University of Wisconsin, Madison, WI, USA
- Department of Medicine, University of Wisconsin, Madison, WI, USA
| | - Menggang Yu
- Carbone Cancer Center, University of Wisconsin, Madison, WI, USA
- Department of Biostatistics and Medical Informatics, University of Wisconsin, Madison, WI, USA
| | - S Laura Chang
- Department of Radiation Oncology, UCSF, San Francisco, CA, USA
| | - Martin Sjöström
- Department of Radiation Oncology, UCSF, San Francisco, CA, USA
| | - Hamza Bakhtiar
- Department of Human Oncology, University of Wisconsin, Madison, WI, USA
| | - Gefei Song
- Department of Human Oncology, University of Wisconsin, Madison, WI, USA
| | - Kyle T Helzer
- Department of Human Oncology, University of Wisconsin, Madison, WI, USA
| | - Matthew L Bootsma
- Department of Human Oncology, University of Wisconsin, Madison, WI, USA
| | - William S Chen
- Department of Radiation Oncology, UCSF, San Francisco, CA, USA
| | | | - Meng Zhang
- Department of Radiation Oncology, UCSF, San Francisco, CA, USA
| | - David A Quigley
- Helen Diller Family Comprehensive Cancer Center, UCSF, San Francisco, CA, USA
- Department of Epidemiology and Biostatistics, UCSF, San Francisco, CA, USA
| | - Rahul Aggarwal
- Helen Diller Family Comprehensive Cancer Center, UCSF, San Francisco, CA, USA
- Division of Hematology and Oncology, Department of Medicine, UCSF, San Francisco, CA, USA
| | - Eric J Small
- Helen Diller Family Comprehensive Cancer Center, UCSF, San Francisco, CA, USA
- Division of Hematology and Oncology, Department of Medicine, UCSF, San Francisco, CA, USA
| | - Daniel R Wahl
- Department of Radiation Oncology, University of Michigan, Ann Arbor, MI, USA
| | - Felix Y Feng
- Department of Radiation Oncology, UCSF, San Francisco, CA, USA
- Helen Diller Family Comprehensive Cancer Center, UCSF, San Francisco, CA, USA
- Division of Hematology and Oncology, Department of Medicine, UCSF, San Francisco, CA, USA
- Department of Urology, UCSF, San Francisco, CA, USA
| | - Shuang G Zhao
- Department of Human Oncology, University of Wisconsin, Madison, WI, USA.
- Carbone Cancer Center, University of Wisconsin, Madison, WI, USA.
- William S. Middleton Memorial Veterans Hospital, Madison, WI, USA.
| |
Collapse
|
10
|
Lopes MB, Martins EP, Vinga S, Costa BM. The Role of Network Science in Glioblastoma. Cancers (Basel) 2021; 13:1045. [PMID: 33801334 PMCID: PMC7958335 DOI: 10.3390/cancers13051045] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 02/19/2021] [Accepted: 02/22/2021] [Indexed: 12/13/2022] Open
Abstract
Network science has long been recognized as a well-established discipline across many biological domains. In the particular case of cancer genomics, network discovery is challenged by the multitude of available high-dimensional heterogeneous views of data. Glioblastoma (GBM) is an example of such a complex and heterogeneous disease that can be tackled by network science. Identifying the architecture of molecular GBM networks is essential to understanding the information flow and better informing drug development and pre-clinical studies. Here, we review network-based strategies that have been used in the study of GBM, along with the available software implementations for reproducibility and further testing on newly coming datasets. Promising results have been obtained from both bulk and single-cell GBM data, placing network discovery at the forefront of developing a molecularly-informed-based personalized medicine.
Collapse
Affiliation(s)
- Marta B. Lopes
- Center for Mathematics and Applications (CMA), FCT, UNL, 2829-516 Caparica, Portugal
- NOVA Laboratory for Computer Science and Informatics (NOVA LINCS), FCT, UNL, 2829-516 Caparica, Portugal
| | - Eduarda P. Martins
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal; (E.P.M.); (B.M.C.)
- ICVS/3B’s—PT Government Associate Laboratory, 4710-057/4805-017 Braga/Guimarães, Portugal
| | - Susana Vinga
- INESC-ID, Instituto Superior Técnico, Universidade de Lisboa, 1000-029 Lisbon, Portugal;
- IDMEC, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisbon, Portugal
| | - Bruno M. Costa
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal; (E.P.M.); (B.M.C.)
- ICVS/3B’s—PT Government Associate Laboratory, 4710-057/4805-017 Braga/Guimarães, Portugal
| |
Collapse
|
11
|
Zhang L, Liu F, Weygant N, Zhang J, Hu P, Qin Z, Yang J, Cheng Q, Fan F, Zeng Y, Tang Y, Li Y, Tang A, He F, Peng J, Liao W, Hu Z, Li M, Liu Z. A novel integrated system using patient-derived glioma cerebral organoids and xenografts for disease modeling and drug screening. Cancer Lett 2020; 500:87-97. [PMID: 33309780 DOI: 10.1016/j.canlet.2020.12.013] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 11/25/2020] [Accepted: 12/04/2020] [Indexed: 02/08/2023]
Abstract
A physiologically relevant glioma tumor model is important to the study of disease progression and screening drug candidates. However, current preclinical glioma models lack the brain microenvironment, and the established tumor cell lines do not represent glioma biology and cannot be used to evaluate the therapeutic effect. Here, we reported a real-time integrated system by generating 3D ex vivo cerebral organoids and in vivo xenograft tumors based on glioma patient-derived tissues and cells. Our system faithfully recapitulated the histological features, response to chemotherapy drugs, and clinical progression of their corresponding parental tumors. Additionally, our model successfully identified a case from a grade II astrocytoma patient with typical grade IV GBM features in both organoids and xenograft models, which mimicked the disease progression of this patient. Further genomic and transcriptomic characterization was associated with individual clinical features. We have demonstrated the "GBM-&Normal-like" signature to predict prognosis. In conclusion, we developed an integrated system of parallel models from patient-derived glioma cerebral organoids and xenografts for understanding the glioma biology and prediction of response to chemotherapy drugs, which might lead to a new strategy for personalized treatment for this deadly disease.
Collapse
Affiliation(s)
- Liyang Zhang
- Department of Neurosurgery, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan, 410008, China; Department of Medicine, The University of Oklahoma Health Sciences Center, 975 NE 10th Street, BRC 1262A, Oklahoma City, OK, 73104, USA; Clinical Diagnosis and Therapy Center for Glioma of Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan, 410008, China.
| | - Fangkun Liu
- Department of Neurosurgery, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan, 410008, China; Clinical Diagnosis and Therapy Center for Glioma of Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan, 410008, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan, 410008, China.
| | - Nathaniel Weygant
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, China; Fujian Key Laboratory of Integrative Medicine in Geriatrics, Fujian University of Traditional Chinese Medicine, Fujian, 350122, China.
| | - Junxia Zhang
- Department of Medicine, The University of Oklahoma Health Sciences Center, 975 NE 10th Street, BRC 1262A, Oklahoma City, OK, 73104, USA; Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China.
| | - Ping Hu
- Department of Radiology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan, 410008, China.
| | - Zailong Qin
- Genetic and Metabolic Central Laboratory, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning, 530003, China.
| | - Jingxuan Yang
- Department of Medicine, The University of Oklahoma Health Sciences Center, 975 NE 10th Street, BRC 1262A, Oklahoma City, OK, 73104, USA.
| | - Quan Cheng
- Department of Neurosurgery, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan, 410008, China; Clinical Diagnosis and Therapy Center for Glioma of Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan, 410008, China.
| | - Fan Fan
- Department of Neurosurgery, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan, 410008, China; Clinical Diagnosis and Therapy Center for Glioma of Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan, 410008, China.
| | - Yu Zeng
- Department of Neurosurgery, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan, 410008, China; Clinical Diagnosis and Therapy Center for Glioma of Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan, 410008, China.
| | - Yongjian Tang
- Department of Neurosurgery, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan, 410008, China; Department of Neurological Surgery, University of California, San Francisco, CA, 94158, USA.
| | - Yusheng Li
- Department of Orthopedics, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan, 410008, China.
| | - Anliu Tang
- Department of Gastroenterology, The Third Xiangya Hospital, Central South University, 138 Tongzipo Road, Changsha, Hunan, 410013, China.
| | - Fengqiong He
- Department of Neurosurgery, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan, 410008, China; Clinical Diagnosis and Therapy Center for Glioma of Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan, 410008, China.
| | - Jun Peng
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, China; Fujian Key Laboratory of Integrative Medicine in Geriatrics, Fujian University of Traditional Chinese Medicine, Fujian, 350122, China.
| | - Weihua Liao
- Clinical Diagnosis and Therapy Center for Glioma of Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan, 410008, China; Department of Radiology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan, 410008, China.
| | - Zhongliang Hu
- Clinical Diagnosis and Therapy Center for Glioma of Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan, 410008, China; Department of Pathology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan, 410008, China.
| | - Min Li
- Department of Medicine, The University of Oklahoma Health Sciences Center, 975 NE 10th Street, BRC 1262A, Oklahoma City, OK, 73104, USA.
| | - Zhixiong Liu
- Department of Neurosurgery, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan, 410008, China; Clinical Diagnosis and Therapy Center for Glioma of Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan, 410008, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan, 410008, China.
| |
Collapse
|
12
|
Werner CK, Nna UJ, Sun H, Wilder-Romans K, Dresser J, Kothari AU, Zhou W, Yao Y, Rao A, Stallard S, Koschmann C, Bor T, Debinski W, Hegedus AM, Morgan MA, Venneti S, Baskin-Bey E, Spratt DE, Colman H, Sarkaria JN, Chinnaiyan AM, Eisner JR, Speers C, Lawrence TS, Strowd RE, Wahl DR. Expression of the Androgen Receptor Governs Radiation Resistance in a Subset of Glioblastomas Vulnerable to Antiandrogen Therapy. Mol Cancer Ther 2020; 19:2163-2174. [PMID: 32796101 PMCID: PMC7842184 DOI: 10.1158/1535-7163.mct-20-0095] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 04/17/2020] [Accepted: 08/04/2020] [Indexed: 12/26/2022]
Abstract
New approaches are needed to overcome intrinsic therapy resistance in glioblastoma (GBM). Because GBMs exhibit sexual dimorphism and are reported to express steroid hormone receptors, we reasoned that signaling through the androgen receptor (AR) could mediate therapy resistance in GBM, much as it does in AR-positive prostate and breast cancers. We found that nearly half of GBM cell lines, patient-derived xenografts (PDX), and human tumors expressed AR at the transcript and protein level-with expression levels overlapping those of primary prostate cancer. Analysis of gene expression datasets also revealed that AR expression is higher in GBM patient samples than normal brain tissue. Multiple clinical-grade antiandrogens slowed the growth of and radiosensitized AR-positive GBM cell lines and PDXs in vitro and in vivo Antiandrogens blocked the ability of AR-positive GBM PDXs to engage adaptive transcriptional programs following radiation and slowed the repair of radiation-induced DNA damage. These results suggest that combining blood-brain barrier permeable antiandrogens with radiation may have promise for patients with AR-positive GBMs.
Collapse
Affiliation(s)
- Christian K Werner
- Department of Radiation Oncology, University of Michigan, Ann Arbor, Michigan
| | - Uchechi J Nna
- Department of Radiation Oncology, University of Michigan, Ann Arbor, Michigan
| | - Hanshi Sun
- Department of Radiation Oncology, University of Michigan, Ann Arbor, Michigan
| | - Kari Wilder-Romans
- Department of Radiation Oncology, University of Michigan, Ann Arbor, Michigan
| | - Joseph Dresser
- Department of Radiation Oncology, University of Michigan, Ann Arbor, Michigan
| | - Ayesha U Kothari
- Department of Radiation Oncology, University of Michigan, Ann Arbor, Michigan
| | - Weihua Zhou
- Department of Radiation Oncology, University of Michigan, Ann Arbor, Michigan
| | - Yangyang Yao
- Department of Radiation Oncology, University of Michigan, Ann Arbor, Michigan
| | - Arvind Rao
- Department of Radiation Oncology, University of Michigan, Ann Arbor, Michigan
- Department of Computational Medicine & Bioinformatics, University of Michigan, Ann Arbor, Michigan
| | - Stefanie Stallard
- Department of Pediatrics, Michigan Medicine, University of Michigan Medical School, Ann Arbor, Michigan
| | - Carl Koschmann
- Department of Pediatrics, Michigan Medicine, University of Michigan Medical School, Ann Arbor, Michigan
| | - Tarik Bor
- Department of Cancer Biology, Wake Forest Baptist Comprehensive Cancer Center, Winston-Salem, North Carolina
| | - Waldemar Debinski
- Department of Cancer Biology, Wake Forest Baptist Comprehensive Cancer Center, Winston-Salem, North Carolina
| | - Alexander M Hegedus
- Department of Climate and Space Sciences and Engineering, University of Michigan, Ann Arbor, Michigan
| | - Meredith A Morgan
- Department of Radiation Oncology, University of Michigan, Ann Arbor, Michigan
| | - Sriram Venneti
- Department of Pathology, University of Michigan, Ann Arbor, Michigan
| | | | - Daniel E Spratt
- Department of Radiation Oncology, University of Michigan, Ann Arbor, Michigan
| | - Howard Colman
- Department of Neurosurgery, University of Utah, Salt Lake City, Utah
| | - Jann N Sarkaria
- Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota
| | - Arul M Chinnaiyan
- Department of Pathology, University of Michigan, Ann Arbor, Michigan
| | - Joel R Eisner
- Innocrin Pharmaceuticals, Inc., Durham, North Carolina
| | - Corey Speers
- Department of Radiation Oncology, University of Michigan, Ann Arbor, Michigan
| | - Theodore S Lawrence
- Department of Radiation Oncology, University of Michigan, Ann Arbor, Michigan
| | - Roy E Strowd
- Department of Neurology and Internal Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Daniel R Wahl
- Department of Radiation Oncology, University of Michigan, Ann Arbor, Michigan.
| |
Collapse
|
13
|
Zhou W, Yao Y, Scott AJ, Wilder-Romans K, Dresser JJ, Werner CK, Sun H, Pratt D, Sajjakulnukit P, Zhao SG, Davis M, Nelson BS, Halbrook CJ, Zhang L, Gatto F, Umemura Y, Walker AK, Kachman M, Sarkaria JN, Xiong J, Morgan MA, Rehemtualla A, Castro MG, Lowenstein P, Chandrasekaran S, Lawrence TS, Lyssiotis CA, Wahl DR. Purine metabolism regulates DNA repair and therapy resistance in glioblastoma. Nat Commun 2020; 11:3811. [PMID: 32732914 PMCID: PMC7393131 DOI: 10.1038/s41467-020-17512-x] [Citation(s) in RCA: 109] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2020] [Accepted: 07/02/2020] [Indexed: 02/07/2023] Open
Abstract
Intratumoral genomic heterogeneity in glioblastoma (GBM) is a barrier to overcoming therapy resistance. Treatments that are effective independent of genotype are urgently needed. By correlating intracellular metabolite levels with radiation resistance across dozens of genomically-distinct models of GBM, we find that purine metabolites, especially guanylates, strongly correlate with radiation resistance. Inhibiting GTP synthesis radiosensitizes GBM cells and patient-derived neurospheres by impairing DNA repair. Likewise, administration of exogenous purine nucleosides protects sensitive GBM models from radiation by promoting DNA repair. Neither modulating pyrimidine metabolism nor purine salvage has similar effects. An FDA-approved inhibitor of GTP synthesis potentiates the effects of radiation in flank and orthotopic patient-derived xenograft models of GBM. High expression of the rate-limiting enzyme of de novo GTP synthesis is associated with shorter survival in GBM patients. These findings indicate that inhibiting purine synthesis may be a promising strategy to overcome therapy resistance in this genomically heterogeneous disease. Targeting genotype-independent abnormalities may overcome therapy resistance in glioblastoma despite intratumoral genomic heterogeneity. Here, the authors show that glioblastoma radiation resistance is promoted by purine metabolism and can be overcome by inhibitors of purine synthesis.
Collapse
Affiliation(s)
- Weihua Zhou
- Department of Radiation Oncology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Yangyang Yao
- Department of Radiation Oncology, University of Michigan, Ann Arbor, MI, 48109, USA.,Department of Oncology, the First Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi, PR China
| | - Andrew J Scott
- Department of Radiation Oncology, University of Michigan, Ann Arbor, MI, 48109, USA.,Rogel Cancer Center, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Kari Wilder-Romans
- Department of Radiation Oncology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Joseph J Dresser
- Department of Radiation Oncology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Christian K Werner
- Department of Radiation Oncology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Hanshi Sun
- Department of Radiation Oncology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Drew Pratt
- Department of Pathology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Peter Sajjakulnukit
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Shuang G Zhao
- Department of Radiation Oncology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Mary Davis
- Department of Radiation Oncology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Barbara S Nelson
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Christopher J Halbrook
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Li Zhang
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Francesco Gatto
- Department of Biology and Biological Engineering, Chalmers University of Technology, 41296, Göteborg, Sweden
| | - Yoshie Umemura
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI, 48109, USA.,Department of Neurology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Angela K Walker
- Biomedical Research Core Facilities, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Maureen Kachman
- Biomedical Research Core Facilities, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Jann N Sarkaria
- Department of Radiation Oncology, Mayo Clinic, Rochester, MN, 55902, USA
| | - Jianping Xiong
- Department of Oncology, the First Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi, PR China
| | - Meredith A Morgan
- Department of Radiation Oncology, University of Michigan, Ann Arbor, MI, 48109, USA.,Rogel Cancer Center, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Alnawaz Rehemtualla
- Department of Radiation Oncology, University of Michigan, Ann Arbor, MI, 48109, USA.,Rogel Cancer Center, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Maria G Castro
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI, 48109, USA.,Department of Neurosurgery, University of Michigan, Ann Arbor, MI, 48109, USA.,Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - Pedro Lowenstein
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI, 48109, USA.,Department of Neurosurgery, University of Michigan, Ann Arbor, MI, 48109, USA.,Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - Sriram Chandrasekaran
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI, 48109, USA.,Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Theodore S Lawrence
- Department of Radiation Oncology, University of Michigan, Ann Arbor, MI, 48109, USA.,Rogel Cancer Center, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Costas A Lyssiotis
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI, 48109, USA.,Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, 48109, USA.,Department of Internal Medicine, Division of Gastroenterology and Hepatology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Daniel R Wahl
- Department of Radiation Oncology, University of Michigan, Ann Arbor, MI, 48109, USA. .,Rogel Cancer Center, University of Michigan, Ann Arbor, MI, 48109, USA.
| |
Collapse
|
14
|
Meneceur S, Linge A, Meinhardt M, Hering S, Löck S, Bütof R, Krex D, Schackert G, Temme A, Baumann M, Krause M, von Neubeck C. Establishment and Characterisation of Heterotopic Patient-Derived Xenografts for Glioblastoma. Cancers (Basel) 2020; 12:cancers12040871. [PMID: 32260145 PMCID: PMC7226316 DOI: 10.3390/cancers12040871] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 03/27/2020] [Accepted: 04/01/2020] [Indexed: 12/12/2022] Open
Abstract
Glioblastoma is an aggressive brain tumour with a patient median survival of approximately 14 months. The development of innovative treatment strategies to increase the life span and quality of life of patients is hence essential. This requires the use of appropriate glioblastoma models for preclinical testing, which faithfully reflect human cancers. The aim of this study was to establish glioblastoma patient-derived xenografts (PDXs) by heterotopic transplantation of tumour pieces in the axillae of NMRI nude mice. Ten out of 22 patients' samples gave rise to tumours in mice. Their human origin was confirmed by microsatellite analyses, though minor changes were observed. The glioblastoma nature of the PDXs was corroborated by pathological evaluation. Latency times spanned from 48.5 to 370.5 days in the first generation. Growth curve analyses revealed an increase in the growth rate with increasing passages. The methylation status of the MGMT promoter in the primary material was maintained in the PDXs. However, a trend towards a more methylated pattern could be found. A correlation was observed between the take in mice and the proportion of Sox2+ cells (r = 0.49, p = 0.016) and nestin+ cells (r = 0.55, p = 0.007). Our results show that many PDXs maintain key features of the patients' samples they derive from. They could thus be used as preclinical models to test new therapies and biomarkers.
Collapse
Affiliation(s)
- Sarah Meneceur
- OncoRay–National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz- Zentrum Dresden-Rossendorf, 01307 Dresden, Germany; (A.L.); (S.L.); (R.B.); (M.B.); (M.K.); (C.v.N.)
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiooncology–OncoRay, 01307 Dresden, Germany
- Correspondence:
| | - Annett Linge
- OncoRay–National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz- Zentrum Dresden-Rossendorf, 01307 Dresden, Germany; (A.L.); (S.L.); (R.B.); (M.B.); (M.K.); (C.v.N.)
- German Cancer Consortium (DKTK), Partner Site Dresden, 01307 Dresden, Germany; (G.S.); (A.T.)
- German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- Department of Radiotherapy and Radiation Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany
- National Center for Tumour Diseases (NCT), Partner Site Dresden, 01307 Dresden, Germany
| | - Matthias Meinhardt
- Institute for Pathology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität, 01307 Dresden, Germany;
| | - Sandra Hering
- Institute for Legal Medicine, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität, 01307 Dresden, Germany;
| | - Steffen Löck
- OncoRay–National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz- Zentrum Dresden-Rossendorf, 01307 Dresden, Germany; (A.L.); (S.L.); (R.B.); (M.B.); (M.K.); (C.v.N.)
- German Cancer Consortium (DKTK), Partner Site Dresden, 01307 Dresden, Germany; (G.S.); (A.T.)
- German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Rebecca Bütof
- OncoRay–National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz- Zentrum Dresden-Rossendorf, 01307 Dresden, Germany; (A.L.); (S.L.); (R.B.); (M.B.); (M.K.); (C.v.N.)
- Department of Radiotherapy and Radiation Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany
- National Center for Tumour Diseases (NCT), Partner Site Dresden, 01307 Dresden, Germany
| | - Dietmar Krex
- Department of Neurosurgery, Medical Faculty and University Hospital Carl Gustav Carus, 01307 Dresden, Germany;
| | - Gabriele Schackert
- German Cancer Consortium (DKTK), Partner Site Dresden, 01307 Dresden, Germany; (G.S.); (A.T.)
- National Center for Tumour Diseases (NCT), Partner Site Dresden, 01307 Dresden, Germany
- Department of Neurosurgery, Medical Faculty and University Hospital Carl Gustav Carus, 01307 Dresden, Germany;
| | - Achim Temme
- German Cancer Consortium (DKTK), Partner Site Dresden, 01307 Dresden, Germany; (G.S.); (A.T.)
- National Center for Tumour Diseases (NCT), Partner Site Dresden, 01307 Dresden, Germany
- Department of Neurosurgery, Medical Faculty and University Hospital Carl Gustav Carus, 01307 Dresden, Germany;
| | - Michael Baumann
- OncoRay–National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz- Zentrum Dresden-Rossendorf, 01307 Dresden, Germany; (A.L.); (S.L.); (R.B.); (M.B.); (M.K.); (C.v.N.)
- German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- Department of Radiotherapy and Radiation Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany
| | - Mechthild Krause
- OncoRay–National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz- Zentrum Dresden-Rossendorf, 01307 Dresden, Germany; (A.L.); (S.L.); (R.B.); (M.B.); (M.K.); (C.v.N.)
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiooncology–OncoRay, 01307 Dresden, Germany
- German Cancer Consortium (DKTK), Partner Site Dresden, 01307 Dresden, Germany; (G.S.); (A.T.)
- German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- Department of Radiotherapy and Radiation Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany
- National Center for Tumour Diseases (NCT), Partner Site Dresden, 01307 Dresden, Germany
| | - Cläre von Neubeck
- OncoRay–National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz- Zentrum Dresden-Rossendorf, 01307 Dresden, Germany; (A.L.); (S.L.); (R.B.); (M.B.); (M.K.); (C.v.N.)
- German Cancer Consortium (DKTK), Partner Site Dresden, 01307 Dresden, Germany; (G.S.); (A.T.)
- German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- Department of Particle Therapy, University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany
| |
Collapse
|
15
|
Saki M, Bhat K, Sodhi SS, Nguyen NT, Kornblum HI, Pajonk F. Effects of Brain Irradiation in Immune-Competent and Immune-Compromised Mouse Models. Radiat Res 2019; 193:186-194. [PMID: 31774721 DOI: 10.1667/rr15373.1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Patient-derived orthotopic xenografts (PDOXs) closely recapitulate primary human glioblastoma (GBM) tumors in terms of histology and genotype. Compared to other mouse strains, NOD-scid IL2Rgammanull (NSG) mice show excellent tumor take rates, which makes them an ideal host for PDOXs. However, NSG mice harbor a mutation in the catalytic subunit of DNA-dependent protein kinase (DNA-PKcs), which renders them relatively radiosensitive. This has been a frequently voiced concern in studies involving ionizing radiation. In this study, we assessed brain toxicity in NSG mice compared to three other different mouse strains frequently used in radiation studies at radiation doses commonly used in experimental combination therapy studies. C3H/Sed/Kam, C57Bl/6, nude and NOD-scid IL2Rgammanull mice received a single dose of 4 Gy to the right brain hemispheres using an image-guided small animal irradiator. Brains were stained using H&E, luxol fast blue, and antibodies against IBA1 and GFAP one, two, four or six months postirradiation. Additional animals of all four strains were exposed to five daily fractions of 2 Gy (5 × 2 Gy), and tissue sections were stained 72 h later against gH2AX, NeuN, GFAP and IBA1. None of the mouse strains displayed radiation-induced toxicity at any of the time points tested. Radiation doses relevant for testing combination therapies can be safely applied to the brains of NSG mice without the occurrence of radiation-induced normal tissue toxicity.
Collapse
Affiliation(s)
- Mohammad Saki
- Departments of Radiation Oncology, David Geffen School of Medicine
| | - Kruttika Bhat
- Departments of Radiation Oncology, David Geffen School of Medicine
| | - Sirajbir S Sodhi
- Departments of Radiation Oncology, David Geffen School of Medicine
| | - Nhan T Nguyen
- Departments of Radiation Oncology, David Geffen School of Medicine
| | - Harley I Kornblum
- Departments of Molecular and Medical Pharmacology.,Departments of Neurology.,Departments of Psychiatry and Biobehavioral Sciences.,Departments of NPI-The Jane and Terry Semel Institute for Neuroscience and Human Behavior.,Departments of Molecular Biology Institute.,Departments of Jonsson Comprehensive Cancer Center at UCLA, University of California, Los Angeles, Los Angeles, California.,Departments of Eli & Edythe Broad Center for Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, California
| | - Frank Pajonk
- Departments of Radiation Oncology, David Geffen School of Medicine.,Departments of Jonsson Comprehensive Cancer Center at UCLA, University of California, Los Angeles, Los Angeles, California
| |
Collapse
|
16
|
Affiliation(s)
- Matthias Holdhoff
- The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, Maryland
| |
Collapse
|