1
|
Yang ZC, Xue BW, Song XY, Yin CD, Yeh FC, Li G, Deng ZH, Sun SJ, Hou ZG, Xie J. Connectomic insights into the impact of 1p/19q co-deletion in dominant hemisphere insular glioma patients. Front Neurosci 2024; 18:1283518. [PMID: 39135733 PMCID: PMC11317282 DOI: 10.3389/fnins.2024.1283518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Accepted: 07/10/2024] [Indexed: 08/15/2024] Open
Abstract
Objectives This study aimed to elucidate the influences of 1p/19q co-deletion on structural connectivity alterations in patients with dominant hemisphere insular diffuse gliomas. Methods We incorporated 32 cases of left insular gliomas and 20 healthy controls for this study. Using diffusion MRI, we applied correlational tractography, differential tractography, and graph theoretical analysis to explore the potential connectivity associated with 1p/19q co-deletion. Results The study revealed that the quantitative anisotropy (QA) of key deep medial fiber tracts, including the anterior thalamic radiation, superior thalamic radiation, fornix, and cingulum, had significant negative associations with 1p/19q co-deletion (FDR = 4.72 × 10-5). These tracts are crucial in maintaining the integrity of brain networks. Differential analysis further supported these findings (FWER-corrected p < 0.05). The 1p/19q non-co-deletion group exhibited significantly higher clustering coefficients (FDR-corrected p < 0.05) and reduced betweenness centrality (FDR-corrected p < 0.05) in regions around the tumor compared to HC group. Graph theoretical analysis indicated that non-co-deletion patients had increased local clustering and decreased betweenness centrality in peritumoral brain regions compared to co-deletion patients and healthy controls (FDR-corrected p < 0.05). Additionally, despite not being significant through correction, patients with 1p/19q co-deletion exhibited lower trends in weighted average clustering coefficient, transitivity, small worldness, and global efficiency, while showing higher tendencies in weighted path length compared to patients without the co-deletion. Conclusion The findings of this study underline the significant role of 1p/19q co-deletion in altering structural connectivity in insular glioma patients. These alterations in brain networks could have profound implications for the neural functionality in patients with dominant hemisphere insular gliomas.
Collapse
Affiliation(s)
- Zuo-cheng Yang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Bo-wen Xue
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Xin-yu Song
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Chuan-dong Yin
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Fang-cheng Yeh
- Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA, United States
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, United States
| | - Gen Li
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Zheng-hai Deng
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Sheng-jun Sun
- Neuroimaging Center, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Zong-gang Hou
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Jian Xie
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
2
|
Boelders SM, De Baene W, Postma E, Gehring K, Ong LL. Predicting Cognitive Functioning for Patients with a High-Grade Glioma: Evaluating Different Representations of Tumor Location in a Common Space. Neuroinformatics 2024; 22:329-352. [PMID: 38900230 PMCID: PMC11329426 DOI: 10.1007/s12021-024-09671-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/31/2024] [Indexed: 06/21/2024]
Abstract
Cognitive functioning is increasingly considered when making treatment decisions for patients with a brain tumor in view of a personalized onco-functional balance. Ideally, one can predict cognitive functioning of individual patients to make treatment decisions considering this balance. To make accurate predictions, an informative representation of tumor location is pivotal, yet comparisons of representations are lacking. Therefore, this study compares brain atlases and principal component analysis (PCA) to represent voxel-wise tumor location. Pre-operative cognitive functioning was predicted for 246 patients with a high-grade glioma across eight cognitive tests while using different representations of voxel-wise tumor location as predictors. Voxel-wise tumor location was represented using 13 different frequently-used population average atlases, 13 randomly generated atlases, and 13 representations based on PCA. ElasticNet predictions were compared between representations and against a model solely using tumor volume. Preoperative cognitive functioning could only partly be predicted from tumor location. Performances of different representations were largely similar. Population average atlases did not result in better predictions compared to random atlases. PCA-based representation did not clearly outperform other representations, although summary metrics indicated that PCA-based representations performed somewhat better in our sample. Representations with more regions or components resulted in less accurate predictions. Population average atlases possibly cannot distinguish between functionally distinct areas when applied to patients with a glioma. This stresses the need to develop and validate methods for individual parcellations in the presence of lesions. Future studies may test if the observed small advantage of PCA-based representations generalizes to other data.
Collapse
Affiliation(s)
- S M Boelders
- Department of Neurosurgery, Elisabeth-TweeSteden Hospital, Tilburg, The Netherlands
- Department of Cognitive Sciences and AI, Tilburg University, Tilburg, The Netherlands
| | - W De Baene
- Department of Cognitive Neuropsychology, Tilburg University Tilburg, Warandelaan 2, P. O. Box 90153, Tilburg, 5000 LE, The Netherlands
| | - E Postma
- Department of Cognitive Sciences and AI, Tilburg University, Tilburg, The Netherlands
| | - K Gehring
- Department of Neurosurgery, Elisabeth-TweeSteden Hospital, Tilburg, The Netherlands.
- Department of Cognitive Neuropsychology, Tilburg University Tilburg, Warandelaan 2, P. O. Box 90153, Tilburg, 5000 LE, The Netherlands.
| | - L L Ong
- Department of Cognitive Sciences and AI, Tilburg University, Tilburg, The Netherlands
| |
Collapse
|
3
|
Salvalaggio A, Pini L, Bertoldo A, Corbetta M. Glioblastoma and brain connectivity: the need for a paradigm shift. Lancet Neurol 2024; 23:740-748. [PMID: 38876751 DOI: 10.1016/s1474-4422(24)00160-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 02/29/2024] [Accepted: 04/03/2024] [Indexed: 06/16/2024]
Abstract
Despite substantial advances in cancer treatment, for patients with glioblastoma prognosis remains bleak. The emerging field of cancer neuroscience reveals intricate functional interplays between glioblastoma and the cellular architecture of the brain, encompassing neurons, glia, and vessels. New findings underscore the role of structural and functional connections within hierarchical networks, known as the connectome. These connections contribute to the location, spread, and recurrence of a glioblastoma, and a patient's overall survival, revealing a complex interplay between the tumour and the CNS. This mounting evidence prompts a paradigm shift, challenging the perception of glioblastomas as mere foreign bodies within the brain. Instead, these tumours are intricately woven into the structural and functional fabric of the brain. This radical change in thinking holds profound implications for the understanding and treatment of glioblastomas, which could unveil new prognostic factors and surgical strategies and optimise radiotherapy. Additionally, a connectivity approach suggests that non-invasive brain stimulation could disrupt pathological neuron-glioma interactions within specific networks.
Collapse
Affiliation(s)
- Alessandro Salvalaggio
- Clinica Neurologica, Azienda Ospedale Università Padova, Padova, Italy; Department of Neuroscience, University of Padova, Padova, Italy; Padova Neuroscience Center, University of Padova, Padova, Italy
| | - Lorenzo Pini
- Department of Neuroscience, University of Padova, Padova, Italy
| | - Alessandra Bertoldo
- Padova Neuroscience Center, University of Padova, Padova, Italy; Department of Information Engineering, University of Padova, Padova, Italy
| | - Maurizio Corbetta
- Clinica Neurologica, Azienda Ospedale Università Padova, Padova, Italy; Department of Neuroscience, University of Padova, Padova, Italy; Padova Neuroscience Center, University of Padova, Padova, Italy; Veneto Institute of Molecular Medicine, Fondazione Biomedica, Padova, Italy.
| |
Collapse
|
4
|
Boelders SM, Gehring K, Postma EO, Rutten GJM, Ong LLS. Cognitive functioning in untreated glioma patients: The limited predictive value of clinical variables. Neuro Oncol 2024; 26:670-683. [PMID: 38039386 PMCID: PMC10995520 DOI: 10.1093/neuonc/noad221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Indexed: 12/03/2023] Open
Abstract
BACKGROUND Previous research identified many clinical variables that are significantly related to cognitive functioning before surgery. It is not clear whether such variables enable accurate prediction for individual patients' cognitive functioning because statistical significance does not guarantee predictive value. Previous studies did not test how well cognitive functioning can be predicted for (yet) untested patients. Furthermore, previous research is limited in that only linear or rank-based methods with small numbers of variables were used. METHODS We used various machine learning models to predict preoperative cognitive functioning for 340 patients with glioma across 18 outcome measures. Predictions were made using a comprehensive set of clinical variables as identified from the literature. Model performances and optimized hyperparameters were interpreted. Moreover, Shapley additive explanations were calculated to determine variable importance and explore interaction effects. RESULTS Best-performing models generally demonstrated above-random performance. Performance, however, was unreliable for 14 out of 18 outcome measures with predictions worse than baseline models for a substantial number of train-test splits. Best-performing models were relatively simple and used most variables for prediction while not relying strongly on any variable. CONCLUSIONS Preoperative cognitive functioning could not be reliably predicted across cognitive tests using the comprehensive set of clinical variables included in the current study. Our results show that a holistic view of an individual patient likely is necessary to explain differences in cognitive functioning. Moreover, they emphasize the need to collect larger cross-center and multimodal data sets.
Collapse
Affiliation(s)
- Sander M Boelders
- Department of Neurosurgery, Elisabeth-TweeSteden Hospital, Tilburg, The Netherlands
- Department of Cognitive Sciences and AI, Tilburg University, Tilburg, The Netherlands
| | - Karin Gehring
- Department of Neurosurgery, Elisabeth-TweeSteden Hospital, Tilburg, The Netherlands
- Department of Cognitive Neuropsychology, Tilburg University, Tilburg, The Netherlands
| | - Eric O Postma
- Department of Cognitive Sciences and AI, Tilburg University, Tilburg, The Netherlands
| | - Geert-Jan M Rutten
- Department of Neurosurgery, Elisabeth-TweeSteden Hospital, Tilburg, The Netherlands
| | - Lee-Ling S Ong
- Department of Cognitive Sciences and AI, Tilburg University, Tilburg, The Netherlands
| |
Collapse
|
5
|
Zhang K, Yang T, Xia Y, Guo X, Chen W, Wang L, Li J, Wu J, Xiao Z, Zhang X, Jiang W, Xu D, Guo S, Wang Y, Shi Y, Liu D, Li Y, Wang Y, Xing H, Liang T, Niu P, Wang H, Liu Q, Jin S, Qu T, Li H, Zhang Y, Ma W, Wang Y. Molecular Determinants of Neurocognitive Deficits in Glioma: Based on 2021 WHO Classification. J Mol Neurosci 2024; 74:17. [PMID: 38315329 PMCID: PMC10844410 DOI: 10.1007/s12031-023-02173-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 12/05/2023] [Indexed: 02/07/2024]
Abstract
Cognitive impairment is a common feature among patients with diffuse glioma. The objective of the study is to investigate the relationship between preoperative cognitive function and clinical as well as molecular factors, firstly based on the new 2021 World Health Organization's updated classification of central nervous system tumors. A total of 110 diffuse glioma patients enrolled underwent preoperative cognitive assessments using the Mini-Mental State Examination and Montreal Cognitive Assessment. Clinical information was collected from medical records, and gene sequencing was performed to analyze the 18 most influenced genes. The differences in cognitive function between patients with and without glioblastoma were compared under both the 2016 and 2021 WHO classification of tumors of the central nervous system to assess their effect of differentiation on cognition. The study found that age, tumor location, and glioblastoma had significant differences in cognitive function. Several genetic alterations were significantly correlated with cognition. Especially, IDH, CIC, and ATRX are positively correlated with several cognitive domains, while most other genes are negatively correlated. For most focused genes, patients with a low number of genetic alterations tended to have better cognitive function. Our study suggested that, in addition to clinical characteristics such as age, histological type, and tumor location, molecular characteristics play a crucial role in cognitive function. Further research into the mechanisms by which tumors affect brain function is expected to enhance the quality of life for glioma patients. This study highlights the importance of considering both clinical and molecular factors in the management of glioma patients to improve cognitive outcomes.
Collapse
Affiliation(s)
- Kun Zhang
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Tianrui Yang
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Yu Xia
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Xiaopeng Guo
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Wenlin Chen
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Lijun Wang
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Junlin Li
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Jiaming Wu
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Zhiyuan Xiao
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Xin Zhang
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Wenwen Jiang
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Dongrui Xu
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Siying Guo
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
- School of Medicine, Tsinghua University, Beijing, 100730, China
| | - Yaning Wang
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Yixin Shi
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Delin Liu
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Yilin Li
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Yuekun Wang
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Hao Xing
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Tingyu Liang
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Pei Niu
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Hai Wang
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Qianshu Liu
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Shanmu Jin
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Tian Qu
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Huanzhang Li
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Yi Zhang
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Wenbin Ma
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Yu Wang
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China.
| |
Collapse
|
6
|
Guidolin D, Tortorella C, De Caro R, Agnati LF. A Self-Similarity Logic May Shape the Organization of the Nervous System. ADVANCES IN NEUROBIOLOGY 2024; 36:203-225. [PMID: 38468034 DOI: 10.1007/978-3-031-47606-8_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/13/2024]
Abstract
From the morphological point of view, the nervous system exhibits a fractal, self-similar geometry at various levels of observations, from single cells up to cell networks. From the functional point of view, it is characterized by a hierarchical organization in which self-similar structures (networks) of different miniaturizations are nested within each other. In particular, neuronal networks, interconnected to form neuronal systems, are formed by neurons, which operate thanks to their molecular networks, mainly having proteins as components that via protein-protein interactions can be assembled in multimeric complexes working as micro-devices. On this basis, the term "self-similarity logic" was introduced to describe a nested organization where, at the various levels, almost the same rules (logic) to perform operations are used. Self-similarity and self-similarity logic both appear to be intimately linked to the biophysical evidence for the nervous system being a pattern-forming system that can flexibly switch from one coherent state to another. Thus, they can represent the key concepts to describe its complexity and its concerted, holistic behavior.
Collapse
Affiliation(s)
- Diego Guidolin
- Department of Neuroscience, University of Padova, Padova, Italy.
| | | | | | - Luigi F Agnati
- Department of Biomedical Sciences, University of Modena and Reggio Emilia, Modena, Italy
| |
Collapse
|
7
|
Pasquini L, Yildirim O, Silveira P, Tamer C, Napolitano A, Lucignani M, Jenabi M, Peck KK, Holodny A. Effect of tumor genetics, pathology, and location on fMRI of language reorganization in brain tumor patients. Eur Radiol 2023; 33:6069-6078. [PMID: 37074422 PMCID: PMC10415458 DOI: 10.1007/s00330-023-09610-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 01/27/2023] [Accepted: 02/20/2023] [Indexed: 04/20/2023]
Abstract
OBJECTIVES Language reorganization may follow tumor invasion of the dominant hemisphere. Tumor location, grade, and genetics influence the communication between eloquent areas and tumor growth dynamics, which are drivers of language plasticity. We evaluated tumor-induced language reorganization studying the relationship of fMRI language laterality to tumor-related variables (grade, genetics, location), and patient-related variables (age, sex, handedness). METHODS The study was retrospective cross-sectional. We included patients with left-hemispheric tumors (study group) and right-hemispheric tumors (controls). We calculated five fMRI laterality indexes (LI): hemispheric, temporal lobe, frontal lobe, Broca's area (BA), Wernicke's area (WA). We defined LI ≥ 0.2 as left-lateralized (LL) and LI < 0.2 as atypical lateralized (AL). Chi-square test (p < 0.05) was employed to identify the relationship between LI and tumor/patient variables in the study group. For those variables having significant results, confounding factors were evaluated in a multinomial logistic regression model. RESULTS We included 405 patients (235 M, mean age: 51 years old) and 49 controls (36 M, mean age: 51 years old). Contralateral language reorganization was more common in patients than controls. The statistical analysis demonstrated significant association between BA LI and patient sex (p = 0.005); frontal LI, BA LI, and tumor location in BA (p < 0.001); hemispheric LI and fibroblast growth factor receptor (FGFR) mutation (p = 0.019); WA LI and O6-methylguanine-DNA methyltransferase promoter (MGMT) methylation in high-grade gliomas (p = 0.016). CONCLUSIONS Tumor genetics, pathology, and location influence language laterality, possibly due to cortical plasticity. Increased fMRI activation in the right hemisphere was seen in patients with tumors in the frontal lobe, BA and WA, FGFR mutation, and MGMT promoter methylation. KEY POINTS • Patients harboring left-hemispheric tumors present with contralateral translocation of language function. Influential variables for this phenomenon included frontal tumor location, BA location, WA location, sex, MGMT promoter methylation, and FGFR mutation. • Tumor location, grade, and genetics may influence language plasticity, thereby affecting both communication between eloquent areas and tumor growth dynamics. • In this retrospective cross-sectional study, we evaluated language reorganization in 405 brain tumor patients by studying the relationship of fMRI language laterality to tumor-related variables (grade, genetics, location), and patient-related variables (age, sex, handedness).
Collapse
Affiliation(s)
- Luca Pasquini
- Department of Radiology, Neuroradiology Service, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA.
- NESMOS Department, Neuroradiology Unit, Sant'Andrea Hospital, La Sapienza University, 00189, Rome, Italy.
| | - Onur Yildirim
- Department of Radiology, Neuroradiology Service, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Patrick Silveira
- Molecular Imaging and Therapy Service, Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Christel Tamer
- Diagnostic Radiology Department, American University of Beirut Medical Center, Beirut, 1107 2020, Lebanon
| | - Antonio Napolitano
- Medical Physics Department, Bambino Gesù Children's Hospital, 00165, Rome, Italy
| | - Martina Lucignani
- Medical Physics Department, Bambino Gesù Children's Hospital, 00165, Rome, Italy
| | - Mehrnaz Jenabi
- Department of Radiology, Neuroradiology Service, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Kyung K Peck
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
- Department of Radiology, Weill Medical College of Cornell University, New York, NY, 10065, USA
| | - Andrei Holodny
- Department of Radiology, Neuroradiology Service, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
- Brain Tumor Center, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
- Department of Radiology, Weill Medical College of Cornell University, New York, NY, 10065, USA
- Department of Neuroscience, Weill Cornell Graduate School of the Medical Sciences, New York, NY, 10065, USA
| |
Collapse
|
8
|
Pasquini L, Peck KK, Jenabi M, Holodny A. Functional MRI in Neuro-Oncology: State of the Art and Future Directions. Radiology 2023; 308:e222028. [PMID: 37668519 PMCID: PMC10546288 DOI: 10.1148/radiol.222028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 05/15/2023] [Accepted: 05/26/2023] [Indexed: 09/06/2023]
Abstract
Since its discovery in the early 1990s, functional MRI (fMRI) has been used to study human brain function. One well-established application of fMRI in the clinical setting is the neurosurgical planning of patients with brain tumors near eloquent cortical areas. Clinical fMRI aims to preoperatively identify eloquent cortices that serve essential functions in daily life, such as hand movement and language. The primary goal of neurosurgery is to maximize tumor resection while sparing eloquent cortices adjacent to the tumor. When a lesion presents in the vicinity of an eloquent cortex, surgeons may use fMRI to plan their best surgical approach by determining the proximity of the lesion to regions of activation, providing guidance for awake brain surgery and intraoperative brain mapping. The acquisition of fMRI requires patient preparation prior to imaging, determination of functional paradigms, monitoring of patient performance, and both processing and analysis of images. Interpretation of fMRI maps requires a strong understanding of functional neuroanatomy and familiarity with the technical limitations frequently present in brain tumor imaging, including neurovascular uncoupling, patient compliance, and data analysis. This review discusses clinical fMRI in neuro-oncology, relevant ongoing research topics, and prospective future developments in this exciting discipline.
Collapse
Affiliation(s)
- Luca Pasquini
- From the Neuroradiology Service, Department of Radiology (L.P.,
K.K.P., M.J., A.H.), Department of Medical Physics (K.K.P.), and Brain Tumor
Center (A.H.), Memorial Sloan Kettering Cancer Center, 1275 York Ave, New York,
NY 10065; Neuroradiology Unit, NESMOS Department, Sant'Andrea Hospital,
La Sapienza University, Rome, Italy (L.P.); Department of Radiology, Weill
Medical College of Cornell University, New York, NY (A.H.); and Department of
Neuroscience, Weill Cornell Medicine Graduate School of Medical Sciences, New
York, NY (A.H.)
| | - Kyung K. Peck
- From the Neuroradiology Service, Department of Radiology (L.P.,
K.K.P., M.J., A.H.), Department of Medical Physics (K.K.P.), and Brain Tumor
Center (A.H.), Memorial Sloan Kettering Cancer Center, 1275 York Ave, New York,
NY 10065; Neuroradiology Unit, NESMOS Department, Sant'Andrea Hospital,
La Sapienza University, Rome, Italy (L.P.); Department of Radiology, Weill
Medical College of Cornell University, New York, NY (A.H.); and Department of
Neuroscience, Weill Cornell Medicine Graduate School of Medical Sciences, New
York, NY (A.H.)
| | - Mehrnaz Jenabi
- From the Neuroradiology Service, Department of Radiology (L.P.,
K.K.P., M.J., A.H.), Department of Medical Physics (K.K.P.), and Brain Tumor
Center (A.H.), Memorial Sloan Kettering Cancer Center, 1275 York Ave, New York,
NY 10065; Neuroradiology Unit, NESMOS Department, Sant'Andrea Hospital,
La Sapienza University, Rome, Italy (L.P.); Department of Radiology, Weill
Medical College of Cornell University, New York, NY (A.H.); and Department of
Neuroscience, Weill Cornell Medicine Graduate School of Medical Sciences, New
York, NY (A.H.)
| | - Andrei Holodny
- From the Neuroradiology Service, Department of Radiology (L.P.,
K.K.P., M.J., A.H.), Department of Medical Physics (K.K.P.), and Brain Tumor
Center (A.H.), Memorial Sloan Kettering Cancer Center, 1275 York Ave, New York,
NY 10065; Neuroradiology Unit, NESMOS Department, Sant'Andrea Hospital,
La Sapienza University, Rome, Italy (L.P.); Department of Radiology, Weill
Medical College of Cornell University, New York, NY (A.H.); and Department of
Neuroscience, Weill Cornell Medicine Graduate School of Medical Sciences, New
York, NY (A.H.)
| |
Collapse
|
9
|
Moretto M, Silvestri E, Facchini S, Anglani M, Cecchin D, Corbetta M, Bertoldo A. The dynamic functional connectivity fingerprint of high-grade gliomas. Sci Rep 2023; 13:10389. [PMID: 37369744 DOI: 10.1038/s41598-023-37478-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 06/22/2023] [Indexed: 06/29/2023] Open
Abstract
Resting state fMRI has been used in many studies to investigate the impact of brain tumours on functional connectivity (FC). However, these studies have so far assumed that FC is stationary, disregarding the fact that the brain fluctuates over dynamic states. Here we utilised resting state fMRI data from 33 patients with high-grade gliomas and 33 healthy controls to examine the dynamic interplay between resting-state networks and to gain insights into the impact of brain tumours on functional dynamics. By employing Hidden Markov Models, we demonstrated that functional dynamics persist even in the presence of a high-grade glioma, and that patients exhibited a global decrease of connections strength, as well as of network segregation. Furthermore, through a multivariate analysis, we demonstrated that patients' cognitive scores are highly predictive of pathological dynamics, thus supporting our hypothesis that functional dynamics could serve as valuable biomarkers for better understanding the traits of high-grade gliomas.
Collapse
Affiliation(s)
- Manuela Moretto
- Padova Neuroscience Center, University of Padova, 35131, Padova, Italy
- Department of Information Engineering, University of Padova, Via G. Gradenigo 6/B, 35131, Padova, Italy
| | - Erica Silvestri
- Padova Neuroscience Center, University of Padova, 35131, Padova, Italy
- Department of Information Engineering, University of Padova, Via G. Gradenigo 6/B, 35131, Padova, Italy
| | - Silvia Facchini
- Padova Neuroscience Center, University of Padova, 35131, Padova, Italy
- Department of Neuroscience, University of Padova, 35121, Padova, Italy
| | | | - Diego Cecchin
- Padova Neuroscience Center, University of Padova, 35131, Padova, Italy
- Unit of Nuclear Medicine, University of Padova, 35121, Padova, Italy
| | - Maurizio Corbetta
- Padova Neuroscience Center, University of Padova, 35131, Padova, Italy
- Department of Neuroscience, University of Padova, 35121, Padova, Italy
- Venetian Institute of Molecular Medicine, 35131, Padova, Italy
| | - Alessandra Bertoldo
- Padova Neuroscience Center, University of Padova, 35131, Padova, Italy.
- Department of Information Engineering, University of Padova, Via G. Gradenigo 6/B, 35131, Padova, Italy.
| |
Collapse
|
10
|
Mandal AS, Brem S, Suckling J. Brain network mapping and glioma pathophysiology. Brain Commun 2023; 5:fcad040. [PMID: 36895956 PMCID: PMC9989143 DOI: 10.1093/braincomms/fcad040] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 12/23/2022] [Accepted: 02/18/2023] [Indexed: 02/25/2023] Open
Abstract
Adult diffuse gliomas are among the most difficult brain disorders to treat in part due to a lack of clarity regarding the anatomical origins and mechanisms of migration of the tumours. While the importance of studying networks of glioma spread has been recognized for at least 80 years, the ability to carry out such investigations in humans has emerged only recently. Here, we comprehensively review the fields of brain network mapping and glioma biology to provide a primer for investigators interested in merging these areas of inquiry for the purposes of translational research. Specifically, we trace the historical development of ideas in both brain network mapping and glioma biology, highlighting studies that explore clinical applications of network neuroscience, cells-of-origin of diffuse glioma and glioma-neuronal interactions. We discuss recent research that has merged neuro-oncology and network neuroscience, finding that the spatial distribution patterns of gliomas follow intrinsic functional and structural brain networks. Ultimately, we call for more contributions from network neuroimaging to realize the translational potential of cancer neuroscience.
Collapse
Affiliation(s)
- Ayan S Mandal
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Psychiatry, University of Cambridge, Cambridge CB2 0SZ, UK
| | - Steven Brem
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Neurosurgery, University of Pennsylvania, Philadelphia, PA 19104, USA
- Glioblastoma Translational Center of Excellence, Abramson Cancer Center, Philadelphia, PA 19104, USA
| | - John Suckling
- Department of Psychiatry, University of Cambridge, Cambridge CB2 0SZ, UK
| |
Collapse
|
11
|
Sinha R, Masina R, Morales C, Burton K, Wan Y, Joannides A, Mair RJ, Morris RC, Santarius T, Manly T, Price SJ. A Prospective Study of Longitudinal Risks of Cognitive Deficit for People Undergoing Glioblastoma Surgery Using a Tablet Computer Cognition Testing Battery: Towards Personalized Understanding of Risks to Cognitive Function. J Pers Med 2023; 13:jpm13020278. [PMID: 36836511 PMCID: PMC9967594 DOI: 10.3390/jpm13020278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/26/2023] [Accepted: 01/30/2023] [Indexed: 02/04/2023] Open
Abstract
Glioblastoma and the surgery to remove it pose high risks to the cognitive function of patients. Little reliable data exist about these risks, especially postoperatively before radiotherapy. We hypothesized that cognitive deficit risks detected before surgery will be exacerbated by surgery in patients with glioblastoma undergoing maximal treatment regimens. We used longitudinal electronic cognitive testing perioperatively to perform a prospective, longitudinal, observational study of 49 participants with glioblastoma undergoing surgery. Before surgery (A1), the participant risk of deficit in 5/6 cognitive domains was increased compared to normative data. Of these, the risks to Attention (OR = 31.19), Memory (OR = 97.38), and Perception (OR = 213.75) were markedly increased. These risks significantly increased in the early period after surgery (A2) when patients were discharged home or seen in the clinic to discuss histology results. For participants tested at 4-6 weeks after surgery (A3) before starting radiotherapy, there was evidence of risk reduction towards A1. The observed risks of cognitive deficit were independent of patient-specific, tumour-specific, and surgery-specific co-variates. These results reveal a timeframe of natural recovery in the first 4-6 weeks after surgery based on personalized deficit profiles for each participant. Future research in this period could investigate personalized rehabilitation tools to aid the recovery process found.
Collapse
Affiliation(s)
- Rohitashwa Sinha
- Department of Neurosurgery, Addenbrooke’s Hospital, Cambridge CB2 0QQ, UK
- Department of Clinical Neurosciences, University of Cambridge, Cambridge CB2 0QQ, UK
- Leeds Institute of Medical Research, University of Leeds, Leeds LS9 7TF, UK
- Correspondence:
| | - Riccardo Masina
- Department of Neurosurgery, Addenbrooke’s Hospital, Cambridge CB2 0QQ, UK
| | - Cristina Morales
- Department of Neurosurgery, Addenbrooke’s Hospital, Cambridge CB2 0QQ, UK
| | - Katherine Burton
- Department of Oncology, Addenbrooke’s Hospital, Cambridge CB2 0QQ, UK
| | - Yizhou Wan
- Department of Clinical Neurosciences, University of Cambridge, Cambridge CB2 0QQ, UK
| | - Alexis Joannides
- Department of Neurosurgery, Addenbrooke’s Hospital, Cambridge CB2 0QQ, UK
- Department of Clinical Neurosciences, University of Cambridge, Cambridge CB2 0QQ, UK
| | - Richard J. Mair
- Department of Neurosurgery, Addenbrooke’s Hospital, Cambridge CB2 0QQ, UK
- Department of Clinical Neurosciences, University of Cambridge, Cambridge CB2 0QQ, UK
| | - Robert C. Morris
- Department of Neurosurgery, Addenbrooke’s Hospital, Cambridge CB2 0QQ, UK
| | - Thomas Santarius
- Department of Neurosurgery, Addenbrooke’s Hospital, Cambridge CB2 0QQ, UK
| | - Tom Manly
- MRC Cognition and Brain Sciences Unit, Cambridge CB2 7EF, UK
| | - Stephen J. Price
- Department of Neurosurgery, Addenbrooke’s Hospital, Cambridge CB2 0QQ, UK
- Department of Clinical Neurosciences, University of Cambridge, Cambridge CB2 0QQ, UK
| |
Collapse
|
12
|
Natalizi F, Piras F, Vecchio D, Spalletta G, Piras F. Preoperative Navigated Transcranial Magnetic Stimulation: New Insight for Brain Tumor-Related Language Mapping. J Pers Med 2022; 12:1589. [PMID: 36294728 PMCID: PMC9604795 DOI: 10.3390/jpm12101589] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 09/19/2022] [Accepted: 09/20/2022] [Indexed: 08/30/2023] Open
Abstract
Preoperative brain mapping methods are particularly important in modern neuro-oncology when a tumor affects eloquent language areas since damage to parts of the language circuits can cause significant impairments in daily life. This narrative review examines the literature regarding preoperative and intraoperative language mapping using repetitive navigated transcranial magnetic stimulation (rnTMS) with or without direct electrical stimulation (DES) in adult patients with tumors in eloquent language areas. The literature shows that rnTMS is accurate in detecting preexisting language disorders and positive intraoperative mapping regions. In terms of the region extent and clinical outcomes, rnTMS has been shown to be accurate in identifying positive sites to guide resection, reducing surgery duration and craniotomy size and thus improving clinical outcomes. Before incorporating rnTMS into the neurosurgical workflow, the refinement of protocols and a consensus within the neuro-oncology community are required.
Collapse
Affiliation(s)
- Federica Natalizi
- Laboratory of Neurophychiatry, IRCSS Santa Lucia Fundation, Via Ardeatina 306, 00134 Rome, Italy
- Department of Psychology, “Sapienza” University of Rome, Via dei Marsi 78, 00185 Rome, Italy
- PhD Program in Behavioral Neuroscience, Sapienza University of Rome, 00161 Rome, Italy
| | - Federica Piras
- Laboratory of Neurophychiatry, IRCSS Santa Lucia Fundation, Via Ardeatina 306, 00134 Rome, Italy
| | - Daniela Vecchio
- Laboratory of Neurophychiatry, IRCSS Santa Lucia Fundation, Via Ardeatina 306, 00134 Rome, Italy
| | - Gianfranco Spalletta
- Laboratory of Neurophychiatry, IRCSS Santa Lucia Fundation, Via Ardeatina 306, 00134 Rome, Italy
| | - Fabrizio Piras
- Laboratory of Neurophychiatry, IRCSS Santa Lucia Fundation, Via Ardeatina 306, 00134 Rome, Italy
| |
Collapse
|
13
|
Romero-Garcia R, Owen M, McDonald A, Woodberry E, Assem M, Coelho P, Morris RC, Price SJ, Santarius T, Suckling J, Manly T, Erez Y, Hart MG. Assessment of neuropsychological function in brain tumor treatment: a comparison of traditional neuropsychological assessment with app-based cognitive screening. Acta Neurochir (Wien) 2022; 164:2021-2034. [PMID: 35230551 PMCID: PMC9338148 DOI: 10.1007/s00701-022-05162-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 02/16/2022] [Indexed: 12/18/2022]
Abstract
BACKGROUND Gliomas are typically considered to cause relatively few neurological impairments. However, cognitive difficulties can arise, for example during treatment, with potential detrimental effects on quality of life. Accurate, reproducible, and accessible cognitive assessment is therefore vital in understanding the effects of both tumor and treatments. Our aim is to compare traditional neuropsychological assessment with an app-based cognitive screening tool in patients with glioma before and after surgical resection. Our hypotheses were that cognitive impairments would be apparent, even in a young and high functioning cohort, and that app-based cognitive screening would complement traditional neuropsychological assessment. METHODS Seventeen patients with diffuse gliomas completed a traditional neuropsychological assessment and an app-based touchscreen tablet assessment pre- and post-operatively. The app assessment was also conducted at 3- and 12-month follow-up. Impairment rates, mean performance, and pre- and post-operative changes were compared using standardized Z-scores. RESULTS Approximately 2-3 h of traditional assessment indicated an average of 2.88 cognitive impairments per patient, while the 30-min screen indicated 1.18. As might be expected, traditional assessment using multiple items across the difficulty range proved more sensitive than brief screening measures in areas such as memory and attention. However, the capacity of the screening app to capture reaction times enhanced its sensitivity, relative to traditional assessment, in the area of non-verbal function. Where there was overlap between the two assessments, for example digit span tasks, the results were broadly equivalent. CONCLUSIONS Cognitive impairments were common in this sample and app-based screening complemented traditional neuropsychological assessment. Implications for clinical assessment and follow-up are discussed.
Collapse
Affiliation(s)
- Rafael Romero-Garcia
- Department of Psychiatry, University of Cambridge, Herchel Smith Building for Brain and Mind Sciences, Robinson Way, Cambridge, CB2 0SZ, UK.
- Dpto. de Fisiología Médica Y Biofísica, Instituto de Biomedicina de Sevilla (IBiS) HUVR/CSIC, Universidad de Sevilla, Seville, Spain.
| | - Mallory Owen
- Department of Psychiatry, University of Cambridge, Herchel Smith Building for Brain and Mind Sciences, Robinson Way, Cambridge, CB2 0SZ, UK
| | - Alexa McDonald
- Department of Neuropsychology, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Emma Woodberry
- Department of Neuropsychology, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Moataz Assem
- MRC Cognition and Brain Sciences Unit, University of Cambridge, Cambridge, UK
| | | | - Rob C Morris
- Department of Neurosurgery, Addenbrooke's Hospital, Cambridge, UK
| | - Stephen J Price
- Department of Neurosurgery, Addenbrooke's Hospital, Cambridge, UK
| | - Tom Santarius
- Department of Neurosurgery, Addenbrooke's Hospital, Cambridge, UK
- Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - John Suckling
- Department of Psychiatry, University of Cambridge, Herchel Smith Building for Brain and Mind Sciences, Robinson Way, Cambridge, CB2 0SZ, UK
- Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, UK
- Cambridge and Peterborough NHS Foundation Trust, Cambridgeshire, UK
| | - Tom Manly
- Cambridge and Peterborough NHS Foundation Trust, Cambridgeshire, UK
| | - Yaara Erez
- MRC Cognition and Brain Sciences Unit, University of Cambridge, Cambridge, UK
- Faculty of Engineering, Bar-Ilan University, Ramat-Gan, Israel
| | - Michael G Hart
- Department of Psychiatry, University of Cambridge, Herchel Smith Building for Brain and Mind Sciences, Robinson Way, Cambridge, CB2 0SZ, UK
| |
Collapse
|
14
|
Pasquini L, Jenabi M, Yildirim O, Silveira P, Peck KK, Holodny AI. Brain Functional Connectivity in Low- and High-Grade Gliomas: Differences in Network Dynamics Associated with Tumor Grade and Location. Cancers (Basel) 2022; 14:cancers14143327. [PMID: 35884387 PMCID: PMC9324249 DOI: 10.3390/cancers14143327] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 07/06/2022] [Accepted: 07/07/2022] [Indexed: 12/27/2022] Open
Abstract
Brain tumors lead to modifications of brain networks. Graph theory plays an important role in clarifying the principles of brain connectivity. Our objective was to investigate network modifications related to tumor grade and location using resting-state functional magnetic resonance imaging (fMRI) and graph theory. We retrospectively studied 30 low-grade (LGG), 30 high-grade (HGG) left-hemispheric glioma patients and 20 healthy controls (HC) with rs-fMRI. Tumor location was labeled as: frontal, temporal, parietal, insular or occipital. We collected patients’ clinical data from records. We analyzed whole-brain and hemispheric networks in all patients and HC. Subsequently, we studied lobar networks in subgroups of patients divided by tumor location. Seven graph-theoretical metrics were calculated (FDR p < 0.05). Connectograms were computed for significant nodes. The two-tailed Student t-test or Mann−Whitney U-test (p < 0.05) were used to compare graph metrics and clinical data. The hemispheric network analysis showed increased ipsilateral connectivity for LGG (global efficiency p = 0.03) and decreased contralateral connectivity for HGG (degree/cost p = 0.028). Frontal and temporal tumors showed bilateral modifications; parietal and insular tumors showed only local effects. Temporal tumors led to a bilateral decrease in all graph metrics. Tumor grade and location influence the pattern of network reorganization. LGG may show more favorable network changes than HGG, reflecting fewer clinical deficits.
Collapse
Affiliation(s)
- Luca Pasquini
- Neuroradiology Service, Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; (M.J.); (O.Y.); (K.K.P.); (A.I.H.)
- Neuroradiology Unit, NESMOS Department, Sant’Andrea Hospital, La Sapienza University, 00189 Rome, Italy
- Correspondence:
| | - Mehrnaz Jenabi
- Neuroradiology Service, Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; (M.J.); (O.Y.); (K.K.P.); (A.I.H.)
| | - Onur Yildirim
- Neuroradiology Service, Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; (M.J.); (O.Y.); (K.K.P.); (A.I.H.)
| | - Patrick Silveira
- Molecular Imaging and Therapy Service, Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA;
| | - Kyung K. Peck
- Neuroradiology Service, Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; (M.J.); (O.Y.); (K.K.P.); (A.I.H.)
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Andrei I. Holodny
- Neuroradiology Service, Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; (M.J.); (O.Y.); (K.K.P.); (A.I.H.)
- Brain Tumor Center, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
- Department of Radiology, Weill Medical College of Cornell University, New York, NY 10065, USA
- Department of Neuroscience, Weill-Cornell Graduate School of the Medical Sciences, New York, NY 10065, USA
| |
Collapse
|
15
|
Yuan B, Zhang N, Gong F, Wang X, Yan J, Lu J, Wu J. Longitudinal assessment of network reorganizations and language recovery in postoperative patients with glioma. Brain Commun 2022; 4:fcac046. [PMID: 35415604 PMCID: PMC8994117 DOI: 10.1093/braincomms/fcac046] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Revised: 12/13/2021] [Accepted: 04/02/2022] [Indexed: 12/22/2022] Open
Abstract
For patients with glioma located in or adjacent to the linguistic eloquent cortex, awake surgery with an emphasis on the preservation of language function is preferred. However, the brain network basis of postoperative linguistic functional outcomes remains largely unknown. In this work, 34 patients with left cerebral gliomas who underwent awake surgery were assessed for language function and resting-state network properties before and after surgery. We found that there were 28 patients whose language function returned to at least 80% of the baseline scores within 3 months after surgery or to 85% within 6 months after surgery. For these patients, the spontaneous recovery of language function synchronized with changes within the language and cognitive control networks, but not with other networks. Specifically, compared with baseline values, language functions and global network properties were the worst within 1 month after surgery and gradually recovered within 6 months after surgery. The recovery of connections was tumour location dependent and was attributed to both ipsihemispheric and interhemispheric connections. In contrast, for six patients whose language function did not recover well, severe network disruptions were observed before surgery and persisted into the chronic phase. This study suggests the synchronization of functional network normalization and spontaneous language recovery in postoperative patients with glioma.
Collapse
Affiliation(s)
- Binke Yuan
- Key Laboratory of Brain, Cognition and Education Sciences, Ministry of Education, Guangzhou, China
- Institute for Brain Research and Rehabilitation, South China Normal University, Guangzhou, China
| | - Nan Zhang
- Department of Neurosurgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
- Glioma Surgery Division, Neurologic Surgery Department, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Fangyuan Gong
- Glioma Surgery Division, Neurologic Surgery Department, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Xindi Wang
- National Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China
- Beijing Key Laboratory of Brain Imaging and Connectomics, Beijing Normal University, Beijing, China
- IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
| | - Jing Yan
- Department of MRI, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Junfeng Lu
- Glioma Surgery Division, Neurologic Surgery Department, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
- Brain Function Laboratory, Neurosurgical Institute of Fudan University, Shanghai, China
- Shanghai Key Laboratory of Brain Function Restoration and Neural Regeneration, Shanghai, China
| | - Jinsong Wu
- Glioma Surgery Division, Neurologic Surgery Department, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
- Brain Function Laboratory, Neurosurgical Institute of Fudan University, Shanghai, China
- Shanghai Key Laboratory of Brain Function Restoration and Neural Regeneration, Shanghai, China
| |
Collapse
|
16
|
Poologaindran A, Profyris C, Young IM, Dadario NB, Ahsan SA, Chendeb K, Briggs RG, Teo C, Romero-Garcia R, Suckling J, Sughrue ME. Interventional neurorehabilitation for promoting functional recovery post-craniotomy: a proof-of-concept. Sci Rep 2022; 12:3039. [PMID: 35197490 PMCID: PMC8866464 DOI: 10.1038/s41598-022-06766-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 02/02/2022] [Indexed: 02/06/2023] Open
Abstract
The human brain is a highly plastic ‘complex’ network—it is highly resilient to damage and capable of self-reorganisation after a large perturbation. Clinically, neurological deficits secondary to iatrogenic injury have very few active treatments. New imaging and stimulation technologies, though, offer promising therapeutic avenues to accelerate post-operative recovery trajectories. In this study, we sought to establish the safety profile for ‘interventional neurorehabilitation’: connectome-based therapeutic brain stimulation to drive cortical reorganisation and promote functional recovery post-craniotomy. In n = 34 glioma patients who experienced post-operative motor or language deficits, we used connectomics to construct single-subject cortical networks. Based on their clinical and connectivity deficit, patients underwent network-specific transcranial magnetic stimulation (TMS) sessions daily over five consecutive days. Patients were then assessed for TMS-related side effects and improvements. 31/34 (91%) patients were successfully recruited and enrolled for TMS treatment within two weeks of glioma surgery. No seizures or serious complications occurred during TMS rehabilitation and 1-week post-stimulation. Transient headaches were reported in 4/31 patients but improved after a single session. No neurological worsening was observed while a clinically and statistically significant benefit was noted in 28/31 patients post-TMS. We present two clinical vignettes and a video demonstration of interventional neurorehabilitation. For the first time, we demonstrate the safety profile and ability to recruit, enroll, and complete TMS acutely post-craniotomy in a high seizure risk population. Given the lack of randomisation and controls in this study, prospective randomised sham-controlled stimulation trials are now warranted to establish the efficacy of interventional neurorehabilitation following craniotomy.
Collapse
Affiliation(s)
- Anujan Poologaindran
- Brain Mapping Unit, Department of Psychiatry, University of Cambridge, Cambridge, UK.,The Alan Turing Institute, British Library, London, UK
| | - Christos Profyris
- Netcare Linksfield Hospital, Johannesburg, South Africa.,Department of Neurosurgery, Prince of Wales Private Hospital, Sydney, Australia
| | - Isabella M Young
- Department of Neurosurgery, Prince of Wales Private Hospital, Sydney, Australia
| | - Nicholas B Dadario
- Department of Neurosurgery, Prince of Wales Private Hospital, Sydney, Australia.,Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, USA
| | - Syed A Ahsan
- Department of Neurosurgery, Prince of Wales Private Hospital, Sydney, Australia
| | - Kassem Chendeb
- Department of Neurosurgery, Prince of Wales Private Hospital, Sydney, Australia
| | - Robert G Briggs
- Department of Neurosurgery, University of Southern California, Los Angeles, CA, USA
| | - Charles Teo
- Department of Neurosurgery, Prince of Wales Private Hospital, Sydney, Australia
| | - Rafael Romero-Garcia
- Brain Mapping Unit, Department of Psychiatry, University of Cambridge, Cambridge, UK
| | - John Suckling
- Brain Mapping Unit, Department of Psychiatry, University of Cambridge, Cambridge, UK.,The Alan Turing Institute, British Library, London, UK
| | - Michael E Sughrue
- Brain Mapping Unit, Department of Psychiatry, University of Cambridge, Cambridge, UK. .,Department of Neurosurgery, Prince of Wales Private Hospital, Sydney, Australia.
| |
Collapse
|
17
|
Cho NS, Peck KK, Gene MN, Jenabi M, Holodny AI. Resting-state functional MRI language network connectivity differences in patients with brain tumors: exploration of the cerebellum and contralesional hemisphere. Brain Imaging Behav 2022; 16:252-262. [PMID: 34333725 DOI: 10.1007/s11682-021-00498-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/05/2021] [Indexed: 01/19/2023]
Abstract
Brain tumors can have far-reaching impacts on functional networks. Language processing is typically lateralized to the left hemisphere, but also involves the right hemisphere and cerebellum. This resting-state functional MRI study investigated the proximal and distal effects of left-hemispheric brain tumors on language network connectivity in the ipsilesional and contralesional hemispheres. Separate language resting-state networks were generated from seeding in ipsilesional (left) and contralesional (right) Broca's Area for 29 patients with left-hemispheric brain tumors and 13 controls. Inclusion criteria for all subjects included language left-dominance based on task-based functional MRI. Functional connectivity was analyzed in each network to the respective Wernicke's Area and contralateral cerebellum. Patients were assessed for language deficits prior to scanning. Compared to controls, patients exhibited decreased connectivity in the ipsilesional and contralesional hemispheres between the Broca's Area and Wernicke's Area homologs (mean connectivity for patients/controls: left 0.51/0.59, p < 0.002; right 0.52/0.59, p < 0.0002). No differences in mean connectivity to the contralateral cerebellum were observed between groups (p > 0.09). Crossed cerebro-cerebellar connectivity was correlated in controls (rho = 0.59, p < 0.05), patients without language deficits (rho = 0.74, p < 0.0002), and patients with high-grade gliomas (rho = 0.78, p < 0.0002), but not in patients with language deficits or low-grade gliomas (p > 0.l). These findings demonstrate that brain tumors impact the language network in the contralesional hemisphere and cerebellum, which may reflect neurological deficits and lesion-induced cortical reorganization.
Collapse
Affiliation(s)
- Nicholas S Cho
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
- Medical Scientist Training Program, David Geffen UCLA School of Medicine, Los Angeles, CA, 90095, USA
| | - Kyung K Peck
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA.
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA.
| | - Madeleine N Gene
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Mehrnaz Jenabi
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Andrei I Holodny
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
- Department of Radiology, Weill Medical College of Cornell University, New York, NY, 10065, USA
- Department of Neuroscience, Weill-Cornell Graduate School of the Medical Sciences, New York, NY, 10065, USA
| |
Collapse
|
18
|
What Can Resting-State fMRI Data Analysis Explain about the Functional Brain Connectivity in Glioma Patients? Tomography 2022; 8:267-280. [PMID: 35202187 PMCID: PMC8878995 DOI: 10.3390/tomography8010021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 01/12/2022] [Accepted: 01/14/2022] [Indexed: 11/24/2022] Open
Abstract
Resting-state functional MRI has been increasingly implemented in imaging protocols for the study of functional connectivity in glioma patients as a sequence able to capture the activity of brain networks and to investigate their properties without requiring the patients’ cooperation. The present review aims at describing the most recent results obtained through the analysis of resting-state fMRI data in different contexts of interest for brain gliomas: the identification and localization of functional networks, the characterization of altered functional connectivity, and the evaluation of functional plasticity in relation to the resection of the glioma. An analysis of the literature showed that significant and promising results could be achieved through this technique in all the aspects under investigation. Nevertheless, there is room for improvement, especially in terms of stability and generalizability of the outcomes. Further research should be conducted on homogeneous samples of glioma patients and at fixed time points to reduce the considerable variability in the results obtained across and within studies. Future works should also aim at establishing robust metrics for the assessment of the disruption of functional connectivity and its recovery at the single-subject level.
Collapse
|
19
|
Zhang H, Ille S, Sogerer L, Schwendner M, Schröder A, Meyer B, Wiestler B, Krieg SM. Elucidating the structural-functional connectome of language in glioma-induced aphasia using nTMS and DTI. Hum Brain Mapp 2021; 43:1836-1849. [PMID: 34951084 PMCID: PMC8933329 DOI: 10.1002/hbm.25757] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 12/01/2021] [Accepted: 12/01/2021] [Indexed: 12/24/2022] Open
Abstract
Glioma‐induced aphasia (GIA) is frequently observed in patients with newly diagnosed gliomas. Previous studies showed an impact of gliomas not only on local brain regions but also on the functionality and structure of brain networks. The current study used navigated transcranial magnetic stimulation (nTMS) to localize language‐related regions and to explore language function at the network level in combination with connectome analysis. Thirty glioma patients without aphasia (NA) and 30 patients with GIA were prospectively enrolled. Tumors were located in the vicinity of arcuate fasciculus‐related cortical and subcortical regions. The visualized ratio (VR) of each tract was calculated based on their respective fractional anisotropy (FA) and maximal FA. Using a thresholding method of each tract at 25% VR and 50% VR, DTI‐based tractography was performed to construct structural brain networks for graph‐based connectome analysis, containing functional data acquired by nTMS. The average degree of left hemispheric networks (Mleft) was higher in the NA group than in the GIA group for both VR thresholds. Differences of global and local efficiency between 25% and 50% VR thresholds were significantly lower in the NA group than in the GIA group. Aphasia levels correlated with connectome properties in Mleft and networks based on positive nTMS mapping regions (Mpos). A more substantial relation to language performance was found in Mpos and Mleft compared to the network of negative mapping regions (Mneg). Gliomas causing deterioration of language are related to various cerebral networks. In NA patients, mainly Mneg was impacted, while Mpos was impacted in GIA patients.
Collapse
Affiliation(s)
- Haosu Zhang
- Department of Neurosurgery, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany.,School of Medicine, Technical University of Munich, Munich, Germany
| | - Sebastian Ille
- Department of Neurosurgery, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany.,School of Medicine, Technical University of Munich, Munich, Germany.,TUM-Neuroimaging Center, Technical University of Munich, Munich, Germany
| | - Lisa Sogerer
- Department of Neurosurgery, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany.,School of Medicine, Technical University of Munich, Munich, Germany
| | - Maximilian Schwendner
- Department of Neurosurgery, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany.,School of Medicine, Technical University of Munich, Munich, Germany
| | - Axel Schröder
- Department of Neurosurgery, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany.,School of Medicine, Technical University of Munich, Munich, Germany
| | - Bernhard Meyer
- Department of Neurosurgery, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany.,School of Medicine, Technical University of Munich, Munich, Germany
| | - Benedikt Wiestler
- School of Medicine, Technical University of Munich, Munich, Germany.,Department of Diagnostic and Interventional Neuroradiology, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany.,Center for Translational Cancer Research of the TUM (TranslaTUM), Technical University of Munich, Munich, Germany
| | - Sandro M Krieg
- Department of Neurosurgery, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany.,School of Medicine, Technical University of Munich, Munich, Germany.,TUM-Neuroimaging Center, Technical University of Munich, Munich, Germany
| |
Collapse
|
20
|
Romero-Garcia R, Hart MG, Bethlehem RAI, Mandal A, Assem M, Crespo-Facorro B, Gorriz JM, Burke GAA, Price SJ, Santarius T, Erez Y, Suckling J. BOLD Coupling between Lesioned and Healthy Brain Is Associated with Glioma Patients' Recovery. Cancers (Basel) 2021; 13:5008. [PMID: 34638493 PMCID: PMC8508466 DOI: 10.3390/cancers13195008] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 09/30/2021] [Accepted: 10/01/2021] [Indexed: 11/16/2022] Open
Abstract
Predicting functional outcomes after surgery and early adjuvant treatment is difficult due to the complex, extended, interlocking brain networks that underpin cognition. The aim of this study was to test glioma functional interactions with the rest of the brain, thereby identifying the risk factors of cognitive recovery or deterioration. Seventeen patients with diffuse non-enhancing glioma (aged 22-56 years) were longitudinally MRI scanned and cognitively assessed before and after surgery and during a 12-month recovery period (55 MRI scans in total after exclusions). We initially found, and then replicated in an independent dataset, that the spatial correlation pattern between regional and global BOLD signals (also known as global signal topography) was associated with tumour occurrence. We then estimated the coupling between the BOLD signal from within the tumour and the signal extracted from different brain tissues. We observed that the normative global signal topography is reorganised in glioma patients during the recovery period. Moreover, we found that the BOLD signal within the tumour and lesioned brain was coupled with the global signal and that this coupling was associated with cognitive recovery. Nevertheless, patients did not show any apparent disruption of functional connectivity within canonical functional networks. Understanding how tumour infiltration and coupling are related to patients' recovery represents a major step forward in prognostic development.
Collapse
Affiliation(s)
- Rafael Romero-Garcia
- Department of Psychiatry, University of Cambridge, Cambridge CB2 0SZ, UK
- Department of Medical Physiology and Biophysics, Instituto de Biomedicina de Sevilla (IBiS), HUVR/CSIC/Universidad de Sevilla, 41013 Sevilla, Spain
| | - Michael G Hart
- Department of Psychiatry, University of Cambridge, Cambridge CB2 0SZ, UK
| | | | - Ayan Mandal
- Department of Psychiatry, University of Cambridge, Cambridge CB2 0SZ, UK
| | - Moataz Assem
- MRC Cognition and Brain Sciences Unit, University of Cambridge, Cambridge CB2 7EF, UK
| | - Benedicto Crespo-Facorro
- Department of Psychiatry, Instituto de Investigación Sanitaria de Sevilla, IBiS, Hospital Universitario Virgen del Rocio, CIBERSAM, 41013 Sevilla, Spain
| | - Juan Manuel Gorriz
- Department of Psychiatry, University of Cambridge, Cambridge CB2 0SZ, UK
- Department of Signal Theory, Networking and Communications, Universidad de Granada, 18071 Granada, Spain
| | - G A Amos Burke
- Department of Paediatric Haematology, Oncology and Palliative Care, Addenbrooke's Hospital, Cambridge CB2 0QQ, UK
| | - Stephen J Price
- Academic Neurosurgery Division, Department of Clinical Neurosciences, University of Cambridge, Cambridge CB2 0QQ, UK
| | - Thomas Santarius
- Academic Neurosurgery Division, Department of Clinical Neurosciences, University of Cambridge, Cambridge CB2 0QQ, UK
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 0SZ, UK
| | - Yaara Erez
- MRC Cognition and Brain Sciences Unit, University of Cambridge, Cambridge CB2 7EF, UK
- Faculty of Engineering, Bar-Ilan University, Ramat Gan 5290002, Israel
| | - John Suckling
- Department of Psychiatry, University of Cambridge, Cambridge CB2 0SZ, UK
- Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge CB2 0SZ, UK
- Cambridge and Peterborough NHS Foundation Trust, Cambridge CB21 5EF, UK
| |
Collapse
|
21
|
Jütten K, Weninger L, Mainz V, Gauggel S, Binkofski F, Wiesmann M, Merhof D, Clusmann H, Na CH. Dissociation of structural and functional connectomic coherence in glioma patients. Sci Rep 2021; 11:16790. [PMID: 34408195 PMCID: PMC8373888 DOI: 10.1038/s41598-021-95932-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 07/31/2021] [Indexed: 01/21/2023] Open
Abstract
With diffuse infiltrative glioma being increasingly recognized as a systemic brain disorder, the macroscopically apparent tumor lesion is suggested to impact on cerebral functional and structural integrity beyond the apparent lesion site. We investigated resting-state functional connectivity (FC) and diffusion-MRI-based structural connectivity (SC) (comprising edge-weight (EW) and fractional anisotropy (FA)) in isodehydrogenase mutated (IDHmut) and wildtype (IDHwt) patients and healthy controls. SC and FC were determined for whole-brain and the Default-Mode Network (DMN), mean intra- and interhemispheric SC and FC were compared across groups, and partial correlations were analyzed intra- and intermodally. With interhemispheric EW being reduced in both patient groups, IDHwt patients showed FA decreases in the ipsi- and contralesional hemisphere, whereas IDHmut patients revealed FA increases in the contralesional hemisphere. Healthy controls showed strong intramodal connectivity, each within the structural and functional connectome. Patients however showed a loss in structural and reductions in functional connectomic coherence, which appeared to be more pronounced in IDHwt glioma patients. Findings suggest a relative dissociation of structural and functional connectomic coherence in glioma patients at the time of diagnosis, with more structural connectomic aberrations being encountered in IDHwt glioma patients. Connectomic profiling may aid in phenotyping and monitoring prognostically differing tumor types.
Collapse
Affiliation(s)
- Kerstin Jütten
- Department of Neurosurgery, RWTH Aachen University, Pauwelsstraße 30, 52074, Aachen, Germany.
| | - Leon Weninger
- Imaging and Computer Vision, RWTH Aachen University, Templergraben 55, 52074, Aachen, Germany
| | - Verena Mainz
- Institute of Medical Psychology and Medical Sociology, RWTH Aachen University, Pauwelsstraße 19, 52074, Aachen, Germany
| | - Siegfried Gauggel
- Institute of Medical Psychology and Medical Sociology, RWTH Aachen University, Pauwelsstraße 19, 52074, Aachen, Germany
| | - Ferdinand Binkofski
- Division of Clinical Cognitive Sciences, RWTH Aachen University, Pauwelsstraße 17, 52074, Aachen, Germany
| | - Martin Wiesmann
- Department of Diagnostic and Interventional Neuroradiology, RWTH Aachen University, Pauwelsstraße 30, 52074, Aachen, Germany
| | - Dorit Merhof
- Imaging and Computer Vision, RWTH Aachen University, Templergraben 55, 52074, Aachen, Germany
| | - Hans Clusmann
- Department of Neurosurgery, RWTH Aachen University, Pauwelsstraße 30, 52074, Aachen, Germany.,Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf (CIO ABCD), Aachen, Germany
| | - Chuh-Hyoun Na
- Department of Neurosurgery, RWTH Aachen University, Pauwelsstraße 30, 52074, Aachen, Germany.,Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf (CIO ABCD), Aachen, Germany
| |
Collapse
|
22
|
Romero-Garcia R, Suckling J, Owen M, Assem M, Sinha R, Coelho P, Woodberry E, Price SJ, Burke A, Santarius T, Erez Y, Hart MG. Memory recovery in relation to default mode network impairment and neurite density during brain tumor treatment. J Neurosurg 2021; 136:358-368. [PMID: 34359041 DOI: 10.3171/2021.1.jns203959] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 01/25/2021] [Indexed: 11/06/2022]
Abstract
OBJECTIVE The aim of this study was to test brain tumor interactions with brain networks, thereby identifying protective features and risk factors for memory recovery after resection. METHODS Seventeen patients with diffuse nonenhancing glioma (ages 22-56 years) underwent longitudinal MRI before and after surgery, and during a 12-month recovery period (47 MRI scans in total after exclusion). After each scanning session, a battery of memory tests was performed using a tablet-based screening tool, including free verbal memory, overall verbal memory, episodic memory, orientation, forward digit span, and backward digit span. Using structural MRI and neurite orientation dispersion and density imaging (NODDI) derived from diffusion-weighted images, the authors estimated lesion overlap and neurite density, respectively, with brain networks derived from normative data in healthy participants (somatomotor, dorsal attention, ventral attention, frontoparietal, and default mode network [DMN]). Linear mixed-effect models (LMMs) that regressed out the effect of age, gender, tumor grade, type of treatment, total lesion volume, and total neurite density were used to test the potential longitudinal associations between imaging markers and memory recovery. RESULTS Memory recovery was not significantly associated with either the tumor location based on traditional lobe classification or the type of treatment received by patients (i.e., surgery alone or surgery with adjuvant chemoradiotherapy). Nonlocal effects of tumors were evident on neurite density, which was reduced not only within the tumor but also beyond the tumor boundary. In contrast, high preoperative neurite density outside the tumor but within the DMN was associated with better memory recovery (LMM, p value after false discovery rate correction [Pfdr] < 10-3). Furthermore, postoperative and follow-up neurite density within the DMN and frontoparietal network were also associated with memory recovery (LMM, Pfdr = 0.014 and Pfdr = 0.001, respectively). Preoperative tumor and postoperative lesion overlap with the DMN showed a significant negative association with memory recovery (LMM, Pfdr = 0.002 and Pfdr < 10-4, respectively). CONCLUSIONS Imaging biomarkers of cognitive recovery and decline can be identified using NODDI and resting-state networks. Brain tumors and their corresponding treatment affecting brain networks that are fundamental for memory functioning such as the DMN can have a major impact on patients' memory recovery.
Collapse
Affiliation(s)
| | - John Suckling
- 1Department of Psychiatry, University of Cambridge.,2Behavioural and Clinical Neuroscience Institute, University of Cambridge.,3Cambridge and Peterborough NHS Foundation Trust, Cambridge
| | - Mallory Owen
- 1Department of Psychiatry, University of Cambridge
| | - Moataz Assem
- 4MRC Cognition and Brain Sciences Unit, University of Cambridge
| | | | | | - Emma Woodberry
- 7Department of Neuropsychology, Cambridge University Hospitals NHS Foundation Trust, Cambridge
| | - Stephen J Price
- 5Department of Neurosurgery, Addenbrooke's Hospital, Cambridge
| | - Amos Burke
- 8Department of Paediatric Haematology, Oncology, and Palliative Care, Addenbrooke's Hospital, Cambridge; and
| | - Thomas Santarius
- 5Department of Neurosurgery, Addenbrooke's Hospital, Cambridge.,9Department of Physiology, Development, and Neuroscience, University of Cambridge, Cambridgeshire, United Kingdom
| | - Yaara Erez
- 4MRC Cognition and Brain Sciences Unit, University of Cambridge
| | - Michael G Hart
- 5Department of Neurosurgery, Addenbrooke's Hospital, Cambridge
| |
Collapse
|
23
|
Certo F, Altieri R, Maione M, Schonauer C, Sortino G, Fiumanò G, Tirrò E, Massimino M, Broggi G, Vigneri P, Magro G, Visocchi M, Barbagallo GMV. FLAIRectomy in Supramarginal Resection of Glioblastoma Correlates With Clinical Outcome and Survival Analysis: A Prospective, Single Institution, Case Series. Oper Neurosurg (Hagerstown) 2021; 20:151-163. [PMID: 33035343 DOI: 10.1093/ons/opaa293] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2020] [Accepted: 07/02/2020] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Extent of tumor resection (EOTR) in glioblastoma surgery plays an important role in improving survival. OBJECTIVE To analyze the efficacy, safety and reliability of fluid-attenuated inversion-recovery (FLAIR) magnetic resonance (MR) images used to guide glioblastoma resection (FLAIRectomy) and to volumetrically measure postoperative EOTR, which was correlated with clinical outcome and survival. METHODS A total of 68 glioblastoma patients (29 males, mean age 65.8) were prospectively enrolled. Hyperintense areas on FLAIR images, surrounding gadolinium-enhancing tissue on T1-weighted MR images, were screened for signal changes suggesting tumor infiltration and evaluated for supramaximal resection. The surgical protocol included 5-aminolevulinic acid (5-ALA) fluorescence, neuromonitoring, and intraoperative imaging tools. 5-ALA fluorescence intensity was analyzed and matched with the different sites on navigated MR, both on postcontrast T1-weighted and FLAIR images. Volumetric evaluation of EOTR on T1-weighted and FLAIR sequences was compared. RESULTS FLAIR MR volumetric evaluation documented larger tumor volume than that assessed on contrast-enhancing T1 MR (72.6 vs 54.9 cc); residual tumor was seen in 43 patients; postcontrast T1 MR volumetric analysis showed complete resection in 64 cases. O6-methylguanine-DNA methyltransferase promoter was methylated in 8/68 (11.7%) cases; wild type Isocytrate Dehydrogenase-1 (IDH-1) was found in 66/68 patients. Progression free survival and overall survival (PFS and OS) were 17.43 and 25.11 mo, respectively. Multiple regression analysis showed a significant correlation between EOTR based on FLAIR, PFS (R2 = 0.46), and OS (R2 = 0.68). CONCLUSION EOTR based on FLAIR and 5-ALA fluorescence is feasible. Safety of resection relies on the use of neuromonitoring and intraoperative multimodal imaging tools. FLAIR-based EOTR appears to be a stronger survival predictor compared to gadolinium-enhancing, T1-based resection.
Collapse
Affiliation(s)
- Francesco Certo
- Department of Medical and Surgical Sciences and Advanced Technologies (G.F. Ingrassia), Neurological Surgery, Policlinico ``G. Rodolico - San Marco'' University Hospital, University of Catania, Italy.,Interdisciplinary Research Center on Brain Tumors Diagnosis and Treatment, University of Catania, Via S. Sofia, Catania, Italy
| | - Roberto Altieri
- Department of Medical and Surgical Sciences and Advanced Technologies (G.F. Ingrassia), Neurological Surgery, Policlinico ``G. Rodolico - San Marco'' University Hospital, University of Catania, Italy
| | - Massimiliano Maione
- Department of Medical and Surgical Sciences and Advanced Technologies (G.F. Ingrassia), Neurological Surgery, Policlinico ``G. Rodolico - San Marco'' University Hospital, University of Catania, Italy
| | - Claudio Schonauer
- Department of Neurological Surgery, Santa Maria delle Grazie Hospital ASLNa2Nord, Via Domitiana, Naples, Italy
| | - Giuseppe Sortino
- Department of Radiodiagnostic and Oncological Radiotherapy, University Hospital Policlinico-Vittorio Emanuele, Via S. Sofia, Catania, Italy
| | - Giuseppa Fiumanò
- Department of Neurological Surgery, Santa Maria delle Grazie Hospital ASLNa2Nord, Via Domitiana, Naples, Italy
| | - Elena Tirrò
- Department of Clinical and Experimental Medicine, Center of Experimental Oncology and Hematology, University Hospital Policlinico-Vittorio Emanuele, Via S. Sofia, Catania, Italy
| | - Michele Massimino
- Department of Clinical and Experimental Medicine, Center of Experimental Oncology and Hematology, University Hospital Policlinico-Vittorio Emanuele, Via S. Sofia, Catania, Italy
| | - Giuseppe Broggi
- Department of Medical and Surgical Sciences and Advanced Technologies (G.F. Ingrassia), Anatomic Pathology, Policlinico ``G. Rodolico - San Marco'' University Hospital, University of Catania, Italy
| | - Paolo Vigneri
- Department of Clinical and Experimental Medicine, Center of Experimental Oncology and Hematology, University Hospital Policlinico-Vittorio Emanuele, Via S. Sofia, Catania, Italy
| | - Gaetano Magro
- Department of Medical and Surgical Sciences and Advanced Technologies (G.F. Ingrassia), Anatomic Pathology, Policlinico ``G. Rodolico - San Marco'' University Hospital, University of Catania, Italy
| | - Massimiliano Visocchi
- Institute of Neurosurgery, Catholic University, Via della Pineta Sacchetti, Rome, Italy
| | - Giuseppe M V Barbagallo
- Department of Medical and Surgical Sciences and Advanced Technologies (G.F. Ingrassia), Neurological Surgery, Policlinico ``G. Rodolico - San Marco'' University Hospital, University of Catania, Italy.,Interdisciplinary Research Center on Brain Tumors Diagnosis and Treatment, University of Catania, Via S. Sofia, Catania, Italy
| |
Collapse
|
24
|
Giammalva GR, Brunasso L, Costanzo R, Paolini F, Umana GE, Scalia G, Gagliardo C, Gerardi RM, Basile L, Graziano F, Gulì C, Messina D, Pino MA, Feraco P, Tumbiolo S, Midiri M, Iacopino DG, Maugeri R. Brain Mapping-Aided SupraTotal Resection (SpTR) of Brain Tumors: The Role of Brain Connectivity. Front Oncol 2021; 11:645854. [PMID: 33738262 PMCID: PMC7960910 DOI: 10.3389/fonc.2021.645854] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Accepted: 01/18/2021] [Indexed: 11/13/2022] Open
Abstract
Brain gliomas require a deep knowledge of their effects on brain connectivity. Understanding the complex relationship between tumor and functional brain is the preliminary and fundamental step for the subsequent surgery. The extent of resection (EOR) is an independent variable of surgical effectiveness and it correlates with the overall survival. Until now, great efforts have been made to achieve gross total resection (GTR) as the standard of care of brain tumor patients. However, high and low-grade gliomas have an infiltrative behavior and peritumoral white matter is often infiltrated by tumoral cells. According to these evidences, many efforts have been made to push the boundary of the resection beyond the contrast-enhanced lesion core on T1w MRI, in the so called supratotal resection (SpTR). SpTR is aimed to maximize the extent of resection and thus the overall survival. SpTR of primary brain tumors is a feasible technique and its safety is improved by intraoperative neuromonitoring and advanced neuroimaging. Only transient cognitive impairments have been reported in SpTR patients compared to GTR patients. Moreover, SpTR is related to a longer overall and progression-free survival along with preserving neuro-cognitive functions and quality of life.
Collapse
Affiliation(s)
- Giuseppe Roberto Giammalva
- Unit of Neurosurgery, Department of Biomedicine, Neuroscience and Advanced Diagnostics, Post Graduate Residency Program in Neurosurgery, University of Palermo, Palermo, Italy
| | - Lara Brunasso
- Unit of Neurosurgery, Department of Biomedicine, Neuroscience and Advanced Diagnostics, Post Graduate Residency Program in Neurosurgery, University of Palermo, Palermo, Italy
| | - Roberta Costanzo
- Unit of Neurosurgery, Department of Biomedicine, Neuroscience and Advanced Diagnostics, Post Graduate Residency Program in Neurosurgery, University of Palermo, Palermo, Italy
| | - Federica Paolini
- Unit of Neurosurgery, Department of Biomedicine, Neuroscience and Advanced Diagnostics, Post Graduate Residency Program in Neurosurgery, University of Palermo, Palermo, Italy
| | | | | | - Cesare Gagliardo
- Section of Radiological Sciences, Department of Biomedicine, Neuroscience and Advanced Diagnostics, University of Palermo, Palermo, Italy
| | - Rosa Maria Gerardi
- Unit of Neurosurgery, Department of Biomedicine, Neuroscience and Advanced Diagnostics, Post Graduate Residency Program in Neurosurgery, University of Palermo, Palermo, Italy
| | - Luigi Basile
- Unit of Neurosurgery, Department of Biomedicine, Neuroscience and Advanced Diagnostics, Post Graduate Residency Program in Neurosurgery, University of Palermo, Palermo, Italy
| | | | - Carlo Gulì
- Unit of Neurosurgery, Department of Biomedicine, Neuroscience and Advanced Diagnostics, Post Graduate Residency Program in Neurosurgery, University of Palermo, Palermo, Italy
| | - Domenico Messina
- Unit of Neurosurgery, Department of Biomedicine, Neuroscience and Advanced Diagnostics, Post Graduate Residency Program in Neurosurgery, University of Palermo, Palermo, Italy
| | - Maria Angela Pino
- Unit of Neurosurgery, Department of Biomedicine, Neuroscience and Advanced Diagnostics, Post Graduate Residency Program in Neurosurgery, University of Palermo, Palermo, Italy
| | - Paola Feraco
- Neuroradiology Unit, S. Chiara Hospital, Trento, Italy
| | - Silvana Tumbiolo
- Department of Neurosurgery, Villa Sofia Hospital, Palermo, Italy
| | - Massimo Midiri
- Unit of Neurosurgery, Department of Biomedicine, Neuroscience and Advanced Diagnostics, Post Graduate Residency Program in Neurosurgery, University of Palermo, Palermo, Italy
| | - Domenico Gerardo Iacopino
- Unit of Neurosurgery, Department of Biomedicine, Neuroscience and Advanced Diagnostics, Post Graduate Residency Program in Neurosurgery, University of Palermo, Palermo, Italy
| | - Rosario Maugeri
- Unit of Neurosurgery, Department of Biomedicine, Neuroscience and Advanced Diagnostics, Post Graduate Residency Program in Neurosurgery, University of Palermo, Palermo, Italy
| |
Collapse
|
25
|
Zhang N, Yuan B, Yan J, Cheng J, Lu J, Wu J. Multivariate machine learning-based language mapping in glioma patients based on lesion topography. Brain Imaging Behav 2021; 15:2552-2562. [PMID: 33619646 DOI: 10.1007/s11682-021-00457-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2019] [Revised: 12/11/2020] [Accepted: 01/21/2021] [Indexed: 12/21/2022]
Abstract
Diffusive and progressive tumor infiltration within language-related areas of the brain induces functional reorganization. However, the macrostructural basis of subsequent language deficits is less clear. To address this issue, lesion topography data from 137 preoperative patients with left cerebral language-network gliomas (81 low-grade gliomas and 56 high-grade gliomas), were adopted for multivariate machine-learning-based lesion-language mapping analysis. We found that tumor location in the left posterior middle temporal gyrus-a bottleneck where both dorsal and ventral language pathways travel-predicted deficits of spontaneous speech (cluster size = 1356 mm3, false discovery rate corrected P < 0.05) and naming scores (cluster size = 1491 mm3, false discovery rate corrected P < 0.05) in the high-grade glioma group. In contrast, no significant lesion-language mapping results were observed in the low-grade glioma group, suggesting a large functional reorganization. These findings suggest that in patients with gliomas, the macrostructural plasticity mechanisms that modulate brain-behavior relationships depend on glioma grade.
Collapse
Affiliation(s)
- Nan Zhang
- Department of Neurosurgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Anhui, Hefei, China.,Glioma Surgery Division, Neurologic Surgery Department, Huashan Hospital, Fudan University, Shanghai, China
| | - Binke Yuan
- Institute for Brain Research and Rehabilitation, South China Normal University, Guangzhou, China.,Key Laboratory of Brain, Cognition and Education Sciences (South China Normal University), Ministry of Education, Guangzhou, China.,Center for Language and Brain, Shenzhen Institute of Neuroscience, Shenzhen, China
| | - Jing Yan
- Department of MRI , The First Affiliated Hospital of Zhengzhou University , Zhengzhou, China
| | - Jingliang Cheng
- Department of MRI , The First Affiliated Hospital of Zhengzhou University , Zhengzhou, China
| | - Junfeng Lu
- Glioma Surgery Division, Neurologic Surgery Department, Huashan Hospital, Fudan University, Shanghai, China.
| | - Jinsong Wu
- Glioma Surgery Division, Neurologic Surgery Department, Huashan Hospital, Fudan University, Shanghai, China.,Institute of Brain-Intelligence Technology , Zhangjiang Lab, Shanghai, China
| |
Collapse
|
26
|
Daniel AGS, Hacker CD, Lee JJ, Dierker D, Humphries JB, Shimony JS, Leuthardt EC. Homotopic functional connectivity disruptions in glioma patients are associated with tumor malignancy and overall survival. Neurooncol Adv 2021; 3:vdab176. [PMID: 34988455 PMCID: PMC8694208 DOI: 10.1093/noajnl/vdab176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Background Gliomas exhibit widespread bilateral functional connectivity (FC) alterations that may be associated with tumor grade. Limited studies have examined the connection-level mechanisms responsible for these effects. Given the typically strong FC observed between mirroring/homotopic brain regions in healthy subjects, we hypothesized that homotopic connectivity (HC) is altered in low-grade and high-grade glioma patients and the extent of disruption is associated with tumor grade and predictive of overall survival (OS) in a cohort of de novo high-grade glioma (World Health Organization [WHO] grade 4) patients. Methods We used a mirrored FC-derived cortical parcellation to extract blood-oxygen-level-dependent (BOLD) signals and to quantify FC differences between homotopic pairs in normal-appearing brain in a retrospective cohort of glioma patients and healthy controls. Results Fifty-nine glioma patients (WHO grade 2, n = 9; grade 4 = 50; mean age, 57.5 years) and 30 healthy subjects (mean age, 65.9 years) were analyzed. High-grade glioma patients showed lower HC compared with low-grade glioma patients and healthy controls across several cortical locations and resting-state networks. Connectivity disruptions were also strongly correlated with hemodynamic lags between homotopic regions. Finally, in high-grade glioma patients with known survival times (n = 42), HC in somatomotor and dorsal attention networks were significantly correlated with OS. Conclusions These findings demonstrate an association between tumor grade and HC alterations that may underlie global FC changes and provide prognostic information.
Collapse
Affiliation(s)
- Andy G S Daniel
- Department of Biomedical Engineering, McKelvey School of Engineering, Washington University, St. Louis, MO 63130, USA
| | - Carl D Hacker
- Department of Neurological Surgery, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - John J Lee
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Donna Dierker
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Joseph B Humphries
- Department of Biomedical Engineering, McKelvey School of Engineering, Washington University, St. Louis, MO 63130, USA
| | - Joshua S Shimony
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Eric C Leuthardt
- Department of Biomedical Engineering, McKelvey School of Engineering, Washington University, St. Louis, MO 63130, USA
- Department of Neurological Surgery, Washington University School of Medicine, St. Louis, MO 63110, USA
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO 63110, USA
- Department of Mechanical Engineering and Materials Science, McKelvey School of Engineering, Washington University, St. Louis, MO 63130, USA
- Center for Innovation in Neuroscience and Technology, Washington University School of Medicine, St. Louis, MO 63110, USA
| |
Collapse
|
27
|
Altered Brain Structural Networks in Patients with Brain Arteriovenous Malformations Located in Broca's Area. Neural Plast 2020; 2020:8886803. [PMID: 33163073 PMCID: PMC7604605 DOI: 10.1155/2020/8886803] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 09/19/2020] [Accepted: 09/30/2020] [Indexed: 11/17/2022] Open
Abstract
Focal brain lesions, such as stroke and tumors, can lead to remote structural alterations across the whole-brain networks. Brain arteriovenous malformations (AVMs), usually presumed to be congenital, often result in tissue degeneration and functional displacement of the perifocal areas, but it remains unclear whether AVMs may produce long-range effects upon the whole-brain white matter organization. In this study, we used diffusion tensor imaging and graph theory methods to investigate the alterations of brain structural networks in 14 patients with AVMs in the presumed Broca's area, compared to 27 normal controls. Weighted brain structural networks were constructed based on deterministic tractography. We compared the topological properties and network connectivity between patients and normal controls. Functional magnetic resonance imaging revealed contralateral reorganization of Broca's area in five (35.7%) patients. Compared to normal controls, the patients exhibited preserved small-worldness of brain structural networks. However, AVM patients exhibited significantly decreased global efficiency (p = 0.004) and clustering coefficient (p = 0.014), along with decreased corresponding nodal properties in some remote brain regions (p < 0.05, family-wise error corrected). Furthermore, structural connectivity was reduced in the right perisylvian regions but enhanced in the perifocal areas (p < 0.05). The vulnerability of the left supramarginal gyrus was significantly increased (p = 0.039, corrected), and the bilateral putamina were added as hubs in the AVM patients. These alterations provide evidence for the long-range effects of AVMs on brain white matter networks. Our preliminary findings contribute extra insights into the understanding of brain plasticity and pathological state in patients with AVMs.
Collapse
|
28
|
Nenning KH, Furtner J, Kiesel B, Schwartz E, Roetzer T, Fortelny N, Bock C, Grisold A, Marko M, Leutmezer F, Liu H, Golland P, Stoecklein S, Hainfellner JA, Kasprian G, Prayer D, Marosi C, Widhalm G, Woehrer A, Langs G. Distributed changes of the functional connectome in patients with glioblastoma. Sci Rep 2020; 10:18312. [PMID: 33110138 PMCID: PMC7591862 DOI: 10.1038/s41598-020-74726-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 09/09/2020] [Indexed: 12/22/2022] Open
Abstract
Glioblastoma might have widespread effects on the neural organization and cognitive function, and even focal lesions may be associated with distributed functional alterations. However, functional changes do not necessarily follow obvious anatomical patterns and the current understanding of this interrelation is limited. In this study, we used resting-state functional magnetic resonance imaging to evaluate changes in global functional connectivity patterns in 15 patients with glioblastoma. For six patients we followed longitudinal trajectories of their functional connectome and structural tumour evolution using bi-monthly follow-up scans throughout treatment and disease progression. In all patients, unilateral tumour lesions were associated with inter-hemispherically symmetric network alterations, and functional proximity of tumour location was stronger linked to distributed network deterioration than anatomical distance. In the longitudinal subcohort of six patients, we observed patterns of network alterations with initial transient deterioration followed by recovery at first follow-up, and local network deterioration to precede structural tumour recurrence by two months. In summary, the impact of focal glioblastoma lesions on the functional connectome is global and linked to functional proximity rather than anatomical distance to tumour regions. Our findings further suggest a relevance for functional network trajectories as a possible means supporting early detection of tumour recurrence.
Collapse
Affiliation(s)
- Karl-Heinz Nenning
- Computational Imaging Research Lab, Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Spitalgasse 23, 1090, Vienna, Austria.
| | - Julia Furtner
- Department of Biomedical Imaging and Image-Guided Therapy, Division for Neuro- and Musculo-Skeletal Radiology, Medical University of Vienna, Vienna, Austria
| | - Barbara Kiesel
- Department of Neurosurgery, Medical University of Vienna, Vienna, Austria
| | - Ernst Schwartz
- Computational Imaging Research Lab, Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Spitalgasse 23, 1090, Vienna, Austria
| | - Thomas Roetzer
- Division of Neuropathology and Neurochemistry, Department of Neurology, Medical University of Vienna, Vienna, Austria
| | - Nikolaus Fortelny
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Christoph Bock
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria.,Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
| | - Anna Grisold
- Department of Neurology, Medical University of Vienna, Vienna, Austria
| | - Martha Marko
- Department of Neurology, Medical University of Vienna, Vienna, Austria
| | - Fritz Leutmezer
- Department of Neurology, Medical University of Vienna, Vienna, Austria
| | - Hesheng Liu
- A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Cambridge, USA
| | - Polina Golland
- Computer Science and Artificial Intelligence Lab, Massachusetts Institute of Technology, Cambridge, USA
| | - Sophia Stoecklein
- Department of Radiology, Ludwig-Maximilians-University, Munich, Germany
| | - Johannes A Hainfellner
- Division of Neuropathology and Neurochemistry, Department of Neurology, Medical University of Vienna, Vienna, Austria
| | - Gregor Kasprian
- Department of Biomedical Imaging and Image-Guided Therapy, Division for Neuro- and Musculo-Skeletal Radiology, Medical University of Vienna, Vienna, Austria
| | - Daniela Prayer
- Department of Biomedical Imaging and Image-Guided Therapy, Division for Neuro- and Musculo-Skeletal Radiology, Medical University of Vienna, Vienna, Austria
| | - Christine Marosi
- Department of Medicine I, Medical University of Vienna, Vienna, Austria
| | - Georg Widhalm
- Department of Neurosurgery, Medical University of Vienna, Vienna, Austria
| | - Adelheid Woehrer
- Division of Neuropathology and Neurochemistry, Department of Neurology, Medical University of Vienna, Vienna, Austria
| | - Georg Langs
- Computational Imaging Research Lab, Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Spitalgasse 23, 1090, Vienna, Austria. .,Computer Science and Artificial Intelligence Lab, Massachusetts Institute of Technology, Cambridge, USA.
| |
Collapse
|
29
|
Zhang L, Li D, Xiao D, Couldwell WT, Ohata K. Improving brain health by identifying structure-function relations in patients with neurosurgical disorders. BMJ 2020; 371:m3690. [PMID: 33037010 PMCID: PMC7541034 DOI: 10.1136/bmj.m3690] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Use of new technology to map which parts of the brain control different functions is leading to better treatment of patients with neurosurgical disorders, say Liwei Zhang and colleagues
Collapse
Affiliation(s)
- Liwei Zhang
- Neurosurgery Department, Beijing Tiantan Hospital, Capital Medical University, Fengtai District, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, Fengtai District, Beijing, China
- Beijing Key Laboratory of Brain Tumor, Fengtai District, Beijing, China
- International Translational Molecular Imaging Center for Brain Tumor, Fengtai District, Beijing, China
| | - Deling Li
- Neurosurgery Department, Beijing Tiantan Hospital, Capital Medical University, Fengtai District, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, Fengtai District, Beijing, China
- Beijing Key Laboratory of Brain Tumor, Fengtai District, Beijing, China
- International Translational Molecular Imaging Center for Brain Tumor, Fengtai District, Beijing, China
| | - Dan Xiao
- Neurosurgery Department, Beijing Tiantan Hospital, Capital Medical University, Fengtai District, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, Fengtai District, Beijing, China
| | - William T Couldwell
- Neurosurgery Department, Clinical Neurosciences Center, University of Utah, Salt Lake City, Utah, USA
| | - Kenji Ohata
- Neurosurgery Department, Osaka City University, Osaka, Japan
| |
Collapse
|
30
|
Poologaindran A, Suckling J, Sughrue ME. Letter: Elucidating the Principles of Brain Network Organization Through Neurosurgery. Neurosurgery 2020; 87:E80-E81. [PMID: 32315411 DOI: 10.1093/neuros/nyaa094] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Affiliation(s)
- Anujan Poologaindran
- Brain Mapping Unit, Department of Psychiatry University of Cambridge Cambridge, United Kingdom.,The Alan Turing Institute British Library London, United Kingdom
| | - John Suckling
- Brain Mapping Unit, Department of Psychiatry University of Cambridge Cambridge, United Kingdom.,The Alan Turing Institute British Library London, United Kingdom
| | - Michael E Sughrue
- Department of Neurosurgery Prince of Wales Private Hospital Sydney, Australia
| |
Collapse
|
31
|
Park KY, Lee JJ, Dierker D, Marple LM, Hacker CD, Roland JL, Marcus DS, Milchenko M, Miller-Thomas MM, Benzinger TL, Shimony JS, Snyder AZ, Leuthardt EC. Mapping language function with task-based vs. resting-state functional MRI. PLoS One 2020; 15:e0236423. [PMID: 32735611 PMCID: PMC7394427 DOI: 10.1371/journal.pone.0236423] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Accepted: 07/06/2020] [Indexed: 01/21/2023] Open
Abstract
Background Use of functional MRI (fMRI) in pre-surgical planning is a non-invasive method for pre-operative functional mapping for patients with brain tumors, especially tumors located near eloquent cortex. Currently, this practice predominantly involves task-based fMRI (T-fMRI). Resting state fMRI (RS-fMRI) offers an alternative with several methodological advantages. Here, we compare group-level analyses of RS-fMRI vs. T-fMRI as methods for language localization. Purpose To contrast RS-fMRI vs. T-fMRI as techniques for localization of language function. Methods We analyzed data obtained in 35 patients who had both T-fMRI and RS-fMRI scans during the course of pre-surgical evaluation. The RS-fMRI data were analyzed using a previously trained resting-state network classifier. The T-fMRI data were analyzed using conventional techniques. Group-level results obtained by both methods were evaluated in terms of two outcome measures: (1) inter-subject variability of response magnitude and (2) sensitivity/specificity analysis of response topography, taking as ground truth previously reported maps of the language system based on intraoperative cortical mapping as well as meta-analytic maps of language task fMRI responses. Results Both fMRI methods localized major components of the language system (areas of Broca and Wernicke) although not with equal inter-subject consistency. Word-stem completion T-fMRI strongly activated Broca's area but also several task-general areas not specific to language. RS-fMRI provided a more specific representation of the language system. Conclusion We demonstrate several advantages of classifier-based mapping of language representation in the brain. Language T-fMRI activated task-general (i.e., not language-specific) functional systems in addition to areas of Broca and Wernicke. In contrast, classifier-based analysis of RS-fMRI data generated maps confined to language-specific regions of the brain.
Collapse
Affiliation(s)
- Ki Yun Park
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - John J. Lee
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Donna Dierker
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Laura M. Marple
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Carl D. Hacker
- Department of Neurosurgery, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Jarod L. Roland
- Department of Neurosurgery, University of California San Francisco, San Francisco, California, United States of America
| | - Daniel S. Marcus
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Mikhail Milchenko
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Michelle M. Miller-Thomas
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Tammie L. Benzinger
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Joshua S. Shimony
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, Missouri, United States of America
- * E-mail:
| | - Abraham Z. Snyder
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Eric C. Leuthardt
- Department of Neurosurgery, Washington University School of Medicine, St. Louis, Missouri, United States of America
| |
Collapse
|
32
|
Tumor grade-related language and control network reorganization in patients with left cerebral glioma. Cortex 2020; 129:141-157. [PMID: 32473401 DOI: 10.1016/j.cortex.2020.04.015] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 01/17/2020] [Accepted: 04/21/2020] [Indexed: 12/25/2022]
Abstract
Language processing relies on both a functionally specialized language network and a domain-general cognitive control network. Yet, how the two networks reorganize after damage resulting from diffuse and progressive glioma remains largely unknown. To address this issue, 130 patients with left cerebral gliomas, including 77 patients with low-grade glioma (LGG, WHO grade Ⅰ/II), 53 patients with high-grade glioma (HGG, WHO grade III/IV) and 38 healthy controls (HC) were adopted. The changes in resting-state functional connectivity (rsFC) of the language network and the cingulo-opercular/fronto-parietal (CO-FP) network were examined using network-based statistics. We found that tumor grade negatively correlated with language scores and language network integrity. Compared with HCs, patients with LGGs exhibited slight language deficits, both decreased and increased changes in rsFC of language network, and nearly normal CO-FP network. Patients with HGGs had significantly lower language scores than those with LGG and exhibited more severe language and CO-FP network disruptions than HCs or patients with LGGs. Moreover, we found that in patients with HGGs, the decreased rsFCs of language network were positively correlated with language scores. Together, our findings suggest tumor grade-related network reorganization of both language and control networks underlie the different levels of language impairments observed in patients with gliomas.
Collapse
|
33
|
Catalino MP, Yao S, Green D, Laws ER, Golby AJ, Tie Y. Mapping cognitive and emotional networks in neurosurgical patients using resting-state functional magnetic resonance imaging. Neurosurg Focus 2020; 48:E9. [PMID: 32006946 PMCID: PMC7712886 DOI: 10.3171/2019.11.focus19773] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Accepted: 11/13/2019] [Indexed: 01/15/2023]
Abstract
Neurosurgery has been at the forefront of a paradigm shift from a localizationist perspective to a network-based approach to brain mapping. Over the last 2 decades, we have seen dramatic improvements in the way we can image the human brain and noninvasively estimate the location of critical functional networks. In certain patients with brain tumors and epilepsy, intraoperative electrical stimulation has revealed direct links between these networks and their function. The focus of these techniques has rightfully been identification and preservation of so-called "eloquent" brain functions (i.e., motor and language), but there is building momentum for more extensive mapping of cognitive and emotional networks. In addition, there is growing interest in mapping these functions in patients with a broad range of neurosurgical diseases. Resting-state functional MRI (rs-fMRI) is a noninvasive imaging modality that is able to measure spontaneous low-frequency blood oxygen level-dependent signal fluctuations at rest to infer neuronal activity. Rs-fMRI may be able to map cognitive and emotional networks for individual patients. In this review, the authors give an overview of the rs-fMRI technique and associated cognitive and emotional resting-state networks, discuss the potential applications of rs-fMRI, and propose future directions for the mapping of cognition and emotion in neurosurgical patients.
Collapse
Affiliation(s)
- Michael P Catalino
- Department of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School Boston, MA
- Department of Neurosurgery, University of North Carolina Hospitals, Chapel Hill, NC
| | - Shun Yao
- Department of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School Boston, MA
- Department of Neurosurgery and Pituitary Tumor Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Deborah Green
- Department of Neurology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA
| | - Edward R Laws
- Department of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School Boston, MA
| | - Alexandra J Golby
- Department of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School Boston, MA
| | - Yanmei Tie
- Department of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School Boston, MA
- Corresponding Author: Yanmei Tie, Ph.D., Assistant Professor, Department of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School, Hale Building for Transformative Medicine, 8016G, 60 Fenwood Road, Boston, MA 02115, USA, , Tel: 617-732-8249
| |
Collapse
|
34
|
Hu G, Hu X, Yang K, Liu D, Xue C, Liu Y, Xiao C, Zou Y, Liu H, Chen J. Restructuring of contralateral gray matter volume associated with cognition in patients with unilateral temporal lobe glioma before and after surgery. Hum Brain Mapp 2019; 41:1786-1796. [PMID: 31883293 PMCID: PMC7268035 DOI: 10.1002/hbm.24911] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Revised: 12/10/2019] [Accepted: 12/16/2019] [Indexed: 12/18/2022] Open
Abstract
Glioma can cause variable alterations to the structure and function of the brain. However, there is a paucity of studies on the gray matter (GM) volume alterations in the brain region opposite the temporal glioma before and after surgery. Therefore, the present study was initiated to investigate the alternation in contralateral homotopic GM volume in patients with unilateral temporal lobe glioma and further, assess the relationship between GM volume alternations with cognition. Eight left temporal lobe glioma patients (LTPs), nine right temporal lobe glioma patients (RTPs), and 28 demographically matched healthy controls (HCs) were included. Using voxel‐based morphometry method, alternations in the contralateral homotopic GM volume in patients with unilateral temporal lobe glioma was determined. Furthermore, the correlation analysis was performed to explore the relationship between cognitive function and altered GM volume. In the preoperative analysis, compared to HCs, LTPs exhibited increased GM volume in right inferior temporal gyrus and right temporal pole (superior temporal gyrus), and, RTPs presented increased GM volume in left inferior temporal gyrus. In the postoperative analysis, compared to HCs, RTPs presented increased GM volume in left middle temporal gyrus. Furthermore, the increased GM volume was significantly positively correlated with the memory test but negatively correlated with the visuospatial test. This study preliminarily confirmed that there were compensatory changes in the GM volume in the contralateral temporal lobe in unilateral temporal lobe glioma patients. Furthermore, alterations of GM volume may be a mechanism for cognitive function compensation.
Collapse
Affiliation(s)
- Guanjie Hu
- Department of Neurosurgery, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xinhua Hu
- Department of Neurosurgery, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, Jiangsu, China.,Institute of Brain Functional Imaging, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Kun Yang
- Department of Neurosurgery, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Dongming Liu
- Department of Neurosurgery, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Chen Xue
- Institute of Brain Functional Imaging, Nanjing Medical University, Nanjing, Jiangsu, China.,Department of Radiology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yong Liu
- Department of Neurosurgery, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Chaoyong Xiao
- Institute of Brain Functional Imaging, Nanjing Medical University, Nanjing, Jiangsu, China.,Department of Radiology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yuanjie Zou
- Department of Neurosurgery, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, Jiangsu, China.,Institute of Brain Functional Imaging, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Hongyi Liu
- Department of Neurosurgery, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, Jiangsu, China.,Institute of Brain Functional Imaging, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Jiu Chen
- Institute of Brain Functional Imaging, Nanjing Medical University, Nanjing, Jiangsu, China.,Institute of Neuropsychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Fourth Clinical College of Nanjing Medical University, Nanjing, Jiangsu, China
| |
Collapse
|